
Shared Risk in n-player Games

Christopher Lambie-Hanson∗, Timothy Lambie-Hanson†

March 29, 2013

Abstract

We analyze a game where the world is either in a good state or a state of disaster. We assume

each player chooses an action in which her payoff in the good state of the world is increasing, but so

is the probability of the bad state. After describing the conditions under which all pure strategy Nash

Equilibria (PSNE) are symmetric and, alternatively, at most one symmetric PSNE exists, we show that

if multiple PSNE exist (symmetric or otherwise), the least risky strategy profile is optimal among that

set. However, no interior PSNE is socially optimal among all strategy profiles, as all interior PSNE are

too risky.

1 Introduction

Consider a driver on a highway. The driver may choose to drive faster and more riskily and,

in the absence of an accident, arrive at his destination more quickly. But driving riskily

will, of course, increase the probability of an accident. In the absence of other drivers,

he would simply conduct his own cost benefit analysis and find his optimal level of risk.

With many drivers, however, how each drives will influence the others, and the system

becomes more complicated. This basic problem describes many scenarios, such as airlines

choosing security procedures, lenders deciding how many high-risk, high-interest loans to

award, and apartment owners in an earthquake-zone determining how much to contribute

towards the retrofit of their building. We investigate the characteristics of the pure strategy

Nash Equilibria (PSNE) in these types of systems, and how the PSNE outcomes compare

to those under the socially optimal strategy profile.

More specifically, we analyze a game where there are two states of the world: a good

state and a state of disaster. We assume each of a finite set of players chooses an action that
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is increasing in both risk and potential reward. In the good state of the world, the players

receive a payoff that is increasing in the action they choose, but the probability of the bad

state, in which each player receives a minimum payoff, is also increasing in the actions of all

the players.1

We first focus on symmetric pure strategy Nash equilibria (PSNE) and show conditions

related to the probability of disaster that guarantee that all PSNE are symmetric or, al-

ternatively, that at most one PSNE is symmetric. Under the latter condition we also show

that, if we define the risk level of a particular strategy profile more strictly, then only PSNE

of similar riskiness exist.

Before turning to applications, we discuss conditions under which a PSNE is guaranteed

to exist, and show that for a continuous strategy space and differentiable payoff function any

interior equilibrium will have a higher than optimal risk-level (as defined by the probability

of disaster). In an interior PSNE, each player who plays an interior strategy has balanced the

reward he receives with the risk he is taking on, but he does not account for the risk that he

imposes on the other players in the game. The presence of this externality ensures that each

player will choose an overly-risky action (relative to the social optimum) in equilibrium. This

point is particularly relevant when we consider games with multiple Pareto-ranked equilibria

or, in other words, coordination games.2 Even if we are able to somehow select the socially

optimal PSNE for the game we analyze, we would only have a second-best solution unless,

in equilibrium, all players play the minimum strategy or, in some cases, the maximum one.

Our work is most closely related to that of Geoffrey Heal and Howard Kunreuther on

coordination and risk in what they term games of interdependent security (IDS).3 They

study scenarios where each player chooses a strategy from a binary set and faces a binary

set of possible outcomes, where the choices of all the players in the system may influence the

probability of reaching a particular outcome. For example, in an application we discuss in

more detail in Section 4, they consider the problem an airline faces when deciding whether

1In our model, it makes no difference if the bad state affects the entire system with some probability or visits player i with
some probability: the optimizing player will behave the same.

2A large literature focuses on analyzing ways that we may end up at the socially optimal equilibrium of a coordination
game. See, for example, Crawford and Haller (1990). Relatedly, much experimental literature investigates which equilibrium
we actually do end up choosing. For an example of this, see van Huyck et al. (1990).

3See, for example, Kunreuther and Heal (2003); Heal and Kunreuther (2005, 2006, 2007).
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to invest in a baggage x-ray machine to detect bombs. Since it is assumed that the airline

will only have time to x-ray baggage on the first leg of travel, those passengers who transfer

from other airlines will not have their baggage checked unless the airline that provided their

first leg has an x-ray machine of its own.

When all airlines are symmetric in investment cost all PSNE are symmetric as well and

one of three scenarios will occur depending on the parametrization: in the unique PSNE

no airline buys an x-ray machine, in the unique PSNE all airlines buy an x-ray machine,

or both equilibria exist. Our model extends this game by allowing airlines to choose the

level of investment in security. Specifically, our model is akin to letting each airline choose

the proportion of bombs that its security detects (with the investment cost rising in the

effectiveness). We show that all PSNE in this particular game are symmetric and that any

non-corner PSNE results in underinvestment.

