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Abstract

Extending the random-proposer model (Baron and Ferejohn, 1989; Okada, 2011)
and the random-bilateral-meeting model (Gul, 1989), we introduce a non-cooperative
coalitional bargaining model in which agents can strategically buy out other agents.
With buyout options, due to agents’ strategic alliance behaviors, an efficient coalition
may not be formed immediately in stationary subgame perfect equilibria and the equi-
librium payoff vector is not necessarily in the core. We characterize conditions for a
grand-coalition equilibrium and an efficient stationary equilibrium. Two applications
are studied. For simple games with veto players, non-winning intermediate coalitions
may be formed and the equilibrium winning coalition is not always minimal. For
employer-employee games, workers form a union and the equilibrium wage is higher
than the marginal product of each worker.

1 Introduction

When three or more agents bargain over their joint surplus, forming a transitional coalition is

common phenomena though such a coalition is inefficient. Rather than immediately forming

an efficient coalition,1 agents can increase their bargaining power by forming a transitional

inefficient coalition. In wage bargaining, for instance, workers form a labor union even though

the union itself produces nothing; similarly, in legislative bargaining, minor parties form a

coalition though the coalition is still minor.

In the theoretical coalitional bargaining models, however, agents immediately form an

efficient coalition, especially when the gain from cooperation is substantial and commonly

∗Preliminary and incomplete.
†Department of Economics, the Pennsylvania State University, University Park, PA 16802, USA. E-mail:

joosung@psu.edu. I am grateful to Kalyan Chatterjee, Ed Green, Jim Jordan, Vijay Krishna, Rajiv Vohra,
and Neil Wallace for helpful discussions.

1In characteristic function form games, an efficient coalition maximizes the characteristic function.
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known.2 To investigate agents’ strategic alliance behaviors and gradual agreement phenom-

ena, we propose a noncooperative bargaining model, combining the random-proposer model

(Baron and Ferejohn, 1989; Okada, 2011) and the random-bilateral-meeting model (Gul,

1989). More precisely, we allow the agents to strategically buy out other agents. If an agent

makes an offer to a subcoalition and all the members in the subcoalition accept the offer,

then the proposer represents the subcoalition and participates the subsequent bargaining

game for the remaining surplus.3 4

With buyout options, we characterize a condition for a grand-coalition equilibrium, in

which all the agents always form the grand-coalition. When the agents are sufficiently pa-

tient, a grand-coalition equilibrium exists if and only if the underlying characteristic function

form game is unanimous.5 Interestingly, even if the gain from forming the grand-coalition

is substantial like convex games, the grand-coalition will not be immediately formed with

positive probability and hence delay may be occurred in an equilibrium.

In addition to the impossibility result on grand-coalition equilibria, we provide a more

strong impossibility result on efficient stationary equilibria. If there is an essential player,6

then not only the grand-coalition but also other efficient coalitions will not be immediately

formed with positive probability unless the underlying characteristic function form game is

2With complete information, delayed equilibria in coalitional bargaining have been studied, but those
equilibria rely on some restrictive bargaining protocols and some specific structures of coalitional worths
(Chatterjee et al., 1993; Cai, 2000).

3This is in contrast to Baron and Ferejohn (1989) , Chatterjee et al. (1993), and Okada (1996, 2011),
in which even a proposer must leave the game, and Selten (1988) and Compte and Jehiel (2010), in which
the game is terminated with only one coalition. Such assumptions in the literature simplify the analysis so
that forming inferior coalitions is precluded. As a result, for simple games only minimal winning coalitions
formed and for convex games, the grand-coalition is always formed immediately. Our approach is similar to
Gul (1989), Serrano (1993); Krishna and Serrano (1995); Serrano (1995); Krishna and Serrano (1996); Dagan
et al. (1997); Serrano and Vohra (1997). However, in Gul (1989), coalition formation is based on random
pairwise meetings and agents do not choose their partner strategically. Serrano and his coworkers considered
some restricted class of games such as three-person games, a pie-splitting game, bankruptcy problems, but
not general characteristic function form games.

4Our model is close to Seidmann and Winter (1998) and Okada (2000), which allow renegotiations in
noncooperative coalitional bargaining games. Seidmann and Winter (1998) considered the rejector-proposer
model with semi-strict superadditive games; while our model is based on a random-proposer model and does
not need superadditivity. Okada (2000) considers a random-proposer model, but it is based on a very strong
assumption; once a subcoalition formed, any other disjoint subcoalition cannot be formed.

5A characteristic function form game (N, v) is unanimous if v(S) = 0 for all S ( N .
6In a characteristic function form game (N, v), a player i ∈ N is essential if v(N) > v(N \ {i}).
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unanimous.

This inefficiency result is applied to simple games. For simple games with veto players,

transitional non-winning coalitions may be formed and the equilibrium winning coalition is

not always minimal unless all the players are veto.7 That is, non-veto players form a union

each other in an equilibrium, even though that is not a winning coalition. Furthermore, the

equilibrium expected payoff vector is not necessarily in the core of the underlying character-

istic function form game. Conversely, either if there is no veto player or if all the players are

veto, then minimal winning coalitions form immediately. As specific examples, three-party

weighted majority games are studied.

We also investigate workers’ strategic solidarity behaviors with employer-employee games

and the effect of the discount factor and the recognition probability. When the common

discount factor is higher than a certain level, workers endogenously form a union; and as

the discount factor increases, the equilibrium wage also increases. The workers’ recognition

probability also plays an important role. The more likely the workers make a proposal, the

less likely they form a union. These results highlight the role of buyout options, compared

to Okada (2011)’s result, in which the equilibrium wage converges to the marginal product

of each worker as the discount factor increases no matter what the recognition probability

is.

The paper is organized as follows. Section 2 describes a non-cooperative coalitional

bargaining model with buyout options. In Section 3, we define a stationary subgame perfect

equilibrium, in short SSPE, and a cutoff strategy equilibrium as a special form of SSPE. Then

we show that for any arbitrary SSPE, there exists a corresponding cutoff strategy equilibrium

which yields the same expected payoff vector. Section 4 and Section 5 characterize conditions

for a grand-coalition equilibrium and an efficient stationary equilibrium. In Section 6, as

an application to simple games, we fully describe SSPE in three-parties weighted majority

7Aumann and Myerson (2003) informally argued that forming a non-minimal winning coalition could be
a stable equilibrium. In the existing noncooperative model including Montero (2002), Morelli and Montero
(2003), Montero (2006) and Montero and Vidal-Puga (2011), however, only a minimal winning coalition
occurs in stationary subgame perfect equilibria.
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games. In Section 7, the effect of agents’ buyout options and the workers’ solidarity behaviors

are discussed in a wage bargaining model. Appendix presents an outline to show the existence

of SSPE in this model.

2 A Model

Let N be a set of agents and n be the cardinality of N . For any S ⊆ N and i ∈ S,

define P(S) = {S ′ ⊆ S | S ′ 6= ∅} and Pi(S) = {S ′ ⊆ S | i ∈ S ′}.8 Let v : P(N) → Rn
+

be a characteristic function on N . We assume that v is zero-normalized, monotone, and

essential, that is, v({i}) = 0 for all i ∈ N ; v(S) ≤ v(S ′) for all S ⊆ S ′ ⊆ N ; and v(N) > 0.

A tuple (N, v) is an underlying characteristic function form game, or shortly an underlying

game. Given an underlying game (N, v), the super-additive cover of v is the characteristic

function v̂ defined by: for all S ⊆ N ,

v̂(S) = max

{∑
S′∈ϕ

v(S ′)
∣∣∣ ϕ is a partition of S

}
.

LetX ≡ {x ∈ Rn
+ |
∑

i∈N xi ≤ v(N)} be a set of feasible and individually rational allocations.

A coalitional state π consists of a set of active players N(π) ∈ P(N) and a partition

{πi}i∈N(π) of N such that i ∈ πi.
9 Let n(π) be the number of active players in π and let

πS = ∪k∈Sπk. The initial coalitional state π◦ consists of N(π◦) = N and π◦i = {i} for all

i ∈ N . Given coalitional state π, let X(π) ≡ {x ∈ X | (∀i ∈ N(π)) xi ≥ v(πi) and (∀i 6∈

N(π)) xi = 0} be a set of feasible allocations restricted on N(π). A characteristic function

vπ : P(N(π))→ X(π), restricted on N(π), is defined by, for all S ∈ P(N(π)),

vπ(S) = v̂(πS)−
∑
k∈S

v(πk).

8Pi(S) can be interpreted as the set of subcoalitions which can be proposed by i. When there is a com-
munication restriction, we extend this definition. A communication restriction among agents is represented
by a connected directed graph E over N . Then we define Pi(S) = {S′ ⊆ S | (∀j ∈ S′) j = i or ij ∈ E}.

9A coalition structure, proposed in Aumann and Dreze (1974), is a partition of the set of agents N . On
the other hand, a coalitional state, defined in this paper, consists of a partition of N indexed by active
players. Thus, a coalitional state specifies the owner or the representative agent for each coalition in the
partition.
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A coalitional state π is efficient if there is no unrealized surplus, that is, vπ(N(π)) = 0.

A coaltional state π is inefficient if π is not efficient, that is, vπ(N(π)) > 0. Let Π̄ be the

set of all efficient coalitional states and Π be the set of all inefficient coalitional states. Note

that if a game (N, v) is strictly grandcoalition superadditive10, then any efficient coalitional

state π ∈ Π̄ involves the grandcoalition, that is, N(π) = {i} and πi = N .

For π ∈ Π, if i ∈ N(π) forms a coalition S ∈ Pi(N(π)), then the subsequent coalitional

state, denoted by π(i, S), consists of N(π(i, S)) = N(π) \ S ∪ {i} and πi(i, S) = πS and

πj(i, S) = πj for all j ∈ N(π) \ S. For a pair of coalitional states π and π′, π precedes π′,

denoted by π ≺ π′, or π′ succeeds π, denoted by π′ � π, if for all j ∈ N(π′) there exists

S ∈ P(N(π)) such that j ∈ S and π′j = πS. Given π ∈ Π, define Π|π = {π′ ∈ Π | π′ � π},

which is the set of succeeding states of π.

A non-cooperative coalitional bargaining game, or shortly, a bargaining game is a tuple

Γ = (N, v, p, δ), where p ∈ 4(N) is the initial recognition probability, and δ is the common

discount factor. A bargaining game proceeds as follows. In the initial state π◦, an agent

i ∈ N is selected as a proposer with probability pi. The proposer i makes a proposal, a

pair of S ∈ Pi(N) and y ∈ X. By an exogenously given order, each respondent j ∈ S \ {i}

sequentially either accepts the proposal or rejects it. If any j ∈ S \ {i} rejects then move to

the next period and a new proposer will be selected. If all j ∈ S \ {i} accept the proposal,

then S \ {i} leaves the game with receiving {yj}j∈S\{i} from i and move to the subsequent

coalitional state π◦(i, S).

