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Abstract

This paper studies how constraints on a decision-maker impede information trans-

mission from multiple experts who share the same preferences with the decision-maker.

The experts have no ex-ante conflicts of interests with each other since they can only

observe some dimensions of a state where they are interested in and have their own areas

of expertise. However, the constraints create strategic tensions hindering revelation of

information that would otherwise be completely transmitted. I characterize (informa-

tive) prefect Bayesian equilibria under various forms of the constraints. First, I identify

the extent of the constraints to which full information revelation is possible. Second, I

show that there exist partially revealing equilibria irrespective of the constraint level.

Finally, I analyze the effect of the constraint level on social welfare. Counterintuitively,

the less binding constraints do not necessarily guarantee Pareto-superior outcomes.

JEL classification: D82; D83

Keywords: Strategic information transmission; Multidimensional cheap talk; Multiple

senders

1 Introduction

Oslo’s city council in Norway halted a project to construct a new museum for an interna-

tionally famous painter, Edvard Munch, in 2011. Even though the city already spent three

years and $19 million on the project, council members have shown reservations due to budget

deficit. Oslo spent $300 million on the FIS (Fédération Internationale de Ski, International

Ski Federation) Nordic World Ski Championships in 2011 and it was far beyond an originally

estimated cost in 2005 (Mohsin (2012)).

I use the previous episode to make an example to build a model that analyzes the effects

of constraints on strategic information transmission. Suppose that you are a member of
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city council and need to make decisions about building a new art museum and funding an

international sports event. Assuming that you are unfamiliar and disinterested with these

projects, to make better decisions, you ask two experts to estimate the costs of projects

and the economic benefits. Each expert has expertise only in one project and represents

interested groups in that project. Given the city’s available budget, the experts submit

unverifiable reports respectively. Based on their statements you need to allocate the fixed

budget. How do you know whether they reveal accurate estimates or overestimate the benefit

and under-evaluate the cost? If they do not reveal their estimation precisely, how can you

infer correctly from ambiguous reports?

Policymakers depend on experts when they need to make decisions based on factors that

are unknown to them. However, interested experts may be apt to exaggerate a situation to

pull decisions toward their own interests when their advices are unverifiable.1 Anticipating

overstatements, the policymakers, in turn, respond to the experts by underestimating their

reports. As a result, the policymakers can obtain only equivocal information from the experts

(Crawford and Sobel (1982)). The previous example illustrates that the introduction of

constraints may make matters worse. The experts compete with each other for the limited

budget in addition to conflicts of interests.

The purpose of this paper is to study how constraints on a decision-maker (receiver)

impede information transmission from experts (senders) even if the decision-maker shares

the same preferences with the experts.2 Informational flow is measured by building an

economic model that characterizes how much tensions between the decision-maker and the

experts are induced according to the level of the constraints. In the model, the senders can

observe only one dimension of a state and each sender’s payoff is only determined in the

observed dimension and independent of the other. The uninformed receiver consults with n

senders who share common interests with her in each dimension and makes an n-dimensional

decision that is limited by the constraints. The utility level of each agent is determined by

both the state and the receiver’s action. The receiver has the same initial preference as each

sender in each dimension of the state.

Since the constraints impose a limit on the receiver’s action, an optimal decision for the

receiver might not be consistent any more with the senders. This inconsistency gives rise to an

endogenous interim bias between each sender and the receiver, leading to uncertainty about

their preferences. Consequently, each sender needs to take the other senders’ preferences into

account despite ex-ante independence of the others since a sender’s payoff is ex-post related

with the other senders through the receiver’s action.

It is both the direction and the extent of the constraints that decide the level of infor-

mation transmission from the senders to the receiver. Given a specific condition, e.g. if an

1There is a limit to the extent that a decision-maker can obtain information from experts even with

verifiable messages. See Section 2 Related literaure.
2Hereafter, an adviser is referred to informer, expert, or sender while a policymaker is denoted by decision-

maker, or receiver. Through the paper, I use male pronoun for a sender and female pronoun for the decision-

maker.
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action is bound only in one dimension, information can be wholly transferred irrespective of

the level of the limit. Generally, as long as the constraint is non-severe, i.e. with some pos-

itive probabilities the receiver can take an action that satisfies all senders, full information

revelation is possible since expected loss by message-manipulation is larger than expected

gain.

Even if the constraint is so strict that it is impossible for information to be sent completely,

the senders can still transfer meaningful messages to the receiver. Each dimension of the state

is divided into segments and the senders reveal which segment the state belongs to.3 Finer

partitions imply more informative messages since information is partially transmitted in terms

of partitions. In partially revealing equilibria, the less binding constraints do not necessarily

guarantee more informative transmission; on the contrary, they may hinder more precise

information transfer. This leads to a counterintuitive result that the less severe constraint

might induce Pareto-inferior outcomes.

To focus primarily on the effect of the constraint on information transfer, I mainly study

the common interest case where there is no ex-ante bias between the senders and the receiver.

In Section 5, I extend the model to allow senders to differ from each other in preferences over

decisions even without the constraint. It does not affect the qualitative nature of the results

in partial equilibria. The receiver would better get advices from senders who have different

preferences each other rather than senders who shares the same interests in some dimensions

and irrelevant in others.

The paper is organized as follows. Related literature is discussed in Section 2. The

model is presented in Section 3. The level of the constraints is defined into two categories

to identify the conditions under which full information revelation is possible. In section

4, I show how the constraint causes an interim bias between agents and characterize fully

revealing equilibrium. Section 5 demonstrates the existence of partially revealing equilibrium

irrespective of the constraint level. I elucidate the main results with simplified examples. In

Section 6, I extend the model to check robustness and discuss implication of modification.

2 Related literature

This paper is closely related with Ambrus and Takahashi (2008) where the shape of the state

space decides the extent to which information is transmitted. Ambrus and Takahashi show

that full information revelation is decided by the direction and magnitude of biases between

agents induced by exogenously given constraints. I make a constraint endogenous so that

I can show how information flow affected by the level of the constraint. I characterize all

equilibria including partially revealing equilibria according to the level of constraints that

shapes an action space while Ambrus and Takahashi focus only on possibility of a fully

revealing equilibrium.

