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1 Introduction

We consider two-sided matching markets. Examples of such markets include
marriage market, universities-applicants market and others. Pioneering work
analysing such kinds of markets is [6]. They considered one-to-one and one-
to-many markets, where preferences of individuals on one side over individ-
uals on the other side were considered to be linear orders.

In this paper we analyse a modification of the classical Gale-Shapley
admission problem, where preferences of universities are considered to be
interval orders. Interval order allows a specific form of indifference in the
preference relation. Imagine, each alternative is described with an interval
[l, u], and one alternative dominates another if and only if intervals do not
overlap and lower bound of the first interval is greater than upper bound
of the second interval. Preferences with such property may occur in the
cases, when applicants’ scoring system (interview, exam or sum of points)
is not exactly accurate. In this case if we would construct a weak order
directly, according to the scoring results, some students may be undeservedly
concerned less preferred than others, when the small scores difference is just
the matter of chance.

We show the existence of a stable matching and, moreover, for every stable
matching we prove the existence of a linear order extension of universities’
preference profile, that does not upset the stability. The second result allows
us to say that model with interval orders is, in fact, may be reduced to
the model with linear order preferences. Our main result is an extension of
the Erdil and Ergin [5] Stable Improvement Cycle Theorem. We provide a
criteria that allows us to check whether a stable matching is Pareto-optimal
for applicants or not.
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On the other hand, stable mechanism, based on Improvement Cycles,
is not strategy-proof. We also provide a strategy-proof applicant-proposing
deferred acceptance with tie-breaking, where tie-breaking procedure is orga-
nized in a special way. This special tie-breaking allows to lower chances of an
applicant-inefficient stable matching (in comparison to that with random-tie
breaking). The rest of the paper is organized as follows. In Section 2 the
classical Gale-Shapley model is presented and a review of publications is
given. In Section 3 a new model is proposed and basic results on stability
are obtained. In Section 4 the Stable Improvement Cycle theorem is proven.
Section 5 contains an efficiency-oriented tie-breaking procedure and corre-
sponding theorem. Section 6 and 7 include discussion of the linked results
and conclusion.

2 The Framework

The following model is considered. Let A be a finite set of applicants, B - a
finite set of universities. Each applicant can be admitted to one university,
while each university b ∈ B cannot admit more applicants than its quota qb.

Definition 1. The matching is a mapping from A∪B to the subsets of A∪B
such that:

• each applicant a ∈ A is either admitted to a university µ(a) = b (b ∈ B)
or remains unmatched µ(a) = a,

• each university b ∈ B either admits some subset of applicants µ(b) ⊆ A
or has no students µ(b) = b,

• if applicant a is admitted to a university (µ(a) = b), than university b
admits this applicant (a ∈ µ(b),

• numbers of students |µ(b)|, admitted to each university b ∈ B, is less
than or equal to its quota qb).

This definition was first introduced by Gale and Shapley in [6]. They
also assumed, that both applicants and universities have preferences over
the opposite side. Preferences of applicants are linear orders over universi-
ties; applicant may find some universities unacceptable (worse, than being
unmatched). Similarly, preferences of universities are linear orders over indi-
vidual applicants; again, some applicants may be unacceptable. Preferences
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of the universities over subsets of applicants are considered to be responsive
to the their preferences over individuals with qouta restriction.

As both applicants and universities are independent agents and have pref-
erences over each other, the following question arises: does there exist such a
matching, than no agent or group would prefer to avoid it? Gale and Shapley
call this property ’stability’ and introduce the following definition of a stable
matching.

Definition 2. Matching µ is stable if it satisfies the following properties:

• individual rationality of applicants
no applicant a ∈ A is matched to an unacceptable university;

• individual rationality of universities
no university b ∈ B admits an unacceptable applicant;

• non-wastefullness
no pair (a university b and an applicant a) such that the applicant a
prefers this university b to her current match µ(a) and university b
finds the applicant acceptable and has an empty seat (|µ(b)| < qb);

• pairwise stability
no pair (a university b and an applicant a) that a prefers this university
b to her current match µ(a) and b strictly prefers the applicant a to at
least one (say, a′ ∈ µ(b) of its currently admitted applicants.

