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Abstract

Continuous-time game dynamics are typically �rst order systems where payo�s determine the growth rate of the play-

ers’ strategy shares. In this paper, we investigate what happens beyond �rst order by viewing payo�s as higher order

forces of change, specifying e.g. the acceleration of the players’ evolution instead of its velocity (a viewpoint which

emerges naturally when it comes to aggregating empirical data of past instances of play). To that end, we derive a wide

class of higher order game dynamics, generalizing �rst order imitative dynamics, and, in particular, the replicator dy-

namics. We show that strictly dominated strategies become extinct in n-th order payo�-monotonic dynamics n orders
as fast as in the corresponding �rst order dynamics; furthermore, in stark contrast to �rst order, weakly dominated

strategies also become extinct for n ≥ . All in all, higher order payo�-monotonic dynamics lead to the elimination
of weakly dominated strategies, followed by the iterated deletion of strictly dominated strategies, thus providing a dy-

namic justi�cation of the well-known epistemic rationalizability process of Dekel and Fudenberg (). Finally, we

also establish a higher order analogue of the folk theorem and we show that convergence to strict equilibria in n-th
order dynamics is n orders as fast as in �rst order.

Keywords: Game dynamics, higher order dynamical systems, (weakly) dominated strategies, folk
theorem, learning, replicator dynamics, stability of equilibria.

. Introduction.

Owing to the considerable complexity of computing Nash equilibria and other rationalizable outcomes

in non-cooperative games, a fundamental question that arises is whether these outcomes may be regarded

as the result of a dynamic learning process where the participants “accumulate empirical information on

the relative advantages of the various pure strategies at their disposal” (Nash, , p. ). To that end,

numerous classes of game dynamics have been proposed (from both a learning and an evolutionary “mass-

action” perspective), each with its own distinct set of traits and characteristics – see e.g. the comprehensive

survey by Sandholm () for a most recent account.

Be that as it may, there are few rationality properties that are shared by a decisive majority of game

dynamics. For instance, if we focus on the continuous-time, deterministic regime, a simple comparison

between the well-known replicator dynamics (Taylor and Jonker, ) and the Smith dynamics (Smith,

) reveals that game dynamics can be imitative (replicator) or innovative (Smith), rest points might
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properly contain the game’s Nash set or coincide with it (Hofbauer and Sandholm, ), and strictly

dominated strategiesmight become extinct (Samuelson andZhang, ) or instead survive (Hofbauer and

Sandholm, ). In fact, negative results seem to be much more ubiquitous: there is no class of uncoupled

game dynamics that always converges to equilibrium (Hart and Mas-Colell, ) and weakly dominated

strategies may survive in the long run, even in simple  ×  games (Samuelson, ; Weibull, ).
From a mathematical standpoint, the single unifying feature of the vast majority of game dynamics

is that they are �rst order dynamical systems. Interestingly however, this restriction to �rst order is not

present in the closely related �eld of optimization (corresponding to games against nature): as it happens,

the second order “heavy ball with friction” method studied by Alvarez () and Attouch et al. ()

has some remarkable optimization properties that �rst order schemes do not possess. In particular, by

interpreting the gradient of the function to be maximized as a physical, Newtonian force (and not as a

�rst order vector �eld to be tracked by the system’s trajectories), one can give the system enough energy

to escape the basins of attraction of local maxima and converge instead to the global maximum of the
objective function (something which is not possible in ordinary �rst order dynamics).

�is, therefore, begs the question: can second (or higher) order dynamics be introduced and justi�ed in
a game theoretic setting? And if yes, do they allow us to obtain better convergence results and/or escape any
of the �rst order impossibility results?

�e �rst challenge to overcome here is that second order methods in optimization apply to uncon-
strained problems, whereas game dynamics must respect the (constrained) structure of the game’s strategy
space. To circumvent this constraint, Flåm and Morgan () proposed a heavy-ball method as in At-

touch et al. () above, and they enforced consistency by projecting the orbits’ velocity to a subspace of

admissible directions when the updating would lead to inadmissible strategy pro�les (say, assigning neg-

ative probability to an action). Unfortunately, as is o�en the case with projection-based schemes (see e.g.

Sandholm et al., ), the resulting dynamics are not continuous, so even basic existence and uniqueness

results are hard to obtain.

On the other hand, if players try to improve their performance by aggregating information on the

relative payo� di�erences of their pure strategies, then this cumulative empirical data is not constrained (as

mixed strategies are). �us, a promising way to obtain a well-behaved second order dynamical system for

learning in games is to use the player’s accumulated data to de�ne an unconstrained performance measure

for each strategy (this is where the dynamics of the process come in), and thenmap these “scores” tomixed

strategies bymeans e.g. of a logit choicemodel (Hofbauer et al., ;Mertikopoulos andMoustakas, ;

Rustichini, ; Sorin, ). In other words, the dynamics can �rst be speci�ed on an unconstrained

space, and then mapped to the game’s strategy space via the players’ choice model.

�is use of aggregate performance estimates also has important implications from the point of view of

evolutionary game theory and population dynamics. Indeed, it is well-known that the replicator dynamics

arise naturally in populations ofmyopic agents that evolve based on “imitation of success” (Hofbauer, ;

Sandholm, ) or on “imitation driven by dissatisfaction” (Björnerstedt and Weibull, ). Revision

protocols of this kind are invariably steered by the players’ instantaneous payo�s; remarkably however, if
players are more sophisticated and keep an aggregate (or average) of their payo�s over time, then the same

revision rules driven by long-term success or dissatisfaction give rise to the same higher order dynamics
discussed above.

Paper outline.
A�er a few preliminaries in Section , we make this approach precise in Section , where we derive

a higher order variant of the well-known replicator dynamics of Taylor and Jonker (). Regarding the

rationality properties of the derived dynamics, we show in Section  that the higher order replicator dy-

namics eliminate strictly dominated strategies, including iteratively dominated ones: in the long run, only

iteratively undominated strategies survive. Qualitatively, this result is the same as its �rst order counter-

part; quantitatively however, the rate of extinction increases dramatically with the order of the dynamics:





dominated strategies become extinct in the n-th order replicator dynamics n orders as fast as in �rst order
(�eorem .).

�e reason for this enhanced rate of elimination is that empirical data accrues much faster if a higher

order scheme is used rather than a lower order one: players who use a higher order learning rule end

up looking deeper into the past, so they identify consistent payo� di�erences and annihilate dominated

strategies much faster. As a consequence of the above, in the higher order (n ≥ ) replicator dynamics,
even weakly dominated strategies become extinct (�eorem .), a result which comes in stark contrast to
the �rst order setting. �e higher order replicator dynamics thus perform one round of elimination of

weakly dominated strategies followed by the iterated elimination of strictly dominated strategies; from an

epistemic point of view, Dekel and Fudenberg () showed that the outcome of this deletion process is

all that can be expected from rational players who are not certain of their opponents’ payo�s, so our result

may be regarded as a dynamic justi�cation of this form of rational behavior.

Extending our analysis to equilibrium play, we show in Section  that modulo certain technical mod-

i�cations, the folk theorem of evolutionary game theory (Hofbauer and Sigmund, ; Weibull, )

continues to hold in our higher order setting. More speci�cally, we show that: a) if an interior solution
orbit converges, then its limit is Nash; b) if a point is Lyapunov stable, then it is also Nash; and c) if players
start close enough to a strict equilibrium andwith a small learning bias, then they converge to it; conversely,

only strict equilibria have this property (�eorem .). In fact, echoing our results on the rate of extinction

of dominated strategies, we show that the n-th order replicator dynamics converge to strict equilibria n
orders as fast as in �rst order.

Finally, in Section , we consider a much wider class of higher order dynamics that extends the fa-

miliar imitative dynamics of Björnerstedt and Weibull () – including all payo�-monotonic dynamics
(Samuelson and Zhang, ) and, in particular, the replicator dynamics. �e results that we described

above go through essentially unchanged for all higher order payo�-monotonic dynamics, with one notable

trait standing out: the property that only pure strategy pro�les can be attracting holds in all higher order
imitative dynamics for n ≥ , and not only for the replicator dynamics. As with the elimination of weakly
dominated strategies, this is not the case in �rst order: for instance, the payo�-adjusted replicator dynamics

of Maynard Smith exhibit interior attractors even in simple  ×  games (see e.g. Ex. . in Weibull, ).
Higher order learning is thus seen to reinforce the link between the “epistemic” (as Ritzberger andWeibull

() and van Damme () call it) and the dynamic instability of mixed equilibria: if players follow a

higher order learning scheme, then unilateral o�-equilibrium deviations become inherently unstable, even

when they do not incur a loss to the deviating player.

. Notation and preliminaries.

.. Notational conventions.
If S = {sα}nα= is a �nite set, the vector space spanned by S overRwill be the setRS of all maps x∶S→ R,

s ∈ S ↦ xs ∈ R. �e canonical basis {es}s∈S of this space consists of the indicator functions es ∶S → R
which take the value es(s) =  on s and vanish otherwise, so thanks to the identi�cation s ↦ es , we will not
distinguish between s ∈ S and the corresponding basis vector es of RS. In the same spirit, we will use the

index α to refer interchangeably to either sα or eα (writing e.g. xα instead of xsα ); likewise, if {Sk}k∈K is a
�nite family of �nite sets indexed by k ∈ K, we will write (α; α−k) for the tuple (α , . . . , αk− , α, αk+ , . . . ) ∈
∏k Sk and∑

k
α in place of∑α∈Sk .

We will also identify the set ∆(S) of probability measures on S with the n-dimensional simplex of RS:

∆(S) ≡ {x ∈ RS ∶ ∑α xα =  and xα ≥ }. Finally, regarding players and their actions, we will follow
the original convention of Nash and employ Latin indices ( j, k, . . . ) for players, while keeping Greek ones
(α, β, . . . ) for their actions (pure strategies); also, unless otherwise mentioned, we will use α, β, . . . , for
indices that start at , and µ, ν, . . . , for those which start at .





.. Finite games.
A �nite game in normal formwill comprise a �nite set of playersN = {, . . . ,N}, each with a �nite set of

actions (or pure strategies) Ak = {αk , , αk , , . . . } that can be mixed by means of a probability distribution
(mixed strategy) xk ∈ ∆(Ak). �e set ∆(Ak) of a player’s mixed strategies will be denoted by Xk , and
aggregating over all players, the space of strategy pro�les x = (x , . . . , xN) ∈ ∏k RAk will be the product

X ≡ ∏k Xk ; in this way, if A = ∐k Ak denotes the (disjoint) union of the players’ action sets, X may be
seen as a product of simplices embedded in RA ≅ ∏k RAk .