3The method is originally developed by Crawford and Sobel (1982) where a receiver get a partially revealing

message from a sender who has a constant and exogeneous bias against the receiver
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Che and Kartik (2009) study the same case as this paper in which experts and a decision-

maker have no ex-ante conflicts. However, the experts and the decision-maker have different

prior beliefs that lead to an interim bias that hinders information flows. The experts can

acquire more precise information with a higher cost. In such cases, the decision-maker is

better off getting advices from an expert who has a different prospect rather than the other

who has similar view since the different opinions encourage an adviser to obtain accurate

information at any cost. Kartik (2009) and Kartik, Ottaviani and Squintani (2007) approach

the issue of the effect of costs on information transmission from a different perspective:

intentional misreporting charges psychological costs of the sender. However, in this paper,

the senders neither obtain information with costs nor suffer from manipulated reports directly.

The senders’ messages are purely cheap and the cost is only decided by the receiver’s action

regardless of the senders.

The paper is also similar to Alonso, Dessein and Matouschek (2008) in regard that the

receiver makes a two-dimensional decision depending on uni-dimensionally informed senders.

In their model the senders care about each other as well as the receiver since the senders

partially share common interests induced by the receiver’s decision. Each sender is directly

affected by not only her own dimension but also the other dimension. However, in this paper,

the senders are indifferent to different dimensional decisions.

This paper complements the literature on cheap talk, strategic information transmission,

and persuasion. The key differences with the literature are as follows. First, in this model

there are no ex-ante biases in the preferences between the senders and the receiver while in

the literature the senders have either state-dependent or state-independent preference differ-

ences against the receiver.4 The interested experts intentionally add deceptive noises into

unverifiable messages to induce the decision-maker to take their preferred actions. Respond-

ing to purposefully ambiguous, the decision-maker exploits the tensions between opposing

senders who want to pull the decision-maker toward their own directions (Gentzkow and

Kamenica (2012)) and is fully informed as a consequence of rebuttals (Krishna and Morgan

(2001)). If the messages are verifiable, the experts reveal the truth if and only if truth-telling

is consistent with their own interests. Otherwise, they pretend to be ignorant (Shin (1994,

1998), Bhattacharya and Mukherjee (2011)). However, there is no ex-ante conflicts in this

paper.

Second, the senders are not comprehensive observers; they can partially observe the state-

dimension in which they are interested while the senders in the literature can observe all

dimensions of the state completely. Multidimensionality causes informational spillover be-

tween dimensions either leading to full information revelation even without sequential debate

(Battaglini (2002)) or contrarily restricting revelation (Levy and Razin (2007)). Even the ex-

pert with state-independent preferences can persuade the receiver with unverifiable messages

4See Dziuda (2011), Li and Madarász (2008), Morgan and Stocken (2003) and Wolinsky (2003) for discus-

sions about strategic information transmission in various points of view when a receiver is uncertain about a

sender’s preferences.
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since multidimensionality makes cheap talk reliable (Chakraborty and Harbaugh (2010)).

However, this spillover effect depends on the fact that the senders perfectly observe the re-

alized state in every dimension. Consequently, the receiver in this paper cannot throughly

exploit the strategic tensions in multiple dimensions.

Finally, the receiver cannot commit a mechanism before the senders report on the observed

state. If the receiver can commit to a mechanism, she can elicit significantly more information

than the senders would like to transfer (Wolinsky (2002)). Glazer and Rubinstein (2004,

2006) show that a mechanism is “credible”, i.e. satisfying sequential rationality, if a state

is finite and a decision is binary. Sher (2011) represents that the credibility in Glazer and

Rubinstein (2004, 2006) is generalized depending on the assumption that the receiver’s utility

function is a concave transformation of the sender’s. Kamenica and Gentzkow (2011) study

a mechanism in which a sender commits to a signaling rule before informed in the view of

the sender. However, there is neither a transfer nor a commitment in this paper.

3 Model

There are two informers, call them Sender 1 and Sender 2, and a decision-maker called the

receiver.5 A state, θ, is uniformly distributed on a state space Θ = [0, 1]× [0, 1]. After nature

chooses a state, θ′ = (θ′1, θ
′
2), each sender partially observes the state; Sender 1 observes

θ′1 while Sender 2 observes θ′2. The senders simultaneously and privately send messages,

mi ∈ Mi where Mi is any infinite set, to the receiver. After observing the messages, the

receiver updates her belief β about the state and takes an action a = (a1, a2) ∈ A = Θ.

Denote the strategy for each sender as a function µi: Θi 7→ Mi and the strategy for the

receiver as a function α : M1 ×M2 7→ A.

Sender i’s payoff given by USi(ai, θi) depends only on the observed state, θ′i, and the

action, ai, in the same dimension.6 USi(ai, θi) is twice continuously differentiable and USi
11 <

0 < USi
12 denoting partial derivatives by subscripts in the usual way. For simplicity, I assume

that the maximum value of USi is equal to zero. The receiver’s payoff, given by UR(a, θ), is

decided by the difference between the state and the action in each dimension: UR =
∑
USi .

Since there is no preference bias between the senders and the receiver in each dimension,

USi(θi, θi) = UR(θ, θ) = 0.

However, the receiver cannot always follow messages from the senders since her action

is limited by a constraint. Suppose that the receiver’s action needs consumption of good or

service x ∈ X = Rn+. Demanded X is matched by a correspondence Γ: A ⇒ X. Let pi ≥ 0

denote the price of good or service xi and w ≥ 0 denote the receiver’s available wealth. Then,

a set {p1, p2, . . . , pn, w} that is common knowledge constitutes a budget constraint:
∑
pixi ≤

w. This budget constraint put limits on the receiver’s choice set as follows:
∑
piΓ(A) ≤ w.

5For simplicity, I focus on the case of two senders and one receiver cases. In Section 6, I study the cases

where there are more than two senders.
6Hereafter, superscripts of S and R denote a sender and a receiver.
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From now on, let Γ(a) = a for simplicity.7

In following sections, I show how a constraint level affects the level of information trans-

mission. Particularly, I identify necessary conditions on the constraint for fully revealing

equilibria to exist in Section 4. The dichotomy of the constraint level is useful and conve-

nient for the analysis.