Gale and Shapley proved that in the case of such preferences the set of
stable matchings is non empty. Furthermore, a constructive proof which
allows us to find a stable matching was proposed - the so called ’Deferred
Acceptance (DA) Procedure’.

Now let us briefly describe the DA algorithm with proposing applicants.
In the first step, each applicant applies to her most preferred university.
Those universities that got less applications than their quota, ’preliminary
admit’ all applicants (this rule applies at any step). If the number of applica-
tions exceeds university’s quota, then university ’preliminary admits’ qb most
preferred applicants and rejects the others. At the second step each rejected
applicant applies to her second most preferred university. When a university
gets second-step application from a candidate, who is preferred to some of
the first-step ’preliminary admitted’ applicants, it rejects those ’preliminary
admitted’ applicants and admits (also, preliminary) the new one. After that
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the next similar step begins. This process lasts until each applicant is ei-
ther admitted to a university or rejected by all acceptable universities. Last
’preliminary admission’ is a resulting stable matching.

The nice property of the described above DA procedure in the Gale-
Shapley model is that it always produces a matching, which is weakly Pareto-
optimal in the set of stable matchings for the proposing side of the market.

Further research was based on Gale and Shapley’s seminal paper. In this
paper we are specially interested in the models, allowing indifferences in the
preference profiles.

There are many papers that investigate matching problem with indiffer-
ences. Problem statement [1] is one of the first that follows a real life example:
preferences of municipal schools in Boston and NYC school districts being
weak orders. The mechanisms which were originally used in these districts
in general produces an unstable matching of applicants and schools. It was
in some sense unfair, especially hurting ’naive’ children and their parents.
Abdulkadiroglu and Sonmez proposed the following new admission proce-
dure: first, ties in schools’ preferences are broken randomly; second, deferred
acceptance procedure is applied to the admission problem with linear order
preferences. Proposed mechanism always constructs a stable matching.

However, it is known, that student-oriented deferred acceptance mecha-
nism does not always produce a student optimal stable matching (see, for
example, one of the first paper considering indifferences in preference profile,
[9]). In [5] an algorithm, which provides Pareto-efficient (for applicants) sta-
ble matching for the matching problem, where preferences of the applicants
over universities are linear orders and the universities have weak order pref-
erences over individual applicants, is proposed. This algorithm is based on
the so-called Stable Improvement Cycles, a formal definition is given below.

In this paper, we introduce many-to-one matching model, in which, as
in previous papers, applicants have linear order preferences over universities,
but the universities have the interval order preferences [3] over individual
applicants.

Let us give a formal definition of an interval order ([3]). There are several
equivalent definitions of an interval order, but we use here one that is most
suitable for our purposes.

Definition 3. Interval order � is a partial order on the set X which satisfies
the following property: there exists a function I, which assigns a real line
interval I(x) = [l(x), u(x)] for each x ∈ X such that ∀x, y ∈ X x � y iff
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l(x) > u(y).

If the set X is finite, then without loss of generality one can assume
that l(x) and u(x) values are integer numbers. Why we think that having
interval order preferences over students may be natural for a university?
Often universities use some kind of scores to evaluate applicants and form a
preference relation. But any scoring method has some error. For example, if
some university uses an exam scores with minimum 0 points and maximum
100 points, and gets students’ Ann and Bill applications, with scores, say, 78
and 78.2 respectively, it is not clear, whether Bill should have priority to Ann
or not. If the exam scoring method has 0.5 standard error, than, probably,
Bill and Ann should be considered incomparable in universities preference
relation. Moreover, sometimes possible errors are different for different score
values.2

If for some interval order PS there exists a function I, such that for all
elements of X intervals have the same size, such a binary relation is called a
semiorder.

In fact, weak orders are a special case of interval orders. For weak orders
there exists an interval function I such that each interval is a single point,
that is, u(a) = l(a).

3 The Model

We will use the same notation for the sets of agents and the same definitions
of a matching and a stable matching, as in the previous section. Let us
formalise our problem statement. Let R denote the preferences profile of
applicants. For each a ∈ A Ra is a linear order over elements of B ∪ {a}.

