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Abstract

We report experiments on a two-person game in which hu-
man subjects continuously choose to play either a dominant
role (called a King) or a submissive one (called a Pawn). A
King receives a higher payoff rate, but only if the partner is
a Pawn. Straightforward equilibrium analysis predicts there
will be no conflict (time when both players are Kings), but
the behavioral data is utterly at odds with that, as is intuition.
We decompose the game into parts and offer an analytic solu-
tion for an important subgame. This yields a much more satis-
fying prediction of conflict behavior, and indeed the recorded
games are extremely well correlated with the prediction. Both
the theory and the data show structure in conflict that un-
equivocally encourages cooperative sharing behavior.

Introduction
It has often been declared that people are not “rational”
when they play some interesting games. Conventional
game-theoretic equilibrium analysis predicts one outcome,
but people resolutely behave in some other fashion, so ana-
lysts throw up their hands and expel them from the ranks of
homo economicus. In the KingPawn game we study here, a
naive game theoretic analysis indeed predicts one type of
behavior and our behavioral data utterly conflicts with it.
To resolve this, we introduce a novel theoretical analysis of
the game that makes more believable predictions and also
matches the behavioral data much better. It also leaves the
notion of homo economicus quite intact.

The experiments involved 172 human subjects from far-
flung countries, who were repeatedly assigned to play each
other in randomly chosen pairs. During a game, each sub-
ject could choose to be a King or a Pawn. A King is paid
at a higher rate (twice as much as a Pawn), but only if the
partner has not also chosen to be a King; a King in conflict
receives no payments. The naive game-theoretic viewpoint
suggests that no conflicts should occur, but the behavioral
results firmly suggest otherwise. Since only one of the two
players can be a King for either to be paid, such a config-
uration is inherently conflicting, giving rise to considerable
tensions that sometimes provoke expensive punishments.

Other reports discuss the emotional (Fehr and Gächter
2000) or neural (Sanfey et al. 2011) or genetic (Cesarini
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et al. 2008) basis for preferring fairness during decision-
making, but we prefer to believe that the sharing phenomena
we have found are explained in simpler strategic terms. We
find that people understand the dynamic of this game and a
sufficient number of them practice punishing behaviors that
result in a global expected payoff that is monotonically in-
creasing with the degree of cooperativity and fairness that
a player exhibits. This results in a meta-game with a sta-
ble cooperative equilibrium that pays near maximum social
welfare and pays both players nearly the same. Fairness de-
velops because the average group behavior makes it statisti-
cally rational in the meta-game, even though it is not ratio-
nal in the prima facie game. This remarkable phenomenon
is achieved without any communication between the pun-
ishers. Because of this lack of communication, it appears
that such a system could only arise after a long encultura-
tion period in which players play or observe similar games,
observing both actions and payoffs often enough to be able
to predict statistics of the social cohort. But this begs the
question. It does not win anything to explain away a re-
markably cooperative coordination in a game of conflict by
assuming a long and remarkably cooperative development of
strategies to play it. The long and far-sighted effort it would
take to study the problem, learn the solution, and broadly ap-
ply the lessons are too unlikely to assume they would “just
happen”. Once again, we might go looking for some emo-
tional or neural or genetic substrate that could sustain this
undertaking.

However, we also offer a theoretical analysis that provides
a straightforward game-theoretic explanation for the struc-
ture of the meta-game. It decomposes KingPawn and identi-
fies a subsumed game called Will-Testing. Unlike the naive
analysis, the equilibrium of Will-Testing does involve con-
flict, and the quantity it predicts is extremely well correlated
with the behavioral data. Any amount of understanding of
Will-Testing – be it intuitive, instinctual, intellectual or ex-
periential – would certainly help players deploy appropriate
responses to KingPawn. Since Will-Testing is very general
it may underlie many other games, and hence there may be
wide-spread experience with it among humans. This may
be why human subjects are so quick to play KingPawn in a
sophisticated manner.

The experiments described here are part of a broader
and ongoing program of behavioral experiments in strate-



gic and economic interaction on social networks conducted
at Penn (Kearns, Suri, and Montfort 2006; Judd and Kearns
2008; Kearns et al. 2009), and are an effort to apply the
methods of behavioral game theory (Camerer 2003) to the
study of social networks.