As is customary, when we wish to focus on the strategy of a speci�c (focal) player k ∈ N versus that of
his opponentsN−k ≡ N /{k}, we will use the shorthand (xk ; x−k) ≡ (x , . . . , xk , . . . , xN) ∈ X to denote the
strategy pro�le where player k plays xk ∈ Xk against the strategy x−k ∈ X−k ≡ ∏ℓ≠k Xℓ of his opponents.
�e players’ (expected) rewards are then prescribed by the game’s payo� (or utility) functions uk ∶X → R:

uk(x) = ∑


α
⋯∑

N
αN
uk(α , . . . , αN) x,α⋯ xN ,αN , (2.1)

where uk(α , . . . , αN) denotes the reward of player k in the pro�le (α , . . . , αN) ∈ ∏k Ak ; speci�cally, if
player k plays α ∈ Ak , we will use the notation:

ukα(x) ≡ uk(α; x−k) = uk(x , . . . , α, . . . , xN). (2.2)

In light of the above, a game in normal form with players k ∈ N, action sets Ak and payo� functions
uk ∶X → Rwill be denoted byG ≡ G(N,A, u). A restrictionG′ ofG (denotedG′ ≤ G) will then be a game
G′ ≡ G′(N′ ,A′ , u′) played by a the players ofG, each with a subsetA′

k ⊆ Ak of their original actions, and

with payo� functions u′k ≡ uk ∣X′ suitably restricted to the reduced strategy space X
′ = ∏k ∆(A

′
k) ofG

′.

Given a game G ≡ G(N,A, u), we will say that the pure strategy α ∈ Ak is (strictly) dominated by
β ∈ Ak (and we will write α ≺ β) when

ukα(x) < ukβ(x) for all strategy pro�les x ∈ X. (2.3)

More generally, we will say that qk ∈ Xk is dominated by q′k ∈ Xk if

uk(qk ; x−k) < uk(q′k ; x−k) for all strategies x−k ∈ X−k of k’s opponents. (2.4)

Finally, if the above inequalities are only strict for some (but not all) x ∈ X, then we will employ the term
weakly dominated and write qk ≼ q′k instead.
Of course, by removing dominated (and, thus, rationally unjusti�able) strategies from a gameG, other

strategies might become dominated in the resulting restriction of G, leading inductively to the notion of
iteratively dominated strategies: speci�cally, if a strategy survives all rounds of elimination, then it will be
called iteratively undominated, and if the space X∞ of iteratively undominated strategies is a singleton, the
gameG will be called dominance-solvable.
On the other hand, when a game cannot be solved by removing dominated strategies, we will turn to

the equilibrium concept ofNash, which characterizes pro�les that are resilient against unilateral deviations;

formally, q ∈ X will be a Nash equilibrium ofG if

uk(xk ; q−k) ≤ uk(q) for all xk ∈ Xk and for all k ∈ N. (2.5)

If (.) is strict for all xk ∈ Xk /{qk}, k ∈ N, q will be called itself strict; �nally, equilibria of restrictionsG′

ofG, will be called restricted equilibria ofG.





.. Dynamical systems.
Following Lee (), a �ow on X will be a smooth map Θ∶X × R+ → X such that a) Θ(x , ) = x for

all x ∈ X; and b) Θ(Θ(x , t), s) = Θ(x , t + s) for all x ∈ X and for all s, t ≥ . �e curve Θx ∶R+ → X,
t ↦ Θ(x , t), will be called the orbit (or trajectory) of x under Θ, and when there is no danger of confusion,
Θx(t) will be denoted more simply by x(t). In this way, Θ induces a vector �eld V on X via the mapping
x ↦ V(x) ≡ ẋ() ∈ TxX where ẋ() is the initial velocity of x(t) and TxX denotes the tangent cone to X
at x, viz.:

TxX ≡ {z ∈ RA ∶ ∑
k
α zkα =  for all k ∈ N and zkα ≥  if xkα = }. (2.6)

By the fundamental theorem on �ows, x(t)will be the unique solution to the (�rst order) dynamical system
ẋ(t) = V(x(t)), t ≥ . Accordingly, we will say that q ∈ X is:

• stationary if V(q) =  (i.e. if q(t) ≡ Θ(q, t) = q for all t ≥ ).
• Lyapunov stable if, for every neighborhood U of q, there exists a neighborhood V of q such that
x(t) ∈ U for all x ∈ V , t ≥ .

• attracting if x(t) → q for all x in a neighborhood U of q in X.
• asymptotically stable if it is Lyapunov stable and attracting.

Higher order dynamics of the form “x(n) = V” are de�ned via the recursive formulation:

ẋ(t) = x (t)

ẋ (t) = x(t)
. . .

ẋn−(t) = V(x(t), x (t), . . . , xn−(t)).

(2.7)

An n-th order dynamical system on X will thus correspond to a �ow on the phase space Ω = ∐x(TxX)n−
whose points (n-tuples of the form (x , x  , . . . , xn−) as above) represent all possible states of the system;1
by contrast, we will keep the designation “points” for base points x ∈ X, and X itself will be called the
con�guration space of the system. Obviously, the evolution of an n-th order dynamical system depends
on the entire initial state ω = (x(), ẋ(), . . . , x(n−)()) ∈ Ω and not only on x(), so stationarity and
stability de�nitions will be phrased in terms of states ω ∈ Ω. On the other hand, if we wish to characterize
the evolution of an initial position x() ∈ X over time, we will do so by means of the corresponding
rest state (x(), , . . . , ) which signi�es that the system starts at rest: using the natural embedding x ↦
(x ,  . . . , ) ∈ Ω, we will thus view X as a subset of Ω, and when there is no danger of confusion, we will
identify x ∈ X with the associated rest state (x , , . . . , ) ∈ Ω.

. Derivation of higher order dynamics.

A fundamental requirement for any class of game dynamics is that solution trajectories must remain

in the game’s strategy space X for all time. For a �rst order system of the form

ẋkα = Fkα(x), (3.1)

with Lipschitz Fkα ∶RA → R, this is guaranteed by the tangency requirements a)∑kα Fkα =  for all k ∈ N,
and b) Fkα ≥  whenever xkα = . In second order however, this does not su�ce: if we simply replace ẋkα

1By convention, we let (TxX) = {}, so Ω = ∐x{} ≅ X for n = .





with ẍkα in (.) and players start with su�ciently high velocity ẋ() pointing towards the exterior of X,
then they will escape X in �nite time.
Flåm andMorgan () forced solutions to remain in X by exogenously projecting the velocity v(t) ≡

ẋ(t) of an orbit to the tangent cone TxX of “admissible” velocity vectors. �is approach however has the
problem that projections do not vary continuously with x, so existence and (especially) uniqueness of
solutions might fail; moreover, players need to know exactly when they hit a boundary face of X in order
to change their projection operator, so machine precision errors are bound to arise (Cantrell, ). To

circumvent these problems, we will take an approach rooted in reinforcement learning, allowing us to

overcome the restrictions imposed by the simplicial structure of X in a natural way.

.. �e second order replicator dynamics in dyadic games.
Wewill �rst describe our higher order reinforcement learning approach in the simpler context of two-

strategy games, the main idea being that players keep and update an unconstrainedmeasure of their strate-
gies’ payo� di�erence instead of updating their (constrained) strategies directly. In this way, second (or

higher) order e�ects arise naturally when players look two (or more) steps into the past, and it is the dy-

namics of these “scores” that induce a well-behaved dynamical system on the game’s strategy space.

More precisely, consider an n-person game where every player k ∈ N has two possible actions, “” and
“”, that are appraised based on the associated payo� di�erences ∆uk ≡ uk , −uk ,, k ∈ N. With this regret-
like information at hand, players can measure the performance of their strategies over time by updating

the auxiliary score variables (or propensities):

Uk(t + h) = Uk(t) + h∆uk(x(t)), (3.2)

where h is the time interval between updates and ∆uk(x(t)) represents the payo� di�erence between
actions “” and “” at time t (assumed discrete for the moment). �e players’ strategies xk ∈ Xk are then
updated following the logit (or exponential weight) choice model whereby actions that score higher are
played exponentially more o�en:

xk(t) = expit(Uk(t)) ≡
exp(Uk(t))
 + exp(Uk(t))

. (3.3)

�is process is repeated inde�nitely, so, for simplicity, we will descend to continuous time by letting

h →  in (.).2 In this way, by collecting terms in the LHS of (.) and replacing the discrete di�erence
ratio (Uk(t + h) −Uk(t))/h with U̇k , the system of (.) and (.) becomes:

U̇k = ∆uk(x) (3.4a)

xk = expit(Uk) = ( + exp(−Uk))
−
. (3.4b)

Hence, by di�erentiating (.b) to decouple it from (.a), we readily obtain the -strategy replicator dy-

namics of Taylor and Jonker ():

ẋk =
dxk
dUk

U̇k = xk( − xk)∆uk(x). (3.5)

In this well-known derivation of the replicator dynamics from the exponential reinforcement rule (.)

(see also Hofbauer et al.,  andMertikopoulos andMoustakas, ), the constraints xk ∈ (, ), k ∈ N,

2We should stress that the passage to continuous time is done here at a heuristic level – see Rustichini () and Sorin () for

some of the discretization issues that arise. �is discretization is a very important topic in itself, but since our focus is the properties

of the underlying continuous-time dynamics, we will not address it here.





are automatically satis�ed thanks to (.). On the downside however, (.a) itself “forgets” a lot of past

(and potentially useful) information because the “discrete-time” recursion (.) only looks one iteration in

the past. To remedy this, players could take (.) one step further by aggregating the scoresUk themselves
so as to gather more momentum towards the strategies that tend to perform better.

Following this reasoning, we obtain the double-aggregation reinforcement scheme:

Uk(t + h) = Uk(t) + h∆uk(x(t)) (3.6a)

Zk(t + h) = Zk(t) + hUk(t), (3.6b)

where, as before, the pro�le x(t) is updated following the logistic distribution (.) applied to the double
aggregate Z, viz. xk(t) = expit(Zk(t)).3 �us, by eliminating the intermediate (�rst order) aggregation
variables Uk from (.), we obtain the second order recursion:

Zk(t + h) − Zk(t + h)
h

=
Zk(t + h) − Zk(t)

h
+ h∆uk(x(t)), (3.7)

which in turn leads to the continuous-time variant:

Z̈k = ∆uk(x) (3.8a)

xk = expit(Zk) = ( + exp(−Zk))
−
. (3.8b)

�e second order system (.) automatically respects the simplicial structure of X by virtue of the
logistic updating rule (.), so this overcomes the hurdle of staying in X; still, it is quite instructive to
also derive the dynamics of the strategy pro�le x(t) itself. To that end, (.b) gives Zk = logit(xk) =
log(xk) − log( − xk), so a simple di�erentiation yields:

Żk =
ẋk
xk

+
ẋk
 − xk

=
ẋk

xk( − xk)
. (3.9)

Di�erentiating yet again, we thus obtain

Z̈k =
ẍkxk( − xk) − ẋk( − xk) + ẋ


kxk

xk( − xk)
, (3.10)

and some algebra readily yields the second order replicator dynamics for dyadic games:

ẍk = xk( − xk)∆uk +
 − xk
xk( − xk)

ẋk . (3.11)

�is derivation of a second order dynamical system on X will be the archetype for the signi�cantly
more general class of higher order dynamics of the next section, so we will pause here for some remarks:

Remark  (Initial Conditions). In the �rst order exponential learning scheme (.), the players’ initial
scores Uk() determine their initial strategies via the logit rule (.b), namely xk() = expit(Uk()). �e
situation however is less straightforward in (.) where we have two di�erent types of initial conditions:

the players’ initial scores Zk() and the associated initial velocities Żk() (themselves corresponding to
the initial values of the intermediate aggregation variables Uk in (.)).