Let � denote the preference profiles of universities over elements of A ∪
{b}. For each b ∈ B �b is an interval order. Furthermore, we assume that
each such binary relation satisfies ’no indifference with empty set’ property,
that is, ∀b ∈ B,∀a ∈ A either a �b b or a ≺b b3.It means that for each

2For example, in Russian university admission system Unified State Exam scores are
used for ranking purposes. Unified State exam scores are obtained in the following non-
linear way. If Ann obtained 65 and Bill obtained 70 points, it means that he have solved
3 more tasks in the exam, but if Paul obtained 25 and Kate obtained 30 points, it means,
that Kate have solved just one more task. In the current system these considerations are
not taken into account, and even 1 point excess is enough to be preferred by university.

3Comparison with b means comparison with having an empty seat
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university applicants are clearly divided into two groups: acceptable and
unacceptable ones.

As we consider many-to-one matching problem, we have to define prefer-
ences of the universities over the sets of applicants. We do not define these
preference relation explicitly, but we consider that the preference relation of
each university over the sets of applicants is responsive to the preference re-
lation over individuals: ∀b ∈ B, ∀A′ ⊆ A such that |A′| < qb, a1, a2 ∈ A \ A′
if a1 �b a2 then A′ ∪ {a1} �b A′ ∪ {a2}.

3.1 Existence of stable matching

The definition of stable matching has already been given in the previous
section. Gale and Shapley [6] have shown that in the case of linear order
preferences on both sides of the market stable matching always exists.

It is easy to show the existence of a stable matching in case when univer-
sities’ preferences are the interval orders.

Theorem 1. If applicants have linear orders over universities, and univer-
sities have interval over individual applicants, then stable matching always
exists.

Proof. Indifferences in an interval order preference relation might be resolved
so that each university’s preference relation will be transformed into linear
order. Naturally, if x ≈b y under true preference relation of the university b,
it means, that intervals Ib(x) and Ib(y) are overlapped. Let us construct new

preference relation �′b such that x �′b y iff lb(x)+ub(x)
2

> lb(y)+ub(y)
2

. Incentives
to form a blocking pair are wider for universities with �′ preferences, than for
universities with � preferences. So a matching which is stable under these
transformed preference profile �′= {�b},b∈B is also stable under original
interval order preference profile �. As a transformed preference profile is a
profile of linear orders, the Gale-Shapley theorem allows us to conclude, that
such stable matching always exists.

This result, in fact, follows from the more general statement: stable
matching exists for any partial orders preference profile.

The next natural question is the following: is it possible to find all stable
matchings in the discussed model, if we consider all possible transformed
profiles �′ and all matchings, which are stable under these transformed pref-
erence? We find out that this is true.
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Theorem 2. For each stable matching µ in the model with interval order
preferences there exists such transformed universities’ preference profile �′,
which consists of linear orders and does not contradict the original preferences
�, such that matching µ is also stable under this linear order preference
profile.

Proof. Consider some matching µ which is stable under original preference
profile (�, R). Let us construct a linear order preference profile �′ which
does not upset the original preference relations in profile � and the stability
of µ.

New preference profile �′ must satisfy two properties:

• no contradiction with original preferences: if a �b a′, than a �′b a′,

• new blocking pair should not occur: if a′ prefers university b to her
current match, than under �′b university b must strictly prefer any of
its current students to a.

As blocking pairs include one university and one applicant, linear preference
relation extension may be constructed independently for each university.

Consider university b and the set of applicants A′b, which include all appli-
cants, incomparable to or dominated by any applicant, admitted to university
b. Formally, A′b={a′ ∈ A \ µ(b)|∀a ∈ µ(b)a �b a′}. Moreover, let us define
the set A′′b=A \ (A′b

⋃
µ(b)). Now we have divided the set of applicants into

three disjoint sets: A′′b , µ(b), A′b.
Any applicant a′ in the set A′b may be (potentially) interested in a seat

at the university b more than at her current match µ(a′). So, to prevent
forming a blocking pair (a′, b) any applicant in A′b must be dominated by any
applicant in µ(b) under modified linear order preference relation �′b.

Note, that each applicant in set A′′b must be admitted to a university, that
she prefers to university b. If this would not be true, university b and those
applicant would form a blocking pair.

Now let us construct transformed interval function I∗ such that under
corresponding preference relation � ∗b any applicant in A′ will be dominated
by any applicants in µ(b) without contradiction to the original preference
relation.

