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Abstract

Agents endowed with power compete for a divisible resource by forming
coalitions with other agents. The coalitions with the largest power wins the
resource and divide it between its members.

We study four models of coalition formation where agents might or might
not accumulate power and agents might or might not participate in further
coalition formation processes. An axiomatic approach is provided by focusing
in variations of two main axioms: self-enforcement, which requires that no
further deviation happens after a coalition has formed, and rationality which
requires that players pick the coalition that gives them their highest payoff.

For four different cases, we determine existence of stable coalitions that are
self-enforcing and rational for different sharing rules. The stable coalitions
found can be implemented as a coalition-proof subgame perfect Nash Equilib-
rium.
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1 Introduction

In many social situations, decisions are made within the context of a group.

Indeed, the character and composition of these groups shape economic, political

and societal outcomes. Cartels, lobby groups, customs unions, armed groups,

political parties are obvious examples of groups, also called coalitions, that

influence outcomes towards their favor (Ray [7]).

Despite the importance of coalition formation in many economic situations,

the literature remains disunified (Ray and Vohra [8]). For instance, recent liter-

ature on coalition formation has focused mainly on the purely hedonic aspect,

in which the payoff to a coalition member depends only on the composition

of members of the coalition to which he belongs (Dreze and Greenberg [4],

Bogomolnaia and Jackson [3], Sonmez, Banerjee and Konishi [9]). Bloch and

Dutta [2] point out that an important aspect of coalition (and network) forma-

tion is the ability of the different groups to change a particular “social state”.

This is captured in their idea of a “effectivity relation” that measures a coali-

tion’s ability to change from a status quo into a different social state. This can

be interpreted as a coalition’s “power”, which measures its ability to impose its

will in a particular coalition formation game. Piccione and Razin [6] examine

how power relations determine the ranking of agents in society. The identity of

the coalitions (as characterized by the power of players within that coalition)

determine the social order and thus the structure of society.

Furthermore, in a typical non-democracy where there is a heterogeneity of

powers among agents and agreements are not binding, coalitions form to main-

tain power in order to impose its will in a given society. Over time, however,

coalitions may disintegrate and new factions may form to overthrow the exist-

ing ruling coalition. The task of this paper is to find coalitions that are stable

from the moment of inception.
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Acemoglu et al. [1] [hereafter AES] studies a model of coalition formation

where agents are endowed with power and form coalitions with the goal of be-

coming the most powerful coalition. The winning coalition will split a given

resource in proportion to their power. Agents outside the winning coalition are

“killed” and these players would not participate in future coalition formation

process. AES’s main stability concept, self-enforcement, requires that no sub-

coalition is powerful enough to ensure further deviations. Self-enforcement is a

very powerful property that ensures coalition form at stage one.

However, the environment of AES is severely limited in many fronts. First,

in many economic and political interactions, there are many ways how an “out-

sider” can influence the balance of power inside the coalition. In a static setting,

Juarez [5] discusses an equilibrium notion where players outside the equilibrium

coalition must not have sufficient power to be a threat to this coalition. The

“no-threat equilibrium” does not presuppose that outside players will not have

an influence on the stability of a coalition that has formed.

Second, there may be instances where a winning coalition would accumu-

late power over time. In many nondemocratic societies, a ruling coalition can

perpetuate himself in authority by the fact that it can use the state’s resources

to consolidate and accumulate power to further dominate the rest of society.

Third, AES limit their discussion on a narrow class of sharing rules for

the resource in play. The sharing rule used by AES is one of proportional-like

sharing, where players with higher power gets a substantially higher share of

the prize. Other rules, like equal division of the resources (henceforth called

“equal-sharing”), are also appealing.

We therefore envision four scenarios that would be pertinent in modeling

coalition formation in the context of non-democracies:

1. Power of the ruling coalition does not accumulate and non-winning players

3



are killed.

2. Power of the ruling coalition does not accumulate and non-winning players

are not killed.

3. Power of the ruling coalition accumulates and non-winning players are

killed.

4. Power of the ruling coalition accumulates and non-winning players are not

killed.

AES falls in category 1 in this list. In this paper we study how stable

coalitions that are self-enforcing form in the four scenarios above for different

sharing rules.

2 The Model

Consider the set N = {1, . . . , n} of initial agents who are endowed with powers

π = [π1, . . . , πn] respectively. A coalition C is a subset of N , C ⊂ N . The

set of coalitions are all possible subsets of N , denoted by 2N . A coalition

formation game is a pair (S, π) where S ⊆ N and π ∈ RS+. The set of coalition

formation games is denoted by G. We assume that power is additive, that

is, the power of coalition S is the sum of all powers of the players inside the

coalition, π(S) =
∑

i∈S πi. We denote as πS the restriction of the vector π ∈ RN+

over coalition S.

Definition 1 Given a game (T, π), the set of winning coalitions is:

W(T,π) = {S ⊂ T |π(S) > π(T \ S)}

Definition 2 A sharing rule is a function ξ : 2N → RN+ such that:
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•
∑

i∈S ξi(S) = 1; and

• (Cross-Monotonicity) If T ⊂ S and i ∈ T then ξi(T ) > ξi(S) ∀ S, T ∈ 2N

Cross-monotonicity of a sharing rule requires that the share of the prize of

a player i in coalition S would be higher if he is part of any subcoalition of S

that deviates compared to the share he will get if he stayed on coalition S.1

Throughout the paper we devote special attention to simple (and com-

monly used) sharing rules such as equal sharing and proportional sharing (see

Juarez [5]), or a convex combination of the two (hereafter called “combination

sharing”). That is,

ξi(S) =



I

|S|
if equal sharing

πi
π(S)

if proportional sharing

λ · I
|S|

+ (1− λ) · πi
π(S)

, λ ∈ (0, 1) if combination sharing

Note that these three basic sharing rules are cross-monotonic. Each player

inside a winning coalition S that forms splits a prize I according to a predeter-

mined sharing rule ξ(S).

In the sections that follow, we use a property of sharing rules that the basic

sharing rule may or may not satisfy. The property that we examine is consistent

ranking of coalitions by players. Suppose agents i and j are players who belong

to the intersection of coalitions S and T . A rule satisfies consistent ranking if

whenever agent i prefers S over T , then agent j also prefers S over T . In other

words, between competing coalitions, a coalition S is picked if all players in the

intersection unanimously pick S over a competing coalition.

Definition 3 (Consistent Ranking) The sharing rule ξ satisfies consistent rank-

ing if for any two players i and j, and coalitions S and T such that i, j ∈ S∩T ,

1This is contrary to the case where there are externalities, where agents might gain by associating
with other agents of similar characteristics, see Juarez [5].
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if ξi(S) ≥ ξi(T ), then ξj(S) ≥ ξj(T )

Under consistent ranking, we are able to assign a number denoted by Ri(·)

by player i. For any player i, a rank Ri : 2N → R+ is a number such that for

any coalitions S, T ∈ 2N we have Ri(S) > Ri(T )⇔ ξi(S) > ξi(T ).