In any subgame with π ∈ Π, a new proposer i ∈ N(π) is selected with probability

pπi =
∑

k∈πi pk and the proposer makes an proposal (S ′, y′) such that S ′ ∈ Pi(N(π)) and

y′ ∈ X(π). By the same manner, the active players in N(π) continue to bargain and move

to a subsequent coalitional state until the coalitional state is efficient. If the coalitional state

π is efficient, then the game ends and each active agent i ∈ N(π) gets the final payoff v(πi).

Once the game ends, then the last coalitional state continues forever.

10A characteristic function v is strictly grandcoalition superadditive if v is superadditive and [S ( N =⇒
v(S) < v(N)]
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For a characteristic function form game (N, v), an infinite sequence of coalitional states

π̃ = {πt}∞t=0, and a sequence of tranfers among players τ̃ = {τ t}∞t=0, an agent i ∈ N ’s

discounted sum of payoffs is

Ui(N, v, π̃, τ̃) =
∞∑
t=0

δt
[
(1− δ)v(πti) + τ ti

]
.

3 Stationary Subgame Perfect Equilibria

A stationary strategy depends only on the current coalitional state and within-period histo-

ries, but not the histories of past periods. We define a simple stationary strategy, namely

cutoff strategy, and we show that for any SSPE there exists a corresponding cutoff strategy

equilibrium which produces the same expected payoff vector. This section generalizes Yan

(2003) and Eraslan and McLennan (2011).

3.1 Stationary strategies

Fix an inefficient coalitional state π ∈ Π. At the beginning of each period with π, a proposer

is selected randomly with the recognition probability pπ, that is, each within-period history

specifies a current proposer. After a proposer is selected, the proposer makes a proposal, a

pair of a subset of active players and a feasible allocation. Then the nominated players, the

members in the proposed subset of active players, are supposed to response sequentially.

Let H0(π) = N(π)×P(N(π))×X(π) be a set of histories right after the proposer makes

an offer; and for all i ∈ N , H i(π) = H i−1(π)×{0, 1} be a set of histories right after an agent

i responses. The set of all possible within-period histories is

H(π) = N(π) ∪H0(π) ∪H1(π) ∪ · · · ∪Hn(π).

For all h ∈ H(π), typically denoted by (φ, S, y, r1, r2, · · · , ri), the first element of the

history specifies the current proposer, denoted by φ(h) = φ ∈ N(π). For all h ∈ ∪n`=0H
`(π),

the second element and the third element specify the proposed coalition and the proposed

allocation, denoted by S(h) = S ∈ P(N(π)) and y(h) = y ∈ X(π). For all i ∈ N and all
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h ∈ ∪n`=iH`(π), the (i+3)th element specifies the agent i’s response, denoted by ri(h) = ri ∈

{0, 1}, where 0 represents i’s rejection and 1 represents i’s acceptance.

For a measurable space (Ω,A), let ∆(Ω) be the set of probability measures on Ω. For

a pair of measurable spaces (Ω1,A1) and (Ω2,A2), let ∆(Ω1,Ω2) be the set of transition

probabilities from Ω1 to Ω2. An agent i’s (stationary) proposal strategy in π is απi ∈

∆(Pi(N(π))×X(π)). Define a proposal transition probability απ ∈ ∆(N(π),P(N(π))×X(π))

so that απ(i)(S, y) = απi (S, y). An agent i’s (stationary) response strategy in π is βπi ∈

∆(H i−1(π), {0, 1}) such that βπi (h)(1) = 1 if φ(h) = i or i 6∈ S(h).

For a fixed π, the three stochastic components, the recognition probability pπ, the pro-

posal transition probability απ, and the response strategy profile βπ ≡ {βπi }i∈N , induce

a unique probability measure on Hn.11 The induced probability measure is denoted by

pπ ⊗ απ ⊗ βπ1 ⊗ · · · ⊗ βπn .

Let O(π) = [P(N(π))×X(π)] ∪ {π} be the outcome space in π. Define an outcome

function o : Hn(π)→ O(π), such that for all h ∈ Hn(π),

o(h) =

{
(S(h), y(h)) if ×j∈N rj(h) = 1

π otherwise.

Let (pπ ⊗ απ ⊗ βπ1 ⊗ · · · ⊗ βπn)◦o−1 be the induced measure on O(π) by (pπ, απ, βπ). We also

define the induced measures on O(π) by any history h ∈ H(π) and the agents’ stationary

strategies (α, β):

κ(h, απ, βπ) =

{
(δh ⊗ απ ⊗ βπ1 ⊗ · · · ⊗ βπn) ◦ o−1 if h ∈ N(π)(
δh ⊗ βπ`+1 ⊗ · · · ⊗ βπn

)
◦ o−1 if h ∈ H`(π) ` = 0, 1, · · · , n,

where δh is the Dirac probability measure on H(π).

Given π, let x|π ≡ {xπ
′}π′∈Π|π be the collection of values of succeeding states, where

xπ
′ ∈ X(π′) for all π′ ∈ Π|π. Denote xπ ≡ x|π ∪{xπ}. We define an active agent i’s expected

11This is known as a generalized Fubini Theorem. See Eraslan and McLennan (2011).
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payoffs from the stationary strategy (απ, βπ) at h ∈ H(π) with respect to xπ:

wi(h, α
π, βπ,xπ) = κ(h, απ, βπ)(π)xπi

+
∑

S∈Pi(N(π))

∫
y∈X(π)

(
yi +

(
x
π(i,S)
i −

∑
j∈S

yj

)
1(i = φ(h))

)
κ(h, απ, βπ)(S, dy)

+
∑

S∈P(N(π))\Pi(N(π))

x
π(φ(h),S)
i

∫
y∈X(π)

κ(h, απ, βπ)(S, dy).

A within-period stationary strategy profile (απ, βπ) is a within-period stationary subgame

perfect xπ-equilibrium if, for all h ∈ H(π), all i ∈ N(π), and i’s all possible within-period

stationary strategies α̂πi and β̂πi ,

wi(h, α
π, βπ,xπ) ≥ wi(h, (α̂

π
i , α

π
−i), (β̂

π
i , β

π
−i),x

π). (1)

Let (α,β) be a stationary strategy profile, where α ≡ {απ}π∈Π and β ≡ {βπ}π∈Π; and

x ≡ {xπ}π∈Π be a stationary value profile.

Lemma 1. Let (α,β) be an arbitrary stationary strategy profile. There exists a value profile

x induced by (α,β).

Proof. Fix i ∈ N and (α−i,β−i), that is all the other players except for i play the given

stationary strategy. Then the player i’s problem is to find i’s optimal strategy for a station-

ary discounted dynamic programming. By the fundamental theorem of stochastic dynamic

programming, for every state π ∈ Π, i has a optimal strategy and it induces a value for i.

Furthermore, the optimal strategy of i maximizes the expectation of the sum of the current

payoff and the discounted value of next period’s state, that is the optimal strategy of i is

also stationary.

Note that any SSPE is represented by (α,β). Now we show that any stationary strategy

profile (α,β) is an SSPE if and only if it induces a value profile x and for each state it

constructs a within-period stationary subgame perfect equilibrium with respect to the value

profile.

Proposition 1. If (α,β) is an SSPE, then there exists x such that, for all π ∈ Π, the partial

strategy profile (απ, βπ) is a within-period stationary subgame perfect xπ-equilibrium.
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Proof. (Sketch) Denote α|π ≡ {απ
′}π′∈Π|π , β|π ≡ {βπ

′}π′∈Π|π , απ ≡ α|π ∪ {απ}, and βπ ≡

β|π ∪ {βπ}. The fixed strategy profile (α,β) induces a value profile x. For each state π,

xπ depend only on x|π, απ, and βπ. Since (α,β) is an SSPE, the corresponding partial

strategy profile (απ, βπ) satisfies the period optimality condition (1) with respect to xπ.

Thus, (απ, βπ) is a within-period stationary subgame perfect xπ-equilibrium.

Proposition 2. If there exist (α,β) and x such that for all π ∈ Π, (απ, βπ) is a within-period

stationary subgame perfect xπ-equilibrium, then (α,β) is an SSPE.

Proof. (Sketch) If a coalitional state π is efficient, then the game ends and each active player

i ∈ N(π) gets v(πi) from that period on. If a coalitional state π is inefficient, then it must

be n(π) ≥ 2. For π ∈ Π with n(π) = 2, there exists a unique subgame perfect equilibrium

of Γπ, for all i ∈ N(π),

απi (h) = (N(π), xπ) for all h ∈ H(π); and

βπi (h) =

{
1 if yi(h) ≥ xπi
0 otherwise,

where xπi = (1− δ)v(πi) + δpπi v(N) for each i ∈ N .

Now we consider an arbitrary inefficient state π ∈ Π such that n(π) ≥ 3. Suppose, for all

the succeeding states π′ ∈ Π|π, (απ′ ,βπ
′
) is an SSPE of the subgame with π′ and it induces

the value of state xπ
′
. To show that (απ,βπ) is an SSPE of the subgame with π, suppose all

the active agents except for an arbitrary i follow the stationary strategy profile (απ
−i,β

π
−i).

The agent i faces a stochastic dynamic programming and hence i has an optimal strategy

which maximizes the current return plus the sum of discounted future values, or equivalently,

solves the condition (1). Therefore, if (απ, βπ) is a within-period stationary subgame perfect

xπ-equilibrium, then (απ,βπ) is an SSPE of Γπ.

Induction argument completes the proof.

Lemma 2. Let (α,β) be an SSPE and x be the induced value profile. For all π ∈ Π,∑
j∈N(π) x

π
j < v(N).
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Proof. Fix π ∈ Π. (απ, βπ) is a within-period stationary subgame perfect xπ-equilibrium.

Thus, for all j ∈ N(π), it must be wj(h, α
π, βπ,xπ) ≥ xπj and hence we have

∑
j∈N(π)

wj(h, α
π, βπ,xπ) ≥

∑
j∈N(π)

xπj .

The left-hand side, the sum of expected payoffs of all the active players must be less

than or equal to v(N). Suppose, for contradiction,
∑

j∈N(π) x
π
j ≥ v(N). This yields that∑

j∈N(π) wj(h, α
π, βπ,xπ) = 1, and hence we have wj(h, α

π, βπ,xπ) = xπj for all j ∈ N(π),

since wj(h, α
π, βπ,xπ) ≥ xπj for all j ∈ N(π). However, this contradicts that π is ineffi-

cient.