3Of course, players could look even deeper into the past by taking further aggregates in (.), but we will not deal with this issue

here in order to keep our example as simple as possible.





In second order, the initial scores Zk() determine the players’ initial strategies via (.b). On the
other hand, the scores’ initial velocities Żk() = Uk() play a somewhat more convoluted role: indeed,
di�erentiating (.b) yields

ẋk() = Żk()
exp(Zk())
 + exp(Zk())

 − exp(Zk())
 + exp(Zk())

= xk()( − xk())Żk(), (3.12)

so initial score velocities Żk() control the initial growth rate ẋk() of the players’ strategies. As we shall
see in the following, nonzero Żk() introduce an inherent bias in a players’ learning scheme; hence, given
that ẋk() =  when Żk() =  (independently of the players’ initial strategy), starting “at rest” (ẋk() = )
is basically equivalent to learning with no initial bias (Żk() = ).
Remark  (Past information). �e precise sense in which the double aggregation scheme (.) is “looking
deeper into the past” can be understood more clearly by writing out explicitly the �rst and second order

scores Uk and Zk as follows:

Uk(t) = Uk() + ∫
t


∆uk(x(s)) ds, (3.13a)

Zk(t) = Zk() + ∫
t


Uk(s) ds = Zk() + Żk()t + ∫

t


(t − s)∆uk(x(s)) ds. (3.13b)

We thus see that the �rst order aggregate scores Uk assign uniform weight to all past instances of play,
while the second order aggregates Zk put (linearly) more weight on instances that are farther removed into
the past. �is mode of weighing can be interpreted as players being reluctant to forget what has occurred,

and this is precisely the reason that we describe the second order scheme (.) as “looking deeper into

the past”. From the point of view of learning, this may appear counter-intuitive because past information

is usually discounted (e.g. by an exponential factor) and ultimately discarded in favor of more recent

observations (Fudenberg and Levine, ). As we shall see however, “refreshing” observations in this way

results in the players’ scoresUk growing at most linearly in time (see e.g. Hofbauer et al., , Rustichini,
, and Sorin, ); on the �ip side, if players reinforce past observations by using (.b) in place of
(.a), then their scores may grow quadratically instead of linearly.

From (.) we also see that initial score velocities Żk() ≠  induce a skew in the players’ learning
scheme: for instance, in a constant game (∆uk ≡ ), the integral expression (.b) gives limt→∞ Zk(t) =
sgn(Zk()) ⋅∞, i.e. xk(t) will converge to  or , depending only on the sign of Żk(). Put di�erently, the
bias introduced by the initial velocities Żk() is not static (as the players’ choice of initial strategy/score),
but instead drives the player to a particular direction, even in the absence of external stimuli.

.. Reinforcement learning and higher order dynamics.
In the general case, we will consider the following reinforcement learning setup:

1. For every action α ∈ Ak , player k keeps and updates a score (or propensity) variable ykα ∈ R which
measures the performance of α over time.

2. Players transform the scores yk ∈ RAk into mixed strategies xk ∈ Xk by means of the Gibbs map
Gk ∶RAk → Xk , yk ↦ Gk(yk):

xkα = Gkα(yk) ≡
exp (λk ykα(t))

∑
k
β exp (λk ykβ(t))

, (GM)

where the “inverse temperature” λk >  controls the model’s sensitivity to external stimuli.
3. �e game is played and players record the payo�s ukα(x) for each α ∈ Ak .

4. Players update their scores and the process is repeated ad in�nitum.
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Needless to say, the focal point of this learning process is the exact way in which players update the

performance scores ykα ∈ R at each iteration of the game. In the previous section, these scores were
essentially de�ned as double aggregates of the received payo�s via the two-step process (.). Here, we will

further extend this framework by considering an n-fold aggregation scheme in which the scores ykα are

formed via the following n-step process:

Y(n−)kα (t + h) = Y(n−)kα (t) + hukα(x(t)),

Y(n−)kα (t + h) = Y(n−)kα (t) + hY(n−)kα (t)
. . .

Y()kα (t + h) = Y()kα (t) + hY()kα (t),

ykα(t + h) = ykα(t) + hY
()

kα (t).

(3.14)

In other words, at each update period, players �rst aggregate their payo�s by updating the �rst order aggre-

gation variables Y(n−)kα ; they then re-aggregate these intermediate variables by updating the second order

aggregation scores Y(n−)kα above, and repeat this step up to n levels, leading to the n-fold aggregation score
ykα .

Similarly to the analysis of the previous section, if we eliminate the intermediate aggregation variables

Y(), Y() and so forth, we readily obtain the straightforward n-th order recursion:

∆
(n)
h ykα(t)
hn

= ukα(x(t)), (3.15)

where ∆
(n)
h ykα is the n-th order �nite di�erence of ykα , de�ned inductively as ∆

(n)
h y(t) = ∆(n−)h y(t+h)−

∆
(n−)
h y(t), with ∆()h y(t) = y(t + h) − y(t).4 �us, if we descend to continuous time by letting h → , we
obtain the n-th order learning dynamics:

y(n)kα (t) = ukα(x(t)), (LDn)

with x(t) given by the Gibbs map (GM) applied to y(t).
�e learning dynamics (LDn) together with the logit choice model (GM) completely specify the evo-

lution of the players’ mixed strategy pro�le x(t) and will thus constitute the core of our considerations.
However, it will also be important to derive the associated higher order dynamics induced by (LDn) on the

players’ strategy space X; to that end, we begin with the identity

log(xkα) − log(xkβ) = λk(ykα − ykβ), (3.16)

itself an easy consequence of (GM). By Faà di Bruno’s higher order chain rule (Fraenkel, ), we then

obtain
dn

dtn
log(xkα(t)) = ∑

n!
m!⋯mn!

(−)m−(m − )!

xmkα
∏

n
r= (x

(r)
kα (t)/r!)

mr
, (3.17)

where m = m + ⋯ + mn , and the sum is taken over all non-negative integers m , . . . ,mn such that
∑
n
r= rmr = n. In particular, since the only term that contains x

(n)
kα has m = m = . . . = mn− = 

and mn = , we may rewrite (.) as

dn

dtn
log(xkα(t)) =

x(n)kα (t)
xkα(t)

+ Rn−kα (x(t), ẋ(t), . . . , x(n−)(t)), (3.18)

4In fact, we have Y(r)kα (t) = ∆
(r)
h ykα(t)/hr for all r = , . . . , n − , explaining our choice of notation.
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where Rn−kα denotes the (n − )-th order remainder of the RHS of (.):

Rn−kα (x , ẋ , . . . , x(n−)) = ∑
(−)m−n!
m!⋯mn−!

(m − )!

xmkα

n−

∏
r=

(x(r)kα (t)/r!)
mr
. (3.19)

By taking the n-th derivative of (.) and substituting, we thus get

λk (ukα − ukβ) =
x(n)kα

xkα
−
x(n)kβ

xkβ
+ Rn−kα − Rn−kβ , (3.20)

so, bymultiplying both sides with xkβ and summing over β ∈ Ak (recall that∑
k
β x
(n)
kβ = ), we �nally obtain

the n-th order (asymmetric) replicator dynamics:

x(n)kα = λkxkα (ukα − uk) − xkα (Rn−kα −∑
k
β xkβRn−kβ ) . (RDn)

�e higher order replicator equation (RDn) above will be the chief focus of our paper; as such, a few

remarks are in order:

Remark . As one would expect, for n = , we trivially obtain Rkα =  for all α ∈ Ak , k ∈ N, so (RDn)

reduces to the standard (asymmetric) replicator dynamics of Taylor and Jonker ():

ẋkα = λkxkα (ukα(x) − uk(x)) . (RD1)

On the other hand, for n = , the only lower order term that survives in (.) is form = ; a bit of algebra
then yields the second order replicator equation:

ẍkα = λkxkα (ukα(x) − uk(x)) + xkα (ẋkα/x

kα −∑

k
β ẋkβ/xkβ) . (RD2)

At �rst glance, the above equation seems di�erent from the dynamics (.) that we derived in Section .,

but this is just a matter of reordering: if we restrict (RD) to two strategies, “” and “”, and set xk ≡ xk , =
 − xk ,, we will have ẋk = ẋk , = −ẋk ,, and (.) follows immediately.
Remark . In terms of structure, (RDn) consists of a replicator-like term (driven by the game’s payo�s)
and a game-independent adjustment Rn−kα which re�ects the higher order character of (RDn). As noted by

the associate editor (whom we thank for this remark), if we put the order of the dynamics aside, there is

a structural similarity between the higher order replicator dynamics (RDn), the replicator dynamics with

aggregate shocks of Fudenberg and Harris (), and the stochastic replicator dynamics of exponential

learning (Mertikopoulos and Moustakas, ). �e reason for this similarity is that all these models are

�rst de�ned in terms of an auxiliary set of variables: absolute population sizes in Fudenberg and Har-

ris () and payo� scores here and in Mertikopoulos and Moustakas (). Di�erentiation of these

variables with respect to time then always yields a replicator-like term carrying the game’s payo�s, plus a

correction term which is independent of the game being played (because it is coming from Itô calculus or

higher order considerations).

