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ABSTRACT. Assuming a ‘spectrum’ or ordering of the players of a coali-
tional game, as in a political spectrum in a parliamentary situation, we
consider a variation of the Shapley value in which coalitions may only
be formed if they are connected with respect to the spectrum. This re-
sults in a naturally asymmetric power index in which positioning along
the spectrum is critical. We present both a characterisation of this value
by means of properties and combinatoric formulae for calculating it. In
simple majority games, the greatest power accrues to ‘moderate’ play-
ers who are located neither at the extremes of the spectrum nor in its
centre. In supermajority games, power increasingly accrues towards the
extremes, and in unaninimity games all power is held by the players at
the extreme of the spectrum.

1. INTRODUCTION

The Shapley value (Shapley, 1953) has for decades been one of the main
indices used in the literature for measuring the relative power of players
in coalitional game situations. The Shapley-Shubik power index (Shapley
and Shubik, 1954), the restriction of the Shapley value to simple games,
has in particular found wide application for studying voting situations. A
voting situation is characterised by the set of agents participating in it and
the subsets of this set that have enough power to pass a bill. These two
elements together define a simple game.

A comprehensive overview on simple games and power indices can be
found in (Felsenthal and Machover, 1998). For just two examples of the
great extent to which the Shapley-Shubik and related power indices have
been used to measure the power of the agents in major institutions around
the world, see (Bilbao et al., 2002), which studies the implications of the en-
largement of the European Union, and (Alonso-Meijide and Bowles, 2005),
which studies the distribution of power in the International Monetary Found.
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In practice, however, in many political situations the Shapley-Shubik in-
dex and its variants have often failed to capture what one would consider a
realistic power measure. We put forward here the claim that this is because
many papers on the subject do not take into account the relative ideologies
of the players, which is of key importance in political situations.

Consider for example a parliamentary situation in which there are n play-
ers with the same number of votes and a simple majority of them is required
to form a government. A straightforward application of the Shapley value
grants each player 1/n, using symmetry considerations. In real-life parlia-
ments, however, it is intuitively clear to all observers that not all members
have equal power. It is highly unusual to see, for example an extreme right
party joining an extreme left party in a coalition without any centre parties
also included in the coalition to bridge political differences between them.

As the above discussion indicates, part of the problem is that the standard
Shapley approach assumes that all possible permutations of the players be
used in forming coalitions. That means that even highly unlikely coalitions,
such as those formed by an extreme left party joining with an extreme right
party while by-passing all the parties in between, including their most natu-
ral political allies, must be counted equally along with every other coalition.

Different approaches have been proposed in the literature to study situa-
tion in which not all coalitions are feasible or equally likely. In many papers,
the problem is tackled by considering some structure on the set of players to
describe the way in which players can form coalitions. Coalitional games
together with these kind of structures are usually denoted games with re-
stricted cooperation.

One of the most widely-studied model of games with restricted cooper-
ation is the restricted communication model proposed by (Myerson, 1977).
In Myerson’s approach, in addition to the game itself one considers an undi-
rected graph that describes communication possibilities between the play-
ers. A modification of the Shapley value is then proposed under the as-
sumption that coalitions that are not connected in this graph are split into
connected components. In contrast, in our approach we focus on permuta-
tions, that is, on the way in which coalitions are formed, instead of imposing
restrictions directly on possible coalitions.

We propose here an intuitive way to modify the Shapley value by taking
the political spectrum explicitly into account. The incorporation of the ide-
ological positions of the agents for the study of the power distribution of a
decision making body was first intrduced by (Owen, 1972). In that work,
agents’ political positions are given as points in a high dimensional Eu-
clidean space, and a probability distribution on the set of all permutations is
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inferred from them. Then, a modification of the Shapley value is proposed
based on two properties, namely that an ordering and its reverse ordering
should have the same probability and that the removal of a subset of agents
should not affect the probabilities assigned to the relative orderings of the
remaining agents.

(Shapley, 1977) proposed taking into account the political positions of
the agents as well, using this to develop an asymmetric generalization of
the Shapley value. This modification of the original Shapley value was also
considered in (Owen and Shapley, 1989) to study the optimal ideological
position of candidates. More recently, (Alonso-Meijide et al., 2011) intro-
duced what they termed the distance index. This value for simple games is
another modification of the Shapley value that takes into account the ideo-
logical positions of agents. Based on Euclidean distances between agents,
a probability distribution is constructed that gives high probability to coali-
tions whose total distance is relatively small.