Note that the definition of consistent ranking implies the existence of a

global ranking R for the society that coincides with individual rankings. That

is, Ri(S) ≥ Ri(T ) ⇔ R(S) > R(T ) where R(·) is the rank of the society over

coalitions.

Also note that equal sharing and proportional sharing satisfy consistent

ranking. Indeed, under equal-sharing, agents’ share increase as they move to

coalitions of smaller sizes. Similarly, under proportional sharing, agents’ share

increase as they move to coalitions of smaller power.

The major task of this paper is to examine the equilibrium under the differ-

ent sharing rules and, if it exists, characterize the stable coalitions that emerge.

2.1 Dynamic Coalition Formation

Let t = 0, 1, . . . denote the t discrete rounds of the game. We define a transi-

tion correspondence than maps from the set of coalition formation games to a

particular set of coalitions.

Definition 4 A transition correspondence2 is a continuous3 and scale-

invariant4 correspondence φ : G → 2N such that ∀ (X,πX) ∈ G: φ(X,πX) ⊂

W(X,πX).

The transition correspondence describes the movement from one coalition

to another coalition throughout the rounds. In particular, the game at round t

2This definition includes two compelling axioms from AES, Inclusion and Power.
3A correspondence is continuous if for any generic vector of power there is always a neighborhoor

around the power vector of every agent where the correspondence does not change.
4In the vector of power.
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will be denoted by
(
St, πt

)
.

In the next sections we will define the evolution of St given the transition

correspondence φ. We look at the cases where St = N or St ∈ φ(St−1, πt−1).

The first case, St = N , depicts a scenario where agents outside of the formed

coalitions are not killed, that is, they may participate in future coalition for-

mation games in subsequent rounds. On the other hand, the case where

St ∈ φ(St−1, πt−1) is where agents are killed and cannot participate in sub-

sequent rounds.

The manner by which the power of the players accumulate will be affected

by both the sharing rule ξ and the transition correspondence φ. Through

subsequent stages, the power accumulation function for player i at stage t will

be defined as

πti =


πt−1i + ξi(S

t−1)I if St−1 ∈ φ(St−1, πt−1)

πt−1i otherwise

Note that in the case when agents are killed, the power of agents that are

not part of the winning coalition will be irrelevant.

3 Case 1: I = 0 and St ∈ φ(St−1, πt−1)

3.1 Desirable Properties

This section resembles the AES main features where if a coalition S forms, then

players outside S are killed in the sense that they could not further participate

in any future coalition formation process (i.e., this is the case where St ∈

φ(St−1, πt−1)). The main task is to find rules that are “self-enforcing,” that

is we are interested in finding coalitions that do not have the incentive or the

power to deviate in future rounds of the game.
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Axiom 1 (Self-enforcement) The transition correspondence φ satisfies self-

enforcement if for any game (X;πX) ∈ G and Y ∈ φ(X;πX), then Y ∈

φ(Y ;πY ).

When there is no confusion, given a rule φ and a game (S, πS) ∈ G, we say

that the coalition S is self-enforcing if S ∈ φ(S, πS).

Self Enforcement requires that given any starting coalition X, a coalition

Y is part of the mapping from X only if there would be no further deviations

into subcoalitions of Y once Y forms.

Since the sharing-rule is cross-monotonic, we expect that in the presence of

self-enforcing coalitions that are strict subsets of the grand coalition, the grand

coalition will not be chosen, since all the agents gain by choosing its subset.

This is reflected in the definition of a minimalistic transition correspondence.

Definition 5 (Minimalistic)

The transition correspondence φ is Minimalistic if for the game (S, π) ∈ G there

exists T ( S, such that T ∈ φ(T, πT ) and T ∈W (S, π), then S 6∈ φ(S;π).

Definition 6 Consider two transition correspondence φ and φ̃. We say that φ

is superior to φ̃ if for any game (N, π), T ∈ φ̃(N, π) and S ∈ φ(N, π) such that

ξi(T ) ≥ ξi(S) for some i ∈ T ∩ S if and only if T ∈ φ(N, π).

If a transition correspondence is superior to another then it always picks

outcomes that are preferred by common agents being chosen.

Definition 7 A transition correspondence φ is coalitionally stable if for any

problem (N, π) such that S ∈ φ(N, π) then there is not a coalition T such that

T 6∈ φ(N, π) T ∈W(N,π), T ∈ φ(T ;πT ) and ξi(T ) ≥ ξi(S) for all i ∈ T.

A transition correspondence is coalitionally stable if there is no other coali-

tion that is winning and self-enforcing that is not chosen which gives an im-

provement to the agents.
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Within the class of consistent ranking solutions, coalitional stability is equiv-

alent to the rationality introduced axiom by AES. Their analysis considered

cases where an agent prefers to be in a coalition where he has a higher rela-

tive power5. This is described by sharing rules such as proportional sharing.

We extend the analysis of AES by considering sharing rules that satisfy or do

not satisfy the consistent ranking property and by modifying the Rationality

Axiom accordingly.

Axiom 2 (Rationality) For any X ∈ 2N , for any Y ∈ φ(X;πX) and for any

Z ⊂ X such that Z ∈ WX and Z ∈ φ(Z;πZ), we have that Z 6∈ φ(X;πX) ⇔

Ri(Y ) > Ri(Z) ∀i ∈ Y ∩ Z

Rationality requires that for any two coalitions Z and Y that are both

winning and self-enforcing from a coalition X, Z will not be chosen if and only

if Y is ranked higher than Z by players in their intersection.

3.2 Result with Consistent Ranking

This sections sets out to identify a mapping φ∗ that satisfies Axioms 1 and 2.

We assume that the transition correspondence φ∗ takes on the specific form:

φ∗
(
St, πt

)
= arg max

M∈Q(St)∪{St}
R(M)

where

Q(St) = {T ⊂ St | |T | < |St| and T ∈W(St,πSt )
, T ∈ φ(T ;πT )}

This mapping defines for the coalition St a set Q(St) of proper subcoalitions,

which are both winning in St and self-enforcing. We then pick the highest

ranked coalition in all the coalitions contained in Q(St). If Q(St) is empty then

we pick coalition St itself. Note that φ∗ satisfies the definition of a transition

5this is implicit in the Rationality Axiom (Axiom 4) in AES.
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correspondence since it maps into winning coalitions within St and by picking

a coalition M in Q we are picking subsets of St such that φ(St;πSt) 6= ∅ and it

has a maximum rank over a finite set.

The following proposition will show that the imposed properties on the

sharing rules together with the axioms on φ will generate a unique mapping

that will constitute a stable equilibrium.

Proposition 1 Consider a sharing rule that satisfies consistent ranking. Then,

the following conditions are equivalent for the transition correspondence φ that

is self-enforcing:

i. φ is superior to any other transition correspondence that is self-enforcing

and minimalistic,

ii. φ is coalitionally stable,

iii. φ is rational,

iv. φ = φ∗. is the unique mapping that satisfies Self-enforcement and Ratio-

nality.