Definition 1. Given {p1, p2, w}, let āi = w/pi be a maximal action on each dimension. If

min {ā1, ā2} < 1, then a constraint is severe. Otherwise, a constraint is non-severe.

The constraint is classified by a boundary condition in an action space limited by itself.

If the highest action that the receiver can take is on the upper bound in each dimension, i.e.

āi = 1, then the constraint is non-severe. Otherwise, the constraint is severe (see Figure 1).

As w → 0, the constraint more severely restricts the action space.

(a) Severe constraint (b) Non-severe constraint

Figure 1: Constraint level

4 Full information revelation

In this section, I characterize a fully revealing equilibrium. First, I show how the constraint

creates divergences in interests between the senders and the receiver, even when preferences

are ex-ante aligned. Then, I identify conditions under which full revelation is possible despite

the constraint.

7I discuss this assumption in detail later in Section 6
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4.1 Interim bias

Suppose that after Sender i observes his dimension of the state, θ′i, he reveals the state truth-

fully. Given (m1,m2) = (θ′1, θ
′
2), the receiver confronts the utility maximization problem:

maxaU
R such that

∑
piai ≤ w. Figure 2 delineates how the credulous receiver responds to

the message. If θ′1 ≤ (w−p2θ
′
2)/p1, a point (θ′1, θ

′
2) is chosen. However, if θ′1 ≥ (w−p2θ

′
2)/p1,

the receiver chooses the point t which deviates from Sender 1(2)’s best point a(b).

Lemma 1. Suppose that the senders tell the truth. When a constraint is non-binding,∑
pimi ≤ w, the receiver takes the action indicated by the message pair sent by the senders.

Otherwise, the receiver takes an action on the boundary of the constraint.

Proof. See Appendix

Figure 2: Receiver’s response to Sender 2’s messages

Since the receiver shares common interests with each sender in each dimension, she takes

the action suggested by the senders as long as the constraint is non-binding. However, when

the constraint is binding, the receiver optimizes by deviating from the point suggested by the

senders, inducing an interim bias. Observe that due to the direction of the constraint, the

interim biases of the senders are in a sense analogous to an upward biases.

4.2 Fully revealing equilibrium

In the previous section, I show that the senders share common interests with the receiver

only if the constraint is not binding. How do the senders respond to the receiver without
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knowing whether the constraint is binding or not? It depends on each sender’s prior belief

on the others.

First, I identify whether each sender can get benefit from truth-telling regardless of the

others. Without loss of generality, I focus on Sender 2. For simplicity, let p1 = 1 and p2 = p.

Suppose that the constraint is non-severe. Given (θ′1, θ
′
2), Sender 2 expects Sender 1 to report

θ1 truthfully to the receiver but does not know the value of θ′1. Therefore, Sender 2’s expected

payoff depends on his belief about the other dimension of the state θ′1:

E(US2
t ) =

∫ w−p θ′2

0

US2(θ′2, θ
′
2)dθ1 +

∫ 1−w+p θ′2

0

US2(θ′2 −
p

p2 + 1
θ1, θ

′
2)dθ1 (1)

Equation (1) represents Sender 2’s expected utility from truth-telling. The first term in (1)

denotes the expected payoff when the realized state is unbound and the second term indicates

expected payoff when bounded. Observe that p
p2+1θ1 reflects the interim bias between Sender

2 and the receiver and that it increases as θ′1 rises.

If Sender 2 believes that the state is bound, he may want to manipulate message m2. As

shown in Figure 2, by over-reporting the state, θ̂′2 > θ′2, Sender 2 persuades the receiver to

choose the point o that is closer to his best point b than point t. However, under-reporting

the state, θ̌′2 < θ′2, induces a worse outcome, the point u, that reduces sender 2’s payoff.

Depending on the state, overstating has counteracting effects on the expected utility. Sending

an overstated message that is ε higher than the real state, the sender 2 expects

E(US2

d ) =

∫ w−p θ′2−p ε

0

US2(θ′2 + ε, θ′2) dθ1 +

∫ 1−w+p θ′2+p ε

0

US2(θ′2 +
p2

p2 + 1
ε− p

p2 + 1
θ1, θ

′
2) dθ1

(2)

The first term in (2) shows the negative effect on the expected payoff due to the interest

divergence induced by an ε higher message when the state is unbound. The second term

represents the positive effect on the expected payoff by decreasing the interest gap by p2

p2+1ε

when the state is bound. These two effects show the ex-ante trade-off of overstating the state

in an unbound and a bound interval. Proposition 1 identifies the condition for revealing full

information. Hereafter, I refer only to perfect Bayesian equilibrium.

Proposition 1. There exists a fully revealing equilibrium if and only if a constraint is

non-severe.

Proof. See Appendix

Overstating becomes more compelling as θ′2 increases since the probability that θ′1 lies

in an unbound interval decreases and the positive effect prevails over the negative effect.

However, as long as the constraint is non-severe, a misrepresentation loss is always larger than

the associated gain irrespective of θ′2. Therefore, the senders sincerely report the states; the

receiver updates her belief based on truthful messages and makes a decision. This constitutes

a perfect Bayesian equilibrium. The existence of fully revealing equilibrium with a given

wealth level guarantees full information revelation with the higher wealth level.
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Proposition 2. Suppose that given w = w there exists a fully revealing equilibrum. Then,

there exist other fully revealing equilibria for ∀ŵ such that w ≤ ŵ.

Proof. Without loss of generality, I focus on Sender 2. From (1) and (2)

d

dw
(E(US2,t)− E(US2,d)) = −US2(0,−ε)

By assumption,

−US2(θ′2 + ε, θ′2) > 0

Before the constraint puts a limit on the receiver’s choice set, the preferences between the

senders and the receiver are ax-ante aligned; given prices, more wealth means a less binding

constraint. It is intuitive that if full revelation is possible under a more strict condition, then

full revelation is also attainable under a less strict condition.