Related Literature
The subject of fairness in human interactions has a very long
history. Sociologists and social psychologists view it as cen-
tral to many social phenomena, and have well-developed
theories of fair exchange and reciprocity (exchange/equity
theory) (Brown 1986), although a true appreciation of eq-
uity of exchanges needs to consider long term “accounting”
and the subjective evaluation of fairness.

There is considerable economic literature on fairness. Ra-
bin (1993) offers a theory that incorporates fairness into tra-
ditional game theoretic models of pairwise interactions. The
economic experiments of Fehr and Gächter (2000) show that
people frequently punish non-altruistic behavior and derive
pleasure from doing so. Our results also document punish-
ment, but we interpret them in strictly game-theoretic terms,
and feel the “pleasure” element is only an interpretive side
story.

Bowles and Gintis (Bowles and Gintis 2003) discuss ex-
planations of cooperation ranging from kin selection and ge-
netics through to specifically-human cognitive and linguistic
capabilities. Their view of the human ability to internalize
norms may be the closest to what we witness in this paper.

KingPawn is related to the well-known Ultimatum Game.

One-Shot Version
The one-shot version of this game is given by the following
game payoff matrix:

Pawn King
Pawn (1,1) (1,2)
King (2,1) (0,0)

When one player plays a mixed strategy with equal proba-
bility for each role, the other player will get an expected pay-
off of 1 regardless of strategy employed. The equilibrium is
for both players to use this mixed strategy, and consequently
both players earn the pawn rate. An echo of this result will
occur in the analysis of continuous-time KingPawn.

Theoretical Analysis
The Continuous KingPawn Game
The continuous-time game has the extra element of time to
deal with, and a new artifice will be used to deal with it.

There are two pure equilibrium states, and each one has
exactly one King. A stasis appears unavoidable, because
the only player that dislikes the state has no option except
to enter an even worse state (one involving 2 kings, which
pays nothing). Furthermore, there is no clock that assists in
the synchronizing of state changes; this makes the element
of time hard to reason about.

The crux of equilibrium reasoning, though, is simply that
the players will be in an equilibrium. It does not much care
which equilibrium, and it is also unconcerned about the route

to get into an equilibrium, or even transitions between them.
If there were something extraneous that caused players to
jump from one equilibrium to another, the players would
still be expected to stay in the (new) equilibrium. There-
fore if there were some mechanism working through time
that caused such transitions to occur, the only game theo-
retic prediction about the outcomes of KingPawn is that no
time would be spent in a non-equilibrium state. This means
that the max social welfare is always obtained, the final ra-
tio of earnings could be anything from .5 to 1, and the two
players will fall somewhere on the dashed lines of Figure 1.
Call this the naive analysis of KingPawn.

0.5 0.6 0.7 0.8 0.9 1.0

80

100

120

140

160

180

200

earnings ratio

po
in

ts
ea

rn
ed

in
10

0
se

co
nd

s

pe
rf

ec
tS

ha
ri

ng

richer take

average take

poorer take

Figure 1: Naive payoffs for rational players in continuous-
time KingPawn. The two players must fall on the dashed
lines, but their average is always on the solid line.

We will enrich this analysis by breaking the game into
smaller components.

Decomposing KingPawn
The play of a KingPawn game can be decomposed in vari-
ous ways. The way we choose to do it is into the following
three separate decisions: 1) deciding the ratio of earnings,
2) deciding which player gets the larger share, and 3) de-
ciding how much conflict there is. Mathematically, there is
a fourth element which specifies how much time is spent
in the Pawn-Pawn state, but since this is neither rational in
theory or common in practice, we deem it to be zero. By
doing so, the answers to the three decisions fully determine
an outcome of KingPawn, and vice versa.

We will avoid Decision 1 and carry it along as a parame-
ter during analysis of the latter two. The question about who
will be the richer one seems to be the core contest in King-
Pawn, and some conflict is often employed to resolve it. It
is to that interesting negotiation that we now turn.