Even though it is based on very similar ideas as the above-cited works,
our approach is much simpler. Firstly, we consider only ordinal positions
in a one-dimensional space, without further exogenous specification of dis-
tances. Secondly, we assign equal probability to all the permutations that
are admissible in our model. This simplicity allows for a characterization
of the value by means of a set of properties and eases computation of the
value. With regard to the properties of the (Owen, 1972) value, the value
introduced here shares the first of those properties but not the second one.

In this work we assume that there exists a spectrum, from ‘left to right’
according to which the players are ordered linearly. We then impose the
condition that as coalitions are formed a la Shapley, they must be connected
with respect to the spectrum. Hence, we propose a novel way to generalize
the Shapley value to games with restricted cooperation in which the restric-
tions arise from the position of the agents in a one-dimensional spectrum.
This leads to an interesting new value that may shed light on relative power
measures in situations in which there is a natural ordering of the players.

Perhaps the paper with the most similar general motivation to ours is
(Gilles and Owen, 1999), in which an exogenously given hierarchy amongst
the players is assumed (as opposed to the exogenously given spectrum as
in our paper). A player in the (Gilles and Owen, 1999) model may join a
coalition only if s/he received permission from one or more ‘supervisors’.
As in this paper, this has the result of limiting the admissible coalitions that
may be formed, thus affecting the value. The value in (Gilles and Owen,
1999), however, differs from the spectrum value because of the different as-
sumptions regarding which coalitions are admissible. In particular, there is
no way to define a clear hierarchy in the model of this paper; for any pair of



SPECTRUM VALUE FOR COALITIONAL GAMES 4

players i and j, there are admissible coalitions that i can join before j joins
(hence i cannot depend on ‘permission’ from j) and admissible coalitions
that j can join before i joins.

Nowak and Radzik (1994) introduce a value called the solidarity value
by adding a new postulate to the Shapley properties based on the average
marginal contributions of the members of coalitions that may be formed.
In its basic interpretation, if a coalition S is formed then the players who
contribute more to S than the average marginal contribution members of S
contribute to supporting the ‘weaker’ partners in S. Consideration of the
solidarity value, however, does not involve any restriction on the admissible
coalitions that can be formed, in contrast with the model used in this paper.

(Calvo and Gutierrez, 2011) start from similar suppositions to those in
(Owen, 1977), namely that coalitional games are endowed with a coali-
tional structure, an exogenously given partition of the players. When coali-
tions are formed, the players interact at two levels: first, bargaining takes
place among the unions and then bargaining takes place inside each union.
(Calvo and Gutierrez, 2011) make use of the solidarity value in this model:
first, unions play a quotient game among themselves according to the Shap-
ley value, and then the outcome obtained by the union is shared among its
members by paying the solidarity value in the internal game. The coalitional
value that they define is then applied in political situations to explain why
government coalitions are sometimes larger than minimal winning coali-
tions.

2. SPECTRA AND VALUES

2.1. Definitions.
As usual, a coalitional game is a pair (N, v) where N is a finite set of

players and v, the characteristic function, is a real-valued function over the
set of all coalitions, i.e., v : 2N = {S : S ⊆ N} → R with the convention
that v(∅) = 0. Denote the set of all coalitional games by G. A value on G
is a map ϕ that associates to every coalitional game (N, v) a payoff vector
ϕ(v) ∈ RN . The cardinality of a finite set N will be denoted by |N | or
simply by a lower case n. We also denote the set of all permutations over a
finite set N by ΩN .

Definition 1. The Shapley value, φSh, is the value on G defined for every
(N, v) ∈ G and i ∈ N by

φShi (N, v) =
1

n!

∑
ω∈ΩN

[v(P ω
i ∪ {i})− v(P ω

i )] ,
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where P ω
i stands for the set of predecessors of i at ω ∈ ΩN , i.e.,

P ω
i = {j ∈ N : ω(j) < ω(i)}.