3.2 Cutoff strategy SSPE

Even in the class of stationary subgame perfect equilibria, agents’ strategies may depend on

within-period histories, which involve the identity of the proposer, the proposed coalition and

the proposed payoffs, and preceding respondents’ reactions. We define a cutoff strategy as

a special form of stationary strategies, and we show the equivalence between cutoff strategy

SSPE and general SSPE in terms of equilibrium payoffs.

A cutoff strategy profile (x,q) consists of a cutoff value profile x = {{xπi }i∈N(π)}π∈Π

and a coalition formation strategy profile q = {{qπi }i∈N(π)}π∈Π, where xπi ∈ R and qπi ∈

∆(Pi(N(π))) for each π ∈ Π and it specifies the behaviors of an active agent i ∈ N(π) in

any coalitional state π in the following way:

• An agent i proposes (S, y) with probability qπi (S) such that

yk =

{
xπk if k ∈ S
0 otherwise;

• An agent i accepts any proposal (S, y) if and only if yi ≥ xπi .

Given x, define an active agent i’s demand set in π:

Dπ
i (x) = argmax

S∈Pi(N(π))

[
x
π(i,S)
i −

∑
j∈S

xπj

]
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and its maximized value mπ
i (x). Given a cutoff strategy profile (x,q), define an active agent

i’s continuation payoff in π:

uπi (x,q) = pπim
π
i (x) +

∑
j∈N(π)

pπj
∑

S∈Pj(N(π))

qπj (S)
[
1(i ∈ S)xπi + 1(i 6∈ S)x

π(j,S)
i

]
. (2)

Now we show that, for any SSPE (α,β), there exists a cutoff strategy SSPE (x,q) such

that the SSPE (α,β) induces the value profile x. Let (α,β) be an SSPE. Due to Proposition

1, there exists a value profile x such that, for all π ∈ Π, (απ, βπ) is a within-period stationary

subgame perfect xπ-equilibrium.

Lemma 3. For all π ∈ Π, i ∈ N , and h ∈ H i(π) such that

i) X
1≤`≤i−1

r`(h) = 1; and

ii) (∀` ∈ S(h) \ {φ(h)}) ` ≥ i =⇒ y`(h) > xπ` ,

the current proposal (S(h), y(h)) will be implemented for sure in any SSPE.

Proof. Fix π ∈ Π and we divide the proof into two cases.

Case 1: i = n.

subcase 1-1: Suppose that n 6∈ S(h)\{φ(h)}. It must be βπn(h) = 1 no matter what yn(h).

Thus, the outcome at the history of h′ = (h, rn) must be o(h′) = (S(h), y(h)), that is,

(S(h), y(h)) will be implemented for sure.

subcase 1-2: Suppose that n ∈ S(h) \ {φ(h)}. If βπn(h) = 1, then the outcome at the

history of h′ = (h, rn) is o(h′) = (S(h), y(h)), and hence the player n’s payoff at the

state is yn(h). If βπn(h) < 1, then the outcome at the history of h′ = (h, rn) will be

o(h′) = π with positive probability, and hence they face the same state π in which the

player n’s value is xπn. Thus, for the player n, βπn(h) = 1 is optimal at the history h

and hence (S(h), y(h)) is implemented.

Case 2: i ≤ n− 1.

As induction hypothesis, suppose that, for all j > i and all h ∈ Hj(π) if

[
X

1≤`≤j−1
r`(h) = 1

]
and

[
(∀` ∈ S(h) \ {φ(h)}) ` ≥ j =⇒ y`(h) > xπ`

]
, then (S(h), y(h)) is implemented for sure.
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subcase 2-1: Suppose that i 6∈ S(h) \ {φ(h)}. It must be βπi (h) = 1 no matter what yi(h).

Thus, the outcome at the history of h′ = (h, ri, · · · , rn) must be o(h′) = (S(h), y(h)),

that is, (S(h), y(h)) will be implemented for sure.

subcase 2-2: Suppose that i ∈ S(h)\{φ(h)}. If βπi (h) = 1, then the outcome at the history

of h′ = (h, ri, · · · , rn) is o(h′) = (S(h), y(h)), and hence the player i’s payoff at the

state is yn(h). If βπi (h) < 1, then the outcome at the history of h′ = (h, ri, · · · , rn) will

be o(h′) = π with positive probability, and hence they face the same state π in which

the player i’s value is xπi . Thus, for the player i, βπi (h) = 1 is optimal for the player i

at the history h and hence (S(h), y(h)) is implemented.

Lemma 4. For all π ∈ Π, i ∈ N , and h ∈ H i(π) such that

i) X
1≤`≤i−1

r`(h) = 1; and

ii) (∃` ∈ S(h) \ {φ(h)}) ` ≥ i and y`(h) < xπ` ,

the current proposal (S(h), y(h)) will never be implemented in any SSPE.

Proof. Fix π ∈ Π and we divide the proof into two cases.

Case 1: i = n ∈ S(h) \ {φ(h)} and yn(h) < xπn.

If βπn(h) < 1, then the outcome at the history of h′ = (h, rn) will be o(h′) = (S(h), y(h))

with positive probability, and hence the player n’s payoff at the state is yn(h), which less

than the stationary value xπn. Thus, βπn(h) = 0 is optimal for the player n and the current

proposal (S(h), y(h)) is not implemented.

Case 2: i ≤ n − 1. As induction hypothesis, suppose that, for any h ∈ H i+1(π), if

X
1≤`≤i

r`(h) = 1 and there exists j ∈ S(h) \ {φ(h)} ∩ {j ≥ i + 1} such that yj(h) < xπj ,

then the proposal (S(h), y(h)) will not be implemented.

subcase 2-1: If there exists j ∈ S(h) \ {φ(h)} ∩ {j ≥ i+ 1} such that yj(h) < xπj , then by

the induction hypothesis, the proposal (S(h), y(h)) will not be implemented no matter

what βπi (h) is.
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subcase 2-2: Suppose that yj(h) ≥ xπj for all j ∈ S(h) \ {φ(h)} ∩ {j ≥ i + 1}. It must

be i ∈ S(h) \ {φ(h)} and yi(h) < xπi . For all continuation histories of (h, ri = 1),

(h, ri = 1, ri+1 = 1), · · · , (h, ri = 1, · · · , rn−1 = 1), if βπ` (h, ri = 1, · · · , r`−1 = 1) > 0

for all ` = i + 1, i + 2, · · · , n, then βπi (h) = 0 is optimal for the player i and the

proposal (S(h), y(h)) will not be implemented. If there exists ` = i + 1, i + 2, · · · , n,

such that βπ` (h, ri = 1, · · · , r`−1 = 1) = 0, again the proposal (S(h), y(h)) will not be

implemented no matter what βπi (h) is.

For any S ∈ P(N), define an allocation ȳS ∈ X as ȳSj = xπj for all j ∈ S and ȳSj = 0

otherwise.

Lemma 5. Let (α,β) be an SSPE and x be the induced value profile. For all π ∈ Π and

h ∈ H(π), if απφ(h)(S, y) > 0 then S ∈ Dπ
φ(h)(x) and y = ȳS. Furthermore, every proposal is

implemented for sure and the proposal gain of φ(h) is mπ
φ(h)(x).

Proof. Fix π ∈ Π and h ∈ H(π). First, by Lemma 4, the proposal gain of φ(h) in an SSPE

(α,β) is less than or equals to mπ
φ(h)(x). Suppose, for contraction, that the proposal gain of

φ(h) in an SSPE (α,β) is strictly less than mπ
φ(h)(x) and let απφ(h) be the proposal strategy.

There must exist (S, y) such that απφ(h)(S, y) > 0 and yj ≥ xπj for all j ∈ S and yj′ > xπj′ for

some j′ ∈ S. By Lemma 3, φ(h) can be strictly better off by slightly decreasing j′ share in

the proposal, which is a contradiction. Thus, for all player i ∈ N(π), the proposal gain of

the player i in an SSPE (α,β) equals to mπ
i (x). For the proposal gain mπ

i (x) in order to

be obtained, the player i must make a proposal (S, ȳS) for any S ∈ Pi(N(π)), that is, the

player i chooses S in Dπ
i (x).

Theorem 1. For an arbitrary SSPE, there exists a cutoff strategy SSPE which yields the

same value for each agent.

Proof. Let x be the value profile induced by an arbitrary SSPE (α,β).

Case 1: For π ∈ Π with n(π) = 2, Γπ = (N(π), v, pπ, δ) has a unique subgame perfect Nash

equilibrium, in which the active agents play cutoff strategies.
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Case 2: Consider π ∈ Π with n(π) ≥ 3. As induction hypothesis, suppose for all the succeed-

ing states π′ ∈ Π|π, there exists a cutoff strategy SSPE (xπ
′
,qπ

′
) of Γπ

′
= (N(π′), v, pπ

′
, δ).

Now we show that (xπ,qπ) is a cutoff strategy SSPE of Γπ. By Lemma 5, since the pro-

posed allocation is determined by x, a player i’s proposal strategy in π can be represented by

qπi ∈ ∆(Dπ
i (x)), which is a proposal cutoff strategy. Since this proposal must be implemented

for sure by Lemma 5, an active player i’s expected payoff when i is not selected as a proposer

must equal to the value of current state, that is, xπi = (1 − δ)v(πi) + δuπi (xπ,qπ). Since all

the active proposer plays a cutoff proposal strategy, for all i ∈ N(π) and all h ∈ H i−1(π)

such that i ∈ S(h)\{φ(h)}, an agent i’s optimal response strategy is βπi (h) = 1 if yi(h) ≥ xπi

and otherwise βπi (h) = 0. Thus all the respondents follows the cutoff strategies.

By Theorem 1, when we are interested in the agents’ equilibrium payoffs, without loss

of generality, we can focus on a cutoff strategy SSPE. The next proposition characterizes a

cutoff strategy SSPE in terms of the value profile and coalition forming strategy profile.

Proposition 3. Let 0 < δ < 1. A cutoff strategy profile (x,q) is an SSPE if and only if for

all π ∈ Π and i ∈ N(π),

i) xπi = (1− δ)v(πi) + δuπi (x,q); and

ii) qπi ∈ ∆(Dπ
i (x)).

Proof. (only if part) Suppose (x,q) is an SSPE. Consider π ∈ Π and i ∈ N(π). By

Lemma 5, the agent i’s equilibrium proposal strategy must maximizes the proposal gain

x
π(i,S)
i −

∑
j∈S

xπj , and hence it must be qπi ∈ ∆(Dπ
i (x)). When i is supposed to response, i

can get at most (1 − δ)v(πi) + δuπi (x,q) by rejecting any proposal. Thus in equilibrium,

each respondent must indifferent between accepting and rejecting, which requires that xπi =

(1− δ)v(πi) + δuπi (x,q).