The Will-Testing Game
The Will-Testing game gives the larger payoff to whichever
player is more tolerant of conflict. It is played by two peo-



ple in continuous time through a fixed time interval, T . Ei-
ther player may capitulate at any time, thereby ending the
play. The payoff for the victor is some payscale V times the
amount of time remaining in the interval; the capitulator gets
half as much as the victor1.

The tension in the game is that both players want someone
to capitulate in a hurry, but both want the other one to do so,
and hence they both stall. There is no equilibrium to this
game. The maximum social welfare is (V + 1

2V )T which
occurs only when one player capitulates immediately.

The tension changes as we alter the fraction that the capit-
ulator gets. If his fraction is very small (say 1/100) then there
is a huge incentive to stall. If his fraction is close to 1 then it
does not matter very much who goes first, and it’s relatively
easy to make the sacrifice to capitulate. Since the fraction
thus makes a big difference, we will parameterize the game
and call the capitulator’s fraction ρ where 0 ≤ ρ ≤ 1.

In spite of its description as being played in continuous
time, we will formalize it as a one-shot game where each
player i selects a real number si in the fixed interval [0, T ].
Then the payoffs (before multiplication by V ) for players 1
and 2 respectively are:{ (T − s2) and ρ× (T − s2) if s1 > s2

ρ× (T − s1) and ρ× (T − s2) if s1 = s2
ρ× (T − s1) and (T − s1) if s1 < s2

There is no pure equilibrium strategy for this game. There
is a mixed strategy equilibrium, which we reveal below, but
instead of thinking of this as a 2-player game (which is a
poor model of our experimental setup), we prefer to recast it
as a game played in a large society of anonymous players.

The social version of the game has a large set of players
who each choose an action once; their payoffs are the aver-
age of the payoffs using that choice against all other players.
This captures the idea of a group of social animals that play
the game repeatedly with partners picked uniformly at ran-
dom from the same group. The randomization of strategy
that would occur in a repeated 2-person version of King-
Pawn is replaced in the social version by random selection
of 2 players who each have pure strategies, and the expecta-
tion over choices is replaced by the average over all possible
pairings. Thus the two views are equivalent.

There is no pure equilibrium for this game when there
are a finite number of players. In the limit of infinite play-
ers there is a density function for the equilibria, but it does
not specify which player uses which strategy so all permu-
tations are equivalent. Finding this distribution involves an
equation that makes the usual assumption that all players get
equal payoffs, so the players are quite indifferent to which
permutation occurs.

One strong interesting feature of the equilibria is that all
players must choose different actions. Birds and mammals

1Will-Testing is very related to War of Attrition, but there is a
major difference in that for both players the value of winning the
contest goes to zero at the end of the game. In War of Attrition, the
value of the prize is a constant, which gives a perpetual incentive to
bid higher even after the price is more than the value of the prize.
The equilibria are thus quite different.

and most other animals are generally perceived as being in-
dividuals who are all slightly different, populating a spec-
trum of behavior space. They are also widely seen as having
social structures like dominance hierarchies wherein pair-
wise relations between individuals can be characterized. We
view the social version of Will-Testing to be an example of
a game that produces a similar ordered structure where the
existence of differences in individual behaviors is a straight-
forward requirement of the game’s solution. In the case of
this particular game, the social dynamic will be interpretable
as a total ordering (like a pecking order) simply because the
action space is real and one dimensional.

Equilibria of Social Will-Testing
We seek a density over the action space, den(t) ≥ 0 and∫ T
0

den(t)dt = 1 . To find the average over all possible
pairwise interactions in the social version of the game, we
must integrate over that space. The average pay of action s
is thus:

payρ(s) = V

∫ s

0

den(t)(T−t) dt + V

∫ T

s

ρ den(t)(T−s) dt
(1)

Now make the usual assertion about the nature of the equi-
librium that no action is more profitable than any other (oth-
erwise some player would choose that action rather than the
one she did), That is, set pay to be constant:

payρ(s)
V

= c =
payρ(0)
V

= 0 +
∫ T

0

ρ den(t)(T − 0) dt

= ρT

∫ T

0

den(t) dt = ρT

The pay per time spent is thus just ρ for every player, the
same as what the capitulator gets if he acts immediately.