For every bijection σ : N → {1, . . . , |N |}, define a spectrum on N to be
a strict total ordering ≺σ of N as follows: for every i, j ∈ N , i ≺σ j if and
only if σ(i) < σ(j). The name spectrum is, of course, chosen because of
the intention of modelling a political spectrum in a parliament, from left to
right. For this reason, if j ≺σ i, we will sometimes say that j comes before
i in the spectrum ordering, or that j is to the left of i (and i is to the right of
j).

A coalitional game with a spectrum will be formally denoted by (N, v,≺σ
), where (N, v) ∈ G and ≺σ is a spectrum on N . Furthermore, we will
usually assume that the relative positions of the players in N are compat-
ible with the given spectrum, i.e., N = {1, . . . , n} and for every i ∈ N ,
σ(i) = i. In this case for every i, j ∈ N , i ≺σ j if and only if i < j.

Denote the set of all coalitional games with a spectrum by GS . A value on
GS , ϕ, is a map that associates to every coalitional game with a spectrum,
(N, v,≺σ), a payoff vector, ϕ(N, v,≺σ) ∈ RN . A coalition S ⊆ N is
connected (with respect to ≺σ) if for all i, j ∈ S, i ≺σ k ≺σ j implies that
k ∈ S.1 Denote the set of all connected coalitions with respect to ≺σ by
C≺

σ
(N) (or simply by C(N) if ≺σ is obvious from the context). Given a

coalition S ⊆ N , we can always identify the player at the left end min(S),
who is the player i ∈ N such that i ≺σ k for all k ∈ S \ {i}, and similarly,
the player at the right end max(S), who is the player j ∈ N such that
k ≺σ j for all k ∈ S \ {j}.

Every connected coalition S ∈ C(N) with |S| > 1 contains two distin-
guished ‘extreme’ players i = min(S) and j = max(S), and all the players
in between. Hence, the two ‘extreme’ players characterize the coalition. We
will therefore sometimes write [i . . . j] to denote the connected coalition of
all the players between i and j, inclusive, with the understanding that if
i > j then [i . . . j] := ∅.

Definition 2. For every coalitional game with a spectrum, (N, v,≺σ) ∈ GS,
the associated connected-reduced game, (N, v≺

σ
) ∈ G is defined for every

S ⊆ N by

v≺
σ

(S) =

{
v(S) if S is connected with respect to ≺σ,
0 otherwise.

1 The empty set and singleton coalitions vacuously satisfy the condition of being
connected.
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Associating a coalitional game to every coalitional game with a spectrum
allows one to define a value on GS a la Myerson, i.e., defining the value that
is obtained by applying the Shapley value to the connected-reduced game.
Note, however, that the connected-reduced game of a monotone game may
not be monotone; this may lead to negative payoffs in monotone games. We
follow a different approach here that does not suffer from this problem.

A permutation ω ∈ ΩN is admissible (with respect to a spectrum ≺σ) if
P ω
i is connected (with respect to ≺σ) for all i ∈ N . Denote the set of all

admissible permutations with respect to ≺σ by Ω≺σ (or simply by Ω if ≺σ
is obvious by context).

We may interpret this in the spirit of one of the interpretations of the
Shapley value. Regard each permutation as an ordered queue of the play-
ers, who enter a room one by one according to their number in the queue.
Each permutation thus defines a dynamic way of forming a coalition, which
grows by one player at a time, thus enabling us to measure the contribu-
tion of each player to the coalition formed by the players who preceded
him or her in entering the room. A connected admissible permutation, as
defined here, relates this queue to the spectrum ordering, in the sense that
each player that enters the room must be the player who is immediately to
the left or immediately to the right of the set of predecessors. The coalitions
that are thus dynamically formed are always connected, as defined above.
Therefore, Ω≺σ represents the set of all possible ways of dynamically form-
ing the grand coalition while ensuring that the sub-coalitions formed in each
step are connected.

Furthermore, for every i ∈ N denote the set of coalitions which can be
expressed as sets of predecessors of i at a connected admissible permutation
by Ci(N), i.e., Ci(N) = {P ω

i : ω ∈ Ω}. Note that we can write Ci(N) as a
disjoint union of the empty set, the set of connected coalitions ‘immediately
to the left of’ player i, and the set of connected coalitions ‘immediately
to the right of’ player i. Formally, Ci(N) = Li(N) ∪ Ri(N) ∪ ∅ where
Li(N) = {[k . . . i − 1] : 1 ≤ k < i} and Ri(N) = {[i + 1 . . . k] : i < k ≤
n}.