For all applicants in µ(b) and A′′(b) u ∗ (a) and l ∗ (a) values, assigned by
I∗ function remain the same as those assigned by I function. On the other
hand, boundaries for applicants in A′ will be changed.
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Let us define two subsidiary variables: minimum lower bound among
all applicants currently admitted to b: lb = mina∈µ(b)(lb(a)); and maximum
upper bound among all applicants who are not admitted, but potentially
desire a seat at b: ub = maxa∈A′

b
(ub(a)).

If ub < lb, than no transformation is needed and I∗ = I since any ap-
plicant in µ(b) is preferred to any applicant in A′ under original preferences
of the university b. Otherwise for each applicant a′ in A′b the following new
bounds are assigned: u∗(a′) = u(a′)−(ub−lb)−1, l∗(a′) = u(a′)−(ub−lb)−1.
We just move all intervals of applicants in A′b below the lowest bound of the
admitted applicants.

Now let us show that an interval order � ∗b, based on interval function
I∗ does not contradict with original preference relation �b.

1. Any preference relation between pairs of applicants within each of sets
A′′,A′,µ(b) clearly remains unchanged.

2. For pair of applicants a′ ∈ A′b and a ∈ µ(b):

• if a �b a′, then lb(a) > ub(a
′) and, naturally, lb(a) > ub(a

′)− (ub−
unverlinelb)− 1,

• if a ≈b a′, then simultaneously ub(a
′) ≥ lb(a) and ub(a) ≤ lb(a

′).
By construction of I∗ u ∗b (a′) < lb(a), as we distract from ub(a

′)
the number, which is higher than maximal ub(a

′)− lb(a) difference
among all possible pairs (a, a′),

• it is impossible, that a′ �b a by construction of A′(b).

3. For any two applicants a′′ ∈ A′′b and a ∈ µ(b) nothing changes under
interval function I∗ in comparison to I.

4. For pair of applicants a′ ∈ A′b and a′′ ∈ A′′b :

• if a′′ �b a′, then lb(a
′′) > ub(a

′) and, naturally, lb(a
′′) > ub(a

′) −
(ub − unverlinelb)− 1,

• if a′′ ≈b a′, then simultaneously ub(a
′) ≥ lb(a

′′) and ub(a
′′) ≤ lb(a

′).
Under new interval [l ∗b (a′′), u8b(a

′′)] applicants either remain in-
comparable, or a′′ is being preferred to a′.

• it is impossible that a′′ �b a′, because, by construction, ∃a such
that lb(a

′′) > ub(a), but ∀a ub(a) ≥ lb(a
′). It means that lb(a

′′) >
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lb(a
′). Using the fact that ub(a

′′) ≥ lb(a
′′) we get that ub(a

′′) >
lb(a

′), so a′′ can never be dominated by a′.

We have constructed new interval function I∗, such that corresponding
interval order � ∗b does not contradict original preference relation and, more-
over, all applicants, who could possibly form a blocking pair with university
b, are now strictly dominated by applicants in µ(b). Now we can resolve re-
maining indifferences in an arbitrary way, as they do not affect the stability
of matching mu.

In our model we assume that each university’s preference relation �b
satisfies ’no indifference with empty set’ condition, so no breaking ties with
empty set is needed. In addition, as definition of stable matching uses only
preference of the universities over individuals, we do not need to implicitly
construct preference relation over the sets of applicants.

Now we have proven that stable matching always exists and, furthermore,
for each stable matching µ some linear order profile always exists which does
not contradict original preference profile and stability of µ.

3.2 Pareto-dominated stable matching

However, the next natural question arises. Are all of these stable matchings
Pareto-efficient? In this paper we consider only applicants’ preferences for
Pareto-efficiency analysis. In practice applicants are usually an active part
of the market while universities (schools, etc.) are often only public service
providers, so their preferences are just defined by law.

