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Abstract

This paper characterizes an equilibrium payoff subset for Markovian games with

private information as discounting vanishes. Monitoring might be imperfect, transitions

depend on actions, types correlated or not, values private or interdependent. It focuses

on equilibria in which players report their information truthfully. This characterization

generalizes those for repeated games, and reduces to a collection of one-shot Bayesian

games with transfers. With independent private values, the restriction to truthful

equilibria is shown to be without loss, except for individual rationality; in the case of

correlated types, results from static mechanism design can be applied, resulting in a

folk theorem.
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1 Introduction

This paper studies the asymptotic equilibrium payoff set of repeated Bayesian games. In

doing so, it generalizes methods that were developed for repeated games (Fudenberg and

Levine, 1994; hereafter, FL) and later extended to stochastic games (Hörner, Sugaya, Taka-

hashi and Vieille, 2011, hereafter HSTV).

Serial correlation in the payoff-relevant private information (or type) of a player makes

the analysis of such repeated games difficult. Therefore, asymptotic results in this literature
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have been obtained by means of increasingly elaborate constructions, starting with Athey

and Bagwell (2008) and culminating with Escobar and Toikka (2013).1 These constructions

are difficult to extend beyond a certain point, however; instead, our methods allow us to

deal with

- moral hazard (imperfect monitoring);

- endogenous serial correlation (actions affecting transitions);

- correlated types (across players) or/and interdependent values.

Allowing for such features is not merely of theoretical interest. There are many applications

in which some if not all of them are relevant. In insurance markets, for instance, there is

clearly persistent adverse selection (risk types), moral hazard (accidents and claims having

a stochastic component), interdependent values, action-dependent transitions (risk-reducing

behaviors) and, in the case of systemic risk, correlated types. The same holds true in financial

asset management, and in many other applications of such models (taste or endowment

shocks, etc.)

We assume that the state profile –each coordinate of which is private information to a

player– follows a controlled autonomous irreducible Markov chain. (Irreducibility refers to

its behavior under any fixed Markov strategy.) In the stage game, players privately take

actions, and then a public signal realizes (whose distribution may depend both on the state

and action profile) and the next period state profile is drawn. Cheap-talk communication

is allowed, in the form of a public message at the beginning of each round. Our focus is

on truthful equilibria, in which players truthfully reveal their type at the beginning of each

period, after every history.

Our main result characterizes a subset of the limit set of equilibrium payoffs as δ → 1.

While the focus on truth-telling equilibria is restrictive in the absence of any commitment,

it nevertheless turns out that this limit set generalizes the payoffs obtained in all known

special cases so far –with the exception of the lowest equilibrium payoff in Renault, Solan

and Vieille, who also characterize Pareto-inferior “babbling” equilibria. When types are

independent (though still possibly affected by one’s own action), and payoffs are private,

1This not to say that the recursive formulations of Abreu, Pearce and Stacchetti (1990, hereafter APS)

cannot be adapted to such games. See, for instance, Cole and Kocherlakota (2001), Fernandes and Phelan

(2000), or Doepke and Townsend (2006). These papers provide methods that are extremely useful for

numerical purposes for a given discount rate, but provide little guidance regarding qualitative properties of

the (asymptotic) equilibrium payoff set.
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for instance, all Pareto-optimal payoffs that are individually rational (i.e., dominate the

stationary minmax payoff) are limit equilibrium payoffs. In fact, with the exception of

individual rationality, which could be further refined, our result is actually a characterization

of the limit set of equilibrium payoffs (in case monitoring satisfies the usual identifiability

conditions). In this sense, this is a folk theorem. It shows in particular that, when actions

do not affect transitions, and leaving aside the value of the best minmax payoff, transitions

do not matter for the limit set, just the invariant distribution, as is rather intuitive. When

types are correlated, then all feasible and individually rational payoffs can be obtained in

the limit.

These findings mirror standard results from static mechanism design, e.g. those of Ar-

row (1979), d’Aspremont and Gérard-Varet (1979) for the independent case, and those of

d’Aspremont, Crémer and Gérard-Varet (2003) in the correlated case. This should come as

no surprise, as our characterization is a reduction from the repeated game to a (collection of)

one-shot Bayesian game with transfers, to which the standard techniques can be adapted.

If there is no incomplete information about types, this one-shot game collapses to the algo-

rithm developed by Fudenberg and Levine (1994) to characterize public perfect equilibrium

payoffs, used in Fudenberg, Levine and Maskin (1994, hereafter FLM) to establish a folk

theorem under public monitoring.

This stands in contrast with the techniques based on review strategies (see Escobar

and Toikka for instance) whose adaptation to incomplete information is inspired by the

linking mechanism described in Fang and Norman (2006) and Jackson and Sonnenschein

(2007). Our results imply that, as for repeated games with public monitoring, transferring

continuation payoffs across players is a mechanism that is sufficiently powerful to dispense

with explicit statistical tests. Of course, this mechanism requires that deviations in the

players’ announcements can be statistically distinguished, a property closely related to the

budget-balance constraint from static mechanism design. Therefore, our sufficient conditions

are reminiscent of conditions in this literature, such as the weak identifiability condition

introduced by Kosenok and Severinov (2008).

While the characterization turns out to be a natural generalization of the one from

repeated games with public monitoring, it still has several unexpected features, reflecting

difficulties in the proof that are not present either in stochastic games with observable states.

Consider the case of independent types for instance. Note that the long-run (or asymp-

totic) payoff must be independent of the current state of a player, because this state is

unobserved and the Markov chain is irreducible. Relative to a stochastic game with observ-

able states, there is a collapse of dimensionality as δ → 1. Yet the “transient” component
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of the payoff, which depends on the state, must be taken into account: a player’s incentives

to take a given action depend on the action’s impact on later states. This component must

be taken into account, but it cannot be treated as an exogenous transfer. This stands in

contrast with the standard technique used in repeated games (without persistent types):

there, incentives are provided by continuation payoffs which, as players get patient, become

arbitrarily large relative to the per-period rewards, so that, asymptotically, the continuation

play can be summarized by a transfer. But with private, irreducible types, the differences in

continuation payoffs across types of a given player do not become arbitrarily large relative to

the flow payoff (they fade out exponentially fast) and so cannot be replaced by a (arbitrarily

large) transfer.

So: the transient component cannot be ignored, although it cannot be exploited as a

standard transfer. But, for a given transfer rule and a Markov strategy, this component is

easy to compute, using the average cost optimality equation (ACOE) from dynamic program-

ming. This equation converts the relative future benefits of taking a particular action, given

the current state, into an additional per-period reward. So it can be taken into account, and

since it cannot be exploited, incentives will be provided by transfers that are independent

of the type (though not of the report). After all, this independence is precisely a feature of

transfers in static mechanism design, and our exclusive reliance on this channel illustrates

again the lack of linkage in our analysis. What requires considerable work, however, is to

show how such type-independent transfers can get implemented, and why we can compute

the transient component as if the equilibrium strategies were Markov, which they are not.

Games without commitment but with imperfectly persistent private types were first in-

troduced in Athey and Bagwell (2008) in the context of Bertrand oligopoly with privately

observed cost. Athey and Segal (2007, hereafter AS) allow for transfers and prove an ef-

ficiency result for ergodic Markov games with independent types. Their team balanced

mechanism is closely related to a normalization that is applied to the transfers in one of our

proofs in the case of independent private values.

There is also a literature on undiscounted zero-sum games with such a Markovian struc-

ture, see Renault (2006), which builds on ideas introduced in Aumann and Maschler (1995).

Not surprisingly, the average cost optimality equation plays an important role in this lit-

erature as well. Because of the importance of such games for applications in industrial or-

ganization and macroeconomics (Green, 1987), there is an extensive literature on recursive

formulations for fixed discount factors (Fernandes and Phelan, 1999; Cole and Kocherlakota,

2001; Doepke and Townsend, 2006). In game theory, recent progress has been made in the

case in which the state is observed, see Fudenberg and Yamamoto (2012) and Hörner, Sug-

4



aya, Takahashi and Vieille (2011) for an asymptotic analysis, and Pęski and Wiseman (2012)

for the case in which the time lag between consecutive moves goes to zero. There are some

similarities in the techniques used, although incomplete information introduces significant

complications.

More related are the papers by Escobar and Toikka (2013), already mentioned, Barron

(2012) and Renault, Solan and Vieille (2013). All three papers assume that types are in-

dependent across players. Barron (2012) introduces imperfect monitoring in Escobar and

Toikka, but restricts attention to the case of one informed player only. This is also the case

in Renault, Solan and Vieille. This is the only paper that allows for interdependent values,

although in the context of a very particular model, namely, a sender-receiver game with

perfect monitoring. In none of these papers do transitions depend on actions.

2 The Model

We consider dynamic games with imperfectly persistent incomplete information. The stage

game is as follows. The finite set of players is denoted I. Each player i ∈ I has a finite set

Si of (private) states, and a finite set Ai of actions. The state si ∈ Si is private information.

We denote by S := ×i∈IS
i and A := ×i∈IA

i the sets of state profiles and action profiles

respectively.

In each stage n ≥ 1, timing is as follows:

1. First, each player privately observes his own state (sin);

2. Players simultaneously make reports (mi
n) ∈ M i, where M i is a finite set to be defined.

These reports are publicly observed;

3. The outcome of a public correlation device is observed. For concreteness, it is a draw

from the uniform distribution on [0, 1];2

4. Players independently choose actions ain ∈ Ai. Actions taken are not observed;

5. A public signal yn ∈ Y , a finite set, and the next state profile sn+1 = (sin+1)i∈I are

drawn according to some joint distribution p(· | sn, an) ∈ ∆(S × Y ).

2We do not know how to dispense with it. But given that public communication is allowed, such a public

randomization device is innocuous, as it can be replaced by jointly controlled lotteries.
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Throughout, we assume that p(s, y | s̄, ā) > 0 whenever p(y | s̄, ā) > 0, for all (s̄, ā, s). This

means that (i) the Markov chain (sn) is irreducible, (ii) public signals, whose probability

might depend on (s̄, ā) do not allow players to rule out some type profiles s. This is consistent

with perfect monitoring. Note that actions might affect transitions.3 The irreducibility of the

Markov chain is a strong assumption, ruling out among others the case of perfectly persistent

types (see Aumann and Maschler, 1995; Athey and Bagwell, 2008).4 Unfortunately, it is well

known that the asymptotic analysis is very delicate without such an assumption (see Bewley

and Kohlberg, 1976).

The stage-game payoff function is a function g : S×Ai×Y → R
I and as usual we define

the reward r : S × A → R
I as its expectation, r(s, a) = E[g(s, ai, y) | a], a function whose

domain is extended to mixed action profiles in ∆(A).

Given the sequence of realized rewards (rin), player i’s payoff in the dynamic game is

given by
∑

(1− δ)δn−1rin,

where δ ∈ [0, 1) is common to all players. (Short-run players can be accommodated for, as

will be discussed.)

The dynamic game also specifies an initial distribution p0 ∈ ∆(S), which plays no role

in the analysis, given the irreducibility assumption and the focus on equilibrium payoffs as

δ → 1.

A special case of interest is independent private values (hereafter, IPV). This is the case

in which (i) payoffs of a player only depend on his private state, not the others’, that is, for

all (i, s, a), ri(s, a) = ri(si, a), (ii) conditional on the public signal y, types are independently

distributed. A more precise definition is given in Section 6.

But we do not restrict attention to private values or independent types. In the case of

interdependent values, it then matters whether players observe their payoffs or not. It is

possible to accommodate privately observed payoffs: simply define a player’s private state as

including his last realized payoff. As we shall see, the reports of a player’s opponents in the

3Accommodating observable (public) states, as modeled in stochastic games, requires minor adjustments.

One way to model them is to append such states as a component to each player’s private state, perfectly

correlated across players.
4In fact, our results only require that it be unichain, i.e. that the Markov chain defined by any Markov

strategy has no two disjoint closed sets. This is the standard assumption under which the distributions spec-

ified by the rows of the limiting matrix limn→∞
1

n

∑n−1

i=0
p(·)i are independent of the initial state; otherwise

the average cost optimality equation that is used to analyze, say, the cooperative solution is no longer valid.

The full support assumption on states (given a signal) is convenient to avoid specifying out-of-equilibrium

beliefs, but note that deterring deviations would become even easier without.
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next period are taken into account when evaluating the truthfulness of a player’s report, so

that one could build on the results of Mezzetti (2004, 2007) in static mechanism design with

interdependent valuations. Given this possible interpretation of a private state, we assume

that a player’s private action, private state and the public signals and reports are all the

information that is available to him.5

Monetary transfers are not allowed. We view the stage game as capturing all possible

interactions among players, and there is no difficulty in interpreting some actions as monetary

transfers. In this sense, rather than ruling out monetary transfers, what is assumed is limited

liability.

The game defined above allows for public communication among players. In doing so,

we follow most of the literature on such dynamic games, Athey and Bagwell (2001, 2008),

Escobar and Toikka (2013), Renault, Solan and Vieille (2013), etc.6 As in static Bayesian

mechanism design, communication is necessary for coordination, and makes it possible to

characterize what restrictions on behavior are driven by incentives.

But there is no commitment in the dynamic game. As a result, the revelation principle

does not apply. As is well known (see Bester and Strausz, 2000, 2001), in the absence of

commitment, it is not possible a priori to restrict attention to direct mechanisms, corre-

sponding to the choice M i = Si (or M i = (Si)2, as explained below), let alone obedient or

truthful behavior.

Yet this is precisely what we will do. The next section illustrates some of the issues that

this raises.

3 Some Examples

Example 1—A Silent Game. This game follows Renault (2006). This is a zero-sum

two-player game in which player 1 has two private states, s1 and ŝ1, and player 2 has a single

state, omitted. Player 1 has actions A1 = {T,B} and player 2 has actions A2 = {L,R}.
Player 1’s reward is given by Figure 1. Recall that rewards are not observed. Both states s1

5However, our notion of equilibrium is sensitive to what goes into a state: by enriching it, one weakly

increases the equilibrium payoff set. For instance, one could also include in a player’s state his previous

realized action, which following Kandori (2003) is useful even when incomplete information is trivial and the

game is simply a repeated game with public monitoring; this is peripheral to our objective and will not be

pursued here.
6This is not to say that introducing a mediator would be without interest, to the contrary. Following

Myerson (1986), we could then appeal to a revelation principle, though without commitment this would

simply shift the inferential problem to the stage of recommendations.
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L R

T 1 0

B 0 0

s1

L R

T 0 0

B 0 1

ŝ1

Figure 1: Player 1’s reward in Example 1

and ŝ1 are equally likely in the initial period, and the transition is action-independent, with

p ∈ [1/2, 1) denoting the probability that the state remains the same from one stage to the

next.