(if part) Suppose all the agents except i follow the given cutoff strategies (x−i,q−i). For

any π such that i ∈ N(π), if xπi = (1 − δ)v(πi) + δuπi (x,q), then it is impossible for i to

deviate profitably from the given response strategy. When i is supposed to propose, forming
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a subcoalition which is not in Dπ
i (x) is not optimal for i. On the other hand, a proposer i

can propose a grand coalition, in which i’s proposal gain is

x
π(i,N(π))
i −

∑
j∈N(π)

xπj = v(N)−
∑

j∈N(π)

xπj > v(N)− v(N) = 0,

where the first equality is from the fact π(i, N(π)) is efficient; and the inequality is from

Lemma 2. Thus, given x, we have mπ
i (x) > 0 and the proposer i always has a strictly

positive proposal gain as long as the current state is inefficient. That is, making an acceptable

proposal is strictly better than a proposal which will be rejected. Therefore, in an SSPE,

a proposal i makes a proposal (S, ȳS) with S ∈ ∆(Dπ
i (x)), which is the proposal cutoff

strategy.

4 Grand-coalition Equilibria

A grand-coalition equilibrium is a special SSPE in which the grand-coalition is always formed

immediately. In the literature, a grand-coalition equilibrium exists when the grand-coalition

produces a relatively large surplus. Okada (2011) characterized the condition for a grand-

coalition equilibrium to exist in the random-proposer model: when the agents are sufficiently

patient, they get the payoffs proportional to their recognition probabilities via a grand-

coalition equilibrium, if the payoff vector belongs to the core. Chatterjee et al. (1993) show

that a grand-coalition will be formed immediately under a certain condition, Condition M,

which is implied by convexity.

In this section, we show that a grand-coalition equilibrium does not exist in general if

the agents have buyout options. That is, even though the underlying characteristic function

is convex so they can produce much higher output, however, some agents might form an

intermediate subcoalition in equilibrium. The only case in which a grand-coalition equilib-

rium exists is a unanimity game, that is, all the subcoalitions except for the grand coalition

produce nothing.

Definition 1 (Grand-coalition equilibrium). A strategy profile is a grand-coalition equilib-

rium if it is a subgame perfect Nash equilibrium, in which for any history a proposer proposes
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to all the active player and the respondents accept the offer.

Definition 2 (Unanimity game). A characteristic function form game (N, v) is unanimous

if v(N) > 0 and v(S) = 0 for all S ( N .

Clearly, a grand-coalition equilibrium is a cutoff strategy SSPE, and hence a grand-

coalition equilibrium can be represented by a cutoff strategy profile (x,q).

Lemma 6. Suppose (x,q) is a grand-coalition equilibrium. For any coalitional state π ∈ Π,

A.
∑

j∈N(π)

uπj (x,q) = v(N).

B.
∑

j∈N(π)

xπj = (1− δ)
∑

j∈N(π)

v(πi) + δv(N).

Proof. Consider an arbitrary coalitional state π ∈ Π in a grand-coalition equilibrium. In

grand-coalition equilibrium, an active agent i ∈ N(π) makes an offer to a grand-coalition if

i is supposed to propose; and all the other active agent j ∈ N(π) \ {i} offers i to xπi . Thus,

for all i ∈ N(π), we have

mπ
i = v(N)−

∑
j∈N(π)

xπj (3)

and

uπi (x,q) = pπim
π
i + xπi . (4)

Plugging (3) into (4) and summing (4) over N(π), we have

∑
j∈N(π)

uπj (x,q) =
∑

j∈N(π)

pπj

v(N)−
∑

j∈N(π)

xπj

+
∑

j∈N(π)

xπj . (5)

Since
∑

j∈N(π) p
π
j = 1, (5) completes the proof of the part A.

By Proposition 3, summing xπj over N(π), we have

∑
j∈N(π)

xπj = (1− δ)
∑

j∈N(π)

v(πi) + δ
∑

j∈N(π)

uπj (x,q). (6)

Thus, the part A of this lemma implies the part B.
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Lemma 7. Suppose (x,q) is a grand-coalition equilibrium. For any coalitional state π ∈ Π

and all active player i ∈ N(π),

A. mπ
i (x) = (1− δ)vπ(N(π)).

B. uπi (x,q) = v(πi) + pπi v
π(N(π)).

C. xπi = v(πi) + δpπi v
π(N(π))

D. qπi (N(π)) = 1.

Proof. Plugging Lemma 6.B into (3), we have

mπ
i = v(N)−

(1− δ)
∑

j∈N(π)

v(πi) + δv(N)

 = (1− δ)

v(N)−
∑

j∈N(π)

v(πi)

 ,
implies the part A.

Plugging the part A into (4), we have uπi (x,q) = (1− δ)pπi vπ(N(π))+xπi , or equivalently,

due to Proposition 3,

uπi (x,q) = (1− δ)pπi vπ(N(π)) + (1− δ)v(πi) + δuπi (x,q). (7)

Rearranging (7) completes the part B.

By Proposition 3 and the part B, we have

xπi = (1− δ)v(πi) + δ [v(πi) + pπi v
π(N(π))]

= v(πi) + δpπi v
π(N(π)),

which implies the part C.

The part D is directly from the definition of a grand-coalition equilibrium.

Proposition 4. For any p ∈ ∆◦(N), there exists δ̄ < 1 such that, for all δ > δ̄, a bargaining

game (N, v, p, δ) has no grand-coalition equilibrium unless (N, v) is a unanimity game.
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Proof. Suppose that a bargaining game (N, v, p, δ) has a grand-coalition equilibrium (x,q).

For any i ∈ N , since mπ◦
i = x

π◦(i,N)
i −

∑
j∈N(π) x

π◦
j , for all k ∈ N \ {i},

x
π◦(i,N)
i −

∑
j∈N

xπ
◦

j ≥ x
π◦(i,N\{k})
i −

∑
j∈N\{k}

xπ
◦

j . (8)

Recall that x
π◦(i,N)
i = v(N) and by Lemma 7

x
π◦(i,N\{k})
i = v(π◦(i, N \ {k})) + δp

π◦(i,N\{k})
i vπ

◦(i,N\{k})(N(π◦(i, N \ {k})))

= v(N \ {k}) + δ(1− pk) [v(N)− v(N \ {k})] . (9)

Thus, rearranging (8) yields

v(N) ≥ v(N \ {k}) + δ(1− pk) (v(N)− v(N \ {k})) + xπ
◦

k , (10)

Since v is assumed to be zero-normalized, plugging xπ
◦

k = δpkv(N), (10) implies

v(N) ≥ (1− δ(1− pk))v(N \ {k}) + δv(N).

Thus, for all k ∈ N ,

v(N) ≥
(

1− δ(1− pk)
1− δ

)
v(N \ {k}). (11)

Since pk > 0 for all k ∈ N and v(N) ≥ v(N\{k}), define δ̄ = max
k∈N

(
v(N)− v(N \ {k})

v(N)− (1− pk)v(N \ {k})

)
.

If there exists k ∈ N such that v(N \ {k}) > 0, then δ̄ < 1. Thus, for all δ > δ̄,(
v(N)− v(N \ {k})

v(N)− (1− pk)v(N \ {k})

)
< δ,

which violates (11). Therefore, in order for (N, v, p, δ) to have a grand-coalition equilibrium,

it must be v(N \ {k}) > 0 for all k ∈ N . Since v is monotone, it must be v(S) > 0 for all

S ( N .

Proposition 5. If (N, v) is a unanimity game, then a bargaining game (N, v, p, δ) has a

grand-coalition equilibrium for all p ∈ ∆(N) and all δ ∈ [0, 1].

Proof. If (N, v) is a two-person unanimity game, then the grand-coalition equilibrium is the

unique subgame perfect equilibrium for all p and δ. Suppose that, for any less-than-n-person
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unanimity game, the corresponding bargaining game has a grand-coalition equilibrium for all

p and δ. Now we prove that, for a n-person unanimity game, the corresponding bargaining

game has a grand-coalition equilibrium for all p and δ. Assume that all the agents except for

i ∈ N follow the grand-coalition equilibrium strategies (x,q). By Lemma 7, for all j ∈ N ,

xπ
◦
j = δpjv(N) and qπ

◦
j (N) = 1.

Cases 1: proposal strategy.

If i follows the grand-coalition equilibrium strategy, then i’s proposal gain is

v(N)−
∑
j∈N

xπ
◦

j = v(N)−
∑
j∈N

δpjv(N) = (1− δ)v(N).

Suppose i forms a subcoalition S ( N . Since (N(π(i, S)), vπ(i,S)) is a less-than-n-person

unanimity game, the subgame has a grand-coalition equilibrium and by Proposition 7 we

have

x
π(i,S)
i = δp

π(i,S)
i vπ(i,S)(N(π(i, S))) = δ

∑
j∈S

pjv(N).

Thus, i’s proposal gain from the deviation is

x
π(i,S)
i −

∑
j∈S

xπ
◦

j = δ
∑
j∈S

pjv(N)−
∑
j∈S

δpjv(N) = 0

Thus, the proposer i has no incentive to form any subcoalition.

Cases 2: response strategy.

For any π ∈ Π, a respondent i’s expected payoff is xπi by rejecting any proposal since all

other players are supposed to play the grand-coalition equilibrium. Thus it is optimal for i

to accept any offer (S, y) if and only yi ≥ xπi .

The following theorem is a direct consequence of Proposition 4 and Proposition 5

Theorem 2. Suppose p ∈ ∆◦(N). A bargaining game (N, v, p, δ) has a grand-coalition

equilibrium for all δ ∈ (0, 1) if and only if (N, v) is a unanimity game.

5 Efficient Equilibria

When the underlying characteristic function form game is not superadditive, forming a grand-

coalition is not necessarily efficient and an efficient coalition structure cannot be formed
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immediately. In this section, we present a negative result on efficiency: even though the

underlying characteristic function form game is superadditive, if there exists an essential

player, then an efficient equilibrium does not exist unless it is a unanimity game.

In this section, we assume that v is zero-normalized, essential, and superadditive. A

coalition S ⊆ N is efficient if v(S) ≥ v(S ′) for all S ′ ⊆ N . Let E be a set of efficient

coalitions. Denote v̄ = v(S) for all S ∈ E. Given the three assumptions on v, E has

following properties:

(E1) {i} 6∈ E for all i ∈ N ;

(E2) S ∈ E and S ⊂ S ′ imply S ′ ∈ E; and

(E3) N ∈ E.

Let Em = {S ∈ E | (∀i ∈ S) S \ {i} 6∈ E} be a set of minimal efficient coalitions, K = ∩E

a set of essential players, and D = N \ (∪Em) a set of dummy players. We also define a set

of auxiliary coalitions A = {A ⊆ N \K | A ∪K ∈ Em}. For notational simplicity, for any

z ∈ Rn and S ∈ P(N), denote zS =
∑

j∈S zj.