Let us discuss the following simple example with 3 applicants a1, a2, a3
and 3 universities b1, b2, b3, with each quota qbi equal to one. Preferences of
the applicants are

a1 : b1Pb2Pb3
a2 : b2Pb1Pb3
a3 : b2Pb3Pb1

Preferences of the universities are
b1 : a3 ≈ a2 a2 ≈ a1 a3 � a1
b2 : a1 ≈ a3 a3 ≈ a2 a1 � a2
b3 : a1 ≈ a2 a2 ≈ a3 a1 � a3

Preference relation of each university in this example is a simplest semiorder
[2], a special case of an interval order.
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Let us construct two different linear order preference profiles �′ and �′′,
such that both do not upset original preferences �

Under �′ preference relation of b2 is a1 �′b2 a2 �
′
b2
a3. At the first step

of the deferred acceptance applicant-proposing procedure a1 applies to b1,
while both a2 a3 apply to b2. University b2, gets two application for only
one seat and rejects a3 (according to �′b2 . Then a3 applies to b3 and the DA

procedure stops. Stable matching µ = ( b1b2b3
a1a2a3

) is constructed.
Under �′′ preference relation of b2 is a1 �′′b2 a3 �

′′
b2
a2 and preference

relation of b1 is a3 �′′b1 a2 �
′′
b1
a1. The beginning of the procedure is the

same as above: a1 applies to b1 and both a2 and a3 apply to b2. University
b2, according to �′′b2 must reject a2. At the second step rejected a2 applies
to b1. University b1, in its turn, rejects a1. Now (third step) a1 applies to
b2. University b2 again has too much applications and rejects a3. Finally,
a3 applies to b3 and the mechanism stops here. Another stable matching is
found ν = ( b1b2b3

a2a1a3
).

It is easy to show that matching µ is weakly better for applicants than
ν. Indeed, applicant a1 prefers b1 to b2, and applicant a2 likes b2 more than
b1. Third applicant is indifferent between these two matchings, as she is
admitted to the same university under both of them.

So, matching ν is obtained via DA applicant-oriented procedure, and it is
stable, but inefficient in terms of applicants’ preferences. In the next section
we will prove a theorem that allows us to check, whether some particular
stable matching is applicant-side Pareto-efficient, and, if necessary, transform
it into a Pareto-efficient one.

4 Stable Improvement Cycle. Main Result.

Ergin and Erdil [5] first introduced definition of a Stable Improvement Cycle.
Let C(b, µ) = {a ∈ A|bRaµ(a)}. In addition, let D(b, µ) = {a ∈ C|∀a′ ∈

C a �b a′}.

Definition 4. A Stable Improvement Cycle consists of distinct applicants
a1, ..., an ≡ a0 (n ≥ 2) such that

• µ(ai) ∈ B (each applicant in a cycle is assigned to a university),

• ∀ai µ(ai+1)Raiµ(ai)

• ∀ai aiεD(µ(ai+1), µ)
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Let SIC(ai) = bi+1, SIC(bi) = ai−1

To prove our main Theorem below, we first need the following lemma [5]

Lemma 1. Fix � and P . Assume that µ is a stable matching that is
applicant-side Pareto dominated by another matching ν. Let A′ denote the
set of applicants who prefer their university under ν to their university under
µ. Let B′ = µ(A′). B′ is the set of universities, to which applicants in A′

are assigned under µ. The following is true:

1. Applicants in A \ A′ have the same match under µ and ν.

2. For any university b, |µ(b)| = |ν(b)|.

3. Each applicant in A′ is assigned to a university both under µ and ν.

Original proof of the lemma, provided by [5] is in fact the same even for
the case of partial order preferences of the universities.

Now we can formulate and prove our main result.

Theorem 3. Fix � and R, and let µ be a stable matching. If µ is Pareto-
dominated by another stable matching nu, then it admits a Stable Improve-
ment Cycle.

Proof. Let, again, A′ denote the set of applicants who prefer their univer-
sity under ν to their school under µ. Let B′ = µ(A′), that is, the set of
universities, to which applicants in A′ are assigned under µ.

Let C ′(b, µ) denote a subset of the set A′, where each applicant desires
to be admitted to the university b instead of her current university under
µ. Formally, C ′(b, µ) = {a ∈ A′|bRaµ(a)}. In addition, let D′(b, µ) denote
a subset of C ′(b, µ), which includes only applicants with the maximum up-
per bound of the interval I(a). Formally, D′(b, µ) = {a ∈ C ′(b, µ)|u(a) =
maxx∈C′(b,µ)(u(x))}.