To make the Will-Testing game have the same Max So-
cial Welfare as KingPawn (3 points/second), the pay scale V
must be adjusted for each earnings ratio: V (ρ) = 3/(1+ρ),
as plotted by the dash-dot line in Figure 2. The average pay
of both players in any game is (R + ρR)/2 = ρTV (ρ),
where R is the richer player’s take. The richer player earns
R = 2ρ 100 × 3/(1 + ρ)2, which is shown as the dashed
line in the same plot. The poorer take is ρR, also shown as
a dashed line.

Experimental Design
Game Design
A GUI for the game was implemented as a Java applet and
deployed as an internet service. Via a mouse click, each
player could instantly change to be a King or a Pawn at
any time. As a King, the player enjoyed a high pay rate
(2 points per second), but payments only accrued when his
partner was not a King. The Pawn earned a steady income,
albeit only half of a King’s (1 point per second). Social wel-
fare was maximized when one player was King and one was
Pawn; together they earned 3 points/second.

Each player was given a view of both his own and his
partner’s state. Payments accrued continuously and were
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Figure 2: Equilibrium payoffs for Will-Testing, as a function
of the earnings ratio. Every player’s average take falls on the
solid line. Ignoring individuals and averaging over games,
the richer and poorer takes fall on the dotted lines.

displayed for each player in real time, along with a clock
that measured out the 100 second duration of the game. A
screenshot of the GUI is shown in Figure 3.

This continuous-time game is easily recognized as an it-
erated version of the one-shot game. Our equipment had a
clock with 1-millisecond resolution, and hence it was actu-
ally a finitely repeated game but since this granularity is far
smaller than humans can detect, it is better described as con-
tinuous time.

Human Subject Methodology
All experiments were held in a single session lasting 4.5
hours with workers from Amazon Mechanical Turk as par-
ticipants. The players came from multiple far-flung time
zones. They had been recruited and trained on earlier days
and then told of a collective game-playing time and website
where they could all congregate to be matched with other
players. We paid US $0.003 per point accumulated.

The players were repeatedly assigned to play each other
in randomly chosen pairs, according to the following proce-
dure. The player with the fewest number of games so far was
selected to play so long as s/he also met these constraints: 1)
was not busy playing someone else, 2) had played fewer than
15 games so far, 3) had declared themself ready for another
game, and 4) had internet connections that were currently
fast enough. Such a player was matched randomly with any
other player who also fit the above constraints and who had
not played the first one selected. The server then initiated
a game process for them. Both players had to respond to
an alert, locate a popped-up browser window, bring it to the
foreground, and privately select a starting role for himself
before the game was allowed to begin. After it started, all
actions were visible to both players and were asynchronous.

Players were given no indication of who they were play-
ing, and since they were randomly assigned to play with

Figure 3: A screenshot of a player’s GUI showing the user
in Pawn mode and his partner in King mode.

anyone else in the widely and thinly spread online cohort,
there was negligible chance that any outside communication
occurred between subjects.

The game session was advertised as lasting for at least an
hour and was forecast to have scores of players attending.
People understood that there would be no re-encounters with
previous partners, so there was neither historical nor future
interactions to consider.

Experimental Results
Attendance
Of the 201 people who arrived at the site during the session,
172 played at least one game. Figure 4 gives a histogram
of how many games they played. They were limited to 15
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Figure 4: Histogram of number of games played

games apiece, but many people played fewer either because
they arrived late or left early. Some people were prevented
from playing due to technical problems like their internet
connection was too slow.

A total of 974 games got played. Most players stayed at
the site for more than an hour, and on average they played
about 5.7 games during the session, each with a different
partner.



Social Welfare
Over all games, the average earning rate was 1.21
points/second. This is above the pawn rate, but below the
max social welfare rate of 1.5 points/player/second. Hence
the players as a group were 80.6% efficient at extracting
money from the experimenter’s pocket.

Distribution of Takes
Figure 5 plots the number of points earned in each encounter
(being twice as many as there are games). Of these, 21%
were less than the pawn rate, and 8% were greater than the
perfect sharing rate, leaving about 71% in between.
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Figure 5: Cumulative distribution of individual takes (shown
with the customary axes interchanged.)

Ratios of Takes
Figure 6 plots the outcomes of all games where the two axes
show the earnings of the two players involved.