Finally, suppose that an action is costless in one dimension. At least one sender is perfectly

aligned with the receiver in interests. It keeps the other sender from overstating that an

interim bias against the receiver is independent of the level of the constraint. Consequently,

information is completely transmitted.

5 Partial information revelation

In this section, I shows that information can be partially transmitted even though a con-

straint is so severe that full revelation is impossible. First, I characterize partially revealing

equilibria. Then, examples are provided to elucidate the main results of the paper explic-

itly. Particularly, I focus on a discontinuity in the number of steps between full and partial

revelation. Finally, the key characteristic results are used for welfare analysis.

5.1 Partially revealing equilibrium

Crawford and Sobel, hereafter referred to as CS, transform unidimensional state space into

partitions to characterize equilibria. Following CS, let ρ(n) ≡ (ρ0(n), . . . , ρn(n)) where

ρ0(n) = 0 < ρ1(n) < · · · < ρn(n) = 1 denote a partition with n steps in one dimen-

sion of the state space [0, 1]2. A point ρji (n) is the j-th point in an n-step message of

Sender i. Given (ρ1(n1), ρ2(n2)), the state space transforms into a rectilinear grid of n1×n2

cells. If Sender 1 sends a message m1 ∈ (ρj1, ρ
j+1
1 ), j = 0, . . . , n1 − 1, and Sender 2 sends a

message m2 ∈ (ρk1 , ρ
k+1
1 ), k = 0, . . . , n2 − 1, respectively, then the receiver identifies a cell

((ρj1, ρ
k
2), (ρj+1

1 , ρk+1
2 )) in the rectilinear grid where the state must lie. Given the grid, for

each message pair (m1,m2), the receiver updates her belief and takes an action to maximize

her expected utility as follows:

(a1, a2) ∈ argmax−
∫ ρj+1

1

ρj1

∫ ρk+1
2

ρk2

UR(a1, a2|m1,m2)dθ2dθ1 s.t p1a1 + p2a2 ≤ w
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If the constraint is not binding, the receiver takes an action such that a = E(θ | m); otherwise,

the receiver takes an action on the boundary of the constraint. The following theorem

characterizes a partially revealing equilibrium when messages are transmitted in terms of

partitions.

Theorem 1. Suppose that the constraint is severe. Then, there exists an n1 × n2-grid

equilibrium for ∀ integers ni such that 1 ≤ ni ≤ n∗i (p, w) < ∞ if and only if the following

conditions hold.

(I.T.) ρ0
1(n1) = ρ0

2(n2) = 0 and ρn1
1 (n1) = ρn2

2 (n2) = 1

(A) For j = 1, . . . , n1 − 1

n2−1∑
k=0

[US1(a((ρj1, ρ
j+1
1 ), (ρk2 , ρ

k+1
2 )), ρj1)− US1(a(ρj−1

1 , ρj1), (ρk2 , ρ
k+1
2 )), ρj1)](ρk+1

2 − ρk2) = 0

For k = 1, . . . , n2 − 1

n1−1∑
j=0

[US2(a((ρj1, ρ
j+1
1 ), (ρk2 , ρ

k+1
2 )), ρk2)− US2(a(ρj1, ρ

j+1
1 ), (ρk−1

2 , ρk2)), ρk2)](ρj+1
1 − ρj1) = 0

(C) p1 ρ
n1−1
1 + p2 ρ

n2−1
2 ≤ w

An n1 × n2-grid equilibrium consists of µi, α and β such that

µ1(θ′1) = m1 ∈ (ρj1, ρ
j+1
1 ) if θ′1 ∈ (ρj1, ρ

j+1
1 )

µ2(θ′2) = m2 ∈ (ρk2 , ρ
k+1
2 ) if θ′2 ∈ (ρk2 , ρ

k+1
2 )

Given m1 ∈ (ρj1, ρ
j+1
1 ) and m2 ∈ (ρk2 , ρ

k+1
2 ), for ∀m ∈ m1 ×m2

α(m) ≡ arg max
a

∫ ρk+1
2

ρk2

∫ ρj+1
1

ρj1

UR(a, θ)β(θ1, θ2 | (m1,m2))dθ1dθ2 s.t p1a1 + p2a2 ≤ w

Given Θ̄ = {(θ1, θ2) | µi(θi) = mi}

β(θ | m) =

{
f(θ)∫

Θ̄
f(θ)dθ

if Θ̄ 6= ∅ where f is a uniform pdf

0 otherwise

Proof. See appendix

In Theorem 1, (I.T.) identifies both initial and terminal conditions for an n1(n2)-step

partition for Sender 1(2). (A) shows an arbitrage condition decided by each boundary point

between two adjacent intervals; when a state is realized at one of the boundaries, θ′ = ρj ,

the sender i needs to be indifferent between sending higher message mi ∈ (ρj , ρj+1), and

lower message mi ∈ (ρj−1, ρj). Finally, (C) is an auxiliary condition to guarantee that, given

θ′ ∈ (ρni−1, ρni), the sender i does not send a message such that mi ∈ (ρj−1, ρj) for j 6= ni.

Section 3.2 showed that full information revelation is impossible if a constraint is severe.

By Proposition 1, given p1 = p2 = 1, there does not exist a fully revealing equilibrium when
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w < 1. Now, I provide the simplest example of partial revelation for this case.

Example 1. Suppose that utilities are quadratic. For simplicity, let p1 = p2 = 1 and w < 1.

I assume that each sender uses a symmetric 2-step strategy ; there is a point, θ̄, such that if

the realized state, θ′, is lower than θ̄, sender i sends a low message, l, and otherwise sends

a high message h. Sequentially, a state space is partitioned into 4 message cells as shown in

Figure 3(a). After receiving each message pair (m1,m2) = (s1, s2) for si ∈ {l, h}, the receiver

updates her belief and takes an action to maximize her expected utility. Table 1 summarizes

induced actions by each message pair.