Proof. Let S ∈ 2N . Consider the mapping φ below which is obtained induc-

tively:

• For |S| = 1, φ(S;πS) = S

• Suppose that this has been defined for |S| = k−1. We then define φ(S;πS)

for |S| = k as:

arg max
M∈Q(S)∪{S}

R(M)

where

Q(S) = {T ⊂ S | |T | < |S| and T ∈W(S,πS),T ∈ φ(T;πT)}
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To show that φ(S;πS) maps into self-enforcing coalitions, take any X ∈

φ(S;πS). There are two cases, either X = S or X ∈ Q. If X = S, then

X ∈ φ(S;πS) = φ(X;πX). If X ∈ Q, then X ∈ φ(X;πX) by definition of Q.

Rationality is satisfied by the following: take Y ∈ φ(S;πS), Z ⊂ S such that

Z ∈WS and Z ∈ φ(Z;πZ).

(⇒) since Y ∈ φ(S;πS) we have that:

Y ∈ arg max
M∈Q(S)∪{S}

R(M)

Notice that since Z is winning and self-enforcing within S, then Z ∈ Q(S)∪

{S}. Then if Z 6∈ arg max
M∈Q(S)∪{S}

R(M), it follows that R(Z) < R(Y ).

(⇐) If R(Y ) > R(Z) then:

Y ∈ arg max
M∈Q(S)∪{S}

R(M)

and

Z 6∈ arg max
M∈Q(S)∪{S}

R(M). It then follows that Z 6∈ φ(S;πS)

We prove uniqueness by induction. The mapping is unique for |S| = 1 since

this maps into a singleton. Our induction hypothesis is that up to |S| = k − 1

there exists a unique mapping. We then try to prove that for |S| = k there can

be no two mappings that satisfy the two axioms.

Suppose not. Suppose there exists a φ(S;πS) and φ̃(S;πS), φ(S;πS) 6=

φ̃(S;πS) satisfying the two axioms. Let T ∈ φ̃(S;πS) and T 6∈ φ(S;πS). Then

we know that:

• T ∈ φ̃(S;πS) ⇒ T ∈ φ̃(T ;πT ) by Axiom 1.

• T ∈ φ̃(S;πS)⇒ T ∈W(S,πS) by the definition of the transition correspon-

dence.

We have the following cases:
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CASE A. T 6= S and |T | < |S| = k

• Take any coalition X. If |X| = 1 then φ(X;πX) = φ̃(X;πX) because

φ(X;πX) 6= ∅ and φ(X;πX) maps into a subset of coalition X. The same is

true for φ̃(X;πX). Therefore for coalition sizes s < k we have φ(X;πX) =

φ̃(X;πX) and for coalition of size k we have φ(X;πX) 6= φ̃(X;πX).

• Thus, since |T | < k, T ∈ φ̃(T ;πT ) = φ(T ;πT )⇒ T ∈ φ(T ;πT ).

• Since T 6∈ φ(S;πS), by Axiom 2, there exists a Y ∈ φ(S;πS) such that

Ri(Y ) > Ri(T ) ∀ i ∈ Y ∩ T .

• By crossmonotonicity and by Axiom 1, Y 6= S ⇒ Y ∈ φ(Y ;πY ) =

φ̃(Y ;πY ).

• Also, Y ∈ φ(S;πS)⇒ Y ∈W(S,πS .

CASE A.1. Y ∈ φ̃(S;πS). Since Ri(Y ) > Ri(T ) ∀i ∈ T∩Y , and T ∈ φ̃(T ;πT ),

T ∈W(S,πS) we have that T 6∈ φ̃(T ;πT ), a contradiction.

CASE A.2. Y 6∈ φ̃(S;πS). Since Y ∈ φ̃(Y ;πY ) and Y ∈ W(S,πS), by Axiom 2

we have that Ri(Y ) < Ri(T ) ∀i ∈ T ∩ Y , a contradiction.

CASE B. T = S

• Suppose that S is the only coalition in which they differ and suppose

further that S ∈ φ(S;πS) but S 6∈ φ̃(S;πS).

• Since S is the only coalition in which they differ, we have φ̃(S;πS) ⊆

φ(S;πS).

• By cross-monotonicity, there exists a T̃ , where T̃ ∈ φ̃(S;πS) and |T̃ | < k

in which T̃ ∈ φ(S;πS).

• Since T̃ ⊆ S, by cross-monotonicity Ri(T̃ ) > Ri(S) ∀i ∈ T̃ ∩ S. This

contradicts the assumption that S ∈ φ(S;πS).
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3.3 Results without Consistent Ranking

An example of a sharing rule that does not satisfy consistent ranking is combi-

nation sharing. This is illustrated in the next example:

Example 1 Suppose we have two coalitions S = {1, 2, 3, 4} with power vector

πS = [.006, .02, .48, .004] and T = {2, 3, 5} with power vector πT = [.02, .48, .02].

Let the sharing rule be combination sharing with λ = .15 and prize I = 1.

Since S ∩ T = {2, 3}, we should look at the share of these players inside both

coalitions. The shares of the prize of players 2 and 3 in coalitions S and T are

the following:

ξ2(S) = .071; ξ2(T ) = .083

ξ3(S) = .84; ξ3(T ) = .83

Thus, player 2 prefers coalition T to S while player 3 prefers coalition S to

T .

The basic tension in this type of sharing rule is that, depending on the

parameter λ, some players prefer to be in larger coalitions if they have higher

relative power within that coalition while others prefer to be in a smaller coali-

tion. In the example above, player 3 wants to be in a coalition with a larger

size while player 2 prefers to be in a coalition of smaller size.

There are a class of games, however, where combination sharing will yield

consistent ranking. In particular, when we restrict the class of games charac-

terized by a power profile that is size monotonic in the extremes (SME), then

combination sharing is consistent for any value of λ.

Definition 8 Consider a power profile π = [π1, π2, . . . , πn] arranged in de-

scending powers with πmedian as the median player’s power where:

πmedian =


π |S|

2

+ π |S|
2
+1

2
if |S| is even

π |S|+1
2

if |S| is odd
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Define the upper extreme set of coalition S as:

UE(S) = {i ∈ S|πi > πmedian}

We also define the lower extreme set of coalition S as:

LE(S) = {i ∈ S|πi < πmedian}

Definition 9 (Size Monotonicity in the Extremes) Consider sets A ⊂ UE(S)

and B ⊂ LE(S). A coalition S is size monotonic in the extremes (SME) if

|B| > |A| implies that π(B) > π(A)

Note that SME implies that π1+π2+· · ·+πk < π|S|−k+1+π|S|−k+2+· · ·+π|S|

∀ k < |S|
2 .

We define a game Ḡ = (N, π) to be an SME game if the coalition N is SME

for the power profile π. A feature of SME games is that subcoalitions with

larger size will also have larger power. Thus, the tension between coalition size

and power for the convex combination sharing rule will disappear.