Remark . Technically, given that the higher order adjustment terms Rn−kα blow up for xkα =  and n > ,
the dynamics (RDn) are only de�ned for strategies that lie in the (relative) interior rel int (X) of X. If the
players’ initial strategy pro�le is itself interior, then this poses no problem to (RDn) because the Gibbs map

(GM) ensures that every strategy share xkα(t) will remain positive for all time. For the most part, we will
not need to consider non-interior orbits; nonetheless, if required, we can consider initial conditions on any

subface X′ of X simply by restricting (GM) to the corresponding subgameG′ ofG, i.e. by e�ectively setting
the score of an action that is not present in the initial strategy distribution to −∞. In this manner, we may
extend (RDn) to any subface of X, and it is in this sense that we will interpret (RDn) for non-interior initial
conditions.
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Remark . In the same way that we derived the integral expressions (.) for the payo� scores, we obtain
the following integral representation for the higher order learning dynamics (LDn):

ykα(t) =


(n − )! ∫
t


(t − s)n−ukα(x(s)) ds +

n−

∑
r=
y(r)kα ()

tr

r!
. (3.21)

As with our previous discussion in Section ., the players’ initial scores ykα() determine the players’

initial strategies. Similarly, the higher order initial conditions y(r)kα ≠ , r ≥ , control the initial derivates
ẋkα(), . . . of (RDn), and it is easy to see that starting “at rest” is equivalent to having no initial learning
bias that could lead players to a particular strategy in the absence of external stimuli (e.g. in a constant

game; see also the concluding remarks of Section .).

.. Evolutionary interpretations of the higher order replicator dynamics.
In the mass-action interpretation of evolutionary game theory, it is assumed that there is a nonatomic

population linked to each player role k ∈ N, and that the governing dynamics arise from individual inter-
actions within these populations. Unsurprisingly, the dynamics (RDn) admit a similar interpretation by

assuming that the learning process takes place within large populations of myopic agents that ascribe to a

common learning scheme.

More precisely, let xkα(t) denote the population share of α-type strategists in the k-th player popu-
lation, and assume that individuals monitor the (now global) performance scores ykα associated to their

population, themselves following the higher order aggregation scheme (LDn).5 �en, if each (nonatomic)

player chooses a strategy at time t with probability proportional to exp(ykα(t)), our previous discussion
shows that population evolution will follow the n-th order replicator dynamics (RDn).
An alternative (andmore interesting) evolutionary interpretation of (RDn) may be obtained as follows:

focusing on the case n =  for simplicity, assume that each (nonatomic) player receives an opportunity to
switch strategies at every ring of a Poisson alarm clock as described in detail in Chapter  of Sandholm

(). In this context, if ρkαβ denotes the conditional switch rate from strategy α ∈ Ak to strategy β ∈ Ak
in population k ∈ N (i.e. the probability of an α-strategist becoming a β-strategist up to a normalization
factor), then the strategy shares xkα will follow themean dynamics associated to ρ:

ẋkα = ∑
k
β xkβ ρkβα − xkα∑

k
β ρkαβ . (MDρ)

Conditional switch rates are usually functions of the current population state x ∈ X and the corre-
sponding payo�s ukα : for instance, the well-known “imitation of success” revision protocol is described

by the rule

ρkαβ = xkβukβ(x), (3.22)

and the resulting mean �eld (MDρ) is simply the standard replicator equation (Hofbauer, ; Sandholm,

).6 On the other hand, if players are more sophisticated and keep track of the long-term performance
Ukα(t) = ∫ t ukα(x(s)) ds of a strategy over time (instead of only considering the instantaneous payo�s
ukα), then the “long-term” analogue of the revision rule (.) will be

ρ̃kαβ = xkβUkβ = xkβ ∫
t


ukβ(x(s)) ds, (3.23)

5In this interpretation, the second (or higher) order evolution of y could represent time lags and delayed population e�ects as
in Maynard Smith () and Levine et al. ().

6Other revision protocols that lead to the replicator dynamics are Schlag’s ()“pairwise proportional imitation” and the proto-

col of “pure imitation driven by dissatisfaction” of Björnerstedt andWeibull (). We will only focus here on “imitation of success”

for simplicity; that said, the discussion that follows can easily be adapted to these revision protocols as well.
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leading in turn to the mean dynamics:

ẋkα = xkα (Ukα −∑
k
β xkβUkβ) . (3.24)

Of course, (.) is not a dynamical system per se, but a system of integro-di�erential equations (recall

that Ukα has an integral dependence on x). However, by di�erentiating (.) with respect to time and
recalling that U̇kα = ukα , we readily obtain:

ẍkα = ẋkα (Ukα −∑
k
β xkβUkβ) + xkα (ukα −∑

k
β xkβukβ) − xkα∑

k
β ẋkβUkβ . (3.25)

By (.), the �rst term in the RHS of (.) above will be equal to ẋkα/xkα ; moreover, some easy algebra

also yields

∑
k
β ẋkβUkβ = ∑

k
β xkβ (Ukβ −∑

k
γ xkγUkγ)Ukβ

= ∑
k
β xkβU kβ − (∑

k
β xkβUkβ)



= ∑
k
β xkβ (Ukβ −∑

k
γ xkγUkγ)



= ∑β ẋ

kβ/xkβ .

(3.26)

�us, a�er some rearranging, (.) �nally yields

ẍkα = xkα (ukα(x) − uk(x)) + xkα (ẋkα/x

kα −∑

k
β ẋ

kβ/xkβ) , (3.27)

i.e. the mean dynamics associated to the “imitation of long-term success” revision protocol (.) is just

the second order replicator equation (RD) with λk = .
�e higher order dynamics (RDn) may be derived from similar considerations, simply by taking a re-

vision protocol of the form (.) withU replaced by a di�erent (higher order) payo� aggregation scheme.
Accordingly, the evolutionary signi�cance of higher order is similar to its learning interpretation: higher

order dynamics arise when players revise their strategies based on long-term performance estimates in-

stead of instantaneous payo� information. Obviously, this opens the door to higher order variants of other

population dynamics that arise from revision protocols (such as the Smith dynamics and other pairwise

comparison dynamics), but since this discussion would take us too far a�eld, we will delegate it to a future

paper.

Remark  (Initial Conditions). We should note here that the revision protocol (.) implies that players
start “at rest”, irrespective of their initial strategy pro�le x(): indeed, the de�nition of the payo� aggregates
Ukβ(t) = ∫ t ukβ(x(s)) ds yields Ukβ() = , so we will also have ẋkβ() =  in (.). In this way, the
population interpretation of the second order replicator dynamics (RD) via the revision protocol (.)

provides further justi�cation for beginning play at rest, just like players who use the higher order learning

scheme (LDn) are unlikely to introduce an ex-ante bias to their learning process.

Remark  (Time averages). Importantly, instead of aggregating payo�s over time, players could keep a
long-term average of their strategies’ payo�s and use the averaging estimator

ukβ(t) =


t ∫
t


ukβ(x(s)) ds = Ukβ(t)/t, (3.28)

which leads in turn to the mean dynamics

ẋkα = xkα (ukα −∑
k
β xkβukβ) = t−xkα (Ukα −∑

k
β xkβUkβ) . (3.29)

A�er rescaling time to τ = log t, we see that this last equation is essentially equivalent to (.). As a
result, estimating a strategy’s performance over time by aggregating or averaging payo�s yields the same

asymptotic behavior; however, evolution based on averaging payo�s will be logarithmically slower than

evolution driven by aggregating.





. Elimination of dominated strategies.

A fundamental rationality requirement for any class of game dynamics is that dominated strategies die

out over time. Formally, if play evolves over time, say along the path x(t), t ≥ , wewill say that the strategy
α ∈ Ak becomes extinct along x(t) if xkα(t) →  as t → ∞; more generally, for mixed strategies qk ∈ Xk ,
we will follow Samuelson and Zhang () and say that qk becomes extinct along x(t) if min{xkα(t) ∶
α ∈ supp(qk)} → , with the minimum taken over the support supp(qk) ≡ {β ∈ Ak ∶ qkβ > } of qk .
Equivalently, if we let

DKL(qk ∥ xk) = ∑α qkα log (qkα/xkα) (4.1)

denote the Kullback-Leibler divergence of xk with respect to qk (with the usual convention  ⋅ log  = 
when qkα = ), then DKL(qk ∥ xk) blows up to +∞ whenever min{xkα ∶ α ∈ supp(qk)} → , so qk ∈ Xk
becomes extinct along x(t) if and only if DKL(qk ∥ xk(t)) → ∞ as t →∞.
In light of the above, our �rst result is to show that in the n-th order replicator dynamics, dominated

strategies die out at a rate which is exponential in tn :

�eorem .. Let x(t) be an interior solution orbit of the n-th order replicator dynamics (RDn). If qk ∈ Xk
is iteratively dominated, we will have

DKL(qk ∥ xk(t)) ≥ λkctn/n! +O(tn−), (4.2)

for some constant c > . In particular, for pure strategies α ≺ β, we will have

xkα(t)/xkβ(t) ≤ exp (−λk∆uβα tn/n! +O(tn−)) , (4.3)

where ∆uβα = minx∈X{ukβ(x) − ukα(x)} > .

As an immediate corollary, we then obtain:

Corollary .. In dominance-solvable games, the n-th order replicator dynamics (RDn) converge to the game’s
rational solution.

Remark. Before proving�eorem ., it is worth nothing that even though (.) and (.) have been stated
as inequalities, one can use any upper bound for the game’s payo�s to show that the rate of extinction of

dominated strategies in terms of the K-L divergence is indeed O(tn).7 As a result, the asymptotic rate of
extinction of dominated strategies in the n-th order replicator dynamics (RDn) is n orders as fast as in the
standard �rst order dynamics (RD), so irrational play becomes extinct much faster in higher orders.

Proof of �eorem .. We will begin by showing that if qk is dominated by q′k , then DKL(qk ∥ xk(t)) ≥

ctn/n! for some positive constant c > . Indeed, let Vk(x) = DKL(qk ∥ xk) − DKL(q′k ∥ xk), and rewrite
(GM) as log xkα = λk ykα − log(Zk(y)) where Zk(y) = ∑kβ exp(λk ykβ) denotes the partition function of
player k. �en, some algebra yields:

Vk(x) = ∑α∈supp(q) qkα log (qkα/xkα) −∑α∈supp(q′) q
′
kα log (q

′
kα/xkα)

= ∑
k
α (q′kα − qkα) log xkα + hk(qk , q′k)

= ∑
k
α (q′kα − qkα)λk ykα + hk(qk , q′k), (4.4)

7In fact, the coe�cients that make (.) and (.) into asymptotic equalities can also be determined, but we will not bother with

this calculation here.
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(a) Portrait of a dominance solvable game.
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(b) Rate of extinction of dominated strategies.