Now we can construct G(V,E) - an oriented graph, where the set of ver-
tices V = B′ and an edge e(b1, b2) ∈ E iff ∃a ∈ µ(b1) such that a ∈ D′(b2, µ).
In other words, edge e(b1, b2) is in graph G if there exist an applicant such
that

• she is assigned to the university b1 under µ, but prefers university b2
to university b1,
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• among all applicants, who prefer university b2 to their current university
under µ, this applicant a belongs to the group of the applicants with
the maximum interval upper bound.

We will attach a label ’a’ to this edge (b1, b2)
Graph G always contains a cycle, as each university in B′ is preferred by

at least one applicant to her university under µ (here we use Lemma 1). Let
us take any such cycle (in particular, take applicants, who label edges in the
cycle) and prove that it is a Stable Improvement Cycle.

First and second properties of the Stable Improvement Cycle hold by
construction. Let us show that the third property also holds. Applicant a is
dominated under b’s preferences by some applicant a′ iff lb(a

′) > ub(a). By
construction of the cycle, ∀b it is true that a=SIC(b) has the maximal ub(a)
among all applicants in C ′(b, µ), that is, all applicants in A′ who desire to be
admitted to b. So no applicant from C ′(b, µ) can dominate applicant a.

It remains to show, that applicant a=SIC(b) is not preferred by university
b to some applicant in A \ A′. Let us prove it by contradiction.

Suppose there ∃ an applicant x ∈ A \ A′ and some university b ∈ B′

such that b �x µ(x) and x �b SIC(b) (lb(x) > ub(SIC(b)) in terms of interval
function). In this case applicant x and university b would form a blocking
pair and a matching, constructed after applying SIC, will not be stable.

Stability of ν implies that for all y ∈ ν(b) it is true that y �b x (here we use
Lemma 1). In terms of interval boundaries it means that ub(y) ≥ lb(x).On
the other hand, SIC(b) and any applicant in ν(b) belong to C ′(b, µ) and
SIC(b)∈ D′(b, µ) so, by construction of set D′, ub(SIC(b)) is maximal, so
∀y ∈ ν(b) ub(SIC(b)) ≥ ub(y).

From the two statements above we get ub(SIC(b)) ≥ ub(y) ≥ lx, which
means, that x does not dominate SIC(b) according to b’s preferences. We can
conclude that x and b will never form a blocking pair. Now we have proved
that for constructed cycle all properties of Stable Improvement Cycle hold.

This theorem provides a criteria, which allows to check, whether some
particular stable matching is applicant-efficient. Furthermore, we can think
about stable and efficient mechanism. First, indifferences in universities’ pref-
erences are broken arbitrary. Second, an applicant proposing DA procedure
is applied and some stable matching is obtained. Third, Stable Improvement
Cycle is constructed, if exists, and matching is improved. The last step is
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repeated as many times as necessary. Such a mechanism will always produce
a stable matching.
Unfortunately, such mechanism is not strategy-proof. Erdil and Ergin [5]
show this for the case of weak orders, so it is also true in our more general
setting.

5 Strategy-proof tie-breaking and efficient out-

come?

In this section we introduce a specific form of tie-breaking, which allows us
to reduce chances of an inefficient outcome. Consider the following: prefer-
ence relation of each applicant (university) is independently randomly chosen
from the set of all possible linear (interval) orders. Our question is how to
break ties in particular university’s in order to reduce chance of inefficient
outcome without taking into account preferences of other universities and
applicants? When we deal with weak orders, this question has no answer,
but with interval orders this is not the same. In the interval orders some ties
are different from the others in terms of possible efficiency losses.
In the previous section it was shown that any inefficient stable matching
admits Stable Improvement Cycle. If we consider each university separately

5.1 Example

Let A = a1, a2, a3 be a set of applicants and let �b: a1 �b a3, a1 ≈b a2, a2 ≈b
a3, while qb = 1.
We are mostly interested in situation where under deferred acceptance pro-
cedure university b receives proposals from each of the three applicants. Now
consider three possible linear extensions of this interval order:

• a1 �′b a2 �′b a3. In this case a1 will be admitted to the university b.
Two other applicants will be rejected and, therefore, admitted to some
less preferred university. Both a2 and a3 will create edges pointing to
university b in the Improvement Graph.

• a1 �′b a3 �′b a2. Again, a1 will be admitted to the university b and both
a2 and a3 will create to edges in Improvement Graph.
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• a2 �′b a1 �′b a1. In this case, on the contrary, a2 will be admitted to the
university b and only a1 will create edge in Improvement Graph (as a1
is strictly better then a3 according to original preferences, a3 will not
be able to point to b in the Improvement Graph).