Lemma 1 Suppose Ḡ = (N, π) is an SME game, then for any coalitions

A,B ⊂ N where |A| > |B| we must have π(A) > π(B).

Proof. Arrange players in descending power such that π1 > π2 > · · · > πn.

Suppose that we have two coalitions A and B such that |A| > |B| but π(B) >

π(A). Notice that the power of coalition A is greater or equal than the |A|th

lowest powered coalition C = {in, in−1, . . . , in−|A|+1}, that is, π(A) ≥ π(C).

Also notice that the power of coalition B is less or equal than the |B|th highest

powered coalition D = {i1, i2, . . . , i|B|}. All of these together imply π(D) ≥

π(B) > π(A) ≥ π(C) or π(D) > π(C). Since |D| < |C|, this contradicts SME.

Proposition 2 Under combination sharing, if we restrict the class of games

to SME games then φ∗ is the unique mapping that satisfies Self-enforcement

and Rationality for any λ.
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Proof. By Lemma 1 we know that combination sharing is consistent (for

any value of λ) if the class of games is SME. We can then apply Proposition

1 to show that φ∗ is the unique mapping that satisfies Self-enforcement and

Rationality.

3.4 Correspondences without Rationality

Rationality implies that agents who are selected by a transition correspondence

have common preferences among self-enforcing coalitions. This is not particu-

larly appealing in many scenarios, for instance when the sharing rule does not

satisfy consistent ranking.

In this section, we study transition correspondences that do not satisfy

rationality.

Definition 10 The transition correspondence satisfies the weak axiom of re-

vealed preferences (WARP) if T ∈ φ(S;π) and Q is winning and self-enforcing

in (S, π), and if Q ∈ φ(S̃;π) and T is winning and self-enforcing in (S̃, π), then

T ∈ φ(S̃;π).

We now show that, given a fixed sharing rule, self-enforcing transition

correspondence that are minimalistic coincide on the coalitions that are self-

enforcing.

Lemma 2 Consider the cross-monotonic sharing rule and transition corre-

spondences φ and φ̃ that are self-enforcing and minimalist, then the sets of

coalitions that are self-enforcing coincide. That is,

{S|S ∈ φ(S)} = {T |T ∈ φ̃(T )}.

Proof.
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Consider the sets Au = {S|S ∈ φ(S), |S| ≤ u} and Bu = {T |T ∈ φ̃(T ) ≤ u}.

We will prove by induction on the size of u that Au = Bu.

This is clearly true if u = 1, because any singleton coalition is self-enforcing.

For the induction hypothesis, assume that Au−1 = Bu−1.

Consider S ∈ Au. Then S ∈ φ(S). Therefore, there is no Q ( S such that

Q ∈ W (S, π) and Q ∈ φ(Q). Therefore, since Au−1 = Bu−1, there is no Q ( S

such that Q ∈ W (S, π) and Q ∈ φ̃(Q). Hence, S ∈ φ(S) and S ∈ Bu. Thus

Au ⊂ Bu. We can similarly prove that Bu ⊂ Au.

This proposition is two-fold. On one hand, it implies that the cross-monotonic

sharing rule will uniquely determine the set of coalitions that are self-enforcing.

On the other hand, it implies that in order to construct an arbitrary self-

enforcing transition correspondence, we just need to choose any of its winning

coalitions that are self-enforcing and are different than the grand coalition.

For instance, one rule to select the value of the transition correspondence

at coalitions that are not self-enforcing, is the sequential dictator, where agents

pick their most prefered coalition among the self-enforcing coalitions, and we

break ties by continuing in the order.

Proposition 3 Suppose that the transition correspondence φ satisfies the WARP

and is minimalistic, then there exists a ranking on the set of self-enforcing coali-

tions R such that if S 6∈ φ(S), then φ(S) = arg max{T |T∈φ(T ) and T∈W (S,π)}R(T ).

4 Case 2: I = 0 and St = N

4.1 Desirable Properties

In this section we consider the case where a players outside the forming coalition

are not killed, that is, they can participate in the further coalition formation

games. With this threat, the players inside a forming coalition should consider
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their coalition’s relative strength against the powers of people outside of it. We

modify the Rationality Axiom as

Axiom 2.2 (Rationality 2) If S ∈W(N,π) but S 6∈ φ(N ;π) ⇐⇒ ∀T ∈ φ(N, π),

ξi(T ) > ξi(S) ∀ i ∈ T ∩ S

4.2 Results

The following proposition shows for sharing rules with consistent ranking, a

unique mapping exists that satisfies Rationality 2. In fact this mapping pro-

duces a coalition that is included in the no threat equilibrium (NTE) set (see

Juarez [5]).

Definition 11 Under the No-Threat Equilibrium (NTE), if a group of agents

find it profitable to deviate from a coalition, then there is another group of

agents who can react to that deviation in a way that harms the agents who

originally deviated.

Example 2 Consider the vector of power π = [.41, .34, .12, .10, .08]. The coali-

tion S = {2, 3, 5} is an NTE equilibrium since if, say, T = {2, 3} deviates from

S, then player 5 can form with 4 and 1 and defeat T.

We define the mapping to be

φ̃∗
(
N, πt

)
= arg max

M∈W(N,π)

R(M)

Proposition 4 If a sharing rule satisfies consistent ranking then φ∗ is the

unique mapping that satisfies Rationality 2. Moreover the coalition obtained

from this mapping is a NTE.

Proof. Suppose we have a coalition S ∈ φ̃∗ (N, π) that does not satisfy Ratio-

nality 2, that is, S is not unique. Then there exists another T ∈ φ̃∗ (N, π) such
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that ξi(T ) > ξi(S) for some i ∈ S ∩ T and ξj(S) > ξi(T ) for some j ∈ S ∩ T .

This contradicts consistent ranking. Thus, S ∈ φ̃∗ (N, π) is unique.

Cross-monotonicity implies that S ∈ φ̃∗ (N, π) is minimally winning. Sup-

pose S is not minimally winning, then there exists T ⊂ S such that T ∈W(N,π)

which is not preferred by people in T , that is, ξi(T ) < ξi(S). This contradicts

cross-monotonicity.

Since S ∈ φ̃∗ (N, π) is the unique minimally winning coalition, by Juarez [5]

we have that this is a NTE.

Hence, sharing rules such as equal sharing and proportional sharing always

generate a coalition characterized by the mapping that satisfies Rationality 2.

There are several differences between the coalition obtained by this mapping

compared to the one obtained in Case 1. First, a coalition of size two can be

stable under the NTE.

5 Case 3: I > 0 and St ∈ φ(St−1, πt−1)

5.1 Desirable Properties

Case 1 defined a unique mapping under the condition that power was not accu-

mulating with each stage a coalition wins. The following extends the analysis to

the case where the power of a coalition accumulates by players splitting a prize

I that then adds to their power as they continue to the next round. Thus, the

equilibrium concept of self-enforcement needs to be modified for this situation.

A coalition S is self-enforcing if it is self-enforcing in the initial round and no

further deviation is possible even after adding powers to the players inside S.