Table 1: Induced action by message pair

message pair (m1,m2) induced action (a1, a2)

(l, l) ( θ̄2 ,
θ̄
2 )

(h, l) (w2 + θ̄
4 ,

w
2 −

θ̄
4 )

(l, h) (w2 −
θ̄
4 ,

w
2 + θ̄

4 )

(h, h) (w2 ,
w
2 )

For θ′ = θ̄, the senders must be indifferent between sending l and h yielding an arbitrage

condition:

θ̄ =
4

7
w +

9

28
− 1

7

√
2w2 + 4w +

81

16
for 0 ≤ w < 1 (3)

Figure 3(b) outlines Equation (3) showing a monotonic relationship between the arbitrage

point and the wealth level in equilibrium. As w increases, θ̄ moves closer to the mid point of

the state space [0, 1]; the length of the low interval becomes shorter while that of the high

interval becomes longer. Consequently, the senders are ex-ante more likely to send a low

message.

Theorem 1 indicates the possibility of multiple equilibria with grids composed of various

numbers of cells. However, there exists an upper limit on the number of intervals, n∗, that

can be sustained in equilibrium. I elucidate characteristics of equilibrium partitions to prove

that n∗ not be infinite.

Lemma 2. Let δi(n) denote the length of the i-th segment, i.e. | ρi(n) − ρi−1(n) |, in

a n-step partition. Given a severe constraint, an equilibrium partition ρ∗(n) satisfies the

following condition: δi∗ > δi−1∗ for i ∈ {1, . . . , n}.

Proof. Suppose that δi ≤ δi−1. Then δni
i ≤ 1/ni. This contradicts the assumption that ρ∗

is an equilibrium since it fails to satisfy Theorem 1 (C).

High segments in each partition constitutes northeastern cells that are more limited by a

constraint. In equilibrium, northeastern cells need to be larger than southwestern cells to be
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(a) 2-step symmetric messages

0.0 0.2 0.4 0.6 0.8 1.0
w0.0

0.1

0.2

0.3

0.4

0.5

Θ

(b) Arbitrage condition

Figure 3: Symmetric 2 × 2 grid equilibrium

balanced at each arbitrage point. Especially, a northeasternmost cell is directly controlled

by Theorem 1 (C). Figure 4 illustrates what happens if Lemma 2 and Theorem 1 (C) are not

satisfied. Suppose that Sender i sends a message mn−1
i = [ρn−2

i , ρn−1
i ] if θi ∈ [ρn−2

i , ρn−1
i ]

and mn
i = [ρn−1

i , ρni ] if θi ∈ [ρn−1
i , ρni ]. Given mn

i , the receiver takes ani ∈ [an−1
i , ρn−1

i ] instead

of a′ni ∈ [ρn−1
i , ρni ] due to a constraint. Therefore, there exist θi ∈ m′i ⊂ m

n−1
i where Sender

i would rather send mn
i than mn−1

i . As a result, a lower segment cannot be longer than a

higher segment. This sufficiently satisfies monotonicity condition in CS.

Figure 4: Non-equilibrium message parition

Lemma 3. Suppose that there exist n∗ informative equilibria. Then, Equilibrium partitions

satisfy a monotonicity condition:

Given equilibrium partitions ρ∗(n̂) and ρ∗(ñ) with n∗ ≥ n̂ > ñ, ρ∗i(n̂) < ρ∗i(ñ) for 1 ≤ i ≤ ñ.

Proof. See appendix

Note that to satisfy monotonicity we do not depend on additional assumptions about

utilities that are needed by CS’s Theorem 2.

Lemma 4. The maximum number of partition n∗ is not infinite in equilibrium.

12



Proof. See appendix

Now, I show that n∗i can not be infinite. Suppose that there exists an ni × nj-grid

equilibrium. As ni increases, the length of the highest segment δni decreases according to

Lemma 2. However, the length of the highest interval cannot be shorter than the threshold

level determined by Theorem 1 (C). If n∗i is infinite, it is contradicted by Lemma 2 and

Theorem 1 (C).

Let us return to Example 1 to see what happens if the senders increase steps in their

partitions.

Example 1. (Continued) Each sender uses a symmetric 3-step strategy. Figure 5 (a)

depicts how an equilibrium message partition is divided into three segments. Each line

delineates the movements of each arbitrage point ρi=1,2(3) between intervals as w changes.

Given w, the vertical distances between lines represent δi=1,2(3), the lengths of each interval.

0.2 0.4 0.6 0.8 1.0
w

0.1

0.2

0.3

0.4

Θ

(a) 3-step equilibrium case

0.2 0.4 0.6 0.8 1.0
w

0.1

0.2

0.3

0.4

Θ

(b) 4-step equilibrium case

Figure 5: Constraint severity and equilibrium partitions

Now, suppose that the senders adopt a symmetric 4-step strategy. Given w, each seg-

ment in the 4-step message is smaller than the corresponding segment in the 3-step message

by Lemma 3 (see Figure 5 (b)). Monotonicity leads the result that ρi(3) > ρi(4) for 1 ≤ i ≤ 3.

Before increasing the strategy step above four, I compare equilibrium partitions in the

model with those in the CS model. Given quadratic utilities, an equilibrium partition in the

CS model satisfies the following condition:

(ρics − ρi−1
cs )− (ρi−1

cs − ρi−2
cs ) = 4b > 0 (4)

where b is the bias between the sender and the receiver and the maximum number of steps is

n∗cs =

⌈
−1

2
+

1

2

√
1 +

1

b

⌉

13



where dye denotes the smallest integer greater than or equal to y. Even though this model

shares the important characteristic with the CS model such that (ρi− ρi−1) > (ρi−1− ρi−2),

n∗ is not identified in an explicit form. Note that the arbitrage conditions in Theorem 1 are

not second-order linear difference equations like Equation (4), which represents an arbitrage

condition in the CS model. With an n × n-grid, the arbitrage conditions in this model are

merged into a polynomial of degree 2n− 1. Therefore, to identify n∗, we have nothing to do

but numerically calculate the value since there is no general algebraic solution for polynomial

equations of degree five or higher by the Abel-Ruffini theorem (Knapp (2006)).

5.2 Discontinuity between partial and full revelation

The maximum number of steps, n∗(p, w), is a function of the constraint that endogenously

leading to an interim bias. In the previous section, I show that there exist a limit to the

extent that the senders can increase message segments in their partitions. What happens to

n∗(p, w) if the constraint is slightly less than the feasible level for full revelation, i.e. w = 1−ε
when pi = 1? One might expect that as ε→ 0, the constraint is less binding, so the senders

can use more finely gridded message spaces. However, counterintuitively, only the least fine

grid, i.e. a 2× 2-grid, is feasible as ε→ 0.