Definition 3 (Efficient equilibrium). A strategy profile is an efficient equilibrium if it is an

SSPE, in which for any history a proposer makes an offer to form an efficient coalition and

respondents accept the offer.

Lemma 8. Let (x,q) is an efficient equilibrium. For all π ∈ Π,

∑
i∈N(π)

ui(x,q) = v(N).

Proof. It is clear from the definition of an efficient equilibrium.

Lemma 9. Following properties for auxiliary coalitions hold.

A. If ∅ ∈ A, then A = {∅}.

B. If ∅ 6∈ A, then there exist A,A′ ∈ A such that A′ 6= A.
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Proof. If ∅ ∈ A, then K ∈ E. Furthermore, eliminating any essential player k ∈ K, K \ {k}

is not a winning coalition any more, and hence K ∈ Em. Suppose there exists A ∈ A such

that A 6= ∅. Then it must be K ∪A ∈ Em, which contradicts to K ∈ Em and this completes

the proof of the first part.

Suppose that ∅ 6∈ A to prove the second part. By the definition of an auxiliary coalition

and the existence of a winning coalition, there must be A ∈ A. If A is the unique auxiliary

coalition, then Em = {K ∪ A}. Eliminating any player i ∈ A, K ∪ A \ {i} is not a winning

coalition as more. Thus i must be an essential player and A ⊆ K, which contradicts to the

condition A ⊆ N \K and this completes the proof of the second part.

Lemma 10. Suppose that there exists k ∈ K such that pk > 0. If an efficient equilibrium

exists, then there exists δ̄ < 1 such that, for all δ > δ̄, xπ
◦
K = δ and xπ

◦

N\K = 0.12

Proof. If an efficient equilibrium exists, then, due to Theorem 1, there exists a cutoff

strategy SSPE (x,q) in which all the players form an efficient coalition immediately. Let

S∗ ∈ argmax
S∈P(N)

(
v(S)− xπ◦S

)
. Since all the players form an efficient coalition, we have v(S∗) =

v̄. Take an essential player k ∈ K. Since k will be nominated by all the players in the

equilibrium, k’s expected payoff is:

uπ
◦

k (x,q) = pk max
S∈P(N)

(
v(S)− xπ◦S

)
+ xπ

◦

k

= pk
(
v̄ − xπ◦S∗

)
+ xπ

◦

k

= pk
(
v̄ − δuπ◦S∗(x,q)

)
+ δuπ

◦

k (x,q),

where the last equality follows from Proposition 3 and the fact v(π◦i ) = 0 for all i ∈ N .

Rearranging the terms and summing k over K, we have

uπ
◦

K (x,q)− pK v̄ = δ
(
uπ
◦

K (x,q)− pKuπ
◦

S∗(x,q)
)
, (12)

or equivalently,

(1− δ)uπ◦K (x,q) = pK
(
v̄ − δuπ◦S∗(x,q)

)
. (13)

12This lemma generalizes Winter (1996), which is restricted on simple games with a uniform recognition
probability and no dummy player.
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Since uπ
◦
S∗(x,q) ≤ v̄, the right-hand side of (13) is greater than or equals to pK v̄(1− δ) and

this yields

uπ
◦

K (x,q) ≥ pK v̄. (14)

If pK = 1, then uπ
◦
K (x,q) = 1 and due to Proposition 3, we have xπ

◦
K = δ, as desired. Now

we assume that pK < 1 and let

δ̄ ≡ uπ
◦
K (x,q)− pK v̄

uπ
◦
K (x,q)− pKuπ

◦
S∗(x,q)

. (15)

If δ̄ < 1, then there exists δ > δ̄ which violates condition (12), and hence an efficient

equilibrium does not exist for all δ > δ̄. We divide into two cases to show that uπ
◦
K (x,q) < v̄

implies δ̄ < 1.

Case 1: ∅ ∈ A. Due to Lemma 9, for all A ∈ A, it must be xA = uπ
◦
A (x,q) = 0 and

uπ
◦
K (x,q) = uπ

◦
S∗(x,q). Therefore, uπ

◦
K (x,q) < v̄ implies δ̄ < 1.

Case 2: ∅ 6∈ A. By Lemma 9, there exist A∗, A′ ∈ A such that S∗ = K∪A∗ and A∗∩A′ = ∅.

Since S∗ ∈ argmax
S∈P(N)

(
v(S)− xπ◦S

)
and v(S∗) = v(K∪A′), it must be xπ

◦
A∗ ≤ xπ

◦

A′ , or uπ
◦
A∗(x,q) ≤

uπ
◦

A′ (x,q). If uπ
◦
A∗(x,q) = 0, then uπ

◦
K (x,q) = uπ

◦
S∗(x,q) and hence uπ

◦
K (x,q) < v̄ implies δ̄ < 1.

Suppose that uπ
◦
A∗(x,q) > 0. Since uπ

◦
K (x,q)+uπ

◦
A∗(x,q)+uπ

◦

A′ (x,q) = uπ
◦
S∗(x,q)+uπ

◦

A′ (x,q) ≤ v̄

and 0 < uπ
◦
A∗(x,q) ≤ uπ

◦

A′ (x,q), it must be uπ
◦
K (x,q) < uπ

◦
S∗(x,q) < v̄ and δ̄ < 1.

For any π ∈ Π, let K(π) the set of essential players in π, that is, K(π) = ∩E(π), where

E(π) = {S ⊆ N(π) | (∀S ′ ⊆ N(π)) v(S) ≥ v(S ′)}.

Lemma 11. Let (x,q) be a cutoff strategy equilibrium. For all π ∈ Π such that N(π) = K(π)

and all i ∈ N(π),

uπi (x,q) ≥ v(πi) + δn(π)−2pπi (v̄ − v(N \ πi)) .

Proof. When n(π) = 2, it is clear that uπi (x,q) ≥ v(πi) + pπi [v̄ − v(N \ πi)]. Consider

π ∈ Π such that n(π) ≥ 3 and N(π) = K(π). As induction hypothesis, for all π′ ∈ Π

such that n(π′) < n(π) and N(π′) = K(π′) and for all i ∈ N(π′), suppose that uπ
′
i (x,q) ≥

v(π′i) + δn(π′)−2pπ
′
i [v̄ − v(N \ π′i)]. For all j ∈ N(π) and S ∈ Pj(N(π)) such that i 6∈ S, this
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assumption implies that u
π(j,S)
i (x,q) ≥ v(πi) + δn(π)−3pπi [v̄ − v(N \ πi)]. By the definition of

uπi (x,q) or (2) and Proposition 3, we have

uπi (x,q) ≥
∑

j∈N(π)

pπj
∑

S∈Pj(N(π))

qπj (S)
[
1(i ∈ S)xπi + 1(i 6∈ S)x

π(j,S)
i

]
≥ Qπ

i [(1− δ)v(πi) + δuπi (x,q)]

+(1−Qπ
i )
[
(1− δ)v(πi) + δ

[
v(πi) + δn(π)−3pπi (v̄ − v(N \ πi))

]]
= δQπ

i u
π
i (x,q) + (1− δQπ

i )v(πi) + (1−Qπ
i )δn(π)−2(v̄ − v(N \ πi)),

where Qπ
i =

∑
j∈N(π) p

π
j

∑
S∈Pj(N(π)) q

π
j (S)1(i ∈ S). Rearranging the terms, the inequality

yields

uπi (x,q) ≥ v(πi) +
1−Qπ

i

1− δQπ
i

δn(π)−2(v̄ − v(N \ πi))

≥ v(πi) + δn(π)−2(v̄ − v(N \ πi)),

as desired.

Lemma 12. Consider a bargaining game (N, v, p, δ) with p ∈ ∆◦(N). In a cutoff strategy

equilibrium (x,q), there exists δ′ < 1 such that for all δ > δ′ and all π ∈ Π,

[N(π) = K(π)] =⇒ (∃i ∈ N(π)) uπi (x,q) ≥ pπi v̄.

Proof. This is from the proof of Proposition 4.

Theorem 3. Let (N, v) be a superadditive game with an essential player. A bargaining game

(N, v, p, δ) with p ∈ ∆◦(N) has an efficient equilibrium for all δ ∈ (0, 1) if and only if (N, v)

is a unanimity game.

Proof. First, it is clear that if (N, v) is a unanimity game, then there exists an efficient

equilibrium. To prove “only if” part, suppose there exists an efficient equilibrium. By

Theorem 1, there exists a cutoff strategy SSPE (x,q) in which all the agents form an efficient

coalition immediately. Let δ > δ̄, and hence, by Lemma 10, xπ
◦
j = 0 for all j ∈ N \K. Define

ṽ = maxS∈P(N)\E v(S) so that ṽ < v̄. The proof is divided into three cases.
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Case 1: ∅ 6∈ A.

Note that v(K) < v̄ if ∅ 6∈ A. Let i ∈ A ∈ A. If i forms an efficient coalition, then i’s

proposal surplus is:

v̄ − xπ◦K − xπ
◦

A = v̄ − xπ◦K = v̄(1− δ). (16)

Now suppose that i forms N \K. If i forms N \K, then N(π◦(i, N \K)) = K(π◦(i, N \K)).

By Proposition 3 and Lemma 11, we have

x
π◦(i,N\K)
i = (1− δ)v(π◦i (i, N \K)) + δu

π◦(i,N\K)
i (x,q)

= v(π◦i (i, N \K)) + δ#Kp
π◦(i,N\K)
i (v̄ − v(K))

≥ δ#K(1− pK)(v̄ − v(K)),

where #K is the cardinality of K. Thus, i’s expected proposal surplus by forming N \K is:

x
π◦(i,N\K)
i − xπ◦N\K ≥ δ#K(1− pK)(v̄ − v(K))− xπ◦N\K

= δ#K(1− pK)(v̄ − v(K)). (17)

Let

δ∗ = max

{
δ̄,

(
v̄

v̄ + (1− pK)(v̄ − v(K))

) 1
#K

}
.

Since pK < 1, v̄ > v(K), and δ̄ < 1, it must be δ∗ < 1. If δ > δ∗, then (17) is strictly greater

than (16). Thus for all δ > δ∗, an efficient equilibrium is impossible.

Case 2: ∅ ∈ A and D 6= ∅.