Figure : Extinction of dominated strategies in the �rst and second order replicator dynamics. In Fig. (a) we plot the second order

solution orbits of a dominance solvable game with payo�matricesU = ((, ), (, )) for the line player andU = ((, ), (, /))
for the column player (see also the �gure’s labels). In Fig. (b), we illustrate the rate of extinction of the dominated strategy of player

 by plotting the corresponding K-L divergence of a typical trajectory: the K-L distance grows exp-quadratically in second order

dynamics compared to exp-linearly in �rst order.

where hk(qk , q′k) is a constant depending only on qk and q
′
k , and the last equality follows from the fact

that∑
k
α(q′kα − qkα) logZk =  (recall that∑

k
α qkα = ∑

k
α q′kα = ). In this way, we obtain:

dn

dtn
Vk(x(t)) = λk∑

k
α (q′kα − qkα)y

(n)
kα = λk∑

k
α (q′kα − qkα)ukα(x(t))

= λk [uk(q′k ; x−k(t)) − uk(qk ; x−k(t))] ≥ λk∆uk > , (4.5)

where the constant ∆uk is de�ned as ∆uk = minX−k{uk(q
′
k ; x−k) − uk(qk ; x−k)} and its positivity follows

from the fact that X is compact and uk is continuous. Hence, if we set cr = (r!)− d
rVk
dtr ∣

t=
, r =  . . . n − ,

Taylor’s theorem with Lagrange remainder readily gives:

Vk(x(t)) ≥ λk∆uk tn/n! +∑
n−
r= cr t

r
, (4.6)

and our assertion follows by noting that DKL(qk ∥ xk(t)) ≥ Vk(x(t)). In particular, for pure strategies
α ≺ β, we will have Vk(x(t)) = log xkβ(t) − log xkα(t), so (.) gives:

log (xkβ(t)/xkα(t)) ≥ λk ∆uβα tn/n! +O(tn−), (4.7)

and (.) follows by exponentiating.

Now, to establish the theorem for iteratively dominated strategies, we will resort to induction on the
rounds of elimination. To that end, let X rk denote the space of strategies that survive r elimination rounds,
and assume that DKL(qk ∥ xk(t)) = ∣O(tn)∣ for all strategies qk ∉ X rk ; in particular, if α ∉ Ark ≡ Ak ∩X rk , we
assume that xkα(t) →  as t →∞. Wewill show that this also holds if qk ∈ X rk survives for r deletion rounds
but dies in the subsequent one. Indeed, if qk ∈ X rk /X

r+
k , there will be some q

′
k ∈ X

r
k with uk(q

′
k ; x−k) >





uk(qk ; x−k) for all x−k ∈ X r−k . With this in mind, decompose x ∈ X as x = x
r + zr where x r denotes the “r-

rationalizable” part of x, i.e. the orthogonal projection of x on the subspace of X spanned by the surviving
pure strategiesArℓ , ℓ ∈ N. �en, if we set ∆u

r
k = min{uk(q

′
k ; α−k) − uk(qk ; α−k) ∶ α−k ∈ Ar−k}, we will also

have:

uk(q′k ; x
r
−k) − uk(qk ; x

r
−k) ≥ ∆u

r
k >  for all x−k ∈ X−k . (4.8)

Moreover, it is easy to see that our induction hypothesis implies zr(t) →  as t →∞ (recall that xkα(t) → 
for all α ∉ Ark), so, for large enough t, we also get:

∣uk(q′k ; z
r
−k(t)) − uk(qk ; z

r
−k(t))∣ < ∆u

r
k/. (4.9)

Hence, by combining (.) and (.), we obtain uk(q′k ; x−k(t)) − uk(qk ; x−k(t)) > ∆u
r
k/ for large t, and

the induction is complete by plugging this last estimate into (.) and proceeding as in the base case r = 
(our earlier assertion).

On the other hand, if a strategy is only weakly dominated, the payo� di�erences ∆uβα in (.) and

related estimates vanish, so �eorem . cannot guarantee that it will be annihilated. In fact, it is well-

known that weakly dominated strategies may survive in the standard �rst order replicator dynamics: if the

pure strategy α ∈ Ak of player k is weakly dominated by β ∈ Ak , and if all adversarial strategies α−k ∈ A−k
against which β performs better than α die out, then α may survive for an open set of initial conditions
(for instance, see Example . and Proposition . in Weibull, ).

Quite remarkably, this can never be the case in a higher order setting if players start unbiased:

�eorem .. Let x(t) be an interior solution orbit of the n-th order (n ≥ ) replicator dynamics (RDn) that
starts at rest: ẋ() = . . . = x(n−)() = . If qk ∈ Xk is weakly dominated, then it becomes extinct along x(t)
with rate

DKL(qk ∥ xk(t)) ≥ λkctn−/(n − )!, (4.10)

where λk is the learning rate of player k and c >  is a positive constant.

�e intuition behind this surprising result can be gleaned by looking at the reinforcement learning

scheme (LDn). If we take the case n =  for simplicity, we see that the “payo� forces” Fkα ≡ ukα never

point towards a weakly dominated strategy. As a result, solution trajectories are always accelerated away

fromweakly dominated strategies, and even if this acceleration vanishes in the long run, the trajectory still

retains a growth rate that drives it away from the dominated strategy. By comparison, this is not the case in

�rst order dynamics: there, we only know that growth rates point away from weakly dominated strategies,
and if these rates vanish in the long run, solution trajectories might ultimately converge to a point where

weakly dominated strategies are still present (see for instance Fig. ). �e proof follows by formalizing

these ideas:

Proof of �eorem .. Let qk ≼ q′k and let A
′
−k ≡ {α−k ∈ A−k ∶ uk(q′k ; α−k) > uk(qk ; α−k)} be the set of

pure strategy pro�les of k’s opponents against which q′k yields a strictly greater payo� than qk . �en, with
notation as in the Proof of �eorem ., we will have:

dn

dtn
Vk(x(t)) = λk∑α−k∈A′

−k
[uk(q′k ; α−k) − uk(qk ; α−k)]xα−k(t), (4.11)

where xα−k ≡ ∏ℓ≠k xαℓ denotes the α−k-th component of x. �us, with x(t) starting at rest, Faà di Bruno’s
formula gives

d rVk
dtr ∣

t=
=  for all r = , . . . , n − , and a simple integration then yields:

dn−

dtn−
Vk(x(t)) = λk∑α−k∈A′

−k
[uk(q′k ; α−k) − uk(qk ; α−k)] ∫

t


xα−k(s) ds, (4.12)
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Figure : Extinction of weakly dominated strategies and survival of iteratively weakly dominated ones in the second order replicator

dynamics. Fig. (a) shows solution orbits starting at rest in an Entry Deterrence game: the weakly dominated strategy “�ght” of

Player  becomes extinct, in stark contrast to the �rst order case (compare the highlighted trajectory with the �rst order portrait in

the inlay). Fig. (b) shows an Outside Option supergame where the strategy “�ght” in Fig. (a) is only iteratively weakly dominated;
this strategy pays very well against certain initial conditions, so it ends up surviving when all evidence that it is (iteratively weakly)

dominated vanishes. (�e payo� matrices for the Outside Option supergame areU = ((, ), (, ), (−, )) for the line player and
U = ((, ), (, ), (, )) for the column player; see also the corresponding �gure labels.)

However, with x(t) interior, the integrals in the above equation will be positive and increasing, so for some
suitably chosen c >  and t large enough, we obtain

dn−

dtn−
Vk(x(t)) ≥ λkc > , (4.13)

and our claim follows from a (n − )-fold application of the mean value theorem.

In view of this qualitative di�erence between �rst and higher order dynamics, some further remarks

are in order:

Remark . In the �rst order replicator dynamics, the elimination of weakly dominated strategies when
evidence of their domination survives requires that all players adhere to the same dynamics (see e.g. the

proof of Proposition . in Weibull, ). To wit, consider a simple Entry Deterrence game where a com-

petitor (Player ) “enters” or “stays out” of a market controlled by a monopolist (Player ) who can either

“�ght” the entrant or “share” the market, and where “�ghting” is a weakly dominated strategy that yields

a strictly worse payo� if the competitor “enters” (Weibull, , Ex. .). Under the replicator dynamics,

“�ght” becomes extinct if “enter” survives (cf. Figure ); however, if Player  were to follow a di�erent

process under which “enter” survives but the integral of its population share over time is bounded, then

“�ght” does not become extinct (cf. the proof of Proposition . inWeibull, ). In higher orders though,

the proof of �eorem . goes through for any continuous play x−k(t) ∈ X−k , t ≥ , of k’s opponents, so
weakly dominated strategies become extinct independently of how one’s opponents evolve over time.

Remark . As noted in Section , starting “at rest” is a natural assumption to make from both learning
and evolutionary considerations. First, as far as learning is concerned, this assumption means that players

may start with any mixed strategy they wish, but that the learning process (LDn) is not otherwise skewed





towards one strategy or another. On the other hand, with regards to evolution, starting with ẋ() = . . . = 
is a direct consequence of the “imitation of long-term success” revision protocol (.), so this assumption

is actually redundant.

�at said,�eorem . still holds if the players’ initial velocities (or higher order derivates) are nonzero

but small; if they are too large, weakly dominated strategies may indeed survive.8 �is observation is

important for strategies which are only iteratively weakly dominated because, if a strategy becomes weakly
dominated a�er removing a strictly dominated strategy, then the system’s solutions could approach the

face of X associated with the resulting subgame with a high velocity towards the newly weakly dominated
strategy (e.g. if the iteratively weakly dominated strategy pays very well against the disappearing strictly

dominated one; cf. Fig. ). �us, although �eorem . guarantees the elimination of weakly dominated

strategies, it does not extend to iteratively weakly dominated ones.

Remark . A tandem application of�eorems . and . reveals that the higher order replicator dynamics
(RDn) perform one round of elimination of weakly dominated strategies followed by the elimination of all

strictly dominated strategies. �is result may thus be seen as a dynamic justi�cation of the claim of Dekel

and Fudenberg () who argue that asking for the iterated deletion of weakly dominated strategies is too

strong a requirement for “rational” play. In particular, Dekel and Fudenberg posit that if players are not

certain about their opponents’ payo�s, then they will not choose a weakly dominated strategy; however, to

proceed with a second round of elimination, players must know that other players will not choose certain

strategies, and since weak dominance is destroyed by arbitrarily small amounts of payo� uncertainty, only

strictly dominated strategies may henceforth be deleted. In the same spirit, weakly dominated strategies

are eliminated in the higher order replicator dynamics when players begin unbiased; however, because

of the inertial character of (LDn), players may develop such a bias over time, so only (iteratively) strictly

dominated strategies may become extinct a�er that phase.

Remark . Tying in with Remark  above, we get the following result for weakly dominatedNash equilibria
(or for Nash equilibria whose support contains a weakly dominated strategy): if q is such an equilibrium
and players start with su�ciently small learning bias ẏ(), ÿ(), etc., then DKL(q ∥ x(t)) → +∞. In par-
ticular, there exists a neighborhood V of q in X such that every solution orbit x(t) of (RDn) which starts
at rest in V will escape V in �nite time, never to return. In this sense, weakly dominated equilibria are
repelling, so they may not be selected in the higher order replicator dynamics (RDn) if players start at rest
(see also �eorem . in the following section).