2.2. The Spectrum Value. We are now in the position to introduce the
formal definition of the spectrum value for games with a spectrum

Definition 3. The spectrum value, φ, is the value on GS defined for every
(N, v,≺σ) ∈ GS and i ∈ N by

φi(N, v,≺σ) :=
1

|Ω≺σ |
∑

ω∈Ω≺σ

[v(P ω
i ∪ i)− v(P ω

i )]
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When N , ≺σ and v are clear from context, we will sometimes save space
by writing φi(v) or simply φi instead of φi(N, v,≺σ).

2.3. Combinatoric Analysis of the Spectrum Value.
The spectrum value lies within several families of values studied in the

literature. Before proceeding, we look at some combinatorial calculations
that are tedious but straightforward to calculate. It is instructive to compare
them to their standard analogues.

(1) |C(N)| = n(n+ 1)

2
+ 1

(in contrast, the cardinality of the set of all coalitions is 2n);

(2) |Ω≺σ | = 2n−1

(in contrast, the cardinality of ΩN is n!); finally, when k is the k-th player
in the ordering given by ≺σ,

(3) |Ωk| =
(
n− 1

k − 1

)
where

(
n
k

)
is the standard binomial coefficient. Hence, we may rewrite the

spectrum value as follows

(4) φi(N, v,≺σ) :=
1

2n−1

∑
ω∈Ω≺σ

[v(P ω
i ∪ i)− v(P ω

i )]

For an arbitrary set A, denote by ∆(A) the set of all probability dis-
tributions on A. Denote by Ep the expectation operator with respect to
p ∈ ∆(M). Then, a value ϕ is a random order value (Weber, 1988) if for
every (N, v) ∈ G and i ∈ N there is a probability distribution b ∈ ∆(ΩN)
such that,

ϕi(N, v) = Eb(v(P ω
i ∪{i})−v(P ω

i )) =
∑
ω∈ΩN

b(ω) [v(P ω
i ∪ {i})− v(P ω

i )] .

It is well known that the standard Shapley value is a random order value
for the uniform distribution over all permutations of ΩN . In analogy, from
Definition 3, it is easy to check that the spectrum value is also a random
order value for the uniform distribution over the set of connected admissible
permutations Ω≺σ (which gives zero probability to ΩN \ Ω≺σ ).

Recall that for any finite set N , 2N stands for the set of all subsets of N .
Then, a value φ is known as a probabilistic value (Weber, 1988) if for every
(N, v) ∈ G and i ∈ N there is a probability distribution pi ∈ ∆(2N\{i})
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such that,

φi(N, v) = Epi(v(S ∪ {i})− v(S)) =
∑

S∈2N\{i}

pi(S) [v(S ∪ {i})− v(S)] .

The Shapely value is the probabilistic value defined by the probability dis-
tributions pi ∈ ∆(2N\{i}) such that for every S ⊆ N \ {i}, pi(S) =
1/(n

(
n−1
|S|

)
). The spectrum value can similarly be expressed as a proba-

bilistic value.

Claim 1.

φi(N, v,≺σ) =
1

2n−1


(
n− 1

i− 1

)
v({i})

+
∑

S∈Li(N)

2|S|−1

(
n− (|S|+ 1)

min(S)− 1

)
[v(S ∪ {i})− v(S)](5)

+
∑

T∈Ri(N)

2|T |−1

(
n− (|T |+ 1)

i− 1

)
[v(T ∪ {i})− v(T )]


Proof. For each player i, the only relevant coalitions for calculating φi(N,≺σ
, v) are the connected coalitions in Ci(N). That is, coalitions immediately
to i’s left and immediately to i’s right, along with the empty set. Hence, we
only need to count how many times each coalition is in Li(N)∪Ri(N)∪ ∅
appearing in the expression of Eq. (4).

Let S ∈ Li(N). By Equation (2) the number of different ways in which
the coalition S can be formed in a connected manner under an admissible
permutation is 2|S|−1. Next, we only need to count the number of admissible
permutations of N \ S that start with i. By Equation (3) it is easy to check
that this number is precisely

(
n−|S|−1
min(S)−1

)
.