The model we consider is (almost) contained in the model used in Cooper and John

(1988), which emphasizes the role of spillovers and strategic complementarities.4 Spillovers

refer to the payoff of an agent being impacted by the actions of others, while strategic

complementarity denotes a scenario where one (or a set of) agent(s) playing a higher (or

lower) strategy induces other agents to do the same.5 While our emphasis is more specific and

slightly different, when appropriate we try to connect the observations from this literature,

as well as those from the literature on supermodularity, with our results.

2 Model

Player i ∈ {1, 2, 3, ..., N} chooses action ai ∈ A ⊂ R. The action of each player, in ad-

dition to impacting the player’s expected payoff, also impacts the riskiness of the system.

Let p : AN → (0, 1) and x : A → (0,∞) be strictly increasing functions. p(a1, a2, ..., aN)

represents the probability that the system encounters a disaster, in which case each player

receives a payoff of 0.6 Otherwise, player i receives a payoff of x(ai).

4For some of our results we do not assume the payoff functions are twice differentiable, as they do throughout.
5See also Bulow et al. (1985) for discussion of strategic complements and substitutes.
6Notice that we assume that with probability greater than 0 and less than 1 that a disaster will occur. Further, though we

model the disaster to impact all players, our analysis does not change if the disaster impacts only one or a subset of players at
a given time. In other words, if we have pi(a1, a2, ..., aN ) impact only player i, our results still hold.
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A strategy profile in this game is given as ~a = (a1, a2, ..., aN). We also make use of the

notation ~a = 〈~a−i, ai〉 to highlight player i’s action. In addition to the functional assumptions

above, we also assume

Assumption 1. The probability of disaster is symmetric in the players’ strategies. For

example, p(a1, a2, ..., aN) = p(a2, a1, ..., aN).

To facilitate economic meaning in our model, we are interested in discussing the systemic

riskiness of a given strategy profile. To that end,

Definition 1. Strategy profile ~a is riskier than strategy profile ~b if p(~a) > p(~b).

Each risk neutral player’s objective is to maximize her return. For notational simplicity

let q(~a) = 1 − p(~a). A strategy profile ~a is a pure strategy Nash Equilibrium (PSNE) iff

∀i ∈ {1, 2, 3, ..., N} and ∀b ∈ A

x(ai)q(~a) ≥ x(b)q(〈~a−i, b〉). (1)

Define Q(~a, ai, b) = q(〈~a−i,b〉)
q(~a)

. In other words, Q(~a, ai, b) is the ratio of the probability

of not incurring disaster under strategy profile 〈~a−i, b〉 to the probability of not incurring a

disaster under strategy profile ~a. We also, less precisely, think of this as the ratio of the new

probability of no disaster to the old if i switches from ai to b. For example, Q(~a, ai, b) = 2

indicates the system is twice as likely to not incur disaster when player i plays b rather than

ai.

We rewrite (1) as
x(ai)

x(b)
≥ Q(~a, ai, b), (2)

to emphasize the risk-reward calculation that the potentially deviating player makes. If the

ratio of the returns is greater than the ratio of “no disaster” probabilities, then the deviation

is not a fruitful one.

Several results below depend on Q(~a, ai, b) being monotone in the risk level of ~a when

b > ai.
7 If Q(~a, ai, b) is strictly increasing in the risk level of ~a when b > ai, then if player

7Notice that this equivalent to saying Q(~a, ai, b) is monotone in the risk level of ~a when ai < b, but due to the reciprocal
nature of Q(~a, ai, b), if Q(~a, ai, b) is increasing in the risk level of ~a when b > ai, then Q(~a, ai, b) will be decreasing in the risk
level of ~a when b < ai.
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i deviates from ai to b, the probability of “no disaster” will decrease proportionately less

when the system’s overall risk level is greater. Consider a system consisting of drivers on a

highway. If Q(~a, ai, b) is strictly increasing, this corresponds to one (or a given number of)

additional driver(s) choosing to begin to drive recklessly lowering the probability of having an

accident-free day proportionately more when fewer drivers in the system are initially driving

recklessly.