Corollary 1. In equilibirum, the maximum number of cells in a grid increases as a constraint

become less severe. However, it decreases beyond a threshold of the constraint.

Sketch of proof. Section 4.1 shows that when n∗ is infinite, it is contradicted Lemma 2 and

Theorem 1 (C). Corollary 1 can be interpreted in the same context. When w is small, the

monotonicity condition controls n∗(w) for the senders; it requires a sufficiently high level of

w that δi∗ > δi−1∗ for i ∈ {1, . . . , n}. On the contrary, when w is large, n∗(w) is restrained

by an incentive compatibility condition: p1 ρ
n1−1
1 + p2 ρ

n2−1
2 ≤ w. Given w, n∗(w) is decided

by whichever is the stronger.

As the senders increase steps in messages, cells in the state grid multiply while size of

each one shrinks. The monotonicity condition requires cells to be more densely packed in the

southwest and less so in the northeast of the grid. However, by the incentive compatibility

condition, the northeasternmost cell must be bigger than a threshold size settled on by the

senders’ steps. These two conditions squeeze the feasible level of the constraint for the n1×n2

grid from both the low and the high bound of the state as the senders increase message steps.

Example 1. (Revisited) Figure 3 (b) shows that a 2×2-grid equilibrium is possible as long

as w > 0 while a 3×3-grid equilibrium exists only if 0.51 < w < 0.88 as shown in Figure 5 (a).

The range of w necessary for the existence of a 4×4-grid equilibrium is even smaller than that

for a 3× 3-grid equilibrium: 0.58 < w < 0.83 (see Figure 5 (b)).8 For ∀n ≥ 2, δ̄n(n) = 1/2 is

the threshold of the highest segment length in the partition satisfying Theorem 1 (C). Given

8The numerical values are approximate values calculated by Wolfram Mathematica 8. The program code

can be provided by a request.
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w = 1 − ε, only the 2 × 2-grid equilibrium is consistent with the condition δn(n) > 1/2 as

ε → 0 since δj(j) > δk(k) for 2 ≤ j < k by Lemma 2. Figure 6 shows that the maximum

feasible number of equilibrium partitions does not changes monotonically. The range of w for

more segments in the partition is truncated from both ends as the segment number increases.

Consequently, the maximum number increases up to n∗(w), then decreases as w rises. Recall

that n∗(p, w) is not infinite.

Figure 6: Maximum number of partitions in equilibrium

5.3 Welfare analysis

As the senders increase the number of steps in partitions, more finely divided cells provide the

receiver with more precise information. Since the senders share the same interests with the

receiver in non-binding cells, the increased accuracy in those cells raises the expected payoffs

to the senders. However, it also clarifies conflicts with the receiver in binding cells. The

remaining question is whether increased efficiency in the non-binding cells exceeds the interest

divergence in their binding counterparts as the message space is more finely partitioned.

Proposition 3. The Sender (Receiver) always strictly prefers the most informative equilib-

rium where an equilibrium message space consists of the maximum number of steps (cells):

given {p1, p2, w}, EU∗i with a n∗1×n∗2-grid > EU i with a n1×n2-grid for n∗1×n∗2 > n1×n2

and i = R,S1, S2.

Proof. See appendix

Proposition 3 shows that social welfare is maximized with the most finely divided grid

in equilibrium. The benefit of more cells prevails over the cost since the cells are densely

clustered below the constraint by a monotonicity condition. Both the senders and the receiver

can benefit from this increased precision.

Preferences for more cells induce counterintuitive outcomes when combined with the non-

monotone characteristics of maximum steps in equilibrium. I show how equilibrium welfare

changes as a constraint becomes more severe. For comparison, I only consider the most

informative equilibrium outcome for a given constraint level.

Theorem 2. Given {p1, p2, w}, let G(p1, p2, w) denote the maximum number of cells among

equilibrium grids. Suppose that i ∈ {R,S1, S2} gets U i∗(p, w) in the most informative

equilibrium. Fix p1 and p2, then U i∗(p1, p2, w) increases in w ∈ [0, w∗] and decreases in

w ∈ [w∗,max{p1, p2}) where G(p1, p2, w
∗) > G(p1, p2, w).

15



Proof. It holds by Corollary 1 and Proposition 3.

Theorem 2 states that social welfare changes non-monotonically as a constraint level

becomes less binding. The intuition behind Theorem 2 is clear once we recall that the number

of equilibrium partitions reaches a peak at an intermediate level rather than at a low level

of the constraint. The less binding constraints do not necessarily guarantee Pareto-superior

results.

Figure 7 illustrates that given p1 = p2 = 1, how the expected utility chagnes as w

increases. A solid line represents the expected utility in a 2 × 2-grid equilibrium and a

dashed line represents the expected utility in a 3 × 3-grid equilibrium. Recall that a 3 × 3-

grid equilibrium exists in a limited interval. There is a discountinuity at w = 1 since a

fully revelation equilibrim exists when w ≥ 1. The maximum expected utility in a severely

constrained interval can not be larger than the maximum expected utility in a non-severely

constrained interval since n∗ is not infinite.

0.2 0.4 0.6 0.8 1.0
w

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

EU

Figure 7: Maximum expected utility

6 Extension and discussion

Until now, I simplify the model to focus only on the effect of the constraint on information

transmission. This section modifies and extends the model. I discuss implication of the

variations in turn. Before discussion, I address two key assumptions that are fundamental to

the basic model and further modification.

Uniformly distributed prior beliefs and Hyperplane constraints. Nonuniformity in prior belief

with a linear constraint is in effect equivalent to uniform prior with a nonlinear constraint.
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Then, what happens if constraints are not hyperplanes but any compact subsets of a state

space. We can only answer a dichotomous question, the existence of a fully revealing equi-

librium, already discussed by Ambrus and Takahashi who show that both direction and

magnitude of biases decide the the existence. However, this model is hinged on the fact that

the direction and magnitude of biases are not exogenously given but endogenously deter-

mined by the constraints. Note that the consistent directions of biases are only necessary for

a partially revealing equilibrium.