Let M1 = {s1, ŝ1}, so that player 1 can disclose his state if he wishes to. Will he? By

revealing the state, player 2 can secure a payoff of 0 by playing R or L depending on player 1’s

report. Yet player 1 can secure a payoff of 1/4 by choosing messages and actions at random.

In fact, this is the (uniform) value of this game for p = 1 (Aumann and Maschler, 1995).

When p < 1, player 1 can actually get more than this by trading off the higher expected

reward from a given action with the information that it gives away. He has no interest in

giving this information away for free through informative reports. Silence is called for.

Just because we may focus on the silent game does not mean that it is easy to solve.

Its value for p > 2/3 is still unknown.7 Because the optimal strategies depend on player

2’s belief about player 1’s state, the problem of solving for them is infinite-dimensional, and

all that can be done is characterize its solution via some functional equation (see Hörner,

Rosenberg, Solan and Vieille, 2010).

Non-existence of truthful equilibria in some games is no surprise. The ratchet effect that

arises in bargaining and contracting is another manifestation of the tension between truth-

telling and lack of commitment (see Freixas, Guesnerie and Tirole, 1985). What Example 1

illustrates is that small message sets are just as difficult to deal with as larger ones. When

players hide their information, behavior reflect their private beliefs, which calls for a state

space as large as it gets.

The surprise, then, is that the literature on Markovian games (Athey and Bagwell (2001,

2008), Escobar and Toikka (2013), Renault, Solan and Vieille (2013)) manages to get positive

results at all: in most games, efficiency requires coordination, and thus disclosure of private

information. As will be clear from Section 6, existence is much easier to obtain in the IPV

environment, the focus of most of these papers.

7It is known for p ∈ [1/2, 2/3] and some specific values. Pęski and Toikka (private communication) have

recently shown that this value is decreasing in p.
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Example 2—A Game that Leaves No Player Indifferent. Player 1 has two private

states, s1 and ŝ1, and player 2 has a single state, omitted. Player 1 has actions A1 = {T,B}
and player 2 has actions A2 = {L,R}. Rewards are given by Figure 2 (values are private).

L R

T 1, 1 1,−1

B 0,−1 0, 1

s1

L R

T 0, 1 0,−1

B 1,−1 1, 1

ŝ1

Figure 2: A two-player game in which the mixed minimax payoff cannot be achieved.

The two types s1 and ŝ1 are i.i.d. over time and equally likely. Monitoring is perfect. To

minmax player 2, player 1 must randomize uniformly, independently of his type. Yet in any

equilibrium in which player 1 always reports his type truthfully, there is no history after

which he is indifferent between both actions, for both types simultaneously. To play B when

his type is s1, or T when his type is ŝ1, he must be compensated by $1 in continuation utility.

But then he has an incentive to report his type incorrectly, to pocket this promised utility

while playing his favorite action.8

This still leaves open the possibility of a player randomizing for one of his types. This

is very useful when each player has only one type, like in a standard repeated game,as it

then delivers the usual mixed minimax payoff. But except in this particular case, it will only

introduce some intermediate notion of minimax payoff that has little intrinsic interest. Our

focus, then, will be on strict equilibria.

Example 3—Waiting for Evidence. There are two players. Player 1 has K+1 types,

S1 = {0, 1, . . . , K}, while player 2 has only two types, S2 = {0, 1}. Transitions do not depend

8To see this formally, fix such a history, and consider the continuation payoff of player 1, V 1, which

we index by the announcement and action played. Note that this continuation payoff, for a given pair

of announcement and action, must be independent of player 1’s current type. Suppose that player 1 is

indifferent between both actions whether his type is s1 or ŝ1. If his type is s1, we must then have

(1− δ) + δV 1(s1, T ) = δV 1(s1, B) ≥ max{(1− δ) + δV 1(1ŝ1, T ), δV 1(ŝ1, B)},

which implies that (1 − δ) + δV 1(s1, T ) + δV 1(s1, B) ≥ (1 − δ) + δV 1(ŝ1, T ) + δV 1(ŝ1, B), or V 1(s1, T ) +

V 1(s1, B) ≥ V (ŝ1, T )+V (ŝ1, B). The constraints for type ŝ1 imply the opposite inequality, so that V 1(s1, T )+

V 1(s1, B) = V (ŝ1, T ) + V (ŝ1, B). Revisiting the constraints for type s1, it follows that the inequality must

hold with equality, and that V 1(T ) := V 1(s1, T ) = V 1(ŝ1, T ), and V 1(B) := V (s1, B) = V 1(ŝ1, B). The two

indifference conditions then give 1−δ
δ

= V 1(B)− V 1(S) = − 1−δ
δ

, a contradiction.
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on actions (ignored), and are as follows. If s1n = k > 0, then s2n = 0 and s1n+1 = s1n − 1. If

s1n = 0, then s2n = 1 and s1n+1 is drawn randomly (and uniformly) from S1. In words, s1n
stands for the number of stages until the next occurrence of s2 = 1. By waiting no more

than K periods, all reports by player 1 can be verified.

This example makes two closely related point. First, in order for player −i to statistically

discriminate between player i’s states, it is not necessary that his set of signals (here, states)

be as rich as player i’s, unlike in static mechanism design with correlated types (the familiar

“spanning condition” of Crémer and McLean, generically satisfied only if |S−i| ≥ |Si|). Two

states for one player can be enough to cross-check the reports of an opponent with many

more states, provided that states in later rounds are informative enough.

Second, the long-term dependence of the stochastic process implies that one player’s

report should not always be evaluated on the fly. It is better to hold off until more evidence

is collected. Note that this is not the same kind of delay as the one that makes review

strategies effective, which take advantage of the central limit theorem to devise powerful

tests even when signals are independent over time (see Radner, 1986; Fang and Norman,

2006, and Jackson and Sonnenschein, 2007). Here, it is precisely because of the dependence

that waiting is useful.

This raises an interesting statistical question: does the tail of the sequence of private

states of player −i contain indispensable information in evaluating the truthfulness of player

i’s report in a given round, or is the distribution of this sequence, conditional on (sin, sn−1),

summarized by the distribution of an initial segment? This question appears to be open

in general. In the case of transitions that do not depend on actions, it has been raised by

Blackwell and Koopmans (1957) and answered by Gilbert (1959): it is enough to consider

the next 2|Si|+ 1 values of the sequence (s−i
n′ )n′≥n.

9

At the very least, when types are correlated and the Markov chain exhibits time depen-

dence, it is useful to condition player i’s continuation payoff given his report sin on −i’s next

private state, s−i
n+1. Because this turns out to suffice to obtain sufficient conditions analogous

to those in the static case, we will limit ourselves to this conditioning.10

9The reporting strategy defines a hidden Markov chain on pairs of states, messages and signals that

induces a stationary process over messages and signals; Gilbert assumes that the hidden Markov chain is

irreducible and aperiodic, which here need not be (with truthful reporting, the message is equal to the state),

but his result continues to hold when these assumptions are dropped, see for instance Dharmadhikari (1963).
10See Obara (2008) for some of the difficulties encountered in dynamic settings while attempting to extend

results from static mechanism design with correlated types.
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4 Truthful Equilibria

A public history at the start of round n is a sequence hn = (m1, y1, . . . , mn−1, yn−1) ∈
Hn := (M × Y )n−1. Player i’s private history at the start of round n is a sequence hi

n =

(si1, m1, a
i
1, y1, . . . , s

i
n−1, mn−1, a

i
n−1, yn−1) ∈ H i

n := (Si × M × Ai × Y )n−1. A (behavior)

strategy for player i is a pair of sequences (mi, ai) = (mi
n, a

i
n)n∈N with m

i
n : H i

n×Si → ∆(M i),

and a
i
n : H i

n×Si×M → ∆(Ai) that specify i’s message and action as a function of his private

information, his current state and the message profile in the current period.11 A strategy

profile (m, a) defines a distribution over histories in the usual way, and we consider the perfect

Bayesian equilibria of this game.

A special class of games are “standard” repeated games with public monitoring, in which

Si is a singleton set for each player i and we can ignore the m-component of players’ strategies.

For such games, Fudenberg and Levine provide a convenient algorithm to describe and

study a subset of equilibrium payoff–public perfect equilibrium payoffs. A public perfect

equilibrium (PPE) is an equilibrium in which players’ strategies are public; that is, a is

measurable with respect to Hn, so that player i ignores any additional private information

(his past actions). Their characterization of the asymptotic set of PPE payoffs as δ → 1

relies on the notion of a score defined as follows.

Definition 1 Fix λ ∈ R
I. Let

k(λ) = sup
v,x,α

λ · v,

where the supremum is taken over all v ∈ R
I, x : Y → R

I and α ∈ ×i∈I∆(Ai) such that

(i) α is a Nash equilibrium with payoff v of the game with payoff r(a) +
∑

y p(y | a)x(y);

(ii) For all y ∈ Y , it holds that λ · x(y) ≤ 0.

Let H =
⋂

λ∈RI{v ∈ R
I | λ · v ≤ k(λ)}. FL prove the following.

Theorem 1 (FL) It holds that E(δ) ⊆ H for any δ < 1; moreover, if H has non-empty

interior, then limδ→1E(δ) = H.

Our purpose is to obtain a similar characterization for the broader class of games consid-

ered here. To do so while preserving the recursive nature of the equilibrium payoff set that

will be described leads us to focus on a particular class of equilibria in which players report

truthfully their private state in every round, on and off path.

11Recall however that a public correlation device is assumed, although it is omitted from the notations.
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The complete information game with transfers x that appears in the definition of the score

must be replaced with a two-stage Bayesian game with communication, formally defined in

the next section. To describe a Bayesian game, one needs a type space and a prior. Clearly,

in the dynamic game, player i’s beliefs about his opponents’ private states depend on the

previous reports sn−1. Hence, we are led to consider a family of Bayesian games, parametrized

by such a report. In addition, as Example 3 made clear, player i’s transfer x not only depends

on this parameter, but also on s−i
n+1, the reports of the other players in the following period.

What is a player’s type, i.e., what is player’s information that is payoff-relevant in round

n? Certainly this includes his private state sin. Because player i does not observe s−i
n ,

his conditional belief about these states is also payoff-relevant, to predict −i’s behavior and

because values need not be private. This is what creates the difficulty in Example 1: because

player 1 does not want to disclose his state, player 2 must use all available information to

make the best prediction, which is the entire history of play.

However, when players report truthfully their information, player i knows s−i
n−1; to predict

s−i
n , this is a sufficient statistic for the entire history of player i, given (sin−1, s

i
n). Note that

sin−1 matters, because the Markov chains (sin) and (sin−1) need not be independent across

players, and sn need not be independent of sn−1 either.

Off path, these conditional beliefs about s−i
n are “private,” as they depend on his previous

type sin−1 (as well as on ain−1). The natural choice is then M i = (Si)2 (or even (Si)2 × Ai),

so that player i be able to report all his private information. Along the equilibrium path,

this involves repetitions. But it matters when mi
n−1 6= sin−1. Players −i cannot detect such

a deviation, which is “on-schedule” according to Athey and Bagwell (2008). For truthful

reporting off path, the choice of M i makes a difference: by setting M i = Si, player i is asked

to tell the truth regarding his payoff-type, but to lie about his belief-type (which will be

incorrectly believed to be determined by his report of sin−1, along with his current report).

In the IPV case, however, there is no need for this, as the past deviation does not affect

i’s conditional beliefs, and we will then proceed as if M i = Si.

A strategy (mi, ai) is public and truthful if mi
n(h

i
n, s

i
n) = sin (or (sin−1, s

i
n)) for all histories

hi
n, and a

i(hi
n, s

i
n, mn) depends on (hn, s

i
n, mn) only. The solution concept is perfect Bayesian

equilibrium in public and truthful strategies. Because type, action and signal sets are finite,

and given our “full-support” assumption on S, there is no difficulty in adapting Fudenberg

and Tirole (1991a and b)’s definition to our set-up –the only issue that could arise is due to

the fact that we have not imposed full support on the public signals. In our proofs, actions

do not lead to further updating on beliefs, conditional on the reports.

The next section describes formally the family of Bayesian games.
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5 Characterization

5.1 The main theorem

In this section, M = S × S. Messages are written m = (mp, mc), where mp (resp. mc) are

interpreted as reports on previous (resp. current) states.

We set Ωpub := M × Y , and we refer to the pair (mn, yn) as the public outcome of stage

n. This is the additional public information available at the end of stage n. We also refer

to (sn, mn, an, yn) as the outcome of stage n, and denote by Ω := Ωpub × S × A the set of

possible outcomes in any given stage.

5.1.1 The ACOE

Our analysis makes use of the so-called ACOE, which plays an important role in dynamic

programming. For completeness, we provide here an elementary and incomplete statement,

that is sufficient for our purpose and we refer to Puterman (1994) for details.

Let be given an irreducible (or unichain) transition function q over the finite set S with

invariant measure µ, and a payoff function u : S → R. Assume that the states (sn) follow a

Markov chain with transition function q and that a decision maker receives the payoff u(sn)

in stage n. The long-run payoff of the decision maker is v = Eµ[u(s)]. While this long-run

payoff is independent of the initial state, discounted payoffs are not. Lemma 1 below provides

a normalized measure of the differences in discounted payoffs, for different initial states.

Lemma 1 There is θ : S → R such that

v + θ(s) = u(s) + Et∼p(·|s)θ(t).

The map θ is unique, up to an additive constant. It admits an intuitive interpretation

in terms of discounted payoffs. Given δ < 1, denote by γδ(s) the discounted payoff when

starting for s. Then the difference θ(s)− θ(s′) is equal to lim
δ→1

γδ(s)− γδ(s
′)

1− δ
. For this reason,

we call θ the (vector of) relative rents.

5.1.2 Admissible contracts

The characterization of FLM for repeated games involves a family of optimization problems.

One optimizes over pairs (α, x) where α is an equilibrium in the underlying stage game

augmented with transfers.
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Because we insist on truthful equilibria, and because we need to incorporate the dy-

namic effects of actions upon types, we need to consider instead action plans and transfers

(ρ, x), such that reporting truthfully and playing ρ : Ωpub × S → A constitutes a stationary

equilibrium of the dynamic game augmented with transfers.

When players report truthfully and choose actions according to ρ, the sequence (ωn) of

outcomes is a Markov chain, and so does the sequence (ω̃n), where ω̃n = (ωpub,n−1, sn), with

transition function denoted πρ. By the irreducibility assumption on p, the Markov chain has

a unique invariant measure µ[ρ] ∈ ∆(Ωpub × S).

Given transfers x : Ωpub × S × (Y × S) → R
I , we denote by θ[ρ, r + x] : Ωpub × S → R

I

the associated relative rents, which are obtained when applying Lemma 1 to the latter chain

(and to all players).