Alternatively, if Q(~a, ai, b) is strictly decreasing in the risk level of ~a when b > ai the

change to the probability of “no disaster” will decrease proportionately more at higher risk

levels when i switches from ai to b. In the driving analogy, this corresponds to one (or a given

number of) additional driver(s) choosing to begin to drive recklessly lowering the probability

of having an accident-free day more when more drivers in the system are initially driving

recklessly.

3 Characteristics of the Pure Strategy Nash Equilibria

We first examine the implications for symmetric PSNE in our model. A strategy profile

~a = (a, a, ..., a) is a symmetric PSNE, iff ∀b ∈ A

x(a)q(~a) ≥ x(b)q(〈~a−i, b〉). (3)

By restricting Q(~a, ai, b) to be monotone in the riskiness of ~a (conditional on ai < (>)b),

we are able to discuss the implications for symmetric PSNE in this model. First,

Proposition 1. Suppose that for all ai, b ∈ A such that b > ai, Q(~a, ai, b) is strictly increas-

ing in the riskiness of ~a. Then every PSNE is symmetric.

Proof. Let us proceed by contradiction. Suppose ~c = (c1, c2, ..., cN) is an asymmetric PSNE

and Q(~a, ai, b) is strictly increasing in the riskiness of ~a for all ai < b. Without loss of

generality, assume c1 < c2. Since ~c is a PSNE, player 1 cannot profitably deviate from c1 to

c2, implying q(~c)x(c1) ≥ q(c2, c2, c3, ..., cN)x(c2) and x(c1)
x(c2)
≥ q(c2,c2,c3,...,cN )

q(~c)
= Q(~c, c1, c2)).

Likewise, player 2 cannot profitably deviate from c2 to c1. So, q(~c)x(c2) ≥ q(c1, c1, c3, ..., cN)x(c1),

which implies x(c1)
x(c2)

≤ q(~c)
q(c1,c1,c3,...,cN )

= Q((c1, c1, c3, ..., cN), c1, c2). But Q(~c, c1, c2) ≤ x(c1)
x(c2)

≤
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Q((c1, c1, c3, ..., cN), c1, c2) implies Q(~a, c1, c2) is not strictly increasing in the risk level of ~a,

since p(~c) > p(c1, c1, c3, ..., cN). Contradiction.

Q(~a, ai, b) strictly increasing is necessary but not sufficient for strategic complementarity

(or, equivalently, for the game to be supermodular). Intuitively, Q(~a, ai, b) strictly increasing

implies that if one player finds that playing a higher strategy leads to a higher payoff, then

all the other players will also find it optimal to increase their strategies (leading to only

symmetric PSNE). Strategic complementary, on the other hand, implies that any increase

in one player’s strategy (whether it improves her payoff or not) leads others to increase their

strategies as well.

More formally, the relevant condition for supermodularity would be for the payoffs to be

increasing in first differences. So, for b > ai, x(b)q(〈a−i, b〉)−x(ai)q(〈a−i, ai〉) is increasing in

aj 6= ai. If we assume that q(·) and x(·) are differentiable and A is compact and convex (as we

do below in Assumption 2), then this is equivalent to x(b)∂q(〈a−i,b〉)
∂aj

−x(ai)
∂q(〈a−i,ai〉

∂aj
> 0. Q(·)

increasing implies that ∂q(〈a−i,b〉)
∂aj

> ∂q(〈a−i,ai〉
∂aj

, but without further assumptions regarding x(·),

we cannot conclude that the game is necessarily supermodular (x(b) > x(ai) and ∂q
∂aj

< 0).8

Alternatively, if Q(~a, ai, b) is decreasing in the risk level of ~a (conditional on ai < b), we

can rule out coordination problems among symmetric PSNE.

Proposition 2. Suppose that for all b > ai, Q(~a, ai, b) is decreasing in the riskiness of ~a.

Then there is at most one symmetric PSNE.

Proof. Let us proceed by contradiction. Suppose ~c = (c, c, ...c) and ~d = (d, d, ...d) are both

symmetric PSNE and Q(~a, ai, b) is decreasing in the risk level of ~a for all ai < b.Without

loss of generality, assume c < d. That ~c is a PSNE implies x(c)q(~c) ≥ x(d)q(〈~c−i, d〉). We

can rewrite this condition as x(c)
x(d)
≥ Q(~c, c, d).