Thus, no subcoalition has enough power to deviate and win.
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Axiom 1.1 Let φ be a transition correspondence. A coalition is internally

self-enforcing (ISE) if for any coalition S ∈ φ(N ;πN ) then S ∈ φ(S;πS + I ∗

ξ(S)) ∀ I ≥ 0 where I ∗ ξ(S) is the accumulated power from the prize shared

by the players inside the coalition.

When there is no confusion, we say that a coalition S is an ISE coalition if

it is generated by the transition correspondence satisfying Axiom 1.1. Notice

that this Axiom is similar to self-enforcement in Case 1 when I = 0. Ideally,

we would want a mapping φ that satisfies Internal Self-Enforcement and Ra-

tionality. We ask whether sharing rules with consistent ranking will always

guarantee existence of this mapping. Proportional sharing will always induce

an internally self-enforcing coalition. This is because once a (self-enforcing)

coalition S∗ forms at the initial stage, the relative power of each player i ∈ S∗

is unaffected by adding the share of the prize πi
πS
· I.

Proposition 5 Under proportional sharing, there exists a unique mapping that

satisfies ISE (Axiom 1.1) and Rationality (Axiom 2). This mapping coincides

with φ∗ in Case 1.

However, we show that not all sharing rules that have consistent ranking will

generate a coalition that is internally self-enforcing for any vector of powers. In

particular, equal sharing does not satisfy ISE, as shown in the example below.

Example 3 Consider the power profile π = [.20, .15, .14, .13, .12, .11, .10, .05]

with I = .1 with equal sharing. Under this sharing rule, if a coalition S forms

and continues to form forever, then the relative power of each player at the

limit approaches 1
S and hence all internally self-enforcing coalition must be of

size 2m−1 (this is proven later below). In this example, a coalition of size

3 cannot form since does not have enough power to do so (the three highest

powered players only have .49). A 7-person coalition will not be internally
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self-enforcing since if we add the share of the prize to the players then a 3-

person coalition can deviate. For instance, if S = {1, 2, 3, 4, 5, 6, 7} forms, then

after adding .1
7 to each players’ power then T = {1, 2, 3} can deviate since

π(T ) = .49 + .04 > π(S \ T ) = .46 + .057. The grand coalition is not stable

since at the limit when relative powers are equalized, a 7-person coalition can

deviate and be internally self-enforcing.

A way out of this dilemma is to impose some restrictions on admissible power

profiles. Indeed, restricting powers of a subcoalition to be size monotonic in the

extremes (as defined in Section 2) will be a necessary and sufficient condition

for a mapping to exist under equal sharing.

5.2 Results

The results in this section discuss the existence of a mapping φ̃ for a feasible

domain of games G̃ under equal sharing. We say that G̃ is a feasible domain of

games if (S, π) ∈ G̃ implies that (S, π + ξ(S) · I) ∈ G̃ ∀I > 0

Proposition 6 Consider a feasible domain of games G̃ and a mapping φ̃ :

G̃→ 2N . Under equal sharing, if φ̃ satisfies ISE and Rationality then:

1. G̃ should only contain games such that they have a winning subcoalition

of size 2m − 1 that is SME

2. φ̃(·) is the coalition with the fewest number of agents of size 2m − 1 that

is SME

Proof. (⇒) The proof proceeds in several steps:

Step 1: If a coalition S is picked by any mapping φ and continues to form, then

over time the relative power of i ∈ S approaches 1
|S| .
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Proof of Step 1: With equal sharing, the relative power of player i in a coalition

S that continues to form through the kth stage is
π0
i+

kI
|S|∑

i∈S π
0
i+kI

. Evaluating this

expression as k →∞ by using l’Hospital’s rule yields:

limk→∞
π0
i+

kI
|S|∑

i∈S π
0
i+kI

= limk→∞
I
|S|
I = limk→∞

1
|S| = 1

|S|

Step 2: Any coalition that is chosen by a mapping φ that satisfies ISE should

be of size 2m − 1.

Proof of Step 2. We shall prove this by induction on the size of coalition S,

|S| = 2m − 1 + r where r ∈ [0, 2m − 1]. Let the base of induction be m = 1. In

this case,

|S| =


1 if r = 0

2 if r > 0

We know that |S| = 1 is an ISE coalition since a singleton maps into itself.

On the other hand, if |S| = 2, then the player i such that πi > πj can always

deviate from S and be self-enforcing (since he is a singleton coalition). Thus S

where |S| = 2 is not an ISE coalition.

Let our induction hypothesis be that this is true for m = h. That is,

|S| = 2h − 1 + r


S an ISE coalition if r = 0

S not an ISE coalition if r > 0

We now show that this relationship remains true for m = h+ 1.

If r = 0, then:

• By Step 1 the relative power of i ∈ S is 1
2h+1−1 as the rounds approach

infinity. That is, limk→∞
πk

πk(S)
=
[

1
2h+1−1 ,

1
2h+1−1 , . . . ,

1
2h+1−1

]
• A coalition T that wishes to deviate from S must be as at least 2h−1+r,
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where 2h − 1 ≤ 2h − 1 + r ≤ 2h+1 − 1. Note that a |T | = 2h − 1 will not

be winning since π(N \ T ) > π(T )

• In this case, by Step 1 we know that if T continues to form then the

relative power of i ∈ T will approach 1
2h−1+r in the limit.

• By the same reasoning, a coalition V, where |V | = 2h−1 can deviate from

coalition T. This will be an ISE coalition by our induction hypothesis.

Thus T is not an ISE coalition. Therefore, S where |S| = 2h+1 − 1 is an

ISE coalition.

If r > 0, then:

• By Step 1 the relative power of i ∈ S is 1
2h+1−1+r as the rounds approach

infinity. That is, limk→∞
πk

πk(S)
=
[

1
2h+1−1+r ,

1
2h+1−1+r , . . . ,

1
2h+1−1+r

]
• A coalition T where |T | = 2h− 1 can deviate from S. From our induction

hypothesis T will be an ISE coalition. Therefore S where |S| = 2h− 1 + r

cannot be an ISE coalition if r > 0.

• Finally, by Rationality we know that under equal sharing the smallest ISE

coalition will yield the highest share of the prize for all players. Thus, the

coalition generated by the mapping φ will be the smallest coalition of size

2m − 1.

Step 3: The power profile within the ISE coalition S∗ is SME.

Proof of Step 3. Suppose not. Suppose that for A ⊂ UE(S∗), B ⊂ LE(S∗)

we have that if |B| > |A| then π(A) > π(B). We know from Step 2 that

|S∗| = 2m − 1. Take sets A and Q = {UE(S∗) \ A} from the upper extreme

set and B and V = {LE(S∗) \ B} from the lower extreme set of S∗. Since

π(Q) > π(V ) (because |Q| > |V | and Q ⊂ UE(S∗)) and π(A) > π(B) then we
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have that π(A ∪Q) > π(B ∪ V ) + πmedian. Thus, coalition (A ∪Q) is winning

in S∗ and has size 2m−1 − 1, thus it is an ISE coalition and can deviate.