Figure 7 is a smoothed histogram of the number of games
with a given earnings ratio2. It is distinctly bimodal, with
a lump near 0.5 caused by the existence of people we call
Demanders (those who insist on being King all or most of
the time), and a bigger lump near 1.0 populated by Sharers
(those who are willing to trade the King role back and forth
with their partner).

Predictive Power
Simple game-theoretic analysis predicts no conflicts will
persist: it is “irrational” to play King when your partner is a
King and thereby earn 0 if you could play Pawn instead and
earn 1 point per second. Also, it is irrational to play Pawn
if your partner is a Pawn, since a lone King’s take is higher
than a Pawn’s. Hence every game will earn the maximum
social welfare and the average take between the two players
in each game is exactly 150 points, irrespective of earnings
ratio. The solid blue line in Figure 8 represents this predic-
tion.

Nevertheless, the observed games show abundant conflict;
Figure 8 reveals how much is sustained and where it oc-
curs. Every black dot represents the mean of the takes of

2There were 5 games where both players earned 0, and since
their earnings ratio is not defined they are not included in the plot.
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Figure 6: Earnings in each game. The outcome of each game
is plotted with the richer player arbitrarily shown on the ver-
tical axis. The pink zones are not reachable; zones below the
pawn rate are shaded.
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Figure 7: Smoothed histogram showing bimodal distribution
of earnings ratios.

all players whose games had a given earnings ratio3. The
solid orange line are the equilibria of social Will-Testing,
also shown in Figure 2. It is clear this solid orange line is
a much better approximator of the data points than the solid
blue line. The blue line has zero predictive value for the
data, but the Pearson correlation coefficient between the or-
ange predictor and the data is 0.974. The probability of that
correlation being a chance occurrence is < 10−6.

Cost of Exploration
A distributed system can converge to some target distribu-
tion if every player can detect anomalies in the current dis-
tribution and move their own choice of s to escape overly
dense zones in favor of overly sparse ones. But of course to

3To avoid arbitrary decisions about the number and size of bins
and the locations of their boundaries, the data points each represent
a set of 70 games (7.2% of the total). Each set has been selected to
be as narrow in its spread of earnings ratios as possible, and each
set overlapped its neighbor but was different in 4 data points. This
technique helps suppress noise, especially in the very sparse region
of data with earnings ratios between 0.55 and 0.75. (See Figure 7.)
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Figure 8: Take plotted against earnings ratio, comparing
KingPawn, Will-Testing, and human behavior. The solid
lines are averages over all players and should be compared
with the black dots of observed human behavior. The dashed
lines are averages of just the richer players and should be
compared with the gray dots of observed human behavior.

do so they need to be able to sample the distribution. Fur-
thermore, for this to work the distribution cannot be chang-
ing faster than it can be sampled. Hence, assume that every
player starts with some preferred action, repeatedly samples
the current distribution and slowly moves his value toward
a sparse zone. The process must be capable of moving the
values in either direction.

One quirk of Will-Testing is that the revealed data at the
end of each game is not symmetric; the player with the big-
ger s value gets to see the other player’s (smaller) s value,
but the player with the lesser value learns only that the other
player had some bigger value. The capitulator thus gets less
information, and in particular he gets no information about
the zone just higher than his current value of s. If it is sparse,
then it will be beneficial to move there.

These observations leads us to hypothesize that players
will engage in conflict beyond what the equilibrium predicts
in order to discover that extra valuable information. As long
as each player can gather information about a small zone
just higher than his current preferred action, the group as a
whole can correctly populate the space. The cost of perform-
ing this exploration will cause the average social welfare of
Will-Testing to be less than the theory here suggests. A new
cohort will not be in equilibrium right away, and until it is
there will be excess conflict.

Indeed, the black dots of Figure 8 do have a systemic off-
set. The observed values are everywhere lower than what
the Will-Testing equilibrium predicts. It would be useful to
have a model to quantify this cost of exploration.