Remark . Finally, it is important to note that our estimate of the rate of extinction of weakly dominated
strategies is one order lower than that of strictly dominated ones; as a result, �eorem . does not imply

the annihilation of weakly dominated strategies in �rst order dynamics (as well it shouldn’t). Instead, in

�rst order, if there is some adversarial strategy against which the weakly dominant strategy gives a strictly

greater payo� than the weakly dominated one, and if the share of this strategy always remains above a cer-

tain level, then the weakly dominated strategy becomes extinct (see e.g. Proposition . in Weibull, ).

In our higher order setting, this assumption instead implies that weakly dominated strategies become ex-

tinct as fast as strictly dominated ones:

Proposition .. Let x(t) be an interior solution of the n-th order replicator dynamics (RDn), and let qk ≼
q′k . If there exists α−k ∈ A−k with uk(qk ; α−k) < uk(q′k ; α−k) and xα−k(t) ≥ ε >  for all t ≥ , then:

DKL(qk ∥ xk(t)) ≥ ελk[uk(q′k ; α−k) − uk(qk ; α−k)]t
n/n! +O(tn−). (4.14)

Proof. Simply note that the estimate (.) will be bounded from below by ελkuk(q′k − qk ; α−k) and follow
the same reasoning as in the proof of �eorem ..

8More precisely, it su�ces for the RHS of (.) to exceed V(r)k () for some t > .
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. Stability of Nash play and the folk theorem.

In games that cannot be solved by the successive elimination of dominated strategies, one usually tries

to identify the game’s Nash equilibria instead. �us, given the prohibitive complexity of these solutions

(Daskalakis et al., ), one of the driving questions of evolutionary game theory has been to explain

how Nash play might emerge over time as the byproduct of a simpler, adaptive dynamic process.

.. �e higher order folk theorem.
A key result along these lines is the folk theorem of evolutionary game theory (Hofbauer and Sigmund,

; Sandholm, ; Weibull, ); for the multi-population replicator dynamics (RD), this theorem

can be summarized as follows:

I. Nash equilibria are stationary.

II. If an interior solution orbit converges, its limit is Nash.

III. If a point is Lyapunov stable, then it is also Nash.

IV. A point is asymptotically stable if and only if it is a strict equilibrium.

Accordingly, our aim in this section will be to extend the above in the context of the higher order

dynamics (RDn). To that end however, it is important to recall that the higher order playing �eld is funda-

mentally di�erent because the choice of an initial strategy pro�le x() ∈ X does not su�ce to determine
the evolution of (RDn); instead, one must prescribe the full initial state ω() = (x(), ẋ(), . . . ) in the
system’s phase space Ω. Regardless, a natural way to discuss the stability of initial points q ∈ X is via the
corresponding rest states (q, , . . . , ) ∈ Ω (recall also the relevant discussion in Section ., Section , and
the remarks following�eorem .). With this inmind, we will say that q ∈ X is stationary (resp. Lyapunov
stable, resp. attracting) when the associated rest state (q, , . . . , ) ∈ Ω is itself stationary (resp. Lyapunov
stable, resp. attracting).

In spite of these di�erences, we have:

�eorem .. Let x(t) be a solution orbit of the n-th order replicator dynamics (RDn), n ≥ , for a normal
form gameG ≡ G(N,A, u), and let q ∈ X. �en:

I. x(t) = q for all t ≥  i� q is a restricted equilibrium of G (i.e. ukα(q) = max{ukβ(q) ∶ qkβ > }
whenever qkα > ).

II. If x() ∈ int(X) and limt→∞ x(t) = q, then q is a Nash equilibrium ofG.
III. If every neighborhood U of q in X admits an interior orbit xU(t) such that xU(t) ∈ U for all t ≥ , then

q is a Nash equilibrium ofG.
IV. Let q be a strict equilibrium ofG. �en, for every neighborhood U of q in X, there exists a neighborhood
V of q in X and a neighborhood W of V /{q} in Ω such that x(t) ∈ U and x(t) → q for all initial
states (x(), ẋ(), . . . ) ∈W; conversely, only strict equilibria have this property.

As an immediate corollary of (IV), we also have:
IV′. If q is a strict equilibrium ofG, then it is attracting: there exists a neighborhood U of q in X such that

x(t) → q whenever x(t) starts at rest in U (that is, x() ∈ U and ẋ() = . . . = ); conversely, only
strict equilibria have this property.

�e basic intuition behind �eorem . is as follows: First, stationarity is a trivial consequence of the

replicator-like term of the dynamics (RDn). Parts II and III follow by noting that if a trajectory eventually

spends all time near a stationary point q, then this point must be Nash – otherwise, the forces of (LDn)
would drive the orbit away. Finally, convergence to strict equilibria is a consequence of the fact that they are

locally dominant, so the payo�-driven forces (LDn) point in their direction. However, beforemaking these

ideas precise, it will be important to draw the following parallels between �eorem . and the standard

�rst order folk theorem:
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Parts I and II of �eorem . are direct analogues of the corresponding �rst order claims; note however
that (II) can now be inferred from (III).

Part III is a slightly stronger assertion than the standard statement that Lyapunov stability implies Nash
equilibrium in �rst order: indeed, Lyapunov stability posits that all trajectories which start close enough

will remain nearby, whereas �eorem . only asks for one such trajectory. Actually, this last property is

all that is required for the proof of the corresponding part of the �rst order folk theorem as well, but since

there are cases which satisfy the latter property but not the former,9 we will use this stronger formulation

which seems closer to a “bare minimum” characterization of Nash equilibria (especially in higher orders).

Part IV shows that strict equilibria attract all nearby rest states (x(), , . . . , ) ∈ Ω, but it is not otherwise
tantamount to higher order asymptotic stability – it would be if W were a neighborhood of V in Ω (or,
equivalently, of (q, , . . . , ) in Ω) instead of V /{q}. More precisely, for every nearby point x ∈ X, we
can �nd a neighborhood Vx ⊆ Ω of initial states that converge to q, but there is no uniform bound on
ẋ(), ẍ(), etc. that ensures convergence to q (see also Fig. ).10

�is di�erence between �rst and higher orders is intimately tied to the bias that higher order initial

conditions (such as ẏ(), ÿ(), etc.) introduce in the learning scheme (LDn). More precisely, recall that a
nonzero initial score velocity ẏ() skews the learning scheme (LDn) to such an extent that it might end up
converging to an arbitrary pure strategy even in the absence of external stimuli (viz. in a constant game;

cf. the relevant discussion at the end of Section .). �is behavior is highly unreasonable and erratic, so

players are more likely to adhere to an unbiased version of (LDn) with ẏ() = ÿ() = . . . = . In that case
however, Faà di Bruno’s chain rule shows that we will also have ẋ() = ẍ() = . . . =  in (RDn), so Part
IV′ of�eorem . allows us to recover the �rst order statement to the e�ect that all nearby initial strategy

choices will be attracted to q. Similarly, if we consider the mass-action interpretation of (RDn) that we put
forth in Section ., then we will have ẋ() = ⋅ ⋅ ⋅ =  by de�nition, so Part IV′ of the theorem is essentially
equivalent to the �rst order asymptotic stability result.

�at said, it is also important to note that this convergence statement remains true even if the players’

higher order learning bias ẏ(), ÿ(), . . . , is nonzero but (uniformly) not too large. Towit, assumewithout
loss of generality that the strict equilibrium q under scrutiny corresponds to everyone playing their “”-th
strategy, and consider the associated relative score variables

zkµ = ykµ − yk , , µ ∈ A∗
k ≡ Ak /{}. (5.1)

As can be easily seen, these score di�erences are mapped to strategies x ∈ X via the reduced Gibbs map
G∗k ∶R

A∗

k → Xk , with zk ∈ RA∗

k ↦ G∗k (zk) ∈ Xk as follows:

G∗k ,(z) = ( +∑
k
ν ezkν)

−
, G∗kµ(z) = e

zkµ ( +∑
k
ν ezkν)

−
. (GM∗)

More speci�cally, if the relative scores zkµ are given by (.), we will haveG∗k (zk) = Gk(yk), so the learning
scheme (LDn) will be equivalent to the relative score dynamics

z(n)kµ = ukµ(x) − uk ,(x), (ZDn)

with (reduced) logit choice xk = G∗k (z). In this formulation, the proof of�eorem . shows that if players
start with su�ciently negative zkµ() and their learning bias żkµ(), z̈kµ(), . . . , does not exceed some
uniform M > , then the relative scores zkµ will escape to −∞. In other words, we will have x(t) → q

9For instance, the equilibrium pro�le q = (, ), q = (/, /) of the simple  ×  game with payo� matrices U = I and
U =  is neither Lyapunov stable under the replicator dynamics, nor an ω-limit of an interior trajectory, but it still satis�es the
property asserted in Part III of �eorem ..

10We thank Josef Hofbauer for this remark.
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Figure : Second order replicator trajectories in a  ×  coordination game with payo� matrices U = U = I. Fig. (a) shows the
phase portraits for the �rst and second order replicator dynamics, while Fig. (b) shows the restriction of the game’s phase space to

the symmetric invariant manifold X which joins the game’s equilibria. For every symmetric initial point x near q = (, ), there
exists a neighborhood of initial states Vx (gray) such that all orbits starting in Vx stay close and eventually converge to q. �e union
W of these neighborhoods (light blue) is not itself a neighborhood of q in Ω ≡ Ω(X), so q is not asymptotically stable in (RDn);
however, in terms of the score variables z = logit x, ż = ẋ/x( − x), the corresponding point at negative in�nity (−∞, . . . ,−∞)
attracts all nearby initial states (inlay).

whenever x() is su�ciently close to q and the players’ initial learning bias (which is what players use to
update (LDn) anyway) is uniformly small.11

Remark. Using the extended real arithmetic operations for −∞, the reduced Gibbs map (GM∗) maps

(−∞, . . . ,−∞) to q. Interestingly, by adjoining (−∞, . . . ,−∞) to∏k RA∗

k in a topology which preserves

the continuity of G∗k , the statement above implies that this “point at negative in�nity” is asymptotically
stable in (ZDn) – for a detailed statement and proof, see Appendix A.

To prove�eorem ., we begin with a quick technical lemma:

Lemma .. �e reduced Gibbs map G∗k ∶R
A∗

k → Xk of (GM∗) is a di�eomorphism onto its image.

Proof. It is easy to check that the expressions zkµ = log(xkµ/xk ,) provide an inverse to G∗k for xk ∈
rel int(Xk); the claim then follows by noting that all expressions involved are smooth.