Now, I modify the model one by one.

Multidimensional space. It does not change any key characteristics of the main results only

to extend the state space from two to n dimension if the union of each sender’s message set is

equal to the state space and the intersection is the empty set, i.e., ∪iMi = Θ and ∩iMi = ∅.
Conflicts of interests between the senders happen only through the receiver taking account

of the constraint that causes interim biases whose directions are constant. The uniform prior

belief leads to monotonicity in message partitions in a partially revealing equilibrium.

Overlapping dimensions. One might think if messages are overlapped in some dimensions,

∩iMi 6= ∅, the receiver can benefit from informational reaffirmation in those dimensions.

However, interim biases lead into different directions senders who share the same interests in

some dimensions but different preferences in others. As a result, the receiver gets different

messages about even the overlapped dimensions.

Heterogenous preferences. Exogenous biases, bi for Sender i, keep senders from revealing the

state truthfully. However, the receiver can exploit the tensions between senders who have

inconsistent interests but the same message space as in Krishna and Morgan. As opposed to

the previous common interest cases, the receiver can get more information from more senders

since some interim biases are aligned in the opposite directions.

In summary, a partially revealing equilibrium exists as long as prior beliefs are uniformly

distributed and an action space is limited by a hyperplane. Given the constraint, the receiver

would better get advices from senders who have different preferences each other rather than

senders who shares the same interests in some dimensions and irrelevant in others.
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Appendix

Proof of Lemma 1. UR is concave since the Hessian matrix of the receiver’s utility, H(UR)

is negative semi-definite:

H(UR) =

[
UR11 UR12

UR21 UR22

]
=

[
US1

11 0

0 US2
22

]
If
∑
piθ
′
i ≤ w, given (m1,m2) = (θ′1, θ

′
2), the receiver takes an action, (a∗1, a

∗
2) = (θ′1, θ

′
2)

since UR1 ((θ′1, θ
′
1), (θ′1, θ

′
1)) = US1

1 (θ′1, θ
′
1) + US2

1 (θ′2, θ
′
2) = 0. Otherwise, a∗ = maxaU

R such

that
∑
piai ≤ w. Then, there exists interior solution a∗ satisfying

UR
2

UR
1

∣∣∣
a=a∗

=
p2

p1
and

∑
pia
∗
i = w

Otherwise, there is a corner solution.

Proof of Proposition 1. Without loss of generality, I focus on Sender 2. First, I show that

a fully revealing equilibrium (FRE) exists ⇐ a constraint is non-severe. Suppose that there

does not exist a FRE. Then,

E(Ut)− E(Ud) = −
∫ w−p θ′2−p ε

0

US2(θ′2 + ε, θ′2) dθ1︸ ︷︷ ︸
>0

+

∫ 1−w+p θ′2

0

[US2(θ′2 −
p

p2 + 1
θ1, θ

′
2)− US2(θ′2 +

p2

p2 + 1
ε− p

p2 + 1
θ1, θ

′
2)]dθ1

−
∫ 1−w+p θ′2+p ε

1−w+p θ′2

US2(θ′2 +
p2

p2 + 1
ε− p

p2 + 1
θ1, θ

′
2) dθ1︸ ︷︷ ︸

>0

≤ 0 (5)

The first and the third terms on the right-hand side are positive by the assumption. To

guarantee that the second term is negative, 1 − w + p θ′2 > 0 for ∀ θ′2. Since θ′2 ≥ 0, w < 1.

This contradicts that the constraint is non-severe.

Using contrapositive, I show that a FRE exists⇒ a constraint is non-severe. If a constraint

is severe, ∃ θ′2 > w
p . In such cases, there does not exist a FRE since

E(Ut)− E(Ud) =

∫ 1

0

[US2(θ′2 −
p

p2 + 1
θ1, θ

′
2)− US2(θ′2 +

p2

p2 + 1
ε− p

p2 + 1
θ1, θ

′
2)]dθ1

< 0 (6)
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Proof of Theorem 1. A sufficient condition is easily proved by contrapositive. I show a

necessary condition by following the proof of Theorem 1 of Crawford and Sobel (1982). The

partition, ρ, is determined by (I.T), (A), and (C); (I.T.) are initial and terminal conditions.

(A) is an arbitrage condition where the senders are indifferent between induced actions by

the receiver for each partition at boundaries between partitions. Since Sender i considers

uncertainty in an observation of the other sender, (A) does not form a second-order nonlinear

difference equation as in CS arbitrage condition. (C) is an auxiliary condition to guarantee

that senders follow the signaling rule defined by the theorem, especially at the highest interval.

Let

M(ρ1) ≡ max{j : ∃ρ s.t 0 < ρ1 < ρ2 < · · · < ρj ≤ 1 satisfying (A) and (C)}

Since ρj+2 − ρj is bounded above zero for any solution (A) satisfying (C), M(ρ1) is finite

and uniformly bounded. Let n∗ ≡M(ρ1
∗) = sup0<ρ1≤1M(ρ1) for ∀ρ1 ∈ (0, 1], then n∗ is the

maximum number of steps. Given n = M(ρ1), M(ρ1) is continuous at ρ1 if ρn is less than

unity since ρn varies continuously with ρ1. Since M(ρ1) discontinuously varies by one and

M(ρ1 = 1) = 1, 1 ≤ n ≤ n∗. Therefore, if M(ρ1) = n and M(ρ1) is discontinuous at ρ1, ρ

satisfies (I.T.), (A), and (C).