That ~d is a PSNE implies x(d)q(~d) ≥ x(c)q(〈~d−i, c〉). We can rewrite this condition as

x(c)
x(d)
≤ Q(〈~d−i, c〉, c, d). Combining the two constraints, Q(~c, c, d) ≤ x(c)

x(d)
≤ Q(〈~d−i, c〉, c, d),

8Strategic complementarity is necessary for multiple symmetric PSNE to exist when the payoff function is differentiable
(Cooper and John, 1988, Proposition 1). Additionally, supermodularity guarantees the existence of a PSNE (Topkis, 1979,
Theorem 3.1) and further, that there exist largest and smallest serially undominated strategies ai and āi, respectively, that the
symmetric strategy profiles where all players play these strategies are PSNE, and that all PSNE fall between these two in terms
of risk profile (Milgrom and Roberts, 1990, Theorem 5). Of course, ai may equal āi in which case the PSNE is unique.
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implying Q(~a, c, d) is not strictly decreasing in the risk level of ~a, since p(~c) < p(〈~d−i, c〉).

Contradiction.

Essentially, if Q(~a, ai, b) is decreasing in the risk level of ~a, then the game exhibits strategic

substitutability. As discussed by Cooper and John (1988), strategic substitutability means

that one player increasing her strategy decreases the optimal strategy for the other players.9

When the payoff function is differentiable, this further implies that a unique symmetric

PSNE exists (Cooper and John, 1988, Proposition 1).10

If we more strictly define what it means for a particular strategy profile to be riskier than

another, then we are able to strengthen Proposition 2.

Definition 2. Define ~b to be strictly riskier than ~a if ∀bi ∈ ~b, p(〈~a−i, bi〉) < p(~b).

Essentially, this definition says that strategy profile ~b is strictly riskier than ~a if the risk

level of ~b is still greater after switching in any one bi into ~a for ai. Then,

Proposition 3. Suppose that for all b > ai, Q(~a, ai, b) is decreasing in the riskiness of ~a.

Then no PSNE will be strictly riskier than any other.

Proof. Let us proceed by contradiction. Suppose ~c and ~d are both PSNE and Q(~a, ai, b) is

decreasing in the risk level of ~a for all b > ai. Without loss of generality, assume ~d is strictly

riskier than ~c and c1 < d1. That ~c is a PSNE implies that x(c1)q(~c) ≥ x(d1)q(〈~c−1, d1〉). We

can rewrite this condition as x(c1)
x(d1)

≥ Q(~c, c1, d1).

That ~d is a PSNE implies x(d1)q(~d) ≥ x(c1)q(〈~d−1, c1〉). We can rewrite this condi-

tion as x(c1)
x(d1)

≤ Q(〈~d−1, c1〉, c1, d1). Combining the two constraints, Q(~c, c1, d1) ≤ x(c1)
x(d1)

≤

Q(〈~d−1, c1〉, c1, d1), implying Q(~a, c1, d1) is not strictly decreasing in the risk level of ~a, since

p(~c) < p(〈~d−1, c1〉) (~b is strictly riskier than ~a). Contradiction.

Of course, we would like to be able to rank the PSNE when multiple equilibria do exist.

Since the players are assumed to be risk neutral, we simply define the social welfare as the

sum of the expected payoffs.

9To see the connection to the definition of strategic substitutability given in Cooper and John (1988), assume q(~a) is twice
differentiable and x(ai) is differentiable. The expected payoff for player i is then πi(~a) = x(ai)q(~a). If Q(~a, ai, b) is decreasing

in the risk level of ~a, then ∂2πi
∂ai∂aj

< 0.
10See also Cooper (1999, p. 21) for further discussion.
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Definition 3. ~a is socially preferable to ~b if
∑N

i=1 x(ai)q(~a) >
∑N

i=1 x(bi)q(~b). ~a is a socially

optimal strategy profile if ∀~b ∈ AN ,
∑N

i=1 x(ai)q(~a) ≥
∑N

i=1 x(bi)q(~b).

Then, in cases where multiple PSNE exist,

Proposition 4. If ~a and ~b are PSNE with ~b strictly riskier than ~a, then ~a is socially prefer-

able.

Proof. Since ~a is a PSNE, x(ai)q(~a) ≥ x(bi)q(〈~a−i, bi〉). Since ~b is strictly riskier than ~a,

q(〈~a−i, bi〉) > q(~b). Therefore, x(bi)q(〈~a−i, bi〉) > x(bi)q(~b) and subsequently, x(ai)q(~a) >

x(bi)q(~b), implying
∑N

i=1 x(ai)q(~a) ≥
∑N

i=1 x(bi)q(~b).