Proof of �eorem .. Wewill beginwith stationarity of restricted equilibria. Since the payo� termof (RDn)
does not contain any higher order derivatives, it will vanish at q ∈ X if and only if ukα(q) = uk(q) for
all α ∈ supp(q), implying that q is a restricted equilibrium. Conversely, let q be a Nash equilibrium in
the restriction G′ ≡ G(N, X′ , uk ∣X′) of G with A′

k = supp(qk). �en, with ukα(q) = ukβ(q) for all
α, β ∈ A′

k , the updating scheme (LDn) constrained to G
′ and starting at q also gives y(n)kα () = y(n)kβ ()

for all α, β ∈ A′
k . So, if (RDn) starts at q with initial motion rates ẋ() = ẍ() = ⋯ = , we will have

11�e reason that this reasoning does not apply to nonzero initial strategy growth rates ẋ() etc. may be seen in a simple -
strategy context as follows: by (.) we will have ẋ = x( − x)ż, so a uniform bound on ẋ does not correspond to a uniform bound
on z. In particular, if players start with a �nite initial score velocity ż() near the boundary of X, then this will correspond to a
vanishingly small initial strategy growth rate ẋ(); conversely, �nite ẋ() with x() arbitrarily near bd(X) implies an arbitrarily
large initial learning bias ż().
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ykα(t) − ykα() = ykβ(t) − ykβ() for all α, β ∈ A′
k , and, by the homogeneity of the Gibbs map (G(y +

c, y + c, . . . ) = G(y , y , . . . ) for all c ∈ R), we readily obtain x(t) = q for all t, i.e. q is stationary.12
We now turn to Part (III) of the theorem – which will also prove Part (II). To that end, suppose that

every neighborhood U of q in X admits an interior orbit x(t) that stays in U for all t ≥ ; we then claim
that q is Nash. Indeed, assume instead that for some k ∈ N, there exists β ∈ Ak and α ∈ supp(qk) with
ukα(q) < ukβ(q). �en, pick ε >  and a neighborhood U of q such that xkα > qkα/ >  and ukβ(x) ≥
ukα(x) + ε for all x ∈ U . By assumption, there exists an interior orbit x(t) which stays in U for all time,
so, for the associated score variables y(t), we will have:

y(n)kβ (t) − y(n)kα (t) = ukβ(x(t)) − ukα(x(t)) ≥ ε > .

�is last inequality immediately implies that log (xkβ(t)/xkα(t)) → +∞, contradicting the assumption
that xkα(t) > qkα/ for all t ≥ .
With regards to Part (IV), let q = (e, , . . . , eN ,) be a strict equilibrium ofG, and consider the relative

scores zkµ = ykµ − yk ,, µ ∈ A∗
k ≡ Ak /{} of (.). Since the reduced Gibbs map G∗k ∶R

A∗

k → Xk of
(GM∗) is a di�eomorphism onto its image by Lemma ., the same will hold for the direct sum G∗ ≡

⊕k G∗k ∶∏k RA∗

k → X as well. Accordingly, if we take a neighborhood Uε of q in X of the form Uε = {x ∈
int(X) ∶ xk , >  − ε, k ∈ N}, its preimage under G∗ will be the set Vh = {z ∶ Zk , < h, k ∈ N} where

Zk , = ∑
k
ν exp(zkν) and h = ( − ε)− −  (≈ ε for small ε). We will show that if h is chosen small enough,

then there exists δ >  such that whenever a solution z(t) of (ZDn) starts at z() ∈ Vh with ∥z(r)()∥ < δ
for r = , . . . , n − , we will have z(t) ∈ Vh for all t ≥  and zkµ(t) → −∞ for all µ ∈ A∗

k , k ∈ N. Since G
∗ is

a di�eomorphism onto its image and x → q i� zkµ → −∞ for all µ ∈ A∗
k , k ∈ N, this will establish the “if ”

direction of our claim.13

Indeed, let z(t) be a solution of (ZDn) starting in Vh and let τh = inf{t ∶ z(t) ∉ Vh} be the time it
takes z(t) to escape from Vh (with the usual convention inf(∅) = ∞). �en, if h is taken small enough,
there will be some constantM >  such that uk ,(x)−uk ,µ(x) ≥ M >  for all x ∈ G∗(Vh) (recall that q is
a strict equilibrium). In this way, for t ≤ τh , Taylor’s theorem with Lagrange remainder applied to (ZDn)
readily gives:

zkµ(t) ≤ zkµ() +∑
n−
r= z

(r)
kµ () t

r/r! −Mtn/n!. (5.2)

Hence, pick δ >  such that the maximum of the polynomial ∑
n−
r= z

(r)
kµ () t

r/r! − Mtn/n! for t ≥  is

strictly smaller than log  whenever ∣z(r)kµ ()∣ < δ for µ ∈ A∗
k , k ∈ N, and r = , . . . n − . �is readily yields

Zk ,(τh) < ∑kµ exp (zkµ() + log ) = Zk ,() < h, i.e. z(τh) ∈ Vh , a conclusion which cannot hold
unless τh = ∞. We thus obtain z(t) ∈ Vh for all t ≥ , so the limit of (.) as t →∞ gives zkµ(t) → −∞.
For the converse implication, it is easy to show that any vertex q of X which attracts an open neigh-

borhood of initial rest states must also be a strict Nash equilibrium: extending the reasoning of Ritzberger

andWeibull (,�m. ) to our higher order setting, it su�ces to consider the evolution of the dynamics

in the edge which joins q = (αk ; α−k) to a vertex q′ = (α′k ; α−k) with uk(q
′) ≥ uk(q). However, �eorem

. shows that only a vertex q ∈ X can attract an open set of initial states ω ∈ Ω containing a punctured
neighborhood of q in X, so our assertion follows.

Now, with regards to the equilibration speed of the higher order dynamics, it can be shown that the

rate of convergence to a strict equilibrium in the n-th order dynamics (RDn) is n orders as fast as in the
�rst order regime. More speci�cally, we have:

12Importantly, Nash equilibria are not stationary in (LDn): orbits that are parallel to the line (t, . . . , t) in RA are stationary in

(RDn).
13Non-interior trajectories can be handled similarly by looking at an appropriate restrictionG′ ofG.
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Proposition .. Let q = (e, , . . . , eN ,) be a strict Nash equilibrium of the �nite gameG, and let x(t) be a
solution orbit of the replicator dynamics (RDn) which starts at rest and close enough to q. �en, there exists
a positive constant c >  such that:

xk ,(t) ∼  − exp ( − ctn/n! +O(tn−)). (5.3)

Proof. If we choose a su�ciently small neighborhood of initial positions,�eorem . shows that the payo�
di�erences uk ,(x(t)) − uk ,µ(x(t)) will be bounded away from  by some positive constant c >  for all
µ ∈ A∗

k , k ∈ N and for all t ≥ . Hence, with z(n)kµ ≤ −c <  by (ZDn), our assertion follows from an
(n − )-fold application of the mean value theorem.

.. Dynamic instability of mixed equilibria.
�eorem . and Proposition . above characterize the behavior of the n-th order replicator dynamics

near strict equilibria from both a qualitative and a quantitative viewpoint; on the �ip side, they do not

address mixed equilibria. To study this issue, recall �rst that the standard asymmetric replicator dynamics

preserve a certain volume form in the interior of X, so mixed equilibria cannot be attracting in �rst order.
Ritzberger and Weibull () establish this “incompressibility” property of the replicator dynamics by

taking an ingenious extrinsic reparametrization which makes the replicator dynamics divergence-free in

the interior of X (see also Ritzberger and Vogelsberger, ). On the other hand, Hofbauer and Sigmund
() rely implicitly on the properties of the Gibbs map (GM), and essentially show that the replicator

dynamics are incompressible in the space of the score variables ykα (see also Hofbauer, ). Similarly,

we have:

Proposition .. �e �ow of the higher order learning dynamics (LDn) preserves volume in the usual Eu-
clidean geometry of RA for all n ≥ ; the same holds for (RDn) w.r.t. a non-Euclidean volume form on the
system’s phase space Ω.

Proof. Rewriting (.) in continuous time, (LDn) will be equivalent to the �rst order system:

ẏn−kα (t) = ukα(x(t)),
⋯ (5.4)

ẏkα(t) = y

kα(t).

�us, given that yrkα does not appear in the equation for ẏ
r
kα for r = , . . . , n − , it follows that the �ow of

(LDn) will be incompressible in the standard Euclidean metric of RA.Using the relative scores z of (.),
the same argument applies to the dynamics (ZDn), and since G∗ is a di�eomorphism onto its image by
Lemma ., the result carries over to (RDn) as well.

�anks to this incompressibility property of (LDn) and (RDn), we have:

�eorem.. In the higher order replicator dynamics (RDn), interior points cannot attract open sets of initial
states; only vertices of X can be attracting. More generally, a non-pure point q ∈ X can only attract relatively
open sets of initial states whose support in X properly contains that of q.

Proof. Wewill prove that if q ∈ int(X), then there is no open set of initial conditions in Ω that converges to
q. �e result for general non-pure q ∈ X will then follow by focusing on the face X′ of X which is spanned
by the support of q, i.e. X′ = ∏k ∆(A′

k) withA
′
k = supp(qk); since the dynamics (RDn) preserve the faces

of X, the assertion follows by noting that the intersection of X′ with an open set in X is open in X′ by
de�nition.

Working with the variables z of (.) and recalling that the map G∗∶ z ↦ x is a di�eomorphism onto
its image by Lemma ., Proposition . shows that open sets of initial states in Ω cannot converge to the
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interior state ((G∗)−(q), , . . . , ). �us, to establish the theorem’s claim that z(t) cannot converge to the
interior point z∗ ≡ (G∗)−(q), it su�ces to show that if z(t) → z∗, then we would also have limt→∞ ż(t) =
limt→∞ z̈(t) = ⋯ = .
For notational simplicity, we will only prove the case n = . To that end, assume for the purposes of

establishing a contradiction that zkµ(t) → z∗kµ for some µ ∈ A
∗
k , k ∈ N, but that żkµ(t) ↛ . �en, without

loss of generality, there exists ε >  and an increasing sequence of times tn → ∞ such that żkµ(tn) ≥ ε
for all n. Hence, let Jn be the largest open interval which contains tn and which is such that żkµ > ε/
in Jn ; we then claim that the length δn = m(Jn) of Jn must vanish as n → ∞. Indeed, by passing to a
subsequence of tn if necessary, assume that δn always exceeded some positive δ > ; then, with żkµ > ε/
in Jn , it follows that zkµ(t) would grow by at least εδ/ over Jn for all n, but since zkµ(t) converges, every
subsequence of zkµ(t) must also be Cauchy, a contradiction. �en, by the de�nition of Jn , we will have
żkµ > ε at some interior point of Jn and żkµ = ε/ at is endpoints; thus, by the mean value theorem, there
exists some ξn ∈ Jn with z̈kµ(ξn) ≥ ε/δn , and hence, z̈kµ(ξn) → +∞. However, since z∗kµ must also be a
rest point of (ZDn), the dynamics (ZDn) give z̈kµ(t) →  as t →∞, a contradiction.