In the latter case we obtain only one edge, while in the former cases we ob-
tain two edges. So in the latter case chances of obtaining Stable Improvement
Cycle are lower (all other things being equal).

The following procedure is based on a simple idea, illustrated by the above
example

• Step 1. Consider original preference relation �b and ’best’ (undomi-
nated) antichain A1={a1, ..., ak}. Let ai �′b aj if aiP ⊂ ajP , that is,
ai dominates aj in the new transformed preference relation � −b if ai
dominates strictly smaller set of alternatives than aj. All remaining
ties among elements in the antichain are broken randomly.

• Step t ∈ [2, T ]. Consider the ’best’ antichain At on A\(∪At−1). Repeate
the step 1 for the At. Repeat steps until no elements are remaining in
A \ (cupAt).

• Step T + 1. For any elements a ∈ An, a′ ∈ Am a �′b a′ iff n < m.

We can now state the following general result.

Theorem 4. Let all preference relations of the universities be interval or-
ders of special form, where each maximal antichain has the same length.
If we break the ties of each university according to the procedure, described
above, then under deferred acceptance procedure with proposing applicants we
have the lowest (among all possible ’independent’ tie-breakings) chances of
constructing an applicant-inefficient stable matching.

In fact this theorem allows us to construct a new version of deferred
acceptance with tie-breaking. First, break ties according to the procedure
above. Second, apply deferred acceptance procedure with applicants propos-
ing. Such procedure is strategy-proof for applicants (as first step tie-breaking
does not consider there preferences, while the second step is just classical
Gale-Shapley procedure). At the same time, probability of obtaining an
inefficient stable matching with such procedure is lower then with random
tie-breaking procedure.
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6 Discussion

Interval orders are, in fact, a special case of the partial orders. So the results,
obtained for matching with preferences, being partial orders, are directly
applicable to our problem statement. Although there are plenty of papers,
analysing problem setting with partial orders preferences, none of them solves
the same task as ours. Some of the papers (see, for example, [8]) consider
more restrictive definitions of stability: super-stability or strict stability. In
our setting this two concepts are, in fact, the same. Super-stability, as the
original Gale-Shapley stability, requires no blocking pair property, but uses
a different definition of a blocking pair. An and a university are said to be
a blocking pair if the applicant weakly prefers the university to her current
match, and university weakly prefers applicant to any of its current students.
It is obvious that super-stable matching may not exist. If the set of super-
stable matchings is non-empty, it forms a distributive lattice, so there exists
a unique applicant-optimal matching.

Novel paper [4] assumes the firm-worker model where firms does not have
sufficient information to rank potential employees and at the beginning has
partial order preferences. Additional information may be obtained via inter-
views. Authors construct a mechanism, which allows to find firms-efficient
(or employee-efficient) stable matching and minimize number of interviews.
The main difference with our setting is that firms are assumed to have un-
known to themselves strict preferences over employees, while in our setting
universities are assumed to be truly indifferent.

Paper [7] is one of the closest to our setting. Authors use the same
definition of stability and construct a mechanism, which finds a men-efficient
stable matching. Their result has two main differences with ours. First, their
mechanism may not find an efficient stable matching, even it is clear, that
efficient stable matchings always exist. Second, they do not provide criteria
of one-side efficiency of some particular matching.

7 Conclusion

In this paper we analyse an extension of the classical university-applicant
Gale-Shapley model, where we allow preferences of the universities be inter-
val orders. This extension covers admission systems, where scoring is used
for ranking applicants, but scoring method may have some error. We found
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out that stable matching always exists and can be found via deferred ac-
ceptance procedure. Unfortunately, applicant-proposing deferred acceptance
procedure may produce an applicant-inefficient stable matching. Our first
result is a criteria, which allows to determine, whether some particular sta-
ble matching is applicant-efficient and improve a matching, if necessary. Our
results has direct practical implications in centralized admission mechanisms.

Unfortunately, the mechanism, based on application of this criteria, is not
strategy-proof. So, we propose another mechanism, which is strategy-proof
and have reduced chances of obtaining inefficient stable matching under DA
with applicants proposing.
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