Let k ∈ K. If k forms a efficient coalition, then k’s proposal surplus is:

v̄ − xπ◦K = v̄(1− δ). (18)

Furthermore, in the equilibrium (x,q), since all the essential players k ∈ K are always

nominated, uπ
◦

k (x,q) = pk(v̄ − xπ
◦
K ) + xπ

◦
i . By Proposition 3, we have

(1− δ)uπ◦k (x,q) = pk(v̄ − xπ
◦

K ), (19)

and (1−δ)uπ◦K (x,q) = pK(v̄−xπ◦K ) by summing k over K. By Lemma 10, we have uπ
◦

k (x,q) =

pk
pK
uπ
◦
V (x,q) = pk

pK
v̄, and hence xπ

◦

k = δ pk
pV
v̄. Now suppose that k forms D ∪ {k}. If k forms
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D ∪ {k}, then N(π◦(k,D ∪ {k})) = K(π◦(k,D ∪ {k})). By Proposition 3 and Lemma 12,

there exists δ′ and k ∈ K such that when δ > δ′

x
π◦(k,D∪{k})
k = (1− δ)v(π◦k(k,D ∪ {k})) + δu

π◦(k,D∪{k})
k (x,q)

≥ v(π◦k(k,D ∪ {k})) + δp
π◦(k,D∪{k})
k v̄

≥ δ(pD + pk)v̄.

Thus, k’s expected proposal surplus by forming D ∪ {k} is:

x
π◦(k,D∪{k})
k − xπ◦D∪{k} ≥ δ(pD + pk)v̄ − xπ

◦

D∪{k}

= δ(pD + pk)v̄ − xπ
◦

k (20)

= δv̄

(
pD + pk −

pk
pK

)
. (21)

Let

δ∗ = max

{
δ̄, δ′,

1

1 + pD + pk − pk
pK

}
.

To show δ∗ < 1, suppose for contraction that 1 + pD + pk − pk
pK
≤ 1, or equivalently,

pD + pk ≤
pk
pK

. (22)

Since pD + pK = 1, (22) can be rewritten as (1− pK)(pK − pk) ≤ 0. Since pK < 1, in order

that (22) holds, it must be pK = pk. However, if pk = pK , then {k} = K ∈ E, which

contradicts to (E1). We have shown that δ∗ < 1. If δ > δ∗, then (20) is strictly greater than

(18). Thus for all δ > δ∗, an efficient equilibrium is impossible.

Case 3: ∅ ∈ A and D = ∅.

In this case, it must be E = {N}, that is, the grand-coalition is the unique efficient coalition.

By Theorem 2, an efficient equilibrium is impossible unless (N, v) is a unanimity game.

By all the cases, the assumption of an efficient equilibrium yields contractions for suffi-

ciently high δ unless (N, v) is a unanimity game.

The following corollary is a direct consequence of Case 1 and Case 2 in the proof of

Theorem 3.

25



Corollary 1. Let (N, v) be a super-additive game with an essential player and suppose that

it has multiple efficient coalitions. There exists δ∗ < 1 such that, for all δ > δ∗, a bargaining

game (N, v, p, δ) with p ∈ ∆◦(N) ends up with non-minimal efficient coalition with positive

probability.

5.1 Simple Games

Given a set of agents N , a class of subsets W ⊂ P(N) is a set of winning coalitions if

i) {i} 6∈W for all i ∈ N ; and

ii) S ∈W and S ⊂ S ′ imply S ′ ∈W.

A characteristic function form game (N, v) is simple if v(S) = 1 for all S ∈W and v(S) = 0

otherwise.13 Let Wm = {S ∈ W | (∀i ∈ S) S \ {i} 6∈ W} be a set of minimal winning

coalitions, V = ∩W a set of veto players, and D = N \ (∪Wm) a set of dummy players. We

also define a set of auxiliary coalitions A = {A ⊆ N \ V | A ∪ V ∈ Wm}. For notational

simplicity, for any z ∈ Rn and S ∈ P(N), denote zS =
∑

j∈S zj. For simplicity, assume that

p ∈ ∆◦(N).

Definition 4 (Winning-coalition equilibrium). A strategy profile is a winning-coalition equi-

librium if it is a subgame perfect Nash equilibrium, in which for any history a proposer makes

an offer to form a winning coalition and respondents accept the offer.

Corollary 2. Let (N, v) be a simple game with a veto player. A bargaining game (N, v, p, δ)

has a winning-coalition equilibrium for all δ ∈ (0, 1) if and only if it is unanimous.

Corollary 3. Let (N, v) be a simple game with a veto player and multiple winning coali-

tions. There exist δ∗ < 1 such that, for all δ > δ∗, a non-minimal winning coalition forms

with positive probability in an SSPE of the bargaining game (N, v, p, δ). Furthermore, the

equilibrium expected payoff vector is not in the core.

13Simple games are introduced by von Neumann and Morgenstern (1944). See Shapley (1962) for mathe-
matical properties of simple games.
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6 Three-party weighted majority games

Let N = {1, 2, 3} be a set of parties. A weight vector p ≡ {pi}i∈N with pi > 0 and pN = 1

represents each party’s weight. Without loss of generality, assume that p1 ≥ p2 ≥ p3. Let

w∗ ∈ (1/2, 1] be a winning quota. A characteristic function form game (N, v) is a weighted

majority game with (p, w∗) if v(S) = 1 for all S ⊆ N such that pS ≥ w∗ and v(S) = 0

otherwise. We assume that each party’s recognition probability equals to its weight. We

divide cases depend on the number of veto parties. If all the parties are veto party, then the

game is unanimous.

For any π ∈ Π such that n(π) = 2, by a standard two-party random proposer model,

there exists a unique subgame perfect equilibrium, which is a cutoff strategy equilibrium

with xπi = δpπi and qπ(N(π))i = 1 for all i ∈ N(π). Thus specifying strategies for the initial

coalitional state π◦ is enough for stationary subgame perfect equilibria. In this section, for

notational simplicity, we omit the superscript π◦ for the initial coalitional state.

6.1 No veto party

No veto party implies that any two-party coalition is a winning coalition, that is, Wm =

{{1, 2}, {1, 3}, {2, 3}}. Furthermore, in an SSPE (x, q), no matter who proposes first, the

winning coalition will be formed immediately, and hence uN(x, q) = 1, or equivalently,

xN = δ.

Lemma 13. Let (x, q) is an SSPE. For all δ ∈ (0, 1] and all i ∈ N , xi > 0.

Proof. First, suppose for contradiction x1 > 0 and x2 = x3 = 0. It must be D2(x) = {{2, 3}}

and party 2 can form a winning coalition with party 3 without any cost. Hence u2(x, q) ≥

p2 > 0 is strictly positive and hence the expected payoff x2 = δu2(x, q) > 0 is also strictly

positive, which yields a contradiction. Now suppose that x1 > 0, x2 > 0, and x3 = 0. Then

it must be u3(x, q) ≥ p3(1− x2). Since x2 < δ, we have u3(x, q) > 0, which contradicts that

x3 = 0.
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Proposition 6. Let (N, v) be a three-party weighter majority game with (w,w∗). If there

is no veto party, then all the parties have the same expected payoff in any SSPE. That is,

x1 = x2 = x3 = δ
3
.

Proof. Suppose for contraction that x1 > x2 and x1 > x3. It must be that D2(x) = D3(x) =

{{2, 3}} and N 6∈ D1(x). Denote that q12 = q1({1, 2}) and q13 = q1({1, 3}). Then we have

u1(x, q) = p1(1− q12x2 − q13x3),

u2(x, q) = p2(1− x3) + (p3 + q12p1)x2,

u3(x, q) = p3(1− x2) + (p2 + q13p1)x3.

Summing up, since q12 + q13 = 1, we have uN(x, q) = 1− p3x2 − p2x3 < 1, which contradicts

to Lemma 8.

It is worth to remark that for any weight vector w and any discount factor δ, all the

parties expect the same payoff in an SSPE.

Example 1. Consider the following three-party voting problem. Each party has 4,3, and 2

votes and 5 votes are required to win, that is, p =
(

4
9
, 3

9
, 2

9

)
and w∗ = 5

9
. Since all the parties

are veto, the equilibrium expected payoffs are
(

1
3
, 1

3
, 1

3

)
. Furthermore, this does not depend

on δ.

6.2 Single veto party

By Theorem 3, if there exists a veto player, then an intermediate non-winning coalition can

be formed. Thus, in an SSPE (x, q), it must be uN(x, q) < 1 if δ < 1 and the game is not

unanimous. For ease of exposition, we concentrate on the cases δ = 1. Since there always

exists a strictly positive proposal gain even at δ = 1, the equilibrium payoff vector is unique

in the class of SSPE.

Lemma 14. Suppose δ = 1. For an SSPE (x, q), xN = uN(x, q) = 1.

Proof. It follows directly from Proposition 3.
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For any S ⊆ N and x ∈ X, let e(S, x) ≡ x
π◦(j,S)
j − xS be an excess surplus for j ∈ S to

form S.14

If there exists a single veto party, then it must be Wm = {{1, 2}, {1, 3}}. That is party

1 is the veto party and party 2 and party 3 are auxiliary.

Lemma 15. Let (N, v) be a three-party weighter majority game with (p, w∗) and there is a

single veto party. Let (x, q) be an cutoff SSPE. If δ = 1, then x2 = x3.

Proof. Suppose x2 > x3. Only three cases are possible.

Case 1: e({23}, x) > e({13}, x) > e({12}, x).

It must be q13 = q23 = q32 = 1. Thus, the players expected payoffs are:

x1 = p1(1− x3);

x2 = p2(p2 + p3 − x3) + p3x2;

x3 = p3(p2 + p3 − x2) + (p1 + p2)x3.

The second equation yields (p1 + p2)x2 = p2(p2 + p3 − x3) and the third equation yields

x3 = p2 + p3 − x2. Combining two conditions, we have p1 = 0, which is a contradiction.

Case 2: e({13}, x) > e({23}, x) > e({12}, x).

It must be q13 = q23 = q32 = 1. Thus, player 3’s expected payoff is

x3 = p3(1− x1) + (p1 + p2)x3.

Rearranging the terms, we have (1− p1 − p2)x3 = (1− x1)p3, which implies x1 + x3 = 1, or

x2 = 0. However, this contradicts to Lemma 13.

Case 3: e({13}, x) > e({12}, x) > e({23}, x).

It must be q13 = q21 = q31 = 1 and this implies that a winning coalition must be formed

immediately. By Theorem 3, the underlying game must be unanimous, which is a contraction.

Proposition 7. Let (N, v) be a three-party weighter majority game with (p, w∗) and there

is a single veto party. Let (x, q) be an cutoff SSPE.