To prove part 1, suppose that a game g = (N, π) produces a set W of

winning subcoalitions of size 2m − 1 (note that this set is non-empty) but

whose elements are not SME. Then by Step 3 we know that if we pick any

element S ∈ W there will be a coalition T ⊂ S that is winning within S and

is ISE. Thus there will be no coalition within the game g = (N, π) that is ISE.

Therefore, Part 1 of the proposition must hold for a mapping φ̃ to satisfy ISE.

The proof of Part 2 of the proposition follows from Steps 1-3.

For the case of combination sharing, if φ̃ should satisfy ISE and Rationality

then it must be the case that G̃ should only contain games that are SME games

(as defined in Section 2). This is to guarantee that there is consensus among

players of the coalition to be picked. In this case it is also the smallest coalition

of size 2m − 1.

Proposition 7 Consider a feasible domain of games G̃ and a mapping φ̃ :

G̃→ 2N . Under combination sharing, if φ̃ satisfies ISE and Rationality then:

1. G̃ should only contain SME games that have a winning subcoalition of size

2m − 1

2. φ̃(·) is the smallest coalition of size 2m − 1.

Proof. Step 1: show convergence of relative power to 1
|S| Step 2: show that if

grand coalition is SME then any subcoalition SME - to show that the steps in

last proposition can be used Step 3: show that mapping satisfies rationality -

use lemma 1 Step 4: show that only coalitions of size 2m − 1 is ISE -use proof

in last proposition
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6 Case 4: I > 0 and St = N

6.1 Desirable Properties

New problems crop up in the final case where agents are not killed and power

accumulates. In particular, there are two issues. First, as players accumulate

power, one player may have high enough relative power to be a dictator. Second,

there may be potential ”jumping” between coalitions. The following examples

illustrates these issues for proportional sharing.

Example 4 Assume proportional sharing. Let the prize be I = 1 and the

initial powers be π0 = (.26, .25, .20, .19, .10). The set of winning coalitions at

t = 0 are:

W0 = {[1, 2], [1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [2, 3, 4], [2, 3, 5], [3, 4, 5]

, [1, 2, 3, 4], [1, 2, 4, 5], [1, 2, 3, 5], [1, 3, 4, 5], [2, 3, 4, 5], [1, 2, 3, 4, 5]}

Unlike in the equal sharing case, S = [1, 2] cannot be self-enforcing. To see

this, suppose S continues to form. Both will accumulate power according to the

proportion .26
.51 for player 1 and .25

.51 for player 2. However, at the 25th round,

player 1’s accumulated power is now 13.005 which is higher than the combined

powers of [2, 3, 4, 5] which is 12.99. In this instance, player 1 can unilaterally

deviate and be a dictator.

Example 5 Assume proportional sharing. Let the prize be I = 1 and the

initial powers be π0 = (.23, .21, .20, .19, .17). The set of winning coalitions at

t = 0 are:

W0 = {[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [2, 3, 4], [2, 3, 5], [3, 4, 5]

, [1, 2, 3, 4], [1, 2, 4, 5], [1, 2, 3, 5], [1, 3, 4, 5], [2, 3, 4, 5], [1, 2, 3, 4, 5]}
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Suppose, for instance, the coalition [1,2,3,4] forms at t = 0. Then at t = 1

after they have accumulated power, there is an incentive for players 2,3,4 to

dump player 1 in favor of player 5. This will happen since players 2,3,4 will

get a higher share of the prize by aligning with 5 and they have sufficient power

to do so. At later rounds, however, the same incentive to dump the highest-

powered player for the outsider (provided that they have sufficient power to win)

will still be there, and thus there will be a phenomenon of ”jumping” to different

coalitions.

This case is also true for combination sharing as long as λ < 1.

We first introduduce the concept of refinement. Given the vector of power

πX , a refinement of πX is a vector of powers π̄Y such that the power of its

agents is formed by breaking down the power of the agents in X. That is, there

exists a partition of the agents Y , (P1, . . . , P|X|), such that
∑

j∈Si π̄j = πi for

every i ∈ X.

We introduce the concept of external self-enforcement to incorporate the

features that agents are not killed and that power accumulates throughout

rounds.

Axiom 3.1 (Externally self enforcement) Let φ be a transition correspon-

dence. A mapping is externally self-enforcing (ESE) if it is anonymous and

S ∈ φ(N ;π) only if S ∈ φ(N ; (πS , π̄−S) + ξ(S) · I) ∀ I > 0 for every refinement

π̄−S of π−S .

When there is no confusion, we say that a coalition S is an ESE coalition if it

is generated by the transition correspondence satisfying ESE. This modification

of the self-enforcement axiom shows that coalitions that are externally self

enforcing should map into the same coalition even though players from N \ S

(players outside S) can still form coalitions and threaten S, or can refine into
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smaller agents, and even if the powers within the forming coalition accumulates

through rounds.

We also modify our definition of Rationality to accommodate the same

features.

Axiom 3.2 (Rationality 3) Suppose that T 6∈ φ(N ;π) but

T ∈ φ(N ; (πT , π̄−T ) + ξ(T )I) for all I > 0 and all refinement π̄−T , then if

S ∈ φ(N ;π) then we have that ξi(S) > ξi(T ) ∀i ∈ S ∩ T .

Note that the trivial correspondence φ(N ;π) = N satisfies ESE and ratio-

nality 3.

6.2 Results

This subsection formalizes our results for this case. We find that for equal

sharing a mapping that satisfies external self-enforcement always exists while

this is not true for combination sharing. For the equal sharing case, we define

the mapping φ∗∗ as the smallest winning coalition of size 2m:

φ∗∗ = arg min
Q

m

where Q ∈ {S ∈ 2N such that S ∈W(N,π) and |S| = 2m}

Proposition 8 Under equal sharing, the correspondence φ∗∗ is the only non-

trivial mapping that satisfy ESE and Rationality 3.

Proof. (⇒) The proof proceeds in several steps:

Step 1: If a coalition S is picked by any mapping φ and continues to form, then

over time the relative power of i ∈ S approaches 1
|S| .

Proof of Step 1: Similar to the proof of Step 1 in Proposition 4.
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Step 2: Any coalition that is chosen by the mapping φ∗∗ should be of size 2m.

Proof of Step 2. We know that |S| = 1 is an ESE coalition since a singleton

maps into itself provided that π(S) > π(N \S), that is, S is a dictator. Knowing

this, we shall prove Step 2 by induction on m where m is such that |S| = 2m+r

where r ∈ [0, 2m − 1]. Let the base of induction be m = 1. In this case,

|S| =


2 if r = 0

3 if r > 0

We know that |S| = 2 is an ESE coalition since a deviation into a singleton

coalition by a non-dictator is not winning, that is, πi + kI
2 < πj + kI

2 + π(N \

S) ∀ i, j ∈ S. On the other hand, if |S| = 3, then at the limit we can have 2

players deviating from S which will be an ESE coalition. This is because at

the limit the relative power πi
π(S) →

1
3 ∀i ∈ S and

πj
π(S) → 0 ∀j ∈ N \ S and

therefore 2 players from S can deviate. Hence, S such that |S| = 3 is not an

ESE coalition.