Punishment Profile
There is an easy way for any player to guarantee that he is
no poorer than his partner, so it is tempting for someone to
examine the payoffs exclusively from the point of view of
the richer player. Given how attractive this mindset might
become, it is worthwhile to look not just at the average take
but to examine the special experience of the richer player,
and see how that might influence his behavior. By separating
the Demander’s results from his victim’s, we can draw an
even clearer conclusion. Every gray dot in Figure 8 shows
the mean of the takes of just the richer player in all games
which had a given earnings ratio. Note that even the average
richer take was everywhere less than the perfect Sharer’s
take of 150. This is an important strategic signal that will
surely influence play.

In fact, human Sharers were not really making 150 points;
their effective limit was about 140 points, caused by slight
overlaps during role switches. Even so, the statistics are un-
equivocal: for every gray dot with a ratio less than 0.82 (i.e.
for the entire space to the left of the dashes in Figure 7), the
mean of that set of games passed a statistical test showing it
to be less than 140, with P < 0.01 in every case.

Conclude therefore that the expected income of Deman-
ders was thus convincingly less than that of Sharers. And
conclude from this conclusion that cooperation is thus math-
ematically encouraged, and that all players should develop a
bias toward outcomes of higher earnings ratios.

For every ratio of earnings, the dashed blue curve of Fig-
ure 8 is the amount that the richer player would take in naive
KingPawn analysis; It is easy to grasp this and be seduced
by its possibility into preferring outcomes with low earnings
ratios. Most remarkably, this curve and the actual takes have
distinctly opposing trends. The punishment (i.e. conflict)
incurred for trying to get more than the Sharing level is pro-
portional to and larger than the amount of temptation there
is to try. The punishment profile is clearly encouraging the
richer player to allow the poorer player to earn more.

Distribution of Conflict
The dots in Figure 8 are merely the averages of conflict. This
section examines how conflict times are distributed, in order
to see whether players are really using actions drawn accord-
ing to the equilibria of Will-Testing.

A solution to equation (1) for den(·) is available in
(Gurvits and Judd 2012). It provides a closed form descrip-
tion of the equilibrium probability density function:

den(ρ, s) =
ρ(1− s)−

2ρ−1
ρ−1

1− ρ

Its cumulative distribution is

cdf(ρ, s) =
∫ s

0

den(ρ, x) dx = 1− (1− s)
ρ

1−ρ

which is plotted in Figure 9 for various values of ρ.
The capitulator’s action is the smaller of two values, and

if those two values are independently drawn from den(), the
cumulative distribution of the measured conflict will be

cdf2(ρ, s) = 1− (1− cdf(ρ, s))2 = 1− (1− s)
2ρ

1−ρ
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Figure 9: Cumulative distributions of conflict in various
zones of earnings ratio, ρ. The horizontal axes represent
s, the Will-Testing action choice of the capitulator, which is
identical to the amount of conflict endured; the vertical axes
are the fraction of games that see that amount of conflict or
less. The dots represent data from all games collected with
earnings ratios in the noted zone. The blue lines represent
the equilibrium cdf in the center of the zone. The purple
lines represent cdf2.

which is also plotted in Figure 9.
The individual data points in the same figures each dis-

play the amount of conflict in one game. They reasonably
approximate the predictions, but are generally further to the
right (meaning that there is more conflict than predicted)
which is to be expected due to the cost of exploration. In
addition to that discrepancy, it is clear here that there is pro-
gressively wider divergence with higher earning ratios.

This progression is not fully understood, but it may be
partially caused by overhead incurred during role switches.
A friendly switchover is typically produced by the Pawn
player deciding to change to King, followed by a reaction
time delay of up to 2 seconds, followed by the other player
switching to Pawn. The brief time of double Kings counts
as “conflict” in our calculations, but would be viewed by the
humans as merely a signal that it was time to change roles.
The Sharing games tend to have more role switches than oth-
ers. Demanders do not respond to such signals, so friendly
switchovers are progressively rarer in lower earnings ratios.

Discussion
Source of Discipline
That the average Demander’s take should be less than the
Sharer’s take is strategically desirable from the point of view
of Sharers, who clearly have an interest in encouraging shar-
ing behavior amongst everyone else. As a group they have

jointly punished the Demanders and produced an expected
payoff curve that tends to increase with earnings ratio.