Essentially, the (strictly) safest PSNE will be socially optimal among the set of equilibria.

Then, in the case of symmetric PSNE,

Corollary 1. If ~a and ~b are symmetric PSNE with b > a, then ~a is socially preferable.

Corollary 1 follows directly from the observation that if ~a and ~b are symmetric equilibria

with ~b riskier than ~a, then ~b is strictly riskier than ~a as well. But even when an equilibrium is

socially optimal among the set of equilibria, the equilibrium is unlikely to be socially optimal

among the set of all strategy profiles. To see this, further assume,

Assumption 2. (i) A is compact and convex, i.e. A = [a, ā].

(ii) q : AN → (0, 1) and x : A→ (0,∞) are twice differentiable.

Then,

Proposition 5. Given Assumption 2, if a strategy profile ~a is socially optimal and a PSNE,

then all players either play the minimum (safest) strategy or the maximum (riskiest) strategy.

Proof. Proceed by contradiction. Assume ~a is a socially optimal strategy profile and an

interior PSNE (one in which at least one player plays an interior strategy (i.e. plays in

the open interval (a, ā))). To be an interior PSNE, the necessary first order condition is

∀i ∈ {1, 2, ..., N} who play interior strategies

x′(ai)q(~a) + x(ai)
∂q

∂ai
= 0.
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The socially optimal strategy profile maximizes
∑N

i=1 x(ai)q(~a). The necessary first order

condition is then ∀i ∈ {1, 2, ..., N} who play interior strategies

x′(ai)q(~a) + x(ai)
∂q

∂ai
+
∑
j 6=i

x(aj)
∂q

∂ai
= 0.

Subtracting the first condition from the second, we see that
∑

j 6=i x(aj)
∂q
∂ai

= 0. But since

x(ai) > 0 and ∂q
∂ai

< 0, then
∑

j 6=i x(aj)
∂q
∂ai

< 0. Contradiction.

Corollary 2. Under Assumption 2, in any interior PSNE, social welfare can always be

improved by at least one agent choosing a lower (less risky) action.

To see this, notice that differentiating the social welfare (sum of agents expected payoffs)

with respect to ai yields x′(ai)q(~a) + x(ai)
∂q
∂ai

+
∑

j 6=i x(aj)
∂q
∂ai

. However, when the strategy

profile is an interior PSNE, the first two terms sum to 0, and the third term,
∑

j 6=i x(aj)
∂q
∂ai

<

0. This implies that the social welfare can always be improved by any interior ai decreasing

when ~a is a PSNE.

Before discussing the role of shared risk in a more general sense, let us note conditions to

guarantee the existence of a PSNE. Above, we mention a few special cases (supermodularity

and Q(~a, ai, b) decreasing) that imply that a PSNE exists. More generally, if we assume

Assumption 3. Define πi(~a) = x(ai)q(~a). Assume that for all i, πi(~a) is quasiconcave.

Then,

Proposition 6. Under Assumptions 2 and 3, a PSNE exists.

Proof. Follows directly from the Debreu-Glicksberg-Fan theorem (Debreu, 1952; Glicksberg,

1952; Fan, 1952): (1) The strategy space is nonempty, convex, and compact, (2) the payoff

function is continuous, and (3) the payoff function is quasiconcave in the strategy profile.

Above we assume that choosing an action ai either has payoff x(ai) or 0, with each

associated probability depending on the overall risk level in the system. We can more

generally assume that the payoff for i follows some probability distribution that depends

on the system’s actions. Let xi ∼ F (~a) be an absolutely continuous random variable that
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denotes the payoff to the ith agent, where F (·) has corresponding density f(·). How each

agent evaluates the distribution of his payoff is, of course, subjective, but assume utility

depends only on the mean and variance of the payoff distribution.

Analogous to our assumptions above,

Assumption 4. Assume A = [a, ā] where a, ā ∈ R. Let x̄i : AN → R and σ2
i : AN → [0,∞)

be differentiable in all arguments. Assume the expectation and variance of the ith player’s

payoff are defined and let them be denoted by x̄i(~a) and σ2
i (~a), respectively. Assume that

∂σ2
i

∂ai
> 0, ∂x̄i

∂ai
> 0 and, for i 6= j, (i)

∂σ2
i

∂aj
> 0 and (ii) ∂x̄i

∂aj
≤ 0.