Thanks to the ACOE, the above condition that reporting truthfully and playing ρ be a

stationary equilibrium of the dynamic game with stage payoffs r+x is equivalent to requiring

that, for each ω̄pub ∈ Ωpub, reporting truthfully and playing ρ is an equilibrium in a one-shot

Bayesian game. In this Bayesian game, types s are drawn according to p (given ω̄pub), players

submit reports m, then choose actions a, and obtain the (random) payoff

r(s, a) + x(ω̄pub, m) + θ[ρ, r + x](ωpub, t),

where (y, t) are chosen according to p(· | s, a) and the public outcome ωpub is the pair (m, y).

Thus, the map θ provides a “one-shot” measure of the relative value of being in a given

state; with persistent and possibly action-dependent transitions, this measure is essential

in converting the dynamic game into a one-shot game, just as the invariant measure µ[ρ].

Both µ and θ are defined by a finite system of equations, as it is the most natural way of

introducing them. But in the ergodic case that we are concerned with explicit formulas exist

for both of them (see, for instance, Iosifescu, 1980, p.123, for the invariant distribution; and

Puterman, 1994, Appendix A for the relative rents).

Because we insist on off-path truth-telling, we need to consider arbitrary private histories

of the players, and the formal definition of admissible contracts (ρ, x) is therefore more

involved. Fix a player i. Given any private history of player i, the belief of player i over

future plays only depends on the previous public outcome ω̄pub, and on the report m̄i and

action āi of player i in the previous stage. Given such a (ω̄pub, m̄
i, āi), let Di(ω̄pub, m̄

i, āi)

denote the two-step decision problem in which

Step 1 s ∈ S is drawn according to the belief held by player i;12 player i is informed of si,

then submits a report mi ∈ M i;

12Given ω̄pub, player i assigns probability 1 to s̄−i = m̄i
c, and to previous actions being ā−i = ρ−i(m̄−i, m̄i);

14



Step 2 player i learns s−i and then chooses an action ai ∈ Ai. The payoff to player i is

given by

ri(s, a) + xi(ω̄pub, ωpub, t
−i) + θi[ρ, r + x](ωpub, t), (1)

where m−i = (m̄−i
c , s−i), a−i = ρ−i(ω̄pub, m), the pair (y, t) is drawn according to

p(· | s, a), and ωpub := (m, y).

We denote by Di
ρ,x the collection of decision problems Di

ρ,x(ω̄pub, m̄
i, āi).

Definition 2 The pair (ρ, x) is admissible if all optimal strategies of player i in Di report

truthfully mi = (s̄i, si) in Step 1, and then (after reporting truthfully) choose the action

ρi(ω̄pub, m) prescribed by ρ in Step 2.

Some comments are in place. The condition that ρ be played once types have been

reported truthfully simply means that, for each ω̄pub and m = (s̄, s) such that m̄c = s̄, the

action profile ρ(ω̄pub, m) is a strict equilibrium in the complete information one-shot game

with payoff function r(s, a) + x(ω̄pub, (m, y)) + θ((m, y), t).

The truth-telling condition is slightly more delicate to interpret. Consider first an out-

come ω̄ ∈ Ω such that s̄i = m̄i
c for each i – no played lied in the previous stage. Given such

an outcome, all players share the same belief over next types,
p(·, ȳ | s̄, ā)
p(ȳ | s̄, ā) . Consider the

Bayesian game in which s ∈ S is drawn according to the latter distribution, players make pub-

lic reports m then choose actions a, and get the payoff r(s, a)+x(ω̄pub, (m, y))+ θ((m, y), t).

The admissibility condition for such an outcome ω̄ is equivalent to requiring that truth-

telling followed by ρ is a “strict” equilibrium of this Bayesian game.13 The admissibility

requirement is however more demanding, in that it requires in addition truth-telling to be

optimal for player i at any outcome ω̄ such that s̄j = m̄j
c for j 6= i, but s̄i 6= m̄i

c. At such an

ω̄, players do not share the same belief over the next types, and it is inconvenient to state

the admissibility requirement by means of an auxiliary, subjective, Bayesian game.

In loose terms, truth-telling followed by ρi is the unique best-reply of player i to truth-

telling and ρ−i. Note that we require truth-telling to be optimal (mi = (s̄i, si)) even if

player i has lied in the previous stage (m̄i
c 6= s̄i on his current state). On the other hand,

Definition 2 puts no restriction on player i’s behavior if he lies in step 1 (mi 6= (s̄i, si)). The

hence this belief assigns to s ∈ S the probability
p(s, ȳ | s̄, ā)
p(ȳ | s̄, ā) .

13Quotation marks are needed, since we have not defined off-path behavior. What we mean is that any

on-path deviation leads to a lower payoff.
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second part of Definition 2 is equivalent to saying that ρi(ω̄pub, m) is the unique best-reply

to ρ−i(ω̄pub, m) in the complete information game with payoff function given by (26) when

m = (s̄, s).

We denote by C0 the set of admissible pairs (ρ, x).

5.1.3 The characterization

Let S1 denote the unit sphere of RI . For a given system of weights λ ∈ S1, we denote by

P0(λ) the optimization program supλ · v, where the supremum is taken over (v, ρ, x) such

that

- (ρ, x) ∈ C0;

- λ · x(·) ≤ 0;

- v = Eµ[ρ] [r(s, a) + x(ω̄pub, ωpub, t)] is the long-run payoff induced by (ρ, x).

We denote by k0(λ) the value of P0(λ) and set H0 := {v ∈ R
I , λ·v ≤ k0(λ) for all λ ∈ S1}.

Theorem 2 Assume that H0 has non-empty interior. Then it is included in the limit set of

truthful equilibrium payoffs.

This result is simple enough. Yet, the strict incentive properties required for admissible

contracts make it useless in some cases. As an illustration, assume that successive states are

independent across stages, so that p(t, y | s, a) = p1(t)p2(y | s, a), and let the current state of

i be si. Plainly, if player i prefers reporting (s̄i, si) rather than (s̃i, si) when his previous state

was s̄i, then he still prefers reporting (s̄i, si) when his previous state was s̃i. So there are no

admissible contracts! The same issue arises when successive states are independent across

players, or in the spurious case where two states of i are identical in all relevant dimensions.

In other words, the previous theorem is well-adapted (as we show later) to setups with

correlated and persistent states, but we now need a variant to cover all cases.

This variant is parametrized by report maps φi : Si × Si → M i(= Si × Si), with the

interpretation that φi(s̄i, si) is the equilibrium report of player i when his previous and

current states are (s̄i, si).

Given transfers xi : Ωpub × Ωpub × M−i → R, the decision problems Di(ω̄) are defined

as previously. The set C1(φ) of φ-admissible contracts is the set of pairs (ρ, x), with ρ :

Ωpub ×M → A, such that all optimal strategies of player i in Di(ω̄) report mi = φi(s̄i, si) in

Step 1, and then choose the action ρi(ω̄pub, m) in Step 2.

16



We denote by P1(λ) the optimization problem deduced from P0(λ) when replacing the

constraint (ρ, x) ∈ C0 by the constraint (ρ, x) ∈ C1(φ) for some φ.

Set H1 := {v ∈ R
I , λ · v ≤ k1(λ)} where k1(λ) is the value of P1(λ).

Theorem 3 generalizes Theorem 2.

Theorem 3 Assume that H1 has a non-empty interior. Then it is included in the limit set

of truthful and pure perfect Bayesian equilibrium payoffs.

To be clear, there is no reason to expect Theorem 3 to provide a characterization of the

entire limit set of truthful equilibrium payoffs. One might hope to achieve a bigger set of

payoffs by employing finer statistical tests (using the serial correlation in states), just as

one can achieve a bigger set of equilibrium payoffs in repeated games than the set of PPE

payoffs, by considering statistical tests (and private strategies). There is an obvious cost in

terms of the simplicity of the characterization. As it turns out, ours is sufficient to obtain all

the equilibrium payoffs known in special cases, and more generally, all individually rational

Bayes Nash equilibrium payoffs (including the Pareto frontier) under independent private

values, as well as a folk theorem under correlated values.14

The definition of φ-admissible contracts allows for the case where different types are

collapsed into a single report. At first sight, this may appear to be inconsistent with the

notion of truthful equilibrium. Yet, this is not so. Indeed, observe that, when properly

modifying the definition of ρ following messages that are not in the range of ρ, and of x as

well, the adjusted pair (ρ̃, x̃) satisfies the condition of Definition 2, except that truth-telling

inequalities may no longer be strict. However, equality may hold only between those types

that were merged into the same report, in which case the actual report has no behavioral

impact in the current stage.

5.2 Proof overview

We here explain the main ideas of the proof. For simplicity, we assume perfect monitoring,

action-independent transitions, and we focus on the proof of Theorem 2. For notational

simplicity also, we limit ourselves to admissible contracts (ρ, x) such that the action plan

14Besides, an exact characterization would require an analysis in R
I×S, mapping each type profile into a

payoff for each player. When the players’ types follow independent Markov chains and values are private,

this makes no difference, as the players’ limit equilibrium payoff must be independent of the initial type

profile, given irreducibility and incentive-compatibility. But when types are correlated, it is possible to

assign different (to be clear, long-run) equilibrium payoffs to a given player, as a function on the initial state.
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ρ : M → A only depends on current reports, and transfers x : M ×M × A → R
I does not

depend on previous public signals (which do not affect transitions here). This is not without

loss of generality, but going to the general case is mostly a matter of notations.

Our proof is best viewed as an extension of the recursive approach of FLM to the case

of persistent, private information. To serve as a benchmark, assume first that types are

iid across stages, with law µ ∈ ∆(S). The game is then truly a repeated game and the

characterization of FLM applies. In that setup, and according to Definition 2, (ρ, x) is an

admissible contract if for each m̄, reporting truthfully then playing ρ, is an equilibrium in

the Bayesian game with prior distribution µ, and payoff function r(s, a)+ x(m̄,m, a) (and if

the relevant incentive inequalities are strict).

In order to highlight the innovations of the present paper, we provide a quick reminder

of the FLM proof (specialized to the present setup). We let Z be a smooth compact set

in the interior of H, and a discount factor δ < 1. Given an initial target payoff vector

v ∈ Z, (and m̄ ∈ M), one picks an appropriately chosen direction λ ∈ R
I in the player set15

and we choose an admissible contract (ρ, x) such that (ρ, x, v) is feasible in P0(λ). Players

are required to report truthfully their type and to play (on path) according to ρ, and we

define wm̄,m,a := v +
1− δ

δ
x(m̄,m, a) for each (m, a) ∈ M × A. Provided δ is large enough,

the vectors wm̄,m,a belong to Z, and this construction can thus be iterated,16 leading to a

well-defined strategy profile σ in the repeated game. The expected payoff under σ is v, and

the continuation payoff in stage 2, conditional on public history (m, a) is equal to wm̄,m,a,

when computed at the ex ante stage, before players learn their stage 2 type. The fact that

(ρ, x) is admissible implies that σ yields an equilibrium in the one-shot game with payoff

(1 − δ)r(s, a) + δwm̄,m,a. A one-step deviation principle then applies, implying that σ is a

Perfect Bayesian Equilibrium of the repeated game, with payoff v.

Assume now that the type profiles (sn) follow an irreducible Markov chain with invariant

measure µ. The proof outlined above fails as soon as types as auto-correlated. Indeed, the

initial type of player i now provides information over types in stage 2. Hence, at the interim

stage in stage 1, (using the above notations) the expected continuation payoffs of player i

are no longer given by wm̄,m,a. This is the rationale for including continuation private rents

into the definition of admissible contracts.

But this presents us with a problem. In any recursive construction such as the one

outlined above, continuation private rents (which help define current play) are defined by

15If v is a boundary point, λ is an outwards pointing normal to Z at v.
16with wm̄,m,a serving as the target payoff vector in the next, second, stage.
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continuation play, which itself is based on current play, leading to an uninspiring circularity.

On the other hand, our definition of an admissible contract (ρ, x) involves the private rents

θ[ρ, x] induced by an indefinite play of (ρ, x). This difficulty is solved by adjusting the

recursive construction in such as way that players always expect the current admissible

contract (ρ, x) to be used in the foreseeable future. On the technical side, this is achieved by

letting players stick to an admissible contract (ρ, x) during a random number of stages, with a

geometric distribution of parameter η. The target vector is updated only when switching to a

new direction (and to a new admissible contract). The date when to switch is determined by

the correlation device. The parameter η is chosen large enough compared to 1− δ, ensuring

that target payoffs always remain within the set Z. Yet, η is chosen small enough so that

the continuation private rents be approximately equal to θ[ρ, x]: in terms of private rents, it

is almost as if (ρ, x) were used forever.

Equilibrium properties are derived from the observation that, by Definition 2, the incen-

tive to report truthfully and then to play ρ would be strict if the continuation private rents

were truly equal to θ[ρ, x] and thus, still holds when equality holds only approximately. All

the details are provided in the Appendix.

6 Independent private values

This section applies Theorem 2 and Theorem 3 to the case of independent private values.

Throughout the section, the following two assumptions (referred to as IPV) are maintained:

- The stage-game payoff function of i only depends only on his own state: for every i

and (s, ai, y), gi(s, ai, y) = gi(si, ai, y).

- Transitions of player i’s state only depend on his own state, his own action, conditional

on the public signal: for every (s, a, y, t), p(t, y | s, a) = (×jp(t
j | y, sj, aj))p(y |

s, a).17,18

For now, we will restrict attention to the case in which

p(y | s, a) = p(y | s̃, a),
17Note that this does not imply that other players’ private states cannot matter for i’s rewards and

transitions, but only that they do not matter conditional on the public information, namely the public

signal. At the cost of more notation, one can also include t−i (for instance, −i’s realized stage-game payoff,

see Mezzetti 2004, 2007) in this public information.
18With some abuse of notation, we use for simplicity the same symbol, p(·), for the relevant marginal

probabilities.
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for all (s, s̃, a, y), so that the public signal conveys no information about the state profile.

This is the case under perfect monitoring, but rules out interesting cases (Think, for instance,

about applications in which the signal is the realization of an accident, whose probability

depends both on the agent’s risk and his effort.) This simplifies the statements of the results

considerably, but is not necessary: We will return to the general case at the end of this

section.

There is no gain from having M i = (Si)2 here, and so we set M i = Si, although we

use the symbol M i whenever convenient. Under IPV, one cannot expect all feasible and

individually rational payoffs to be equilibrium payoffs under low discounting. Incentive

compatibility imposes restrictions on what can be hoped for. A policy is a plan of action

that only depends on the last message, i.e. a map ρ : M → A. We define the feasible

(long-run) payoff set as

F =
{

v ∈ R
I | v = Eµ[ρ][r(s, a)], some policy ρ

}

.