But there is a deep puzzle as to how this group effect gets
organized. Note that the Demander’s take is indeed an av-
erage. It arises from the action of the set of their victims
who each separately act to punish the Demander. But this
set of victims cannot observe each other. They are unlikely
even to have played each other, and none of them could ever
directly measure the amount to which others in the set have
punished the Demanders. So how could they mutually ar-
range for their average take to be so strategically propitious?
How could a group of players who never met and never ob-
served each other produce such an effective ensemble effect?

There is a second-order tension within Sharers between
those who pay the cost of punishing Demanders and those
who do not, but note again that in this game they can never
even detect each other’s existence!

The mathematics of Will-Testing is a candidate explana-
tion of how this coordination all gets invisibly organized. Its
equilibrium predicts conflict, and quantifies it; as a conse-
quence, the flat average earnings curve predicted by naive
analysis is transformed into a curve that monotonically in-
creases with earnings ratio. Even more dramatically, the
curve of richer-player earnings is transformed from mono-
tonically decreasing to monotonically increasing – a pro-
found alteration, produced solely by old fashioned equilib-
rium reasoning.

The most games any one person played was 15 but there
were 172 people playing. It’s clear, therefore, that there sim-
ply were not enough games played for people to be able to
survey their entire community or even 10% of it. Hence
most of the behavior on display here reflects traits that were
acquired outside the experimental environment. There is no
convergence toward a negotiated equilibrium here; there is
no group adaptation to a new and curious little game; what
we are observing is the distribution of strategies that already
exist in the human wild for dealing with everyday games
such as these.

Origin of Cooperation
Much of the literature on the origin of cooperation dwells on
five separate models: 1) direct reciprocity, 2) indirect reci-
procity, 3) spacial selection, 4) kin selection, and 5) group
selection. We feel that none of these models captures what
is going on in KingPawn. The observed distribution of pun-
ishments creates a meta-incentive for everyone to cooperate,
but it is not a result of any of the above models. All those
models require the existence of some sort of reputation or
relationship between specific players, but such things do not
exist in the anonymous setting imposed in our experiment.

The players do not know who they are playing. In fact
the only detail they have about their partner is that they have
not played with that person before. Thus, reputation is the
one feature that is explicitly removed from the situation. It
is replaced only with the knowledge that they are playing
against randomly-chosen members of a large group. That
group has at least these things in common: they all live in
modern states, are computer savvy, are capable of perform-
ing tasks on Mechanical Turk, have some disposable leisure



time, and can read English. All that is inferable here are
generic features of the ensemble; nothing of individuals is
available. Reputation and relationships between our players
are truly vaporous.

We believe that Will-Testing is familiar in various forms
to any adult human, and that we all have an understanding
and perhaps a personality trait that helps us deal with its
subtle equilibrium. It seems perfectly plausible that intelli-
gent creatures with highly honed game theoretic skills could
understand the potential for and the value of cooperation in
KingPawn, could acquire behavioral tactics that encourage
it, and deploy those behaviors in appropriate settings.

There is nothing in this study that speaks to whether the
effect is embodied in genetic or cultural or learned or intel-
lectual form.

Existence of Sharers
We offer no quantitative model of how Decision 1 gets made.
We view it as a consequence of the entangled wills of two
players. Those players are exposed to the marked slope of
increasing payoff with increasing earnings ratio, and hence
they should be responsive to it and know where to seek
higher payoffs. Although this is only a qualitative statement,
it clearly agrees with the preponderance of Sharers shown in
Figure 7.

Existence of Demanders
A deeper puzzle is why the Demander behavior persists,
given that it pays so poorly. If the meta-game has been so
well developed and deployed, why would everyone not have
become a Sharer already? One explanation is simply that
Demanders are merely naive players who have not grasped
the meta-game that is being imposed on them, or they have
not yet collected enough long-term statistics to conclude the
better value of Sharing.

Another explanation revolves around the newness of the
assembled group, and it might occur even if no one is naive
enough to have missed the logic of Sharing elsewhere. The
logic of Demanding is certainly compelling too: if my part-
ner becomes convinced that I will not stop playing King,
then it is game-theoretically rational for him to play Pawn.
Very little is known about the new group; no one knows who
else is a member, or how they will play; no one has a solid
basis for assuming that its behavioral statistics will be what
a global post hoc view of the data has shown them to be. In
such a state of ignorance, it is reasonable to think that some
people could become convinced of a Demander’s resolve,
and thereby deliver the whole of the King’s premium to the
Demander. We have not experimented to see what happens
when a small stable group is allowed to play for a long time
(playing other individuals repeatedly), so we can only spec-
ulate on whether Demanders would eventually disappear.