Let our induction hypothesis be that this is true for m = h. That is,

|S| = 2h + r


ESE if r = 0

not ESE if r > 0

We now show that this relationship remains true for m = h+ 1.

If r = 0, then:

• By Step 1 the relative power of i ∈ S is 1
2h+1 as the rounds approach

infinity.

• A coalition T that wishes to deviate from S must satisfy two conditions:

(1) it should be winning at the game (N, π + ξ(T ))I ∀I > 0 and; (2) it

must be of size smaller than S (otherwise players in the intersection S∩T

will be better off staying with S)
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• Moreover, at the limit any coalition deviating from S should include at

least 2h players from S. Otherwise

V ⊂ S where |V | = 2h. Otherwise, any coalition that does not contain V

will not be winning.

• Suppose that a coalition T = (V ∪W ) where |V | = 2h, W ⊆ (N \ V ),

|W | = r. By the induction hypothesis this will not be an ESE coalition.

• If V deviates, then this will not be winning since π(V ) < π(N \V ) where

π(V ) =
∑

i∈V πi + kI
|S| · 2

h

and

π(N \ V ) =
∑

j∈(N\V ) πj + kI
|S| · 2

h

If π(V ) > π(N \ V ), this implies that
∑

i∈V πi >
∑

j∈(N\V ) πj which

means that V was winning in the initial round. This is a contradiction

since V could have just formed instead of S. Thus, the coalition T = V

where |T | = 2h that deviates from S where |S| = 2h+1 will not be winning.

Therefore, S is an ESE coalition.

If r > 0, then:

• By Step 1 the relative power of i ∈ S is 1
2h+1+r

as the rounds approach

infinity.

• A coalition T where |T | = 2h can deviate from S and will be winning.

From our induction hypothesis T will be an ESE coalition. Therefore S

where |S| = 2h + r cannot be an ISE coaltion if r > 0.

• Finally, by Axiom 2.3 (Rationality) we know that under equal sharing the

smallest self-enforcing coalition will yield the highest share of the prize

for all players. Thus, the coalition generated by the mapping φ will be

the smallest coalition of size 2m.

28



We make several remarks on the transition correspondence φ∗∗. Although

the mapping produces a coalition that is externally self-enforcing under equal

sharing, it may not necessarily be efficient. That is, there is potentially a

deviation (not necessarily to an externally self-enforcing coalition) that could

potentially make all players in the coalition who deviated better off. To see this,

suppose that φ∗∗ maps into coalition S where S is an 8-person coalition from

the initial population of 11 players. In the limit, suppose coalition T deviates

from S where T is composed of four players from S and the remaining 3 players

from N \S. After forming this 7-person coalition, the original four players that

were part of S that deviated will have enough power at the limit to deviate

from this 7-person coalition. Notice this path is an improvement from S for

the four players that deviated but also an improvement for the three players

in N \ S. Thus, this off-equilibrium behavior can potentially make a subset of

players in S better off.

The next propositions show why ESE is not satisfied by combination shar-

ing, except by the trivial correspondence.

Proposition 9 Under combination sharing, the trivial correspondence φ(N, π) =

N is the only mapping that satisfies ESE and Rationality 3.

Proof. Suppose S ∈ φ(N ;π). Thus, for players in i ∈ S, at every round power

will accumulate by πti = πt−1i + λ · I
|S| + (1− λ)

πt−1
i

πt−1(S)
.

If λ is close enough to zero then there will exist a round k and a coalition

T = S−{i}, i ∈ S such that for a player j ∈ N \S, T ∪{j} is winning at that

round, that is, T ∪ {j} ∈ W(N,π+ξ(S). This coalition will be preferred ∀ i ∈ T

because |S| = |T ∪ {j}| but πi(T∪{j})
π(T∪{j}) >

πi(S)
π(S) .

Therefore, there will be no mapping such that ESE is satisfied.
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7 Non-cooperative Game Treatment

We now provide a non-cooperative treatment of the game described by the

axiomatic analysis of the earlier sections. We devide this section into two

ortoghonal cases, when agents are killed and when they are not.

7.1 Agents are killed

Let the game be g = (N, π). At every stage t, there will be a coalition that

forms. Let N0 = N be the initial coalition with power profile π0.

The non-cooperative game is as follows:

1. Nature picks agenda setter at,q ∈ N t, q = 1

2. at,q makes proposal P t,q ∈ 2N
t

where at,q ∈ P t,q

3. Nature randomly selects a voter within P t,q denoted by V t,q,1 who chooses

yes or no: V̄ (V t,q,1) ∈ {yes, no}

• we proceed to the second voter V t,q,2 and obtain his vote

• proceed similarly for all |P t,q| players

• denote by Qt,q = {i ∈ P t,q| V̄ (i) = yes}

• if Qt,q ∈W(Nt,πNt )
, proceed to step 4

• otherwise proceed to step 5

4. If P t,q = N t, the game proceeds to Step 6 with agents’ power as πt+1
i =

πti +ξi(N
t)I ∀ i ∈ N t. Otherwise, N t \P t,q are killed and game returns to

Step 1 with N t+1 = P t,q with agents’ power as πt+1
i = πti + ξi(Pt,q)I ∀ i ∈

P t,q.

5. If q < |N t|, Nature randomly picks next agenda setter at,q+1 ∈ N t among

members in N t who have not proposed, then proceeds to step 2 with q

increased by 1. If q = |N t|, proceed to step 6.
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6. N t is the coalition that forms.

7. After repeating this infinitely, the sequence of winning coalitions and their

respective powers are {(N1, π1), (N2, π2), . . . }. Consider this sequence

with the relative powers {(N1, π̃1), (N2, π̃2), . . . } where π̃ti =
πti

πt(N) .

• If lim
t→∞

(N t, π̃t) exists, let (N∗, π̃∗) = lim
t→∞

(N t, π̃t).

• If lim
t→∞

(N t, π̃t) does not exists, let N∗ = ∅

• The payoff of agents in this game is:

Ui =


ξi(N

∗, π̃∗)− ε
∑

INt+1(i)6=Nt(i) if i ∈ N∗

0 if i 6∈ N∗

The aggregate payoff is simply the share of the agent if he is part of a

the limit coalition N∗ minus a cost ε that is incurred if there is a different

coalition that transitions from one period to another. The aggregate payoff can

be justified in several ways. First, expropriation by the winning coalition of

any player that is not part of the winning coalition at a particular stage will

justify why non-members will get zero aggregate payoff. Alternatively, if player

i were extremely risk averse in the sense that he would always prefer to be a

part of the winning coalition at every stage, then not being a part of a winning

coalition would drive his aggregate payoff to zero.