When defining feasible payoffs, the restriction to policies rather than arbitrary strategies

(not only plans of actions) is clearly without loss. Recall also that a public randomization

device is assumed, so that F is convex.

Not all feasible payoffs can be equilibrium payoffs, however, because types are private

information. For all λ ∈ S1, let I(λ) = {i : λi ≥ 0}, and define

k̄(λ) = max
ρ

Eµ[ρ] [λ · r(s, a)] ,

where the maximum is over all policies ρ : ×i∈I(λ)S
i → A, with the convention that ρ ∈ A

for I(λ) = ∅. Furthermore, let

V ∗ = ∩λ∈S1

{

v ∈ R
I | λ · v ≤ k̄(λ)

}

.

Clearly, V ∗ ⊆ F . Furthermore, V ∗ is an upper bound on the set of all equilibrium payoff

vectors.

Lemma 2 The limit set of Bayes Nash equilibrium payoffs is contained in V ∗.

Proof. Fix λ ∈ S1. Fix also δ < 1 (and recall the prior p0 at time 0). Consider the Bayes

Nash equilibrium σ of the game (with discount factor δ) that maximizes λ · v among all

equilibria (where vi is the expected payoff of player i given p0). This equilibrium need not be

truthful or in pure strategies. Consider i /∈ I(λ). Along with σ−i and p0, player i’s equilibrium

strategy σi defines a distribution over histories. Fixing σ−i, let us consider an alternative
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strategy σ̃i where player i’s reports are replaced by realizations of the public randomization

device with the same distribution (period by period, conditional on the realizations so far),

and player i’s action is determined by the randomization device as well, with the same

conditional distribution (given the simulated reports) as σi would specify if this had been

i’s report. The new profile (σ−i, σ̃i) need no longer be an equilibrium of the game, but it

gives players −i the same payoff, and player i a weakly lower payoff (because his choices are

no longer conditioned on his true types). Most importantly, the strategy profile (σ−i, σ̃i) no

longer depends on the history of types of player i. Clearly, this argument applies to all players

i /∈ I(λ), so that λ · v is lower than the maximum inner product achieved over strategies

that only depend on the history of types in I(λ). Maximizing this inner product over such

strategies is a standard Markov decision process, which admits a solution within the class

of deterministic policies. Taking δ → 1 yields that the limit set is in
{

v ∈ R
I | λ· ≤ k̄(λ)

}

,

and this is true for all λ ∈ S1.

It is worth emphasizing that this result does not rely on the choice of any particular

message space.19 We define

ρ[λ] = arg max
Πi∈I(λ)Si→A

Eµ[ρ] [λ · r(s, a)] (2)

to be the policy that achieves this maximum, and let Ξ = {ρ[λ] : λ ∈ S1} denote the set of

such policies. We call V ∗ the set of incentive-compatible payoffs.

Because V ∗ is not equal to F , it is natural to wonder how large this set is. Let Extpo the

(weak) Pareto frontier of F . We also write Extpu for the set of payoff vectors obtained from

pure state-independent action profiles, i.e. the set of vectors v = Eµ[ρ][r(s, a)] for some ρ that

takes a constant value in A. Escobar and Toikka (2013) show that, in their environment, all

individually rational (as defined below) payoffs in co(Extpu ∪Extpo) are equilibrium payoffs

(whenever this set has non-empty interior). Indeed, the following is easy to show.

Lemma 3 It holds that co(Extpu ∪ Extpo) ⊂ V ∗.

As discussed, V ∗ contains the Pareto frontier and the constant action profiles, but this

might still be a strict subset of F . The following example illustrates the difference.

19Incidentally, it appears that the role of V ∗ is new even in the context of static mechanism design with

transfers. There is no known exhaustive description of the allocation rules that can be implemented under

IPV, but it is clear that the payoffs in V ∗ (replace µ with the prior) can be achieved using the AGV

mechanism; conversely, no payoff above k̄(λ) can be achieved, so that V ∗ provides a description of the

achievable payoff set in that case as well.
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T 3− c(si)
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, 3− c(s−i)
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3− c(si), 3

B 3, 3− c(s−i) 0, 0

Figure 3: Payoffs of Example 4

3

0 3

V ∗

F

v1

v2

Figure 4: Incentive-compatible and feasible payoff sets for the example

Example 4. Actions do not affect transitions. Rewards are given by Figure 3. Each

player has two states si = si, s̄i, with c(si) = 2, c(s̄i) = 1. (The interpretation is that a pie

of size 3 is obtained if at least one agent works; if both choose to work only half the amount

of work has to be put in by each worker. Their cost of working is fluctuating.) This an

IPV model. From one period the next, the state changes with probability p, constant and

independent across players. Given that actions do not affect transitions, we can take it equal

to p = 1/2 (i.i.d) for the sake of computing V ∗ and F , shown in Figure 4. Of course, each

player can secure at least 3 − 2+1
2

= 3
2

by always working, so the actual equilibrium payoff

set, taking into account the incentives at the action stage is smaller.

6.1 Truth-telling

In this section, we ignore the action stage and focus on the incentives of players to report

their type truthfully.
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Let us say that (ρ, x) is truthful if the pair satisfies Definition 2 if in Step 2 the requirement

that ρi be optimal is ignored. That is, we take the action choice ρ(·) as given. Furthermore,

(ρ, x) is weakly truthful if in addition in Step 1 of Definition 2 the requirement that truth-

telling is uniquely optimal is dropped. That is, we only require truth-telling to be an optimal

reporting strategy, although not necessarily the unique one.

Suppose that some extreme point of V is a limit equilibrium payoff vector. Then there

is λ ∈ S1 such that this extreme point maximizes λ · v′ over v′ ∈ V . Hence, for every

(ω̄pub, ωpub) ∈ Ωpub × Ωpub and t ∈ S such that p(t−i, y | m, ρ(ω̄pub, m)) > 0, it must hold

that λ · x(ω̄pub, ωpub, t) = 0. This motivates the familiar notion of orthogonal enforceability

from repeated games (see FLM). The plan of action ρ is orthogonally enforced by x in the

direction λ (under truth-telling) if for all (ω̄pub, ωpub, t), all i, p(t−i, y | m, ρ(ω̄pub, m)) > 0

implies λ · x(ω̄pub, ωpub, t) = 0. If ρ is orthogonally enforced, then the payoff achieved by

(ρ, x) is λ · v = Eµ[ρ]λ · r(s, a). We also recall that a direction λ is non-coordinate if λ 6= ±ei;

that is, it has at least two nonzero coordinates.

Proposition 1 Fix a non-coordinate direction λ. Let (ρ, x) be a (weakly) truthful pair. Then

there exists x̂ such that (ρ, x̂) is (weakly) truthful and ρ is orthogonally enforced by x̂ in the

direction λ.

Proposition 1 implies that budget-balance (λ·x ≤ 0) comes “for free” in all directions λ 6= ±ei.

Proposition 1 is the undiscounted analogue of a result by Athey and Segal (2007), and its

proof follows similar steps as theirs. It is worth mentioning that it does not rely on the

independence of the signal distribution on the state profile.

Our next goal is to obtain a characterization of all policies ρ for which there exists x such

that (ρ, x) is (weakly) truthful. With some abuse, we say then that ρ is (weakly) truthful.

Along with ρ and truthful reporting by players −i, a reporting strategy by player i, that

is, a map mi
ρ : Ωpub × Si → ∆(M i) from the past public outcome and the current state

into a report, induces a distribution πi
ρ over Ωpub × Si ×M i.20 Conversely, given any such

distribution, we can define the corresponding reporting strategy by

mi
ρ(ω̄pub, s

i)(mi) =

∑

ω̄pub,si
πi
ρ(ω̄pub, s

i, mi)
∑

ω̄pub,si,mi πi
ρ(ω̄pub, si, mi)

,

whenever
∑

ω̄pub,si,mi πi
ρ(ω̄pub, s

i, mi) > 0, mi
ρ(ω̄pub, s

i)(mi) defined arbitrarily otherwise. Let

us define

riρ(ω̄pub, m
i, si) = Es−i|ω̄pub

ri(ρ(s−i, mi), si)

20Note that, under IPV, player i’s private information contained in ω̄ is not relevant for his incentives in

the current period, conditional on ω̄pub.
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as the expected reward of player i given his message, type and the previous public outcome

ω̄pub. Let us also define, for ωpub = (s−i, mi, y) and ω̄pub = (s̄, ȳ),

qρ(ωpub, t
i | ω̄pub, s

i, mi) = p(ti | y, si, ρi(s−i, mi))p(y | ρ(s−i, mi))p(s−i | ȳ, s̄−i, ρ−i(s̄−i, s̄i)),

which is simply the probability of (ωpub, t
i) given (ω̄pub, s

i, mi). The distribution πi
ρ must

satisfy the balance equation

∑

m̃i

πi
ρ(ωpub, t

i, m̃i) =
∑

ω̄pub,si

qρ(ωpub, t
i | ω̄pub, s

i, mi)πi
ρ(ω̄pub, s

i, mi), (3)

for all states (ωpub, t
i). A distribution πi

ρ over Ωpub × Si ×M i is in Πi
ρ if (i) it satisfies (3),

and (ii) for all (ω̄pub, m
i),

∑

si

πi
ρ(ω̄pub, s

i, mi) = µ[ρ](ω̄pub, m
i). (4)

Equation (4) states that πi
ρ cannot be statistically distinguished from truth-telling. Its

significance comes from the next Lemma.

Lemma 4 Given a policy ρ, there exists x such (ρ, x) is (weakly) truthful if for all i, truth-

telling maximizes
∑

(ω̄pub,si,mi)

πi
ρ(ω̄pub, s

i, mi)riρ(ω̄pub, m
i, si) (5)

over πi
ρ ∈ Πi

ρ.

Fix λ ∈ S1. We claim that, for all i ∈ I(λ), truth-telling maximizes (5) with ρ = ρ[λ] over

πi
ρ[λ] ∈ Πi

ρ[λ]; suppose not, i.e. there exists i ∈ I(λ) such that (5) is maximized by some other

reporting strategy mi
ρ[λ]. Note that players −i’s payoffs are the same whether player i uses

truth-telling or mi
ρ[λ], because of (4). We can then define the policy ρ̃ as, for all s,

ρ̃(si, s−i) = Emi∼mi
ρ[λ]

(si)ρ[λ](m
i, s−i).

By construction, truth telling maximizes (5) (with ρ = ρ̃) over πi
ρ̃ ∈ Πi

ρ̃. Player i is strictly

better off under truth-telling with ρ̃ than under truth-telling under ρ[λ]. Furthermore, players

−i’s payoffs are the same (under truth-telling) under ρ̃ as under ρ[λ]. This means that ρ[λ]

could not satisfy (2), a contradiction.

By Proposition 1, given any ρ that satisfies Lemma 4 and any non-coordinate direction λ,

we can take the transfer x such that λ·x = 0. Note that the same arguments apply to the case
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λ = ±ei: while Proposition 1 does not hold in that case, the maximum Eµ[ρ] [±ei · r(s, a)]
over ρ : ×i∈I(λ)S

i → A is orthogonally enforceable in the case −ei because the maximizer is

then a constant action (I(λ) = ∅), and so truth-telling is trivial; in the case +ei it is also

trivial, because I(ei) = {i} and truth-telling maximizes player i’s payoff.

It then follows that the maximum score over weakly truthful pairs (ρ, x) is equal to the

maximum possible one, k̄(λ).

Lemma 5 Fix a direction λ ∈ S1. Then the maximum score over weakly truthful (ρ, x) such

that λ · x ≤ 0 is given by k̄(λ).

For now incentives to report truthfully have been taken to be weak. Our main theorem

requires strict incentives, at least (by Theorem 3) for reports that affect the action played.

To ensure that strict incentives can be given, a minimal assumption has to be made.

Assumption 1 For any two (pure) policies ρ, ρ̃ ∈ Ξ, it holds that

Eµ[ρ][r(s, ρ(s))] 6= Eµ[ρ̃][r(s, ρ̃(s))].

The meaning of this assumption is clear: there is no redundant pure policy among those

achieving payoff vectors on the boundary of V ∗. This assumption is stronger than necessary,

but at least it holds generically (over r and p). This assumption allows us to strengthen our

previous result from weak truthfulness to truthfulness.

Lemma 6 Fix a direction λ ∈ S1. Under Assumption 1, the maximum score over truthful

(ρ, x) such that λ · x ≤ 0 is given by k̄(λ).

The conclusion of this section is somewhat surprising: at least in terms of payoffs, there is

no possible gain (in terms of incentive-compatibility) from linking decisions (and restricting

attention to truthful strategies) beyond the simple class of policies and transfer functions that

we consider. In other words, ignoring individual rationality and incentives at the action stage,

the set of “equilibrium” payoffs that we obtain is equal to the set of incentive-compatible

payoffs V ∗.

If transitions are action-independent, note that this means also that the persistence of

the Markov chain has no relevance for the set of payoffs that are incentive-compatible. (If

actions affect transitions, even the feasible payoff set changes with persistence, as it affects

the extreme policies.) Note that this does it rely not on any full support assumption on the

transition probabilities, although of course the unichain assumption is used (cf. Example 1

of Renault, Solan and Vieille (2013) that shows that this conclusion –the sufficiency of the

invariant distribution– does not hold when values are interdependent).
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6.2 Actions

Only one step is missing to go from truthful policies to admissible ones: the lack of commit-

ment and imperfect monitoring of actions. This lack of commitment curtails how low payoffs

can be. We define player i’s (pure) minimax payoff as

vi = min
a−i∈A−i

max
ρi:Si→Ai

Eµ[ρi,a−i][r
i(si, a)].

This is the state-independent pure-strategy minmax payoff of player i. We let ρ
i

denote a

policy that achieves this minmax payoff, and assume that ρi
i
is unique given ρ−i

i
.

It clearly is a restrictive notion of individual rationality, see Escobar and Toikka (2013)

for a discussion. In particular, it is known that to punish player i optimally one should

consider strategies outside of the class that we consider –strategies that have a nontrivial

dependence on beliefs (after all, to compute the minimax payoff, we are led to consider a

zero-sum game, as Example 3 above –private values does not change this).

Denote the set of incentive-compatible, individually rational payoffs as

V ∗∗ =
{

v ∈ V ∗ | vi ≥ vi, all i
}

.

We now introduce assumptions on monitoring that are rather standard, see Kandori and

Matsushima (1998). Let Qi(a) = {p(· | âi, a−i) : âi 6= ai} be the distribution over signals y

induced by a unilateral deviation by i at the action stage. The first assumption involves the

minimax policies.

Assumption 2 For all i, j 6= i, all ρj
i
∈ Aj.

p(· | a) /∈ co Qj(a).