14Note that x
π◦(j,S)
j − xS does not depend on j ∈ S, and hence e(S, x) is uniquely defined.
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i. (Strong Solidarity.) If the single veto party’s weight is greater than or equals to 1
2
, then

two other auxiliary party form an intermediate coalitional each other with probability 1

and their expected payoffs are:

x1 =
p1(3− 2p1)

2− p1

, and x2 = x3 =
(1− p1)2

2− p1

. (23)

ii. (Weak Solidarity.) If the single veto party’s weight is less than 1
2
, then two other auxiliary

party form an intermediate coalitional each other with strictly positive probability but less

than 1 and their expected payoffs are:

x1 =
1 + 2p1

3
, and x2 = x3 =

1− p1

3
. (24)

Proof. i. (Strong Solidarity.) Suppose q23 = q32 = 1. It must be e({2, 3}, x) ≥ e({1, 2}, x),

or x1 − x2 ≥ p1. Since x2 = x3 by Lemma 15, the veto party’s expected payoff is:

x1 = p1(1− x2) + p2x
π◦(2,{2,3})
1 + p3x

π◦(3,{2,3})
1

= p1

(
1−

(
1

2
− x1

2

))
+ (1− p1)p1,

which yields (23). The condition x1 − x2 ≥ p1 requires that p1(3−2p1)
2−p1 − 1−p1

3
≥ p1. Solving

this inequality, p1 must satisfy −2p2
1 + 3p1 − 1 ≥ 0, or 1

2
≤ p1 ≤ 1. This completes the proof

of the first part.

ii. (Weak Solidarity.) Suppose 0 < q23 < 1 and 0 < q32 < 1. It must be e({2, 3}, x) =

e({1, 2}, x) = e({1, 3}, x), or x1 − x2 = p1 = x1 − x3. Solving these equations with xN = 1,

we have (24). In this case, the veto party’s expected payoff is:

x1 = p1(1− x2) + p2

(
q21x1 + q23x

π◦(2,{2,3})
1

)
+ p3

(
q31x1 + q32x

π◦(3,{2,3})
1

)
= p1(1− x2) + rx1 + (1− r)p1 − p2

1, (25)

where r = p2q21 + p3q31 > 0 is the probability that the veto party is nominated by other

parties. Plugging (24) into (25), it follows that

1 + 2p1

3
= p1

(
1− 1− p1

3

)
+ r

1 + 2p1

3
+ (1− r)p1 − p2

1,
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which yields r = 1− 2p1. Since r > 0, it must be r = 1− 2p1 > 0, or p1 <
1
2
. This completes

the proof of the second part.

Example 2. Consider following three-party voting problems.

i. (Weak Solidarity.) Each party has 4,3, and 2 votes and 6 votes are required to win, that

is, p =
(

4
9
, 3

9
, 2

9

)
and w∗ = 2

3
. Since the veto party’s weight is less than 1

2
, the smaller two

parties form a union each other with positive probability whenever they are supposed

to propose. The equilibrium expected payoffs are
(

17
27
, 5

27
, 5

27

)
.

ii. (Strong Solidarity.) Each party has 3,2, and 1 votes and 4 votes are required to win,

that is, p =
(

1
2
, 1

3
, 1

6

)
and w∗ = 2

3
. Since the veto party’s weight is 1

2
, the smaller two

parties always form a union each other whenever they are supposed to propose. The

equilibrium expected payoffs are
(

2
3
, 1

6
, 1

6

)
.

6.3 Two veto parties

If there are exactly two veto parties, then it must be Wm = {{1, 2}}. That is party 1 and

party 3 are the veto parties and party 3 is dummy.

Lemma 16. Let (N, v) be a three-party weighter majority game with (p, w∗) and there are

two veto parties. Let (x, q) be an cutoff SSPE. If δ = 1, then

e({1, 2}, x) = e({1, 3}, x) = e({2, 3}, x).

Proof. Step 1: Suppose that e({1, 2}, x) > e({1, 3}, x). It must be e({2, 3}, x) ≥ e({1, 2}, x),

otherwise Theorem 3 is violated. Thus, party 2 is always nominated by other parties, and

hence we have x2 ≥ p2(1− x1) + (p2 + p3)x2, or equivalently, x1 + x2 ≥ 1 and x3 ≤ 0, which

is a contraction.

Step 2: Suppose that e({1, 3}, x) > e({1, 2}, x).

• If e({2, 3}, x) > e({1, 2}, x), then party 3 is always nominated by other parties, and

hence x3 = p3(1− x1) + (1− p3)x3, or x1 + x3 = 1, which is a contradiction.
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• If e({1, 2}, x) > e({2, 3}, x), then party 1 is always nominated by other parties, and

hence x1 = p1(1− x3) + (1− p1)x1, or x1 + x3 = 1, which is a contradiction.

• If e({1, 2}, x) = e({2, 3}, x), then it must be 1−x1 = p2 +p3−x3, or p1 +x2 = 1. Since

party 1 and party 3 do not nominate party 2, x2 = p2(1−x1)+(1−p2)p2 = p2(2−x1−p2).

Plugging p1 +x2 = 1, it follows x2 = p2. Thus, we have e({1, 3}, x) = p1 +p3−x1−x3 =

(1 − p2) − (1 − x2) = 0. However, the assumption e({1, 3}, x) > e({1, 2}, x) implies

1− x1 − x2 < 0, which is a contradiction.

Step 3: Suppose that e({1, 2}, x) = e({1, 3}, x). This condition implies that

1− x2 = p1 + p3 − x3 = (1− p2)− (1− x1 − x2) = x1 + x2 − p2. (26)

If e({1, 2}, x) = e({1, 3}, x) > e({2, 3}, x) then party 1 is always nominated by other parties,

which is a contradiction again. If e({1, 2}, x) = e({1, 3}, x) < e({2, 3}, x), party 1 is not

dominated by other parties, and hence x1 = p1(1 − x2) + (1 − p1)p1. Thus, with (26) and

xN = 1, we have x1 = 3(1−p1)p1
2−p1 , x2 =

1−p1+p21
2−p1 , and x3 = 1−3p+2p2

2−p . Plugging them into the

condition e({1, 2}, x) < e({2, 3}, x), that is, 1− x1 < p2 + p3 − x3, it must be

1− 3(1− p1)p1

2− p1

< 1− p1 −
1− 3p+ 2p2

2− p
,

or equivalently, (2p− 1)2 < 0, which is a contradiction. By Theorem 4, there exists a cutoff

strategy SSPE, and hence, it must be e({1, 2}, x) = e({1, 3}, x) = e({2, 3}, x).

Proposition 8. Let (N, v) be a three-party weighter majority game with (p, w∗) and there

are two veto parties. Let (x, q) be an cutoff SSPE. If δ = 1, then the veto players form an

intermediate coalition with strictly positive probability and their expected payoffs are:

x1 = p1 +
p3

3
, x2 = p2 +

p3

3
, and x3 =

p3

3
. (27)

Proof. By Lemma 16, we have e({1, 2}, x) = e({1, 3}, x) = e({2, 3}, x). The first equation

implies that 1− x1 − x2 = p1 + p3 − x1 − x3, or x2 − x3 = p2. The second equation implies

that p1 + p3 − x1 − x3 = p2 + p3 − x2 − x3, or 2x2 + x3 = p2 + p3. Solving two conditions

x2 − x3 = p2 and 2x2 + x3 = p2 + p3 with xN = pN = 1 yields (27).
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Example 3. Consider the following three-party voting problem. Each party has 3,2, and

1 votes and 5 votes are required to win, that is, p =
(

1
2
, 1

3
, 1

6

)
and w∗ = 5

6
, that is, the two

large parties are veto and the smallest party is dummy. The equilibrium expected payoffs

are
(

10
18
, 7

18
, 1

18

)
.

7 Wage Bargaining and Labor Union

An employer-employee game is a three-person game with a set of players is N = {1, 2, 3}

and a characteristic function v : P(N)→ R3 is:

v(S) =


1 if S = N

a if S = {1, 2}, {1, 3}
0 otherwise,

,

where 0 ≤ a ≤ 1. Player 1 represents an employer or a firm; and player 2 and player 3

represent employees or workers. a refers the first worker’s product and 1 − a reflects the

second worker’s marginal product. For extreme cases, if a = 0, then the game is unanimous;

and if a = 1, then the game is a simple game with a single veto player.

In the first subsection, we study stationary subgame perfect equilibria, varying the com-

mon discount factor 0 < δ ≤ 1, fixing a = 1 and the uniform recognition probability
(

1
3
, 1

3
, 1

3

)
.

When δ > 6
7
, the workers form a union with positive probability. In the second subsection,

we investigate the effect of the recognition probability, for fixed a = 1 and δ = 1. The

workers’ recognition probability is lower than a certain level, then they form a union with

probability 1, whenever they are supposed to propose. We compare this result with Okada

(2011) to highlight the effect of buyout options.

7.1 The effect of the common discount factor δ

If a = 1, then there exists a unique core allocation, in which the market clearing wage is

zero and the firm takes all the surplus. We assume a uniform recognition probability, that is,

each player can be selected as a proposer with probabilities 1
3
. Again we focus on specifying

strategies for the initial coalitional state π◦. Suppose two workers are identical, we assume
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symmetric strategies for the workers. A cutoff strategy SSPE (x, q) is symmetric if x2 = x3,

q2 = q3 and q12 = q13. In a symmetric equilibrium (x, q), the excess surplus for each coalition

is:

• e({1, 2}, x) = e({1, 3}, x) = 1− (x1 + x2);

• e({2, 3}, x) = x
π◦(2,{2,3})
2 − 2x2 = 2

3
δ − 2x2; and

• e(N, x) = 1− (x1 − 2x2).

Since x2 > 0 in an equilibrium, forming N is strictly dominated by forming either {1, 2}

or {1, 3} and hence q12 = q13 = 1
2
. Note that q23 be the probability that a worker makes a

proposal to the other worker. If the proposal between workers is accepted, then a union is

formed. Note that the union itself produces nothing, but it could increase workers’ bargaining

power by unifying their negotiation channel to the firm.

Lemma 17. (Possibility of solidarity.) If δ > 6
7
, each worker forms a union with a strictly

positive probability.

Proof. Suppose, for contradiction, q23 = 0. It must be e(12, x) ≥ e(23, x), that is,

1− 2

3
δ ≥ x1 − x2 = δ(u1 − u2). (28)

Since q21 = q31 = 1 and q12 = q13 = 1
2
, their expected payoffs are:

u1 =
1

3
(1− δu2) +

2

3
δu1; and (29)

u2 =
1

3
(1− δu1) +

1

3

1

2
δu2. (30)

Solving (29) and (30), we have u1 = 2−δ
6−5δ

and u2 = 2−2δ
6−5δ

. Plugging u1 and u2 into (28), it

follows 7δ2 − 27δ + 18 ≥ 0, which is δ ≤ 6
7
.