The proof for the connected coalitions immediately to i’s right and the
empty set follows similar lines.

Claim 2.

φi(N, v,≺σ) =
1

2n−1

{(
n− 1

i− 1

)
v({i})

+
∑
k<i

2i−k−1

(
n− 1− (i− k)

k − 1

)
[v([k . . . i])− v([k . . . i− 1])](6)

+
∑
k>i

2k−i−1

(
n− 1− (k − i)

i− 1

)
[v([i . . . k])− v([i+ 1 . . . k])]

}
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Proof. This is the previous claim re-written in terms of the identities of the
players as determined by the spectrum ordering.

3. MAJORITY GAMES

Next, we study aspects of the spectrum value by analysing the payoffs it
prescribes in simple voting situations.

3.1. Simple Majority Games. Consider a decision-making body in which
all players have the same weight (1 for instance) and a simple majority of
votes is needed to pass a bill. The situation may be described by a simple
majority game (N, v) ∈ G where N = {1, . . . , n} and v(S) = 1 if |S| >
n/2 and v(S) = 0 otherwise. The standard Shapley value in the simple
majority game is symmetric for all the players – it grants each player an
equal payoff or power 1/n. However, if we take the political spectrum into
account the result is quite different. As usual, suppose that the spectrum is
consistent with the relative positions of the agents in N .

Definition 4. A player is i ∈M is left-moderate with respect to a spectrum
if i ∈ {LM1, LM2} where

LM1 =
⌈
n
4

⌉
and LM2 =

⌊
n
4

⌋
+ 1 if n is even

LM1 =
⌈
n+1

4

⌉
and LM2 =

⌊
n+1

4

⌋
+ 1 if n is odd

and is right-moderate with respect to a spectrum if i ∈ {RM1, RM2}where

RM1 =
⌈

3
4
n
⌉

and RM2 =
⌊

3
4
n
⌋

+ 1 if n is even

RM1 =
⌈

3
4
(n+ 1)

⌉
and RM2 =

⌊
3
4
(n+ 1)

⌋
+ 1 if n is odd

Observe that if n+1
2

is odd then LM1 = LM2 and RM1 = RM2. Note
also that moderate players are located virtually half-way between the center
and one of the most extreme players (when n is large enough).

Claim 3. In a simple majority game with a spectrum LM1, LM2, RM1,
and RM2 are the players earning the highest payoff. Furthermore, φi (as a
function of i) is

• strictly increasing in the interval [1, LM1],
• strictly decreasing in the interval [LM2, dn/2e],
• strictly increasing in the interval [bn/2c+ 1, RM1],
• strictly decreasing in the interval [RM2, n].

Proof.
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If n is even, the vector of spectrum payoffs looks like

1

2n−1

((
n
2
− 1

0

)
,

(
n
2
− 1

1

)
, . . . ,

(
n
2
− 1

n
2
− 1

)
,(

n
2
− 1

n
2
− 1

)
, . . . ,

(
n
2
− 1

1

)
,

(
n
2
− 1

0

))
or in other words like two copies of the corresponding row of Pascal’s tri-
angle concatenated one after another.

If n is odd, the vector of spectrum payoffs looks like

1

2n−1

((
n−1

2

0

)
,

(
n−1

2

1

)
, . . . ,

( n−1
2

n−1
2
− 1

)
, 2

(n−1
2

n−1
2

)
,( n−1

2
n−1

2
− 1

)
, . . . ,

(
n−1

2

1

)
,

(
n−1

2

0

))
which almost looks like two copies of the corresponding row of Pascal’s
triangle concatenated one after another.

Given the well known fact that the maximum of each row of Pascal’s tri-
angle is attained at its central position (or central positions, depending on
whether the number of elements is odd or even), the claim follows immedi-
ately.

3.2. Supermajority Games. Let 1/2 < α ≤ 1. A coalitional game (N, v)
is an α-supermajority game if each player has one vote and a quota of dαne
is needed to pass a bill, i.e., if for every S ⊆ N , v(S) = 1 if |S| ≥ dαne
and v(S) = 0 otherwise.