The second involves the extreme points (in policy space) of the incentive-compatible payoff

set.

Assumption 3 For all ρ ∈ Ξ, all s, a = ρ(s),

1. For all i 6= j, p(· | a) /∈ co(Qi(a) ∪Qj(a));

2. For all i 6= j,

co
(

p(· | a) ∪Qi(a)
)

∩ co
(

p(· | a) ∪Qj(a)
)

= {p(· | a)}.

We may now state the main result of this section.

Theorem 4 Suppose that V ∗∗ has non-empty interior. Under Assumptions 1–3, the limit

set of equilibrium payoffs includes V ∗∗.
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6.3 State-dependent Signalling

Let us now return to the case in which signals depend on actions.

Fix ω̄pub. The states si and s̃i are indistinguishable, denoted si ∼ s̃i, if for all s−i such

that p(s−i | ω̄pub) > 0 and all (a, y), p(y | s−i, si, a) = p(y | s−i, s̃i, a). Indistinguishability

defines a partition of Si, given ω̄pub, and we denote by [si] the partition cell to which si

belongs. If signals depend on action, this partition is non-trivial for at least one player.

By definition, if [si] 6= [s̃i] there exists s−i such that p(· | s−i, si, a) 6= p(· | s−i, s̃i, a) for

some a ∈ A and s̃i ∈ [s̃i]. We assume that we can pick this state s−i such that p(s−i |
ω̄pub) > 0 for all ω̄pub ∈ Ωpub (where s̄−i = m̄−i). This avoids dealing with the case in which,

for some public outcomes ω̄pub, player i knows that si cannot be statistically distinguished

from s̃i, but not in others. (Note that this assumption is trivial if states do not affect

signals, the case considered in the previous section.) This ensures that Si/∼ is independent

of ω̄pub. Let Di = {(s−i, a)} ⊂ S−i × A denote a selection of such states, along with

the discriminating action profile: for all [si] 6= [s̃i], there exists (s−i, a) ∈ Di such that

p(· | s−i, si, a) 6= p(· | s−i, s̃i, a).

We must redefine the relevant set of payoffs: Let

k̄(λ) = max
ρ

Eµ[ρ] [λ · r(s, a)] ,

where the maximum is now over all policies ρ : S → A such that if si ∼ s̃i and λi ≤ 0 then

ρ(si, s−i) = ρ(s̃i, s−i). Furthermore, let

V ∗ = ∩λ∈S1

{

v ∈ R
I | λ · v ≤ k̄(λ)

}

.

This set is larger than before, as strategies can depend on some information of the players

whose weight is negative, namely information that can be statistically verified. Following the

exact same argument as for Lemma 2, V ∗ is a superset of the set of Bayes Nash equilibrium

payoffs. We retain the same notation for ρ[λ], the policies that achieve the extreme points

of V ∗, and Ξ, the set of such policies. We maintain Assumption 1, with this new definition:

any two policies in Ξ yield different average payoff vectors Eµ[ρ][r(s, ρ(s))].

We may strengthen (4) to, for all (ω̄pub, m
i),

∑

si∈[mi]

πi
ρ(ω̄pub, s

i, mi) = µ[ρ](ω̄pub, m
i). (4’)

We then redefine Πi
ρ: A distribution πi

ρ over Ωpub ×Si ×M i is in Πi
ρ if it satisfies (3) as well

as (4’). Lemma 4 then holds without modification. We then obtain the analogue of Lemma

6.
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Lemma 7 Fix a direction λ ∈ S1. Under Assumption 1, the maximum score over truthful

(ρ, x) such that λ · x ≤ 0 is given by k̄(λ).

We now turn to actions. The definition of minimax payoff vi does not change, and we

maintain the assumption that ρi
i
is unique, given ρ−i

i
. The definition of V ∗∗ does not change

either, given our new definition of V ∗.

In what follows p(· | a, s) refers to the marginal distribution over signals y ∈ Y only.

(Because types are conditionally independent, players’ −i signals in round n + 1 are unin-

formative about ai, conditional on y.) Let Qi(a, s) = {p(· | âi, a−i, ŝi, s−i) : âi 6= ai, ŝi ∈ Si}
be the distribution over signals y induced by a unilateral deviation by i at the action stage,

whether or not the reported state si corresponds to the true state ŝi or not. The first

assumption involves the minimax policies.

Assumption 4 For all i, for all s, a = ρ
i
(s), j 6= i,

p(· | a, s) /∈ co Qj(a, s).

The second involves the extreme points (in policy space) of the relevant payoff set.

Assumption 5 For all ρ ∈ Ξ, all s, a = ρ(s); also, for all (s, a) where (s−i, a) ∈ Di for

some i:

1. For all i 6= j, p(· | a, s) /∈ co(Qi(a, s) ∪Qj(a, s));

2. For all i 6= j,

co
(

p(· | a, s) ∪Qi(a, s)
)

∩ co
(

p(· | a, s) ∪Qj(a, s)
)

= {p(· | a, s)}.

This assumption states that deviations of players can be detected, as well as identified, even

if player i has “coordinated” his deviation at the reporting and action stage.

We then get the natural generalization from Theorem 4.

Theorem 5 Suppose that V ∗∗ has non-empty interior. Under Assumptions 1, 4–5, the limit

set of equilibrium payoffs includes V ∗∗.

7 Correlated Types

We drop the assumption of independent types and extend here the static insights from

Crémer and McLean (1988). We must redefine the minimax payoff of player i as

vi = min
ρ−i:S−i→A−i

max
ρi:Si→Ai

Eµ[ρ][r
i(s, a)],
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As before, we let ρ
i

denote a policy that achieves this minimax payoff. We maintain As-

sumption 4 with this change of definition in the minimax policies. Similarly, throughout this

section we maintain Assumption 5 with the set of relevant policies ρ being those ρ ∈ Ex(F ),

namely those policies achieving extreme points of the feasible payoff set. This ensures that,

following the same steps as above, arbitrarily strong incentives can be provided to players

to follow any plan of action ρ : Ωpub ×M → A, whether or not they deviate in their reports.

We ignore the i.i.d. case, covered by similar arguments that invokes Theorem 3 rather

than Theorem 2.

Given m̄, ȳ, ā, and a map ρ : M → A, given i and any pair ζ i = (s̄i, si), we use Bayes’

rule to compute the distribution over (t−i, s−i, y), conditional on the past messages being m̄,

the past action and signal being ȳ, ā, player i’s true past and current state being s̄i and si,

and the policy ρ : S → A. This distribution is denoted

qm̄,ȳ,ā,ρ
−i (t−i, s−i, y | ζ i).

The tuple m̄, ȳ, ā also defines a joint distribution over profiles s, y and t, denoted

qm̄,ȳ,ā,ρ(t, s, y),

which can be extended to a prior over ζ = (s̄, s), y and t that assigns probability 0 to types

s̄i such that s̄i 6= m̄i
c.

We exploit the correlation in types to induce players to report truth-fully. As always, we

must distinguish between directions λ = −ei (minimaxing) and other directions. First, we

assume

Assumption 6 For all i, ρ = ρ
i
, all (m̄, ȳ, ā), for any i, ζ̂ i ∈ (Si)2, it holds that

qm̄,ȳ,ā,ρ
−i (t−i, s−i, y | ζ̂ i) 6= co

(

qm̄,ȳ,ā,ρ
−i (t−i, s−i, y | ζ i) : ζ i 6= ζ̂ i

)

.

If types are independent over time, and signals y do not depend on states (as is the case with

perfect monitoring, for instance), this reduces to the requirement that the matrix with entries

p(s−i | si) have full row rank, a standard condition in mechanism design (see d’Aspremont,

Crémer and Gérard-Varet (2003) and d’Aspremont and Gérard-Varet (1982)’s condition B).

Here, beliefs can also depend on player i’s previous state, s̄i, but fortunately, we can also

use player −i’s future state profile, t−i, to statistically distinguish player i’s types.

As is well known, Assumption 6 ensures that for any minimaxing policy ρ
i
, truth-telling

is Bayesian incentive compatible: there exists transfers xi(ω̄pub, (m, y), t−i) for which truth-

telling is strictly optimal.
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Ex post budget balance requires further standard assumptions. Following Kosenok and

Severinov (2008), let ci : (Si)2 → M i denote a reporting strategy, summarized by numbers

ci
ζiζ̂i

≥ 0, with
∑

ζ̂i c
i
ζiζ̂i

= 1 for all ζ i, with the interpretation that ci
ζiζ̂i

is the probability with

which ζ̂ i is reported when the type is ζ i. Let ĉi denote the truth-telling reporting strategy

where ciζiζi = 1 for all ζ i. A reporting strategy profile c, along with the prior qm̄,ȳ,ā,ρ defines

a distribution πm̄,ȳ,ā,ρ over (ζ, y, t), according to

πm̄,ȳ,ā,ρ(ζ̂ , y, t | c) =
∑

ζ

qm̄,ȳ,ā,ρ(ζ, y, t)
∏

j

cj
ζj ζ̂j

.

We let

Ri(m̄, ȳ, ā, ρ) =
{

πm̄,ȳ,ā,ρ(· | ci, ĉ−i) : ci 6= ĉi
}

.

Again, the following is the adaptation of the assumption of Kandori and Matsushima (1998)

to the current context.

Assumption 7 For all ρ ∈ Ex(F ), all (m̄, ȳ, ā),

1. For all i 6= j, πm̄,ȳ,ā,ρ(· | ĉ) /∈ co (Ri(m̄, ȳ, ā, ρ) ∪Rj(m̄, ȳ, ā, ρ));

2. For all i 6= j,

co
(

πm̄,ȳ,ā,ρ(· | ĉ) ∪Ri(m̄, ȳ, ā, ρ)
)

∩co
(

πm̄,ȳ,ā,ρ(· | ĉ) ∪ Rj(m̄, ȳ, ā, ρ)
)

= {πm̄,ȳ,ā,ρ(· | ĉ)}.

Assumption 7.1 is equivalent to the assumption of weak identifiability in Kosenok and Sev-

erinov (2008) for two players (whose Lemma 2 can be directly applied). The reason it is

required for any pair of players (unlike in Kosenok and Severinov) is that we must obtain

budget-balance also for vectors λ ∈ S1 with only two non-zero coordinates (of the same

sign). Assumption 7.2 is required (as in Kandori and Matsushima in their context) because

we must also consider directions λ ∈ S1 with only two non-zero coordinates whose signs are

opposite.21

It is then routine to show:

21See also Hörner, Takahashi and Vieille (2012). One easy way to understand the second one is in terms

of the cone spanned by the vectors πm̄,ȳ,ā,ρ(· | ci, ĉ−i) and pointed at πm̄,ȳ,ā,ρ(· | ĉ). The first assumption is

equivalent to any two such cones only intersecting at 0; and the second one states that any cone intersected

with the opposite cone (of another player) also only intersect at 0. When λi > 0 > λj , we can rewrite the

constraint λxi + λjxj = 0 as λixi + (−λj)(−xj) = 0 and the expected transfer of a player as p(· | cj)xj(·) =
(−p(· | cj))(−xj(·)), so the condition for (λi, λj) is equivalent to the condition for (λi,−λj) if one “replaces”

the vectors p(· | cj) with −p(· | cj).
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Theorem 6 Assume that V has non-empty interior. Under Assumptions 4–7, the limit set

of truthful equilibrium payoffs includes V .

Assumptions 6–7 are generically satisfied if |S−i| ≥ |Si| for all i.

8 Conclusion

This paper has considered a class of equilibria in games with private and imperfectly persis-

tent information. While the structure of equilibria has been assumed to be relatively simple,

to preserve tractability –in particular, we have focused on truthful equilibria– it has been

shown, perhaps surprisingly, that in the case of independent private values this is not re-

strictive as far as incentives go: all that transfers depend on are the current and the previous

report. This confirms a rather natural intuition: in terms of equilibrium payoffs at least

(and as far as incentive-compatibility is concerned), there is nothing to gain from aggregat-

ing information beyond transition counts. In the case of correlated values, we have shown

how the standard insights from static mechanism design with correlated values generalize; in

this case as well, the “genericity” conditions in terms of number of states are satisfied with

a simple mechanism, provided next period’s reports by a player’s opponent are used.

This is not to say that more complicated mechanisms cannot help, but that they help

in particular ways. Our initial examples have illustrated some of the issues. In light of our

results, let us revisit those.

Looking backward. In the case of independent private values, using richer information

from the past is useful for the purpose of pushing down the lowest equilibrium payoff. There

are two distinct channels through which this operates.

First, by considering realized action profiles of players −i (under perfect monitoring, say),

one might be able to ensure that their play is as if they were randomizing, using ideas from

approachability theory. As we have discussed in Example 2, players are typically not willing

to randomize. Statistical tests based on longer stretch of behavior might help remedy this.

Second, there is a high price to pay for getting the punished player to reveal his state

truthfully: punishing players should not take advantage of that information to fine-tune

their action profile. Yet if we drop truth-telling, the punished player cannot help but either

reveal some of his private information through the actions that he plays, or play in a way

that does not depend on this information. In both cases, this is costly and should allow the

other players to punish him more effectively. Here again, approachability seems to be the
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right tool to use, but it requires taking into account longer sequences of past outcomes (or

equivalently, keeping track of richer beliefs). This is obvious from Example 1.

While both channels allow for more effective punishments, their roles are somewhat

different: in the first case, it is simply to check that the empirical distribution of actions is

closed to the one that i.i.d. behavior would generate; in the second, to draw better inferences

about the current state from past observations.

Looking forward. Under correlated values, if the genericity assumptions fail, it becomes

useful to take into account future observations. Inferences are reversed with respect to the

previous case: here, we use future signals (reports by other players, in particular) to better

infer the current state. Example 3 illustrates how powerful this can be, but unless actions do

not affect the Markov chain (as in the example), it is not entirely clear how to best exploit

this information.
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A Proof of Theorem 2

The proof is inspired by FLM but there are significant complications arising from incomplete

information. We let Z be a compact set included in the interior of H0, and pick η > 0 small

enough so that the η-neighborhood Zη := {z ∈ R
I , d(z, Z) ≤ η} is also contained in the

interior of H0. We will prove that Zη is included in the set of perfect Bayesian equilibrium

payoffs, for δ large enough

A.1 Preliminaries

The discount factor δ should be chosen large enough so that a few conditions are met. We

discuss some of these conditions here. The other ones will appear later.

We quote without proof the following classical result, which relies on the smoothness of

Zη (see Lemma 6 in HSTV for a related statement).

Lemma 8 Given ε > 0, there exists ζ̄ > 0 such that the following holds. For every z ∈ Zη

and every ζ < ζ̄, there exists a direction λ ∈ U1 such that if w ∈ R
I is such that ‖w− z‖ ≤ ζ

and λ · w ≤ λ · z − εζ, then w ∈ Zη.