Essentially, (i) ensures that the risk level faced by the jth agent is increasing in the

actions of the ith agent, while (ii) ensures that the mean return is non-increasing. Above,

these assumptions are implicit in q(~a) decreasing in each ai with an expected return of

x(ai)q(~a). Further, we assume that the agents are risk averse. Formally,

Assumption 5. Let ui : R× [0,∞)→ R be increasing in the first argument and decreasing

in the second. Let ui(xi(~a), σ2
i (~a)) denote the utility of the ith agent when the strategy profile

~a is played. Assume, further, that ui(·) is quasiconcave in ~a.

If we define the social welfare implied by a strategy profile ~a as the sum of the agents’

utilities under ~a, then

Proposition 7. Under Assumptions 4 and 5, (i) a PSNE exists, (ii) any interior PSNE will

not be socially optimal, and (iii) at any interior PSNE, social welfare can always be improved

by at least one agent choosing a lower (less risky) action.

Proof. A PSNE is guaranteed to exist again by Debreu-Glicksberg-Fan.

Let us proceed by contradiction for (ii). Suppose otherwise, that an interior PSNE is

socially optimal. The necessary first order condition is that ∀i that play interior strategies

∂ui
∂ai

= 0. The social welfare is given by
∑N

i=1 ui(x̄i(~a), σ2
i (~a)). The necessary first order

condition for maximizing the social welfare is then ∂ui
∂ai

+
∑

j 6=i
∂uj
∂ai

= 0. Since ~a is an interior

PSNE, ∃i such that ∂ui
∂ai

= 0. But,
∂uj
∂ai

=
∂uj
∂x̄j

∂x̄j
∂ai

+
∂uj
∂σ2
j

∂σ2
j

∂ai
< 0. This implies ∂ui

∂ai
+
∑

j 6=i
∂uj
∂ai

< 0.

Contradiction.

(iii) follows directly from ∂ui
∂ai

+
∑

j 6=i
∂uj
∂ai

< 0 at any interior PSNE.
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Propositions 5 and 6 get at the heart of the paper. In these games, each player imposes

a negative externality on the others in the system by increasing the risk level each faces

(and possibly decreasing others mean returns). Therefore, in any interior PSNE, though the

players have all balanced their own personal risk reward calculation, they do not account for

a further negative impact on the rest of the system, and as a result, they collectively pursue

a strategy profile that is riskier than socially optimal.

4 Applications

We analyze three applications. The first, airline security, is a problem introduced by Kun-

reuther and Heal (2003). In the second application, we examine the problem of neighbors

in an apartment building determining the optimal investment to retrofit the building for

earthquake safety. Last, we focus on a model of lenders determining what proportion of

their portfolio to make high-risk, high reward.

Airline security. Kunreuther and Heal (2003) introduce a game where N airlines choose

whether to invest in an x-ray machine that checks baggage for bombs. The machine, however,

would only be used to check baggage that originates with the airline, so passengers that

transfer from another airline would still be able to smuggle a bomb aboard as long as their

airline of origin does not invest in a machine of its own. Assume, for tractability in our

framework, that even if no airline invests in the x-ray machine, the probability that disaster

occurs is less than 1. Using our notation A = {0, 1}, where 1 indicates investing in security

and 0 is not doing so.

Rather than the disaster impacting the entire network, as we assume above, the disaster

here impacts only the airline where the bomb goes off. To adjust our model accordingly, let

pi(~a) be the probability that a bomb goes off on airline i, where pi : AN → (0, 1) is increasing

in each argument. The payoff to each airline when a bomb does not go off is, again using

our notation,

x(ai) =

 Y if ai = 0

Y − c if ai = 1.
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Let x(ai) = 0 when a bomb goes off on airline i. Each airline i chooses ai ∈ A to maximize

x(ai)qi(~a) where qi(~a) = 1 − pi(~a). A strategy profile ~a is a PSNE iff ∀i ∈ {1, 2, ...N} and

∀b ∈ A

x(ai)qi(~a) ≥ x(b)qi(〈~a−i, b〉),

which, as above, we can rewrite as

x(ai)

x(b)
≥ Qi(~a, ai, b),

where Qi(~a, ai, b) is the ratio of the probability of “no disaster” when i switches to b to the

probability when i plays ai.