Let 0 ≤ k ≤ n − 1. Denote by Alk the set of players whose distance to
the left extreme is greater than or equal to k and by Ark the set of players
whose distance to the right extreme is greater than or equal to k, i.e., Alk =
[k + 1 . . . n] and Ark = [1 . . . n− k].

Claim 4. Let (N, v) be an α-supermajority game with a spectrum and k =
dαne. Then the spectrum value of each player i is

φi =


2
k−2
n−1

(
n−k
i

)
i ∈ Ark−1,

2
k−2
n−1

(
n−k
n−i

)
i ∈ Alk−1,

0 otherwise.

Proof. If i /∈ Ark−1 ∪ Alk−1, then there is no connected coalition of size
k− 1 either to the right or the left of i in the spectrum, hence i can never be
the k-th to join a coalition and therefore he receives a 0 payoff.
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The calculations of the values for players i ∈ Ark−1 ∪ Alk−1 are straight-
forward combinatorial calculations.

Given the result of Claim 4, we may call the set N \ Ark−1 ∪ Alk−1 the
null zone of a supermajority game, because players in the null zone all get
spectrum value 0. The null zone, if non-empty, always includes the central
players with respect to the spectrum. The maximum spectrum value goes
to the players about halfway between the extremes of the null zone and the
extremes of the spectrum, one on each side of the null zone.

In general, as α increases the null zone grows larger. When α = 1, the
game is the unanimity game of the grand coalition in which the worth 1 is
attained only by the grand coalition N . In that case, the null zone includes
all the players except for the leftmost extreme player and the rightmost ex-
treme player; players 1 and n each receive 1/2, and all other players receive
zero. This fits with an intuition that when unanimity is required to pass a
measure it is the most extreme elements who usually wield the strongest
veto power.

3.3. Axiomatic characterisation of the spectrum value.
Fix (N, v,≺σ) ∈ GS. For each player i ∈ N , define i’s reverse twin

(with respect to ≺σ)2 to be the player j = n+ 1− i. For every S ⊆ N , the
reverse coalition of S is the coalition S−1 composed by the reverse twins of
S, i.e., S−1 = {j ∈ N : j = n+ 1− i for some i ∈ S}.

Two players i, j ∈ N are connected symmetric to each other if i and j are
reverse twins and v(S ∪ {i}) = v(S−1 ∪ {j}) for all S ∈ Ci(N). A player
i ∈ N is a veto player if v(S) = 0 for all S ⊆ N \ {i}. A player i ∈ N is
a connected null player if v(S ∪ {i}) = v(S) for all S ∈ Ci(N). Hence, a
standard null player is in particular a connected null player.

Finally, for every permutation σ : N → {1, . . . , n} and every i ∈ N
with σ(i) < n we define σi→ = σ←(i+1) as the permutation obtained from
σ when player i swaps his position with player (i+ 1).

Using these concepts, we can list properties that a value on GS might be
expected to satisfy.

EFF A value on GS , ϕ, satisfies efficiency if for every (N, v,≺σ) ∈ GS,∑
i∈N

ϕi(N, v,≺σ) = v(N).

ADD A value on GS , ϕ, satisfies additivity if for every (N, v,≺σ) and
(N,w,≺σ) ∈ GS,

ϕ(N, v + w,≺σ) = ϕ(N, v,≺σ) + ϕ(N,w,≺σ).

2 A player i is his own reverse twin iff n is odd and i = (n+ 1)/2.
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CSP A value on GS , ϕ, satisfies the connected symmetric player property
if for every (N, v,≺σ) ∈ GS and every pair of connected symmetric
players i, j ∈ N ,

ϕi(N, v,≺σ) = ϕj(N, v,≺σ).

CNP A value on GS , ϕ, satisfies the connected null player property if for
every (N, v,≺σ) ∈ GS and every connected null player i ∈ N ,

ϕi(N, v,≺σ) = 0.