Given λ ∈ U1, and since Zη is contained in the interior of H0, one has maxz∈Zη λ·z < k(λ).

Thus, one can find v ∈ R
I , and (ρ, x) ∈ C0 such that maxz∈Zη λ · z < λ · v and λ · x(·) < 0.

Using the compactness of U1, this proves Lemma 9 below.

Lemma 9 There exists ε0 > 0 and a finite set S0 of triples (v, ρ, x) with v ∈ R
I and

(ρ, x) ∈ C0 such that the following holds. For every target payoff z ∈ Zη, and every direction

λ ∈ U1, there is (v, ρ, x) ∈ S0 such that (v, ρ, x) is feasible in P0(λ) and λ · z + ε0 < λ · v.
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We let κ0 ∈ R be a uniform bound on S0. Specifically, we pick κ0 such that ‖x‖∞ ≤ κ0/2

and ‖z − v‖ ≤ κ0/2 for each (v, x, ρ) ∈ S0 and every z ∈ Zη. We apply Lemma 8 with

ε := ε0/κ0 to get ζ̄, and we let δ̄ < 1 be large enough so that
(1− δ)1/4

δ
≤ ζ̄

κ0
for each δ ≥ δ̄.

Let (ρ, x) ∈ C0 be arbitrary, and let θρ,x : Ωpub × S → R
I denote the relative rents under

(ρ, x). Fix a player i ∈ I, a triple (ω̄pub, s̄
i, āi) ∈ Ωpub × Si × Ai, and consider the decision

problem Di(ω̄pub, s̄
i, āi).

Given ãi ∈ Ai, we denote by γ̃i(ω̄pub, s, ã
i) the (conditional) expected payoff in Di(ω̄pub, s̄

i, āi)

when states are s, player i plays ãi after reporting truthfully.22

Given si ∈ Si, denote by γi(ω̄pub, ā
i, (s̄i, si) → mi) the highest expected payoff of player

i in Di(ω̄pub, s̄
i, āi), when the type of player i is si and when reporting mi ∈ M i.

Since (ρ, x) ∈ C0, there exists ηρ,x such that

ηρ,x + γ̃i(ω̄pub, s, ã
i) < γ̃i(ω̄pub, s, ρ

i(ω̄pub, m)) (6)

for every i, ω̄pub ∈ Ωpub, s ∈ S, s̄i ∈ Si, ãi 6= ρi(ω̄pub, m) (where m = (s̄, s)), and

ηρ,x + γi(ω̄pub, ā
i, (s̄i, si) → mi) < γi(ω̄pub, ā

i, (s̄i, si) → (s̄i, si)) (7)

whenever mi 6= (s̄i, si).

We set η := min(v,ρ,x)∈S0 ηρ,x > 0.

A.2 Strategies

We let z∗ ∈ Zη, and δ ≥ δ̄ be given. We here define a pure strategy profile σ.

Under σi, all reports of player i are truthful, and his actions in any given stage n (when

reporting truthfully) depend on a target payoff zn ∈ Zη, on the previous public outcome

ωpub,n−1 ∈ Ωpub and on current reports mn ∈ M . The target payoff zn is updated in stage n

after reports have been submitted and the outcome of the public device has been observed.

We first explain this updating process. Given zn, we pick a unit vector λn ∈ S1 using

Lemma 8, and use Lemma 9 to pick (vn, ρn, xn) ∈ S0 which is feasible in P0(λn) and such

that λn · zn+ ε0 < λn · vn. Given the public outcome ωpub,n = (mn, yn) and the reports mn+1,

zn is updated to zn+1 as follows. We first set

wn+1 :=
1

δ
zn −

1− δ

δ
vn +

1− δ

δ
xn(ωpub,n−1, ωpub,n, mc,n+1), (8)

22To be formal, this is the expectation of ri(s, ã) + xi(ω̄pub, ωpub, t
−i) + θiρ,r+x(ωpub, t), where m = (s̄, s),

ã = (ρ−i(m), ãi), y, t) ∼ p(· | s, ã), and ωpub = (m, y).
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and we define w̃n+1 by the equation

wn+1 = ξw̃n+1 + (1− ξ)zn, (9)

where ξ := (1− δ)3/4.23

The randomizing device sets zn+1 equal to zn or to w̃n+1 with respective probabilities 1−ξ

and ξ. Observe that wn+1 is then equal to the expectation of zn+1 (where the expectation is

over the outcome of the public device in stage n + 1).

That zn+1 then belongs to Zη follows from the choice of δ and of ξ.

Lemma 10 One has w̃n+1 ∈ Zη.

Proof. Omitting the arguments (ωpub,n−1, ωpub,n), one has

ξ(w̃n+1 − zn) = wn+1 − zn =
1− δ

δ
(zn − vn + xn) .

Thus, ‖w̃n+1 − zn‖ ≤ (1−δ)1/4

δ
κ0 and λn · w̃n+1 ≤ λn · zn − (1−δ)1/4

δ
ε0, and the result follows

since δ ≥ δ̄.

We next explain how actions are chosen under σ. Fix a player i, and a private history

hi
n = ((ωpub,k, s

i
k, a

i
k)k=1,...,n−1, mn) including reports in stage n.

Whenever the current report of player i is truthful –that is, mi
n = (sin−1, s

i
n)–, σi plays

the action prescribed by ρin:

σi(hi
n) = ρin(ωpub,n−1, mn).

If hi
n is consistent with σ−i, then Bayes rule leads player i to assign probability one to

(s−i
n−1, s

−i
n ) = m−i

n . If hi
n is inconsistent24 with σ−i, we let the beliefs of player i be still

computed under the assumption that the current reports of −i are truthful.

Thus, at any history hi
n at which mi

n is truthful, the expected continuation payoff of

player i under σ is well-defined, and it only depends on (ωpub,n−1, mn) and on the current

payoff target zn. We denote it by γi
σ(ωpub,n−1, mn; zn).

We now complete the description of σ. Let hi
n be a (private) history at which mi

n is not

truthful: mi
n 6= (sin−1, s

i
n). At such an history, we let σi play an action which maximizes the

discounted sum of current payoff and expected continuation payoffs, that is,

(1− δ)ri(sn, (a
i, a−i

n ) + δγi
σ(ωpub,n, mn+1; zn+1),

23The choice of the exponent 3/4 is to a large extent arbitrary. We will use the fact that ξ vanishes when

δ → 1, more slowly than 1− δ, and faster than
√
1− δ.

24Which occurs if past reports are inconsistent, or if observed public signals are inconsistent with reported

states.
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where a−i
n = ρ−i(ωpub,n−1, mn), (yn, sn+1) ∼ p(· | sn, a

i, a−i
n ), ωpub,n = (mn, yn), mn+1 =

(sn, sn+1) and the expectation is taken over yn, mn+1 and zn+1.
25

Theorem 2 follows from Proposition 2, which is proven in the next section.

Proposition 2 The following holds.

1. For δ large enough, σ is a perfect Bayesian equilibrium.

2. One has limδ→1 γσ(ωpub, m; z) = z for every (ωpub, m) ∈ Ωpub ×M and z ∈ Zη.

In FLM, the target payoff z is updated every stage. In HSTV, it is only updated period-

ically, to account for changing states. Here instead, the target payoff is updated at random

times. The durations of the successive blocks (during which z is kept constant) are indepen-

dent, and follow geometric distributions with parameter ξ. As we already noted, the fact

that ξ is much larger than 1 − δ ensures that successive target payoffs lie in Zη. The fact

that ξ vanishes as δ → 1 ensures that the expected duration of a block increases to +∞ as

δ → 1.

A.3 Proof of Proposition 2

We will check that player i has no profitable one-step deviation, provided δ is large enough.

By construction, this holds at any history hi
n such that the current report mi

n is not truthful.

At other histories, this sequential rationality claim will follow from the incentive conditions

(6) and (7).

The crucial observation is that at any given stage n, expected continuation payoffs under

σ are close to the current target zn, and (continuation) relative rents are close to θρn,xn. These

properties are established in Proposition 3 below, and hinge on the irreducibility properties

of (sn).

Given an arbitrary target z ∈ Zη, we will denote by (v, ρ, x) ∈ S0 the triple that is

associated to z in the construction of σ. All computations in this section are done under the

assumption that players follow σ. For simplicity, we will write γσ(ωpub, s; z) instead of the

more cumbersome γσ(ωpub, (mc, s); z). We set

γσ(z) := Eµ[ρ][γσ(ωpub, s; z)],

25Recall that the belief of player i assigns probability one to s−i
n = mi

c,n.
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which we interpret as the expected continuation payoff under σ, given the target z. We also

set

θσ(ωpub, s; z) :=
1

1− δ
(γσ(ωpub, s; z)− γσ(z)) ,

which we interpret as the relative rents under σ, when the target is z.

Proposition 3 There exist positive numbers c1 and c2 such that for every target z ∈ Zη,

and every discount factor δ > δ̄, the following holds:

P1 : ‖γσ(z)− z‖ ≤ c1(1− δ)1/2

P2 : ‖θσ(·; z)− θρ,x‖ ≤ c2(1− δ)3/4.

Proof of Proposition 3.

This is the technically more delicate part of the proof, and it can be skipped. We first

compare γσ(ωpub, s; z) and γσ(ω̃pub, s̃; z) for arbitrary (ωpub, s) and (ω̃pub, s̃) in Ωpub ×S. We

rely on a coupling argument. Accordingly, we let (U ,P) be a rich enough probability space

to accommodate the existence of:

1. two independent Markov chains (ωn) and (ω̃n) with values in Ω and transition function

πρ, which start from (ωpub, s) and (ω̃pub, s̃) respectively;26

2. a random time τ , independent of the two sequences (ωn) and (ω̃n), which has a geo-

metric distribution with parameter ξ(= (1− δ)3/4).

The random time τ simulates the stage when the public randomizing device instructs players

to switch to the next block. All stochastic processes will be stopped prior to τ , hence (ωn)

and (ω̃n) simulate (coupled) random plays induced by σ starting from (ωpub, s) and (ω̃pub, s̃)

respectively.

For n ≥ 1, we abbreviate to rn := r(sn, an) and r̃n := r(s̃n, ãn) the payoffs in stage

n along the two plays (where mn = (sn−1, sn) and an = ρ(ωpub,n−1, mn)). We denote by

hn := (ω1, . . . , ωn−1) and h̃n := (ω̃1, . . . , ω̃n−1) the histories associated with the two plays.

We also write xn := x(ωpub,n−1, ωpub,n, sn+1) and x̃n := x(ω̃pub,n−1, ω̃pub,n, s̃n+1). Finally, zn

and z̃n stand for the current target payoff in stage n, while wn and w̃n stand for the expected

targets along the two plays, as defined in (8). Observe that zn = z̃n = z for each n < τ , and

that zτ and z̃τ are obtained from z by equation (9).

26To be precise, we mean that ω1 is randomly set to (s,m, ρ(ωpub,m), y), where y ∼ q(· | s, ρ∗(ωpub,m))

and similarly for ω̃1.
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We define τc := inf{n : (ωpub,n−1, sn) = (ω̃pub,n−1, s̃n)} to be the first “coincidence” time of

the two processes (ωn) and (ω̃n). By the unichain assumption, τc has a finite expectation. We

let C0 be an upper bound for E[τc], valid for all (ωpub, s) and (ω̃pub, s̃). Since the two stopping

times τ and τc are independent, this implies the existence of C1, such that P(τ ≤ τc) ≤ C1ξ.
27

We denote by τ∗ := min(τ, τc) the minimum of the switching time and of the first coin-

cidence time. Since σ coincides with ρ prior to τ and since the expected payoff is equal to

the discounted sum of current payoffs and of continuation payoffs, one has

γσ(ωpub, s; z) = E

[

(1− δ)
τ∗−1
∑

n=1

δn−1rn + δτ∗−1γσ(ωpub,τ∗−1, sτ∗ ; zτ∗)

]

, (10)

and an analogous formula holds for γσ(ω̃pub, s̃; z). Hence

γσ(ωpub, s; z)− γσ(ω̃pub, s̃; z) (11)

= E

[

(1− δ)

τ∗−1
∑

n=1

δn−1 (rn − r̃n) + δτ∗−1 (γσ(ωpub,τ∗−1, sτ∗ ; zτ∗)− γσ(ω̃pub,τ∗−1, s̃τ∗ ; z̃τ∗))

]

.

We provide a first estimate, which will be refined later.

Claim 7 There is C2 > 0 such that for every z ∈ Zη, every (ωpub, s), (ω̃pub, s̃) ∈ Ωpub × S,

and every δ > δ̄, one has

‖γσ(ωpub, s; z)− γσ(ω̃pub, s̃; z)‖ ≤ C2ξ.

Proof of Claim 7. Note that (ωpub,n−1, sn, zn) = (ω̃pub,n−1, s̃n, z̃n) on the event n =

τc < τ , so that γσ(ωpub,n−1, sn; zn) = γσ(ω̃pub,n−1, s̃n; z̃n). Since payoffs lie in [0, 1], equality

(11) yields

‖γσ(ωpub, s; z)− γσ(ω̃pub, s̃; z)‖ =

∥

∥

∥

∥

∥

(1− δ)E

[

τ∗−1
∑

n=1

(rn − r̃n)δ
n−1 + δτ∗−11τ≤τc

]
∥

∥

∥

∥

∥

≤ (1− δ)E[τc] +P(τ ≤ τc). (12)

The result follows, with C2 := C0 + C1.

Since γi
σ(z) lies between min(ωpub,s) γ

i
σ(ωpub, s; z) and max(ωpub,s) γ

i
σ(ωpub, s; z), Claim 7

yields Claim 8 below.

27Actually, the inequality holds with C1 = E[τc].
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Claim 8 For each z, (ωpub, m) and δ > δ̄, one has

‖γσ(ωpub, s; z)− γσ(z)‖ ≤ C2ξ.

We now prove P1 in Proposition 3.

Fix z ∈ Zη. We rewrite (9) which relates the current target z and the expected target w′

in the next stage, as

z = δw′ + (1− δ)v − (1− δ)x(ω̄pub, ωpub, t).

When taking expectations under the invariant measure µ[ρ] ∈ ∆(Ω × Ω × S), and since w′

is the expectation of the next target z′ under the randomizing device, this latter equality

yields

z = (1− δ)v + Eµ[ρ] [δz
′ − (1− δ)x(ω̄pub, ωpub, t)] .