Notice that since investing in an x-ray machine stops all bombs from customers beginning

their travel on your airline, and only those bombs, one might conclude that choosing to invest

in an x-ray machine will lower the probability of disaster for your airline by the same amount

regardless of the other airlines investment decision. However, since two bombs going off on

a plane is no worse than one going off, the impacts of a bomb going off from an originating

traveler and from a transfer are non-additive. In other words, choosing to invest increases

the probability of “no disaster” less when the probability of a transferring passenger having

a bomb is greater.

Let α be the probability of a passenger attempting to smuggle a bomb aboard your airline

and β(~a−i) be the probability of a bomb being transferred onto your flight. Then,

p(~a) =

 α + β(~a−i)− αβ(~a−i) if ai = 0

β(~a−i) if ai = 1.

But for our results on symmetric PSNE, we care about the change in the ratio of the

probabilities of no disaster when i changes his action. To that end, when moving from a less

risky to a riskier strategy (from 1 to 0),

Qi(~a, 1, 0) =
1− α− β(~a−i) + αβ(~a−i)

1− β( ~a−i)
= 1− α.

Qi(~a, ai, b) does not depend on the spillover risk (or on the actions of the other agents), only
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on the direct risk. Qi(~a, ai, b) is also independent of ai: since |A| = 2, Qi(~a, 1, 0) is the only

configuration where ai is less risky than b. In other words, Qi(~a, ai, b) is independent of the

risk profile of ~a.

Since Qi(~a, ai, b) is neither strictly increasing nor decreasing in the risk profile of ~a, we

are unable to apply either of our results concerning symmetric PSNE. Fortunately, using

a different technique Kunreuther and Heal (2003) show that all equilibria are symmetric.

Further, depending on the precise parameterization, the set of PSNE may contain both

symmetric equilibria or only one of them (either PSNE is possible under the latter scenario).

We can say, as also noted in Kunreuther and Heal (2003), that when both equilibria exist,

all airlines investing in an x-ray machine is socially preferable (Proposition 3).

Suppose we change the problem slightly so that each airline can choose not just whether

to invest in bomb-detection or not, but rather, how much to invest. Specifically, suppose

that each airline chooses ai ∈ A = [ε, 1−ε], where 1−ai is the proportion of the bombs in the

baggage of passengers who originate with your airline that are detected.11 This specification

ensures that the risk level of ~a is increasing in ai.

Note that Qi(~a, ai, b) changes slightly now. The probability of a bomb getting through

airline i’s screening is now aiα. So, defining α and β(~a−i) as above,

Qi(~a, ai, b) =
1− (bα + β(~a−i)− bαβ(~a−i))

1− (aiα + β(~a−i)− aiαβ(~a−i))
=

1− bα
1− aiα

.

So Qi(~a, ai, b) is still independent of ~a−i, but now depends on both ai and α. If we assume

that Qi(~a, ai, b) is differentiable, then,

∂Qi

∂ai
=
ai(1− bα)

(1− aiα)2
> 0.

Therefore, we can invoke Proposition 1 to note that even when airlines are able to choose

their level of investment, all PSNE are symmetric. Further, other than PSNE in which all

airlines invest in the maximum level or (in some circumstances) PSNE in which all airlines

invest in the minimum level, all PSNE exhibit underinvestment relative to the social optimum

11And, of course, also let the cost of security c(1− ai) be increasing in 1− ai, to maintain the appropriate framework.
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(Corollary 2, Proposition 5). This example starkly illustrates the externality present in this

type of scenario. Each airline chooses whether to invest, but the impact of that choice does

not depend on the other airlines’ actions. So, of course, since each airline’s choice impacts

the risk others face, and the potential benefit is unaccounted for, underinvestment is likely.

Earthquake retrofitting. N neighbors own apartments in a building in a city where

earthquakes are common. Each neighbor i is asked to voluntarily contribute ai ∈ A = [0, ā]

dollars to retrofit the building: reinforcing the building to minimize damage from future

earthquakes. Define the total investment level K =
∑N

i=1 ai. Let p : [0, Nā] → (0, 1) be

a decreasing function. With probability p(K), an earthquake will destroy the building and

all residents will receive a payoff normalized to 0. As usual, we assume disaster cannot

completely be eliminated nor will one occur with certainty. In the absence of disaster,

assume each player receives x(ai) = ā − ai + ε. Notice that investing fully and not having

the building destroyed gives a higher payoff than disaster.

Consider Q(~a, ai, b) = q(K−(ai−b))
q(K)

, where b < ai implies that 〈~a−i, b〉 is riskier than ~a.