�e property that only vertices of X can be attracting in the higher order replicator dynamics (RDn),
directly mirrors the �rst order case. In the following section however, we will show that this is a property

of a much more general class of higher order dynamics, so higher order considerations actually sharpen

the instability of non-pure equilibria.

. Extensions: imitative and payoff-monotonic dynamics.

In this section, our aim is to provide several extensions of the higher order dynamics (LDn) and (RDn)

and to show how the rationality analysis of the previous sections applies to this more general setting. To

that end, if players do not base the updating (LDn) of their performance scores on the payo�s ukα(x) of
the game but on a di�erent set of “payo� observables” wkα ∶X → R (assumed continuous), then we obtain
the generalized reinforcement scheme

y(n)kα = wkα(x), (GLDn)

which, coupled with the logit choice model (GM), yields the generalized n-th order dynamics:

x(n)kα = λkxkα (wkα(x) −∑
k
β xkβwk(x)) − xkα(Rn−kα −∑

k
β xkβRn−kβ ). (GDn)

�e dynamics (GDn) are characterized by the property that if x() lies in a subface X′ of X, then
x(t) will remain in X′ for all time: in other words, if the strategy share xkα of a pure strategy α ∈ Ak
is initially zero, then it will remain zero for all time (see also Remark  at the end of Section .). �is

invariance property is known as “imitation” (Weibull, ), so the dynamics (GDn) may be seen as a

higher order extension of the class of imitative game dynamics introduced by Björnerstedt and Weibull
(): in particular, (GDn) is the higher order extension of the general imitative equation ẋkα = xkα(wkα−

∑
k
β xkβwkβ) in the same way that (RDn) extends the standard replicator dynamics (RD) to an n-th order
setting.

Of course, if the payo� observables wkα are not correlated to the game’s payo�s ukα , the dynamics

(GDn) will not lead to any sort of rational play over time. To account for this , Samuelson and Zhang

() considered the aggregate-monotonicity criterion

wk(q′k ; x−k) > wk(qk ; x−k) if and only if uk(q
′
k ; x−k) > uk(qk ; x−k), (AM)

with x−k ∈ X−k ≡ ∏ℓ≠k Xℓ and qk , q′k ∈ Xk . Accordingly, following alsoHofbauer and Weibull (), we
will say that the higher order dynamics (GDn) are:
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• aggregate-monotonic if (AM) holds for all qk , q′k ∈ Xk .
• convex-monotonic when the “if ” direction of (AM) holds for all pure q′k .
• concave-monotonic when the “if ” direction of (AM) holds for all pure qk .
• payo�-monotonic if (AM) holds for qk and q′k that are both pure.

In the �rst order regime, Samuelson and Zhang () showed that payo�-monotonic (resp. aggregate-

monotonic) dynamics eliminate all pure (resp. mixed) dominated strategies. �is result was extended by

Hofbauer andWeibull () to pure strategies which are dominated by mixed ones in convex-monotonic

dynamics, while Viossat () recently established the dual result for concave dynamics. In the same spirit,

the rationality analysis of Sections  and  yields:

Proposition .. For any interior initial condition, we have:

• Aggregate-monotonic n-th order dynamics eliminate all dominated strategies.
• Convex (resp. concave) monotonic n-th order dynamics eliminate all pure (resp. mixed) strategies that
are dominated by mixed (resp. pure) strategies.

• Payo�-monotonic n-th order dynamics eliminate all pure strategies that are dominated by pure strate-
gies.

If, in addition, players start at rest (ẋ() = . . . = x(n−)() = ), then the above conclusions hold with the
characterization “dominated” replaced by “weakly dominated”. Finally, the rate of extinction is exponential
in tn (or tn− for weakly dominated strategies) in the sense of (.)/(.).

Proof. �e crucial point in the proof of �eorems . (resp. �eorem .) is the lower bound for the n-th
(resp. (n − )-th) derivative of the di�erence Vk(x) = DKL(qk ∥ xk) − DKL(q′k ∥ xk) which determines the
rate of extinction of dominated (resp. weakly dominated) strategies. �us, by replacing u by w in (.)
(resp. (.)), and using the appropriate monotonicity condition for each case of dominance (pure/mixed

by pure/mixed), our assertion follows along the same lines as �eorem . (resp. �eorem .).

In the same spirit, we obtain the following counterpart to the higher order folk theorem for higher

order payo�-monotonic dynamics:

Proposition.. �econclusions of�eorem. hold for all higher order (n ≥ ) payo�-monotonic dynamics.

�is proposition follows by replacing u with w in the proof of �eorem . and using the payo�-
monotonicity condition (AM), so there are no qualitative di�erences between �rst and higher order payo�-

monotonic dynamics. On the other hand, Proposition . and�eorem . hold for a much wider class of

higher order dynamics:

Proposition .. �e �ow of the generalized learning dynamics (GLDn), n ≥ , is volume-preserving; more-
over, the same holds for (GDn) w.r.t. a non-Euclidean volume form on X. Consequently, the conclusions of
�eorem . hold for all higher order imitative dynamics of the form (GDn).

Proof. Since the payo� observables wkα do not depend on ẋ and other higher order derivates, incom-
pressibility stems from the equivalent �rst order formulation (.) of (GLDn) with u replaced by w; the
conclusions of �eorem . are then proved in the same way.

Interestingly, if n =  and the payo� observables wkα do not depend on xkα , then the system (.) re-

mains divergence-free and the conclusions of Proposition . continue to apply. For instance, this explains

why the asymmetric replicator equation is divergence-free whereas its symmetric counterpart isn’t: in the

case of the former, we have wkα(x) = ukα(x) = uk(α; x−k), a quantity which is independent of xkα ; in

the symmetric case however, ifU denotes the payo� matrix of the game being played, then we would have
wα(x) = uα(x) = u(α; x) = ∑β Uαβxβ , showing that, in general, the symmetrized replicator dynamics are

not divergence-free.
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In view of the above, Proposition . clashes quite strongly with the �rst order regime. For instance, if

we takeMaynard Smith’s payo�-adjusted variant of the replicator dynamics (whereby players divide (RD)

by their average payo�s), then there exist games with asymptotically stable interior equilibria (for instance,

see the Matching Pennies example of Weibull, ). In higher orders however, Proposition . shows that

this can no longer be the case: the learning dynamics (GLDn) endow orbits with a tangential acceleration

component, and this acceleration carries them away from interior equilibria and towards the boundary of

X. As a result, only vertices of X can be attracting in higher order dynamics of the general class (GDn).

. Concluding remarks.

�e results in the present paper suggest that higher order considerations open the door to some intrigu-

ing new questions and directions in the study of learning and evolution in games. For one, the elimination

of weakly dominated strategies is a key feature of higher order dynamics which puts them �rmly apart

from all their �rst order siblings; coupled with the survival of iteratively weakly dominated strategies, this
provides a dynamic justi�cation of the well-known S∞W rationalizability process of Dekel and Fudenberg
() which cannot otherwise arise from �rst order considerations. Furthermore, the population inter-

pretation of our higher order dynamics by means of “long-term” variants of existing revision protocols

paves the way to a wide array of new classes of dynamics where the impossibility theorem of Hart and

Mas-Colell () no longer bars the way – a point also made by Shamma and Arslan () in the context

of derivative action �ctitious play algorithms.

Nevertheless, even before considering other classes of higher order dynamics, several important ques-

tions remain: For instance, are the higher order replicator dynamics consistent (e.g. as in Sorin, )?

What can we expect in symmetric, single-population environments (where payo�s are no longer mul-

tilinear) or with respect to setwise solution concepts – such as sets that are closed under better replies

(Ritzberger andWeibull, )? Finally, from the point of view of learning, our approach has been focused

on continuous time with players being able to observe (or otherwise calculate) the payo�s associated to

their mixed strategies. �is last assumption is relatively harmless in a nonatomic population setting, but

crucial from an atomic point of view; in particular, it is only natural to ask whether our results continue

to apply in discrete-time environments with a �nite number of players only being able to observe their

in-game payo�s.
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Appendix A. Asymptotic stability in terms of relative scores.

Our aim in this appendix will be to make precise sense of the asymptotic stability statement for the

dynamics (ZDn) in Section ; also, to simplify notation, we will drop the index k and rely on context to
resolve any ambiguities.

To begin with, let R′ = R ∪ {−∞} denote the real number line extended to one end by adjoining −∞.
Formally, we will use all extended real number operations for −∞, and R′ will be made into a topological
space by de�ning the basic neighborhoods of −∞ to be all sets of the formUa = {x ∈ R′ ∶ x < a}; by taking
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the product topology, we will then form the extended product space Z = RA∗

∪ {−∞} by adjoining the

“point at negative in�nity” −∞ ≡ (−∞, . . . ,−∞) to RA∗

. In this way, the reduced Gibbs map (GM∗) may

be extended to Z by mapping −∞ to q ∈ X and, by the topology of Z, this extension will be continuous.
To incorporate initial conditions at negative in�nity for (ZDn), we will work with the extended con�g-

uration space Z and the similarly extended phase space Ω′ = Ω ∪ ({−∞} × Z ×⋯ × Z), where Ω denotes
the original phase space of (ZDn). To extend the �ow of (ZDn) to all of Ω

′, we will de�ne trajectories

starting at −∞ to have z(t) = −∞ for all t ≥ ; then, using the extended real number operations for −∞ if
needed, we will have zµ(t) = zµ() + żµ() + 


z̈µ()t + ⋯ + ∫⋯ ∫ ∆uµ(x(s)) ds⋯ dt for all t >  and

for all (z(), ż(), . . . ) ∈ Ω′, where x(s) = G∗(z(s)). As a consequence of the above, it is then easy to see
that the above collection of trajectories indeed de�nes a continuous �ow on Ω′ which reduces to the �ow

of (ZDn) on Ω.

With regards to asymptotic stability, �eorem . shows that if all initial conditions zkµ(), żkµ() are
uniformly small (say, less than some a ∈ R), then we will have zµ(t) → −∞; moreover, an easy adaptation
of the proof of �eorem . shows that the same will hold for all derivates żµ(t), z̈µ(t), . . . of z(t) as well.
�is shows that if z(t) starts at a neighborhood of {−∞} × {−∞} × ⋯ in Ω′, then it will converge there;
completing the argument for Lyapunov stability as in the proof of �eorem ., we thus obtain:

Proposition. With respect to the extended real number topology de�ned above, the state {−∞}×{−∞}×⋯
which corresponds to the strict equilibrium q is asymptotically stable in (ZDn).
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