Recall next that v := Eµ[ρ] [r(s, a) + x(ω̄pub, ωpub, t)]. Hence

z = Eµ[ρ][(1− δ)r(s, a) + δz′]. (13)

On the other hand, since discounted payoffs are equal to the discounted sum of current and

of continuation payoffs, one has

γσ(ωpub, s; z) = (1− δ)r(s, ρ(ωpub, m)) + δE
[

γσ(ω
′
pub, s

′; z′)
]

,

for each (ωpub, s). Taking expectations under the invariant measure, one gets

γσ(z) = Eµ[ρ]

[

(1− δ)r(s, a) + δγσ(ω
′
pub, s

′; z′)
]

. (14)

Denote by A the event where the public randomization device tells players to continue

with the current block. Since z′ = z on A, one has

Eµ[ρ]

[

γσ(ω
′
pub, s

′; z′)1A
]

= Eµ[ρ]

[

γσ(ω
′
pub, s

′; z)1A
]

(15)

= P(A)Eµ[ρ]

[

γσ(ω
′
pub, s

′; z)
]

= P(A)γσ(z) (16)

= Eµ[ρ] [γσ(z
′)1A] . (17)

where the second equality holds since the event A and the pair (ω′
pub, m

′) are independent.

The complement event Ā is of probability ξ. Denoting by (v′, ρ′, x′) ∈ S0 the triple

associated to the new target z′, one has using Claim 7,

‖γσ(ω′
pub, s

′, z′)− γσ(z
′)‖ ≤ C2ξ,
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for every realization of (ω′, s′, z′).

Since γσ(z
′) := Eµ[ρ′]

[

γσ(ω
′
pub, s

′; z′)
]

, one obtains

‖Eµ[ρ]

[

γσ(ω
′
pub, s

′; z′)1B
]

− Eµ[ρ] [γσ(z
′)1B] ‖ ≤ C2ξP(B) = C2ξ

2. (18)

Plugging (17) and (18) into (14), this yields

‖γσ(z)−
(

Eµ[ρ] [(1− δ)r(s, a) + δγσ(z
′)]
)

‖ ≤ C2ξ
2.

Combining this inequality with (13), one gets

‖γσ(z)− z‖ ≤ δEµ[ρ] [‖γσ(z′)− z′‖] + C2ξ
2.

Setting S := supz∈Zη
[‖γσ(z)−z‖, this implies in turn S ≤ δS+C2ξ

2, so that S ≤ C2
ξ2

1− δ
=

C2(1− δ)1/2. This yields P1 (with c1 := C2).

We turn to the proof of P2. We let (ωpub, s) and (ω̃pub, s̃) in Ωpub × S be given, and use

the coupling introduced earlier. We proceed in two steps, Claims 9 and 10 below.

Set ∆n := (rn + xn)− (r̃n + x̃n).

Claim 9 There is C3 > 0 such that for every δ > δ̄, one has
∥

∥

∥

∥

∥

γσ(ωpub, s; z)− γσ(ω̃pub, s̃; z)

1− δ
− E

[

τ∗−1
∑

n=1

δn−1∆n

]
∥

∥

∥

∥

∥

≤ C3(1− δ)1/4.

Claim 10 There is C4 > 0 such that for every δ ≥ δ̄, one has
∥

∥

∥

∥

∥

E

[

τ∗−1
∑

n=1

δn−1∆n

]

− E

[

τc−1
∑

n=1

∆n

]
∥

∥

∥

∥

∥

≤ C4ξ.

(Observe that the range of the two sums is not the same.) Since E

[

τc−1
∑

n=1

∆n

]

is equal to

θρ,x(ωpub, s)− θρ,x(ω̃pub, s̃), Statement P2 follows from Claims 9 and 10, with c2 := C3 +C4.

Proof of Claim 9. If τc < τ , then (ωpub,τ∗−1, sτ∗) = (ω̃pub,τ∗−1, s̃τ∗), and zτ∗ = z̃τ∗ = z,

hence

γσ(ωpub,τ∗−1, sτ∗ ; zτ∗)− γσ(ω̃pub,τ∗−1, s̃τ∗ ; z̃τ∗) = 0 = zτ∗ − z̃τ∗ .

If instead τ ≤ τc, then by Claim 8, ‖γσ(ωpub,τ∗−1, sτ∗ ; zτ∗) − γσ(zτ∗)‖ ≤ C2ξ = C2(1 − δ)
3
4

and, by P1, γσ(zτ∗) is within C2(1 − δ)
1
2 of zτ∗ . Hence, γσ(ωpub,τ∗−1, mτ∗ ; zτ∗) differs from
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zτ∗ by at most 2C2(1 − δ)1/2, and a similar result holds for γσ(ω̃pub,τ∗−1, s̃τ∗ ; z̃τ∗). Hence the

difference (γσ(ωpub,τ∗−1, sτ∗ ; zτ∗)− γσ(ω̃pub,τ∗−1, s̃τ∗ ; z̃τ∗)) is equal to the difference (zτ∗ − z̃τ∗),

up to 4C2(1− δ)1/2. Since P(τ ≤ τc) ≤ C1ξ, it follows that

‖E [γσ(ωpub,τ∗−1, sτ∗ ; zτ∗)− γσ(ω̃pub,τ∗−1, s̃τ∗ ; z̃τ∗)]− E[zτ∗ − z̃τ∗ ]‖
≤ 4C2(1− δ)1/2 × C1ξ = 4C1C2(1− δ)5/4. (19)

Observe next that zn+1 = z̃n+1(= z) for each n < τ∗ − 1. So that plugging (19) into (11),

the difference γσ(ωpub, s; z)− γσ(ω̃pub, s̃; z) is equal to

E

[

τ ′−1
∑

n=1

δn−1 ((1− δ)(rn − r̃n) + δ(zn+1 − z̃n+1))

]

, (20)

up to 4C1C2(1− δ)5/4.

Next, we rewrite

τ ′−1
∑

n=1

δn(zn+1 − z̃n+1) =
∞
∑

n=1

δn(zn+1 − z̃n+1)1τ ′≥n+1.

Since the random time τ is independent of the plays (ωn) and (ω̃n), one has for each stage

n ≥ 2,

E [(zn − z̃n)1τ ′≥n] = E [(wn − w̃n)1τ ′≥n] = E

[

1− δ

δ
(xn−1)− x̃n−1))

]

.

Therefore,

E

[

τ ′−1
∑

n=1

δn(zn+1 − z̃n+1)

]

= E

[

τ ′−1
∑

n=1

δn−1(1− δ) (xn − x̃n)

]

.

The result follows when plugging the latter equation into (20), with C3 := 4C1C2.

Proof of Claim 10. Observe first that, since ‖∆n‖ ≤ (1 + κ0), the difference between

E





min(τ,τc)−1
∑

n=1

δn−1∆n



 and E

[

τc−1
∑

n=1

δn−1∆n

]

is at most (1+κ0)E[τc−min(τ, τc)]. Since τ and

τc are independent, one has

E[τc −min(τ, τc)] = E[τc − τ | τ < τc]×P(τ < τc) ≤ C0 × C1ξ. (21)

Next, note that, since (1− δn−1) ≤ n(1− δ), one has
∥

∥

∥

∥

∥

E

[

τc−1
∑

n=1

δn−1∆n

]

− E

[

τc−1
∑

n=1

∆n

]
∥

∥

∥

∥

∥

≤ (1+κ0)(1−δ)E

[

τc−1
∑

n=1

n

]

≤ (1−δ)×(1+κ0)E
[

τ 2c
]

. (22)
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Collecting (21) and (22), there exists c4 > 0 such that
∥

∥

∥

∥

∥

E

[

τ∗−1
∑

n=1

δn−1∆n

]

− E

[

τc−1
∑

n=1

∆n

]∥

∥

∥

∥

∥

≤ c4ξ. (23)

This concludes the proof of Proposition 3.

A.4 Conclusion

We now check no player i has no profitable one-step deviation. For concreteness, we will

focus on deviations at the report stage. Apart from notational issues, the proof is simi-

lar for a deviation at an action stage. Consider thus a stage n and any private history

(hpub,n, (s
i
k)1≤k≤n−1, (a

i
k)1≤k≤n−1, s

i
n) of player i.

The continuation payoff of player i only depends on this private history through the

previous public outcome ωpub,n−1, on (sin−1, a
i
n−1, s

i
n) and on the target zn in stage n. We

denote by (v, ρ, x) ∈ S0 the triple associated to zn. We will derive the no profitable devia-

tion property from the incentive properties of (ρ, x) in Di
ρ,x(ωpub,n−1, s

i
n−1, a

i
n−1) and on the

estimates P1 and P2 obtained earlier.

We will compare the expected payoff obtained when reporting truthfully mi
n = (sin−1, s

i
n)

then playing ρi(mn) with the expected payoff obtained when reporting m̃i
n 6= (sin−1, s

i
n) then

playing some arbitrary action ai(m−i
n , m̃i

n).

In the former case, player i’s payoff is the expectation of

(1− δ)ri(sn, an) + δγi
σ(ωpub,n, sn+1; zn+1),

where s−i
n is drawn according to i’s belief, mn = (sn−1, sn), an = ρ(ωpub,n−1, mn), (yn, sn+1) ∼

p(· | sn, an), ωpub,n = (mn, yn), and zn+1 is randomly chosen, using equations (8) and (9).

In the latter case, player i’s payoff is the expectation of

(1− δ)ri(sn, ãn) + δγi
σ(ω̃pub,n, s̃n+1; z̃n+1),

with obvious notations.

We compare these two expectations using again a coupling argument. Specifically, we

will assume that the “same” randomizing device is used for both computations. Thus, with

probability 1− ξ, one has zn+1 = z̃n+1 = z and γσ(ωpub,n, sn+1; zn+1)− γσ(ω̃pub,n, s̃n+1; z̃n+1)

is then, by P2, equal to

(zn+1 + (1− δ)θρ,x(ωpub,n, sn+1; zn+1))− (z̃n+1 + (1− δ)θρ,x(ω̃pub,n, s̃n+1; z̃n+1)) + o(1− δ).
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On the other hand, with probability ξ, the public device instructs to switch to a new block,

and the difference γσ(ωpub,n, sn+1; zn+1)− γσ(ω̃pub,n, s̃n+1; z̃n+1) is then, by P1, equal to

(zn+1 + (1− δ)θρ,x((sn, yn), sn+1; zn+1))−
(

z̃n+1 + (1− δ)θρ,x((m
i
n, s

−i
n ), ỹn), s̃n+1; z̃n+1)

)

+0((1−δ)
1
2 ).

Taking expectations, (A.4) and (A.4) yield

‖E [γσ(ωpub,n, sn+1; zn+1)]− E [γσ(ω̃pub,n, s̃n+1; z̃n+1)]‖+O((1− δ)3/2)

=
∥

∥E [zn+1 + (1− δ)θρ,x(ωpub,n, sn+1; zn+1)]− E
[

z̃n+1 + (1− δ)θρ,x((m
i
n, s

−i
n ), ỹn), s̃n+1; z̃n+1)

]
∥

∥ .

Note now that the following identity holds by construction:

δE [zn+1]− δE [z̃n+1] = δE [wn+1]− δE [w̃n+1]

= (1− δ)E[xn]− (1− δ)E[x̃n].

Thus, when divided by (1−δ), the difference in expected continuation payoffs (when reporting

truthfully or not) is equal to

E [rn + xn + θρ,x(ωpub,n, sn+1)]−E [r̃n + x̃n + θρ,x(ω̃pub,n, s̃n+1)] + o(1). (24)

To conclude, note that the difference of the expectations which appear in (24) is at least η1

(see Section A.1) hence the continuation payoff is strictly higher when reporting truthfully

than when not, provided δ is high enough.

B Proofs for independent private values

Proof of Lemma 3. Fix a non-coordinate direction λ. Suppose first that λi ≤ 0, all

i. Consider the vector v ∈ Extpo that maximizes λ · v, and the corresponding policy ρ.

This policy implements a distribution over ∆(A). Consider the constant (and hence weakly

admissible, for x = 0) policy that uses the public randomization device to replicate this

distribution (independently of the announcements). The IPV assumption ensures that all

players are weakly worse off. Hence k∗(λ) ≥ λ · v, so that v ∈ H∗
0(λ), and so co(Extpu ∪

Extpo) ⊂ H∗
0(λ) (if another constant policy improves the score further, consider it instead).

Suppose next that λi < 0 for all i ∈ J ( I, and there exists i such that λi > 0. Again,

consider the vector v ∈ Extpo that maximizes λ ·v. Because v ∈ Extpo, v also maximizes λ̂ ·v
over v ∈ Extpo, for some λ̂ ≥ 0, λ̂ ∈ S1. Furthermore, we can take λ̂i = 0 for all λi < 0. Such

a vector is achieved by a policy that only depends on (si)i/∈J , because of private values. Truth-

telling is trivial for these types, and hence this policy is also weakly admissible in the direction

46



λ. Hence again k∗(λ) ≥ λ·v, so that v ∈ H∗
0(λ) and so co(Extpu∪Extpo) ⊂ H∗

0(λ). Directions

λ ≥ 0 are unproblematic, as both efficient and constant policies are weakly admissible for

some choice of x.

Coordinate directions λ = ei are also immediate: the vector that maximizes vi over

co(Extpu ∪ Extpo) is part of the Pareto-frontier, and the corresponding policy is weakly

admissible using AGV. Scores in the directions λ = −ei are (at least) −vi, hence V ∗ ∩
co(Extpu ∪ Extpo) ⊂ H∗

0(−ei).

B.1 Proof of Proposition 1

Given an action plan ρ : S → A and x : Ωpub × M → R
I , we denote the induced relative

rents as θ[ρ, r+ x] : Ωpub × S → R
I instead of θ[ρ, x]. In other words, θ[ρ, x] are the relative

rents when transfers are x and stage payoffs are identically zero. When ρ is clear from the

context, we write θx.

(Assuming truth-telling), any action plan ρ : S → A induces a probability transition

over Ωpub, denoted πρ. We use the notation πρ whenever distributions should be computed

under the assumption that states are truthfully reported, actions chosen according to ρ, and

transitions determined using p. For instance, πρ(s
−i | ω̄pub) is the (conditional) distribution

of s−i under p(· | s̄, ρ(s̄)), given ȳ. Given the IPV assumption, it is thus
∏

j 6=i

pj(sj | s̄i, ρj(s̄), ȳ).

Fix a weakly truthful pair (ρ, x), with ρ : S → A and x : Ωpub × S → R
I . For i ∈ I,

(ω̄pub, s
i) ∈ Ωpub × Si, set

ξi(ω̄pub, s
i) := Es−i∼πρ(·|ω̄pub)[x

i(ω̄pub, s
i, s−i)].

Plainly, the pair (ρ, ξ) is weakly truthful as well.

The crucial lemma is the next one. It is the long-run analog of Claim 1 in Athey and

Segal (AS).

Lemma 11 Define x̃ : Ωpub × S → R
I by

x̃i(ω̄pub, s)(= x̃i(ω̄pub, s
i)) = θξi(ω̄pub, s

i)− Es̃i∼πρ(·|ω̄pub)[θξi(ω̄pub, s̃
i)].