Lemma 18. (Impossibility of strong solidarity.) For all 0 ≤ δ ≤ 1, each worker forms a

union with probability less than 1.
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Proof. Suppose, for contradiction, q23 = 1, then it must be e(12, x) ≤ e(23, x). Since

q23 = q32 = 1 and q12 = q13 = 1
2
, their expected payoffs are:

u1 =
1

3
(1− δu2) +

2

3
δ

1

3
; and (31)

u2 =
1

3
(δ

2

3
− δu2) +

1

3
δu2 +

1

3

1

2
δu2. (32)

which yields u1 = 6+3δ−2δ2

18−3δ
and u2 = 4δ

18−3δ
. With u1 and u2, the condition e(12, x) ≤ e(23, x),

that is, 1 − 2
3
δ ≤ δ(u1 − u2), implies that δ2 + 3δ − 6 ≥ 0. However, this contradicts to

0 ≤ δ ≤ 1.

Proposition 9. There are two types of cutoff strategy symmetric SSPE depend on δ.

i. (No Solidarity.) If δ ≤ 6
7
, then each worker always makes an offer only to the firm and

the equilibrium expected payoff is u1(δ) = 2−δ
6−5δ

for the firm and u2(δ) = 2−2δ
6−5δ

for each

worker.

ii. (Weak Solidarity.) If δ > 6
7
, then each worker makes an offer to each other with proba-

bility q23(δ) and the equilibrium expected payoff is u1(δ) and u2(δ), where

q23(δ) =
3− δ2 −

√
δ4 − 28δ3 + 130δ2 − 180δ + 81

4δ(1− δ)

u1(δ) =
−9 + 26δ − 19δ2 + 4δ3 −

√
δ4 − 28δ3 + 130δ2 − 180δ + 81

3δ
(
3− 2δ + δ2 −

√
δ4 − 28δ3 + 130δ2 − 180δ + 81

)
u2(δ) =

8δ(1− δ)
9− 10δ − δ2 + 3

(√
δ4 − 28δ3 + 130δ2 − 180δ + 81

) .
Proof. The first part is directly from Lemma 17. By Lemma 17 and Lemma 18, if δ > 6

7
,

then it must be 0 < q23 = q32 < 1 and hence e(12, x) = e(23, x), or equivalently

1− 2

3
δ = x1 − x2 = δ(u1 − u2). (33)

With q23 = q32 and q12 = q13 = 1
2
, their expected payoffs are:

u1 =
1

3
(1− δu2) +

2

3

(
(1− q23)δ

1

3
+ q23δu1

)
; and (34)

u2 =
1

3
(δ

2

3
− δu2) +

1

3
(q23δu2) +

1

3

1

2
δu2. (35)
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Figure 1: Patience causes Inefficiency

Simultaneously solving the three equations (33), (34), and (35) completes the proof of the

second part.

If δ = 1, then the equilibrium expected payoff vector is
(

5
9
, 2

9
, 2

9

)
and each worker form

a labor union with probability 1
2
. If δ = 6

7
, then the equilibrium expected payoff vector

is
(

2
3
, 1

6
, 1

6

)
, which coincides to the Shapley value of the underlying characteristic function

form game. Note that the unique core allocation is (1, 0, 0) and this allocation. If the

agents have no buyout option as Okada (2011), then the second type of equilibria (Weak

Solidarity) is impossible. Hence, without buyout options, for all 0 ≤ δ ≤ 1, the equilibrium

expected payoff vector must be
(

2−δ
6−5δ

, 2−2δ
6−5δ

, 2−2δ
6−5δ

)
and this converges to the core allocation.

However, allowing buyout options to each agent, non-core allocations can be obtained as an

equilibrium. See Figure 1. Considering that most of the power indexes do not belong to core

allocations, buyout options can justify such power indexes.

Remark. When the workers do not make an offer each other, the winning coalition will be

formed immediately and hence the sum of equilibrium expected payoffs must be 1, no matter
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what δ is, as long as δ ≤ 6
7
. However, if 6

7
< δ < 1, there must be efficiency loss, that is, the

sum of equilibrium expected payoffs is strictly less than 1.

7.2 The effect of workers’ recognition probability

In this subsection, we assume that the recognition probability is (1 − 2p, p, p), that is each

worker can be selected as a proposer with probability 0 < p < 1
2
. For ease of exposition, fix

a = 1 and δ = 1. In a symmetric equilibrium (x, q), the excess surplus for each coalition is:

• e({1, 2}, x) = e({1, 3}, x) = 1− (x1 + x2);

• e({2, 3}, x) = x
π◦(2,{2,3})
2 − 2x2 = 2pδ − 2x2 = 2p− 2x2; and

• e(N, x) = 1− (x1 − 2x2).

Since δ = 1, note that xi = ui for each i ∈ N and xN = uN = 1. Again, forming N

is dominated and hence q12 = q13 = 1
2
. At δ = 1, for any positive workers’ recognition

probability, each worker form a labor union with positive probability, due to Theorem 3.

Now we show that if the workers’ recognition probability is lower than a certain level, then

they form a union for sure whenever they are supposed to propose.

Proposition 10. There are two types of cutoff strategy symmetric SSPE depend on p.

i. (Weak Solidarity.) If 1
4
< p < 1

2
, then each worker makes an offer to each other with

probability q23 = q32 = 1−2p
2p

and the equilibrium expected payoff is(
1− 4

3
p,

2

3
p,

2

3
p

)
.

ii. (Strong Solidarity.) If p ≤ 1
4
, then each worker makes an offer to each other with

probability 1 and the equilibrium expected payoff is(
1− 8p2

1 + 2p
,

4p2

1 + 2p
,

4p2

1 + 2p

)
.
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Figure 2: The less likely to be recognized, the more likely to form a union

Proof. Cases 1: Weak Solidarity. Suppose that 0 < q23 < 1. It must be e(23, x) =

e(12, x), which implies that x2 = 2
3
p. Each worker’s equilibrium expected payoff is

x2 = p(2p− x2) + pq23x2 + (1− 2p)q12x2, (36)

which implies x2 = 4p2

1+4p−2pq23
. It follows, with the condition e(23, x) = e(12, x), that x2 =

4p2

1+4p−2pq23
= 2

3
p, or equivalently, q23 = 1−2p

2p
. Plugging q = 1−2p

2p
, we have x2 = 2

3
p and

x1 = 1−2x2 = 1− 4
3
p. Since q23 = 1−2p

2p
is assumed between 0 and 1, it must be 0 < 1−2p

2p
< 1.

This condition requires that 1
4
< p < 1

2
, which completes the proof of the first part.

Cases 2: Strong Solidarity. Suppose that q23 = 1. It must be e(23, x) ≥ e(12, x), which

implies that x2 ≤ 2
3
p. Each worker’s equilibrium expected payoff is

x2 = p(2p− x2) + px2 + (1− 2p)q12x2, (37)

which implies x2 = 4p2

1+2p
and x1 = 1 − 2x2 = 1 − 8p2

1+2p
. Plugging x2 into the condition

e(23, x) ≥ e(12, x), it must be 4p2

1+2p
≤ 2

3
p, or equivalently, p ≤ 1

4
. This completes the proof

of the second part.
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If p = 1
4
, each worker form a union with probability 1 and its equilibrium expected

payoff coincides to the Shapley value of the underlying characteristic function form game.

As p → 1
2
, that is the firm has little chance to propose, the equilibrium expected payoff

converges to the eqalitarian solution, in which all the agents split the surplus equally. As

p→ 0, that is workers has little chance to propose, the equilibria expected payoff converges

to the core allocation.

Figure 2 illustrates the effect of buyout option comparing the result with standard models

which have no buyout option. In random-proposer models without buyout option, as δ → 1,

the equilibrium payoff must be in the core as long as the core is nonempty. More specifically

in Okada (2011), if δ = 1, workers’ payoff is always zero no matter what workers recognition

probability. However, as the result of buyout option, workers can form a union and increase

their bargaining power by unifying their negotiation channel, and hence they can get a wage

more than their marginal product.

Appendix: Existence of SSPE

In this section, we present an outline for a proof of the existence of a cutoff strategy SSPE.

This is based on Eraslan (2002). For all π ∈ Π, if n(π) = 2 then xπ and qπ are uniquely

defined by, for all i ∈ N(π),

i) xπi = (1− δ)v(πi) + δpπi v(N); and

ii) qi(N(π)) = 1.

Now we take an arbitrary π ∈ Π and suppose that there exist xπ = {{xπ′i }i∈N(π′)}π′∈Ππ and

qπ = {{qπ′i }i∈N(π′)}π′∈Ππ , such that for all π′ ∈ Ππ and all i ∈ N(π′)

i) xπ
′
i = (1− δ)v(π′i) + δuπ

′
i (xπ,qπ); and

ii) qπ
′

i ∈ ∆(Dπ′
i (xπ)).

Now we show that there exist {xπi }i∈N(π) and {qπi }i∈N(π) which satisfies the two conditions

in Proposition 3. Define Xπ = {x ∈ Rn(π) |
∑

i∈N(π) xi ≤ v(N)}, Σπ
i = ∆(Pi(N(π)), and
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Σπ = ×i∈N(π)Σ
π
i . Given q ∈ Σπ, define V (·; q) : Xπ −→ Xπ such that for all i ∈ N(π):

Vi(x, q) = pπi
∑

S∈Pi(N(π))

qi(S)

[
x
π(i,S)
i −

∑
j∈S

xj

]

+
∑
j∈N

pπj
∑

S∈Pj(N(π))

qj(S)
[
xi1(i ∈ S) + x

π(j,S)
i 1(i 6∈ S)

]
.

Lemma 19. Given q ∈ Σπ, V (·, q) is a contraction mapping.

Since V (·; q) is a contraction mapping, for each q ∈ Σπ, there exists a unique fixed point

ξ : Σπ −→ Xπ such that

ξ(q) = V (ξ(q), q).

Lemma 20. ξ is a continuous function.

Now we define Qi : Xπ ⇒ Σπ
i for each i ∈ N(π):

Qi(x) = argmax
q∈Σπi

∑
S∈Pi(N(π))

qi(S)

[
x
π(i,S)
i −

∑
j∈S

xj

]
,

and Q = ×i∈N(π)Qi.

Lemma 21. Q is nonempty, compact-valued, convex-valued, and upper-hemicontinuous.

Define R : Σπ ⇒ Σπ such that

R(q) = {q′ ∈ Σπ | q′ ∈ Q(ξ(q))}.

Lemma 22. R is nonempty, compact-valued, convex-valued, and upper-hemicontinuous.

By Kakutani fixed point theorem, there exists qπ ∈ Σπ such that qπ ∈ R(qπ). Let

xπ = ξ(qπ). Define x = xπ ∪ xπ and q = qπ ∪ qπ. Then for all i ∈ N(π), xπi and qπi satisfies

the two conditions in Theorem 1. Therefore, (x,q) consists of a cutoff strategy SSPE of the

subgame with the arbitrary chosen coalitional state π. By induction argument, the game

with the initial state π◦ has a cutoff strategy SSPE and the existence follows.

Theorem 4. For any bargaining game Γ = (N, v, p, δ), there exists a cutoff strategy SSPE.
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