Assume q(K) is differentiable and define δ = ai − b. Then,

∂Q

∂K
=
q(K)q′(K − δ)− q′(K)q(K − δ)

[q(K)]2
,

implying that Q(~a, ai, b) is increasing (decreasing) in K if

q(K)

q′(K)
> (<)

q(K − δ)
q′(K − δ)

.

Notice that the risk level of ~a is strictly decreasing in K. Thus if Q(~a, ai, b) is increasing

(decreasing) in K, Q(~a, ai, b) is decreasing (increasing) in the risk level.

Since q(K) > q(K − δ), it is sufficient that q′(K) be decreasing to ensure that Q(·) is

increasing in K and subsequently Q(·) is decreasing in the risk level. This condition can be

described, essentially, as the marginal product of investment diminishing (an additional dollar

investment increases the probability of no disaster more at lower levels of total investment),

and seems plausible.

For Q(~a, ai, b) decreasing in the risk level of ~a we can invoke Propositions 2 and 3, stating
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that there will be at most one symmetric PSNE, and if more than one PSNE exists, no

PSNE will be strictly riskier than another. And, of course, at any interior PSNE, the players

will underinvest (be too risky) compared to the social optimum.

Lenders. Lender i ∈ {1, 2, ..., N} gives two types of loans: high-risk, high-interest loans

and low-risk, low-interest loans. Assume that in good economic times the expected payoff

to lender i is higher for high-risk loans, but the higher the proportion of high-risk loans, the

more instability in the economy. If the economy goes into crisis, all of the lenders fail with

payoffs normalized to 0.

The lender’s problem then is to choose the proportion of his capital to devote to high-

risk loans: ai ∈ A = [0, 1]. Assume each lender receives return x(ai) if no crisis occurs,

where x : [0, 1] → (0,∞) is strictly increasing and differentiable. Suppose the risk level in

the economy can be thought of as the sum of the institutions’ proportions of high-risk loans

weighted by the size of each institution. In other words, let R =
∑N

i=1 aiMi where Mi ∈ (0, 1]

represents the size of each institution relative to the size of the loan market. Even though

the risk is not symmetric in the institution actions (i.e. R(a1, a2, ..., aN) may not equal

R(a2, a1, ..., aN)), we will not invoke Proposition 1, which relies on that assumption.

Let the probability of crisis be given by p(R), where p : [0, 1] → (0, 1) is strictly in-

creasing in each argument and differentiable, and let q(R) = 1− p(R). Assume b > ai, then

Q(~a, ai, b) = q(R+(b−ai)Mi)
q(R)

, and differentiating with respect to R, defining δ = b−ai as before,

∂Q

∂R
=
q(R)q′(R + δMi)− q′(R)q(R + δMi)

[q(R)]2
.

Recall that q′(R) < 0, implying that Q(~a, ai, b) is increasing (decreasing) in R if ∀i

q(R)

q′(R)
> (<)

q(R + δMi)

q′(R + δMi)
.

Therefore it is sufficient for |q′(R)| < |q′(R+δMi)|, for Q(~a, ai, b) to be decreasing in the risk

level of ~a. In other words, if the marginal decrease in the probability of no disaster is lower

in magnitude at lower levels of risk (fewer high risk loans), then Q(~a, ai, b) is decreasing in

the risk level of the system, implying that at most one symmetric PSNE exists (Proposition
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2).

Of course, regardless of whether Q(~a, ai, b) is decreasing in the risk level of the system,

the results concerning social optimality are still valid. If an interior equilibrium exists, then

this society is oversupplying high-risk loans.

5 Conclusion

We analyze a game with N players, each who chooses an action ai ∈ A. With probability that

is increasing in all players’ actions, the system undergoes a disaster and everyone receives a

minimum payoff. Otherwise, each player receives a payoff increasing in his action. While we

do attempt to characterize the PSNE and determine when coordination may be a problem,

perhaps more interestingly, we show that no interior PSNE will be socially optimal. So even

when coordination problems exist, the optimal PSNE still may not achieve the best result

for the society.

We view this paper as a partial bridge between Kunreuther and Heal (2003) and Cooper

and John (1988). We somewhat generalize and extend Kunreuther and Heal (2003), but our

focus is more applied than that of Cooper and John (1988), as we assume greater structure

in our model to fit the particular class of problems we have in mind. Hopefully, the balance

we strike is useful and we complement both rather than neither.
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