Then (ρ, x̃) is weakly truthful.

Proof.
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We first argue that θix̃(·) = x̃i(·) (up to an additive constant, as usual). It suffices to

prove that x̃i is a solution to the linear system (with unknowns θ)

θ(ω̄pub,1, s1)−θ(ω̄pub,2, s2) = x̃i(ω̄pub,1, s1)+Eπρ(·|ω̄pub,1,s1)[θ(ω, t)]−
(

x̃i(ω̄pub,2, s2) + Eπρ(·|ω̄pub,2,s2)[θ(ω, t)]
)

,

(for (ω̄pub1 , s1), (ω̄pub,2, s2) ∈ Ωpub×Si). But this follows from the fact that for each (ω̄pub, s) ∈
Ωpub × S, one has

Eπρ(·|s)[x̃
i(ωpub, t

i)] = Ey∼πρ(·|s)

[

Et∼πρ(·|ωpub)x̃
i(ωpub, t

i)
]

= 0.

Fix next a player i, and an outcome ω̄ = (s̄, m̄, s̄, ȳ) such that s̄−i = m̄−i and ā−i =

ρ−i(m̄). Since (ρ, ξ) is weakly truthful, for each such ω̄ and si ∈ Si, the expectation of

ri(si, ρ(s−i, mi)) + ξi(ω̄pub, m
i) + θri(ωpub, t) + θξi(ωpub, t) (25)

is maximized for mi = si. Here, the expectation is to be computed as follows. First, s−i is

drawn according to the belief of i which, given the IPV assumption, is equal to πρ(· | ω̄pub);

next, (y, t) is drawn ∼ p(· | s, ρ(s−i, mi)), and ωpub = (s−i, mi, y).

To prove that (ρ, x̃) is admissible, we need to prove that the similar expectation of

ri(si, ρ(s−i, mi) + x̃i(ω̄pub, m
i) + θri(ωpub, t) + θx̃i(ωpub, t) (26)

is maximized for mi = si as well. Fix mi ∈ M i. Using θix̃ = x̃i, and the definition of x̃i, the

expectation of the expression in (26) is equal to the expectation of

ri(si, ρ(s−i, mi)) + θξi(ω̄pub, m
i) + θri(ωpub, t) + θξi(ωpub, t

i)−Es̃i∼πρ(·|ωpub)θξi(ωpub, s̃
i), (27)

up to the constant Es̃i∼πρ(·|ω̄pub)θξi(ω̄pub, s̃
i), which does not depend on mi.

Next, observe that by definition of θξi , one has

θξi(ω̄pub, m
i) = ξi(ω̄pub, m

i) + Eπρθξi(ωpub, s̃
i),

again up to a constant that does not depend on mi.

Thus, (and up to a constant), the expression in (26) has the same expectation as the

expression in (25), so that the weak truthfulness of (ρ, x̃) follows from that of (ρ, ξ).

Corollary 11 Let µij ∈ R be arbitrary. For i ∈ I, set

x̂i(ω̄pub, m) = x̃i(ω̄pub, m
i) +

∑

j 6=i

µijx̃
j(ω̄pub, m

j).

Then (ρ, x̄) is weakly truthful.
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Proof. It is enough to check that, at any ω̄pub, the expectation of θx̃j(ωpub, s̃
j) =

x̃j(ωpub, s̃
j) does not depend on mi. But this expectation is zero (as in Claim 2 in AS).

Proposition 4 Fix a non-coordinate direction λ, that is, a direction such that I(λ) := {i :
λi 6= 0} is not a singleton. Let (ρ, x) be a weakly truthful pair. Then there exists x̂ such that

(ρ, x̂) is weakly truthful and λ · x̂(·) = 0.

Proof. Set x̂i = x̃i for i /∈ I(λ). For i ∈ I(λ) set

x̂i(ω̄pub, s) := x̃i(ω̄pub, s
i)− 1

|I(λ)| − 1

∑

j 6=i

λj

λi
x̃j(ω̄pub, s

j)

and apply the previous corollary.

Proof of Lemma 4, 5. We focus on a fixed player i. Fix a weakly truthful (ρ, x).

The optimality of truth-telling given (ρ, x) is equivalent to truth telling solving the following

Markov decision process:

- The state space is (Ωpub, S
i), with elements (ω̄pub, s

i): last period’s public outcome and

today’s private state;

- The action set is M i = Si: today’s announced state;

- The reward is ri(ρ(s−i, mi), si) + xi(ω̄pub, ωpub) (we drop t−i from the arguments of xi

as there is no gain to include such an argument under IPV);

- Transitions are given by p(ωpub, t
i | ω̄pub, s

i, mi) = 0 if ωpub does not specify mi as i’s

report, or does not specify a signal y in the support of the distribution determined by

ρ(s−i, mi). Otherwise, it is derived from p and ρ in the obvious way.

Let us define, as in Section 6,

riρ(ω̄pub, s
i, mi) = Es−i|ω̄pub

ri(ρ(s−i, mi), si), xi
ρ(ω̄pub, s

i, mi) = Es−i,y|ω̄pub,ρx
i(ω̄pub, ωpub).

Under our unichain assumption, there is an equivalent LP formulation (see Puterman, Ch.

8.8). Namely, agent i maximizes

∑

(ω̄pub,si,mi)

πi
ρ(ω̄pub, s

i, mi)
(

riρ(ω̄pub, s
i, mi) + xi

ρ(ω̄pub, s
i, mi)

)

,
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subject to πi
ρ ∈ Π̂i(ρ), defined as the set of {π(ω̄pub, s

i, mi) : (ω̄pub, s
i, mi) ∈ Ωpub × Si × Si},

πi
ρ(ω̄pub, s

i, mi) ≥ 0,
∑

(ω̄pub,si,mi) π
i
ρ(ω̄pub, s

i, mi) = 1, and for all states (ωpub, t
i),

∑

m̃i

πi
ρ(ωpub, t

i, m̃i) =
∑

ω̄pub,si

p(ωpub, t
i | ω̄pub, s

i, mi)πi
ρ(ω̄pub, s

i, mi).

This is equation 3 from Section 6. Our goal is to examine which ρ are weakly truthful for

some choice of xi
ρ.

Consider first Lemma 4, i.e. the case in which p(y | s, a) is independent of s. Then

xi
ρ(ω̄pub, s

i, mi) is a function of ω̄pub, m
i only, so we write xi

ρ(ω̄pub, m
i). We can consider the

zero-sum game in which we pick xi
ρ in some large but bounded set [−M,M ] to minimize

∑

(ω̄pub,si,mi)

πi
ρ(ω̄pub, s

i, mi)riρ(ω̄pub, s
i, mi)+

∑

(ω̄pub,si,mi)

(πi
ρ(ω̄pub, s

i, mi)−µ(ω̄pub, m
i))xi

ρ(ω̄pub, m
i).

This is a game between player i who chooses πi
ρ ∈ Π̂i(ρ) and the designer who chooses

xi
ρ ∈ [−M,M ]Ωpub×Si

. By the minimax theorem, we can think of i moving first, and it is

then clear that any optimal strategy for i must specify, for all (ω̄pub, m
i),

∑

si

πi
ρ(ω̄pub, s

i, mi) = µ(ω̄pub, m
i),

and we can pick xi
ρ to be the optimal strategy of the designer. Thus, we may restrict

further player i to choose from Πi(ρ) where πi
ρ ∈ Πi(ρ) if and only if πi

ρ ∈ Π̂i(ρ) and
∑

si π
i
ρ(ω̄pub, s

i, mi) = µ(ω̄pub, m
i) for all (ω̄pub, m

i). Note that for πi
ρ ∈ Πi(ρ), the original

objective of the LP becomes

∑

(ω̄pub,si,mi)

πi
ρ(ω̄pub, s

i, mi)riρ(ω̄pub, s
i, mi) +

∑

ω̄pub,mi

µ(ω̄pub, m
i)x̂i(ω̄pub, s

i, mi),

and because the second term does not involve πi
ρ, it is irrelevant for the maximization. Hence,

transfers cannot achieve more than the restriction to Πi(ρ), and the policy ρ is weakly truthful

if and only if the solution to the program P̂ i(ρ): maximize

∑

(ω̄pub,si,mi)

πi
ρ(ω̄pub, s

i, mi)riρ(ω̄pub, s
i, mi)

over πi
ρ ∈ Πi(ρ) is given by πi

ρ(ω̄pub, s
i, mi) = 0 if mi 6= si, all (ω̄pub, s

i) (and so πi
ρ(ω̄pub, m

i, mi) =

µ(ω̄pub, m
i)). Invoking Proposition 1 to balance the budget, this concludes the proof of

Lemma 4 for non-coordinate directions. In coordinate directions λ = ±ei, note that setting
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x = 0 provides the appropriate truth telling incentives (the only player who makes a report

that affects the outcome is player i when λ = ei, but in this case the policy ρ[ei] trivially is

a solution to the LP for xi
ρ = 0.

Consider next the case of state-dependent signaling, as defined in Section 6.3. Then xi

is a function of (ω̄pub, [s
i], mi) only. Then we consider the zero-sum game with payoff

∑

(ω̄pub,si,mi)

πi
ρ(ω̄pub, s

i, mi)riρ(ω̄pub, s
i, mi)

+
∑

(ω̄pub,si,mi)

(πi
ρ(ω̄pub, s

i, mi)− µ(ω̄pub, m
i))xi

ρ(ω̄pub, [s
i], mi),

and it follows from the minimax theorem again that player i’s optimal strategy specifies, for

all (ω̄pub, m
i, [mi]),

∑

si∈[mi]

πi
ρ(ω̄pub, s

i, mi) = µ(ω̄pub, m
i, [mi]).

This is (4’). The remainder follows as in the first case.

Proof of Lemma 6 and 7. We have shown that the policies ρ[λ] ∈ Ξ are weakly

truthful (see Lemma 5). Now we must show that we can make the truth-telling incentives

strict. This is where we use Assumption 1.

Consider the MDP M(λ): maximize over ρ Eµ[ρ][λ · r(s, ρ(s))].
Given two pure stationary policies ρ and ρ′, let Λ(ρ, ρ′) denote the set of λ such that both

ρ and ρ′ are optimal in M(λ). Thanks to the ACOE, the set Λ(ρ, ρ′) is closed and convex.

The map λ 7→ Eµ[ρ][λ · r(s, ρ(s))] − Eµ[ρ′][λ · r(s, ρ′(s))] vanishes over Λ(ρ, ρ′). Thus,

either Λ(ρ, ρ′) has a empty-interior, or Eµ[ρ][λ · r(s, ρ(s))] = Eµ[ρ′][λ · r(s, ρ′(s))] for all λ, in

which case the two policies ρ and ρ′ yield the same long-run payoff vector: Eµ[ρ][r(s, ρ(s))] =

Eµ[ρ′][·r(s, ρ′(s))] ∈ R
I . This is impossible given Assumption 1.

Hence, the complement O of ∪ρ,ρ′Λ(ρ, ρ
′) is an open and dense set. Fix a positive λ ∈ O,

and consider the unique optimal ρ in M(λ). We next define a report function φi : Si×Si →
M i. Two types si and s̃i are equivalent (si ∼ s̃i) if ρ(si, s−i) = ρ(s̃i, s−i) for each s−i. We

define φi such that φi(s̄i, si) = φi(t̄i, s̃i) if and only if si ∼ s̃i, and we redefine ρ accordingly.

Truth-telling is then uniquely optimal for type/equivalence class, and it remains so if we

perturb ρ by assigning a small probability to the elements in Di.

It then follows that, for all λ ∈ O, k(λ) = Eµ[ρ][λ · r(s, ρ(s))]. For λ /∈ O, the argument

follows from the continuity of the function Eµ[ρ][λ · r(s, ρ(s))] in λ, for fixed ρ.

Proof of Proposition 4 and 5. Since the case of state-dependent signaling is more

general (and the assumptions 4–5 reduce to 2–3 when states do not enter signal distribu-
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tions), it suffices to prove Proposition 5. First, note that Assumption 5 ensures that for all

ρ ∈ Ξ, all s, a = ρ(s) (also, for all (s, a) where (s−i, a) ∈ Di for some i) and for all d > 0,

1. For each i, there exists x̂i : S × Y → R such that, for all âi 6= ai, all ŝi,

E[x̂i(s, y) | a, s]− E[x̂i(s, y) | a−i, âi, s−i, ŝi] > d;

(The expectation is with respect to the signal y.)

2. For every pair i, j, i 6= j, λi 6= 0, λj 6= 0, there exists x̂h : S × Y → R, h = i, j,

λix̂i(s, y) + λj x̂j(s, y) = 0, (28)

and for all âh 6= ah, all ŝh,

E[x̂h(s, y) | a, s]− E[x̂h(s, y) | a−h, âh, ŝh, s−h] > d.

See Lemma 1 of Kandori and Matsushima (1998). By subtracting the constant E[x̂i(s, y) |
a, s] from all values x̂i(s, y) (which does not affect (28), since (28) must also hold in expecta-

tions), we may assume that, for our fixed choice of a, it holds that, for all s, x̂i is such that

E[x̂i(s, y) | a, s] = 0, all i.

Given this normalization, we have that

E[x̂i(s, y) | a−i, âi, s−i, ŝi] < −d,

for any choice (ŝi, âi) that does not coincide with (si, ai) (in which case the expected transfer

is zero). Intuitively, the transfer x̂i ensures that, when chosen for high enough d, it never

pays to deviate in action, even in combination with a lie, rather than reporting the true

state and playing the action profile a that is agreed upon, holding the action profile to be

played constant across reports ŝi, given s−i. Deviations in reports might also change the

action profile played, but the difference in the payoff from such a change is bounded, while

d is arbitrary.

More formally, fix some pure policy ρ : S → A with long-run payoff v. There exists

θ : S → R
I such that, for all s,

v + θ(s) = r(s, ρ(s)) + Ep(·|s,ρ(s))[θ(t)].

Consider the M.D.P. in which player i chooses messages mi ∈ M i = Si and action ρ̂i :

M i × S−i → Ai, and his realized reward is ri(s, ai, ρ−i(mi, s−i)) + x̂i(mi, s−i, y). Then we
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may pick d > 0 such that, given x̂i, every optimal policy specifies ρ̂i(mi, s−i) = ρi(mi, s−i).

Note also that because of our normalization of x̂i, the private rents in this M.D.P. are equal

to θi if player i sets mi = si.

The argument is similar in the case of coordinate directions. In case λ = −ei (resp. +ei)

use Assumption 4 (resp. again 5) and follow Kandori and Matsushima (1998, Case 1 and 2,

Theorem 1).

This transfer addresses deviations at the action stage.
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