Proposition 10 • Consider the transition correspondece φ∗ from Case 1

that is rational and self enforcing. Consider the initial game (N, π). Then

S∗ ∈ φ∗(N, π) if and only if there exists a set of strategies that implements

S∗ as a Coalition-Proof Subgame Perfect Nash Equilibrium of the game

(*) above.

• Consider the transition correspondece φ∗ from Case 3 that is internally

self enforcing and satisfies Rationality 2. Consider the initial game (N, π)
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and S∗ ∈ φ∗(N, π). Then there exists a set of strategies that implements

S∗ as a Coalition-Proof Subgame Perfect Nash Equilibrium of the game

above.

7.2 Agents are not killed

If agents are not killed, consider the set of agents N with the initial power

vector π0. At every stage t, there will be a coalition, St, that forms, and a

power vector for each stage denoted by πt. The stage game is as follows:

1. Nature picks agenda setter at,q ∈ N, q = 1

2. at,q makes proposal Pt,q ∈ 2N where at,q ∈ P t,q

3. Nature randomly selects a voter within P t,q denoted by V t,q,1 who chooses

yes or no: V̄ (V t,q,1) ∈ {yes, no}

• we proceed to the second voter V t,q,2 and obtain his vote

• proceed similarly for all |P t,q| players

• denote by Qt,q = {i ∈ P t,q| V̄ (i) = {yes}}

• if Qt,q ∈W(N,πt), proceed to step 4

• otherwise proceed to step 5

4. If P t,q = N , then proceed to step 6. Otherwise, St = P t,q and next period

begins and the game returns to Step 1 with agents’ power as πt+1
i =

πti + ξi(S
t)I ∀ i ∈ St and πt+1

i = πti ∀ i 6∈ St.

5. If q < |N |, nature randomly picks next agenda setter at,q+1 ∈ N who have

not proposed, then proceeds to step 2 with q increased by 1. If q = |N |,

proceed to step 6.

6. St = N , then next period begins with πt+1
i = πti + ξi(N)I for all i ∈ N as

the new vector of powers.
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7. After repeating this infinitely, the sequence of winning coalitions and their

respective powers are {(S1, π1), (S2, π2), . . . }. Consider this sequence with

the relative powers {(S1, π̃1), (S2, π̃2), . . . } where π̃ti =
πti

πt(N) .

• If lim
t→∞

(St, π̃t) exists, let (S∗, π̃∗) = lim
t→∞

(St, π̃t).

• If lim
t→∞

(St, π̃t) does not exists, let S∗ = ∅

• The payoff of agents in this game is:

Ui =


ξi(S

∗, π̃∗)− ε
∑

ISt+1(i)6=St(i) if i ∈ S∗

0 if i 6∈ S∗

Proposition 11 • Consider the transition correspondece φ∗ from Case 2

that is rational. Consider the initial game (N, π) and S∗ ∈ φ∗(N, π).

Then there exists a set of strategies that implements S∗ as a Coalition-

Proof Subgame Perfect Nash Equilibrium of the game above.

• Consider the transition correspondece φ∗ from Case 4 that is externally

self enforcing and satisfies Rationality 3. Consider the initial game (N, π)

and S∗ ∈ φ∗(N, π). Then there exists a set of strategies that implements

S∗ as a Coalition-Proof Subgame Perfect Nash Equilibrium of the game

above.

8 Proofs

8.1 Propositions 9 and 10

8.1.1 Proof of Proposition 9

We now define the set of strategies σ that would implement the Nash Equilib-

rium. The set of strategies are the same for cases 1 and 3, and very similar to

the strategies used to prove proposition 10.
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Let S∗ ∈ φ(N, π). Consider the period t and i ∈ S∗. Then the strategy σi

of agent i equals to:

σi =


if i is a proposer : always propose S∗regardless of history

if i is a responder : vote yes⇔ proposed coalition is S∗

On the other hand, there are two cases if i 6∈ S∗. For Case 1, where power

does not accumulate:

σi =



if i is a proposer : propose arg max
{C:C∈φ(C,πC), C∈W(Nt,πt)}∪{Nt}

ξi(C)

if i is a responder : vote yes ⇔ proposed coalition is C ⊆ N t,

C ∈W(Nt,πt), C ∈ φ(C, πC) and i ∈ C

For Case 3, where power accumulates:

σi =



if i is a proposer : propose arg max
{C:C∈φ(C,πC+Iξ(C)) ∀ I≥0, C∈W(Nt,πt)}∪{Nt}

ξi(C)

if i is a responder : vote yes ⇔ proposed coalition is C ⊆ N t,

C ∈W(Nt,πt), C ∈ φ(C, πC + Iξ(C)) ∀I ≥ 0 and i ∈ C

First, note that the set of strategies above implement S∗. This is clear

because S∗ is a winning coalitions and the agents in S∗ will refuse any proposal

other than S∗.

Second, note that no agent has the incentive to deviate from σ. To see this,

if an agent i 6∈ S∗ changes his strategy the agents in S∗ will continue rejecting

proposals different than S∗. On the other hand, suppose agent j ∈ S∗ changes

his strategy and it implements coalition T. Then, by definition of the other

strategies T is self-enforcing at every period, because agents only accept offers

that are self-enforcing. By definition, Rj(S
∗) ≥ Rj(T ). Therefore, agent j did

not improve his utility.
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8.1.2 Proof of Proposition 10

The strategies used in Proposition 10 is similar to the previous strategies in

Proposition 9 if the agent is part of the limit coalition S∗. However, if he is

not part of S∗, then he proposes an externally self-enforcing coalition which

maximizes his payoffs if he is a proposer, or he votes yes to any externally

self-enforcing coalition that includes him if he is a voter.

As with Proposition 9, there are two cases if i 6∈ S∗. For Case 2, his strategy

equals:

σi =



if i is a proposer : propose arg max
C: C∈W(Nt,πt)

ξi(C)

if i is a responder : vote yes ⇔ proposed coalition is C ⊂ N t,

C ∈W(Nt,πt), and i ∈ C

For Case 4:

σi =



if i is a proposer : propose arg max
C:C∈φ(N,πN+Iξ(C)) ∀I≥0, C∈W(Nt,πt)

ξi(C)

if i is a responder : vote yes ⇔ proposed coalition is C ⊂ N t,

C ∈W(Nt,πt), C ∈ φ(N, πN + Iξ(C)) ∀ I ≥ 0 and i ∈ C

These set of strategies above implement S∗ since S∗ is a winning coalition

and the agents in S∗ will refuse any proposal other than S∗.

Second, note that no agent has the incentive to deviate from σ. To see this,

if an agent i 6∈ S∗ changes his strategy the agents in S∗ will continue rejecting

proposals different than S∗. On the other hand, suppose agent j ∈ S∗ changes

his strategy and it implements coalition T. Then, by definition of the other

strategies T is externally self-enforcing at every period. If we are in Case 2,

then T is not a minimally winning coalition of minimal size or weight, therefore

j doesn’t improve his utility. If we are in Case 4, then coalition T is not

the smallest externally self-enforcing coalition of size 2m, and thus j will not
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improve his utility.
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