A third type of explanation might actually create a sta-
ble persistence of the distribution of strategies that we ob-
served, perhaps using an explore-versus-exploit idea. Just
as data must be collected (at some cost) to be able to find
the equilibrium of Will-Testing, data will probably need to
be collected in order for Decision 1 to be resolved too. We
have not yet developed a way of quantifying such a dynamic.

Conclusion
By breaking KingPawn into subparts, we have escaped from
the unsatisfying naive equilibrium analysis. Without dis-
cerning what it is that causes two players to end up with
a particular earnings ratio, the ratio has simply been taken
as a given – and KingPawn has thus been opened to solution
by recasting it as parameterized Will-Testing.

Satisfyingly, the new analysis predicts moderate amounts
of conflict – which is a widely held intuitive prediction.

The behavioral average payoffs are decidedly more like
the new prediction than the average payoffs of the naive
KingPawn prediction. Hence we claim some validation of
the theoretical analysis, although a marked discrepancy be-
tween data and prediction still remains. All the data is on
one side of the theoretical curves. The arguments about data
exploration and switchover costs correctly describe which
side that is.

The collective behavior of KingPawn players is effec-
tively imposing a payoff structure that encourages sharing.
It is not claimed that this is cognitively recognized or delib-
erative in all players. The important observation is that the
latent payoff curve serves to coerce the behavior of players
in a way that the prima facie rules do not.

The distribution of “capitulation times” appears to agree
with the predicted distributions well enough to further vali-
date the use of Will-Testing to model KingPawn.

We believe that people have a sophisticated understanding
of these games, deriving from much practice in daily social
situations. Our view is that the humans who attended the
game sessions arrived after having spent decades develop-
ing techniques for dealing with conflicting situations such as
these. And we suggest that within their daily social lives, in-
dividuals have adopted personal constants that specify their
tolerance for disruptive behavior and for the sacrifice they
will make to expunge it. It is possible that through constant
exposure to other people, we each come to embody char-
acteristic social strategies that are successful as a society.
People do not have to know each other personally to play
KingPawn. Whenever subjects are drawn uniformly from a
population that successfully plays similar games, the cohort
will be comprised of people with the same distribution of
constants and will thus also be able to successfully play the
games.

We hypothesize that if a small cohort is allowed to play
KingPawn long enough, the statistics of payoffs will con-
vince most people to become Sharers, their overall group
efficiency will rise, and the distribution of earnings among
people will flatten out. This prediction is an easy conse-
quence from having measured the relative expected payoffs
for Demanders and Sharers; once people have enough sam-
ples to see this effect, they will presumably succumb to its
logic. The important and subtle and sophisticated behavior
detected by this study is that the newly-assembled cohort is
immediately ready to deploy an ensemble of strategies that
encourage this prediction to come true.

We believe that it requires considerable cognitive skill to
perform this feat, and thus success at it is likely to be lim-
ited to big-brained animals. First, each player must be able
to understand the game; nematodes are not likely going to



succeed at this. Players must be able to perceive that the re-
wards are not monotonic functions of the action space and
they must have the memory and perceptual equipment to
pursue strategies through a complex time sequence. Sec-
ond, players will benefit from perceiving the core abstrac-
tion of the game and being able to draw upon a history of
experience at similar games to select a non-trivial strategy.
Squirrels might not be able to wield this amount of abstract
deliberation. Third, the player cohort needs to be ready to
select strategies that are approximately at equilibrium ab ini-
tio (otherwise, a lot of time will be spent in a convergence
phase to get close to an equilibrium). Grizzly bears, who do
not spend a lot of time in groups, may not be quick at this.

We speculate that similar results might well arise if the
game is played by a group of chimpanzees, or any ani-
mal that is both intelligent and highly socialized, but most
species probably do lack the cognitive and game-theoretic
ability to play either game as insightfully as humans do.
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