Second, the receiver’s strategy is itself the best response to the message pair (m1,m2)

Finally, we show that the sender i follows the signaling rule in which mk
i ∈ (ρki , ρ

k+1
i )

is the best response to the receiver’s action strategy for Sender i whose observation, θ′i, is

located between ρki and ρk+1
i . For 0 ≤ j ≤ k ≤ l ≤ n and θki ∈ (ρk, ρk+1)

n−i−1∑
h=0

[USi(α((ρki , ρ
k+1
i ), (ρh−i, ρ

h+1
−i )), θki )− USi(α(ρji , ρ

j+1
i ), (ρh−i, ρ

h+1
−i )), θki )](ρh+1

−i − ρ
h
−i)

≥
n−i−1∑
h=0

[USi(α((ρki , ρ
k+1
i ), (ρh−i, ρ

h+1
−i )), ρki )− USi(α(ρji , ρ

j+1
i ), (ρh−i, ρ

h+1
−i )), ρki )](ρh+1

−i − ρ
h
−i)

≥ 0

n−i−1∑
h=0

[USi(α((ρki , ρ
k+1
i ), (ρh−i, ρ

h+1
−i )), θki )− USi(α(ρli, ρ

l+1
i ), (ρh−i, ρ

h+1
−i )), θki )](ρh+1

−i − ρ
h
−i)

≥
n−i−1∑
h=0

[USi(α((ρki , ρ
k+1
i ), (ρh−i, ρ

h+1
−i )), ρki )− USi(α(ρli, ρ

l+1
i ), (ρh−i, ρ

h+1
−i )), ρki )](ρh+1

−i − ρ
h
−i) ≥ 0

Proof of Lemma 3. There are two equilibrium partitions, ρ(n) and ρ(k) s.t n > k ≥ 1.

Suppose that δi(k) ≤ δi(n). Since a sum of each segment is equal to one in each partition,

δ1(n) + δ2(n) + · · ·+ δn(n) = 1 (7)

δ1(k) + δ2(k) + · · ·+ δk(k) = 1 (8)
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From (5)-(4)

(δ1(k)− δ1(n)) + (δ2(k)− δ2(n)) + · · ·+ (δk(k)− δk(n)) = δk+1(n) + · · ·+ δn(n) (9)

The left side of the equation is not positive while the right side is not negative. Therefore,

ρi(n) < ρi(k) since δi(k) > δi(n)

Proof of Lemma 4. Given {p1, p2, w} a space is separated by a budget constraint p1ρ
n1−1
1 +

p2ρ
n2−1
2 = w. For simplicity, I focus on Sender 2. By monotonicity of Lemma 3, ρn2−1

2 (n2) is

increasing function of n2. Then, there exists n∗2 satisfying that p1ρ
n1−1
1 + p2ρ

n∗2−1
2 ≤ w and

p1ρ
n1−1
1 + p2ρ

n∗2
2 > w.

Proof of Proposition 3. Let ρx ≡ (ρ0
x, a

1
x, . . . , a

n1+1
x ) be the partition that satisfies (A)

for j = 2, . . . , n1 with a0
x = 0, an1

x = x, and ρn1+1
x = 1. If x = ρn1−1(n1), then ρx = 0, and if

x = ρn1(n1 + 1) then ρx = ρ(n1 + 1) and (A) is satisfied for all j = 1, . . . , n1. Let ρy have

same characteristics for k = 2, . . . , n2. Then, the expected utility of Sender 1 is

EUS1(x, y) =

n1∑
j=0

n2∑
k=0

∫ ρj+1
x

ρjx

US1(α((ρjx, ρ
j+1
x ), (ρky , ρ

k+1
y )), θ1)(ρk+1

y − ρky)dθ1

dEUS1(x)

dx
=

∑
j

∑
k

dρjx
dx

[US1(α((ρj−1
x , ρjx), (ρky , ρ

k+1
y )), ρjx)− US1(α((ρjx, ρ

j+1
x ), (ρky , ρ

k+1
y )), ρjx)](ρk+1

y − ρky)

+

n1∑
j=0

n2∑
k=0

dα

dx

∫ ρj+1
x

ρjx

US1
1 (α((ρjx, ρ

j+1
x ), (ρky , ρ

k+1
y )), θ1)(ρk+1

y − ρky)dθ1

The first term on the right-hand side is positive by definition of ρ and Lemma 2. The

second term is nonnegative since dα/dx > 0 by Lemma 2, and the integral expressions are all

nonnegative by our assumption that US1
12 > 0. By the first-order conditions that determine

the receiver’s optimal choice of α(ρjx, ρ
j+1
x ). Without loss of generality, we could derive the

same result for Sender 2. The expected utility for the receiver is

EUR(x, y) =

n1∑
j=0

n2∑
k=0

∫ ρk+1
y

ρky

∫ ρj+1
x

ρjx

UR(α((ρjx, ρ
j+1
x ), (ρky , ρ

k+1
y )), (θ1, θ2))dθ1dθ2

By the envelope theorem

d2EUR(x, y)

dydx
=
∑
j

∑
k

f1,2(ρjx, ρ
k
y)
dρjx
dx

dρky
dy

[UR(α((ρj−1
x , ρjx), (ρk−1

y , ρky)), (ρjx, ρ
k
y))

− UR(α((ρjx, ρ
j+1
x ), (ρky , ρ

k+1
y )), (ρjx, ρ

k
y))]

By definition of ρ,
dρjx
dx
≥ 0 and

dρky
dy
≥ 0
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By assumption

UR(α((ρj−1
x , ρjx), (ρk−1

y , ρky)), (ρjx, ρ
k
y))− UR(α((ρjx, ρ

j+1
x ), (ρky , ρ

k+1
y )), (ρjx, ρ

k
y))

= [US1(α1((ρj−1
x , ρjx), (ρk−1

y , ρky)), ρjx)− US1(α1((ρjx, ρ
j+1
x ), (ρky , ρ

k+1
y )), ρjx)]

+ [US2(α2((ρj−1
x , ρjx), (ρk−1

y , ρky)), ρky)− US2(α2((ρjx, ρ
j+1
x ), (ρky , ρ

k+1
y )), ρky)]

By Lemma 2,

US1(α1((ρj−1
x , ρjx), (ρk−1

y , ρky)), ρjx) ≥ US1(α1((ρjx, ρ
j+1
x ), (ρky , ρ

k+1
y )), ρjx)

US2(α2((ρj−1
x , ρjx), (ρk−1

y , ρky)), ρky) ≥ US2(α2((ρjx, ρ
j+1
x ), (ρky , ρ

k+1
y )), ρky)
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