BCVP A value on GS , ϕ, satisfies balanced contributions for veto players
if for every (N, v,≺σ) ∈ GS and every pair of veto players i, j ∈ N
with i < j

ϕi(N, v,≺σ)− ϕi(N, v,≺σj→) = ϕj(N, v,≺σ)− ϕj(N, v,≺σ←i).3

The first two properties, EFF and ADD, are the standard efficiency and ad-
ditivity properties stated in the framework of games with a spectrum. CNP
and CSP are based on the standard null player and symmetric player prop-
erties. Note, however, that the definition of connected null player is less
demanding than its standard counterpart and hence, CNP is a stronger prop-
erty than the standard null player property. In the case of CSP the definition
of a connected symmetric player is more demanding than the definition of
a standard symmetric player. CSP is therefore a weaker property than the
standard symmetry property.

Finally, BCVP is a property that only applies to veto players; it is therefore
not overly demanding. Furthermore, is a reciprocity property in the spirit of
various versions of the balanced contributions property that have been used
in the literature. It measures the change in the payoff of one veto player
when the other veto player becomes more extreme in the spectrum. The
gain or loss that a veto player can inflict on the other veto player by moving
one position towards the more extreme end of the spectrum is equal to the
gain or loss that the second veto player can inflict to the first one4 by doing
the same.

The property BCVP plays an important role in our axiomatisation in the
following way. As is well known, a value satisfying additivity is essentially
determined by its specification on unanimity games. The standard proof
of the uniqueness of the Shapley value, for example, uses the efficiency,

3 Note that, if i = 1 then σ←i is undefined, and similarly if j = n then σj→ is undefined.
For convenience, we extend every value on GS to these undefined permutations as follows:
for every k ∈ N , ϕk(N, v,≺σ←1) = ϕk(N, v,≺σn→) := 0.

4 When one of the players is already at the extreme edge, he cannot become more
extreme. Then the gain or loss that a non-extreme veto player can inflict on an extreme
veto player is precisely what the first player gets in his original position.
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anonymity and dummy player properties to establish that the Shapley value
grants each member of the carrier of a unanimity game S a payoff 1/|S|,
with uniqueness following. For the spectrum value, what matters is not the
absolute size of the carrier of a unanimity game but the positions of the
extreme veto players with respect to the full spectrum. From that perspec-
tive, BCVP is a very concise axiom for expressing how the values of veto
players in unanimity games change as their positions are shifted. Used in-
ductively, this is exactly what is needed to determine the spectrum value for
all unanimity games, as detailed in the proof of Theorem 1.

Lemma 1. The spectrum value, φ, satisfies EFF, ADD, CNP, CSP, and BCVP.

Proof. The proof for EFF and ADD follows directly from Definition 3. CNP
follows from Claim 1 since the definition of the spectrum value depends
only on the connected coalitions in Ci(N).

To show that φ satisfies CSP let i and j be reverse twins and r : Ci(N)→
Cj(N) be given by r : S 7→ S−1. Then, it is easy to check that r is a bi-
jection. Moreover, r(Li(N)) = Rj(N), r(Ri(N)) = Lj(N), r(Lj(N)) =
Ri(N), and r(Rj(N)) = Li(N). Then, by Claim 1 φ satisfies CSP.

Finally, let i, j ∈ N be two veto players. Taking into account Claim 2 if
i < j < n, then

(7) φi(N, v,≺σ)− φi(N, v,≺σj→) =
2j−i−1

2n−1

(
n− j − i+ 1

i− 1

)
v([i . . . j]),

and if 1 < i < j, then

(8) φj(N, v,≺σ)− φj(N, v,≺σ←i) =
2j−i−1

2n−1

(
n− j − i+ 1

i− 1

)
v([i . . . j]),

and BCVP follows. The two cases in which one of the veto players is at the
extreme edge can be shown as follows: let i = 1, then the right hand side
of eq. (7) becomes 2j−nv([1 . . . j]). Taking into account the convention
φj(N, v,≺σ←1) = 0 the desired result follows. The case j = n can be
shown similarly using eq. (8) instead of eq. (7).

Theorem 1. The spectrum value is the unique value on GS satisfying EFF,
ADD, CNP, CSP, and BCVP.

Proof. Given the result of Lemma 1 we need only prove uniqueness. Let
ϕ be a value satisfying the properties above. By the assumption of ADD we
only need to check uniqueness in unanimity games. Let S ⊆ N and let uS
be the unanimity game with carrier S.
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First of all, note that by CNP ϕk(N, v,≺σ) = 0 for every k ∈ N \
{min(S),max(S)}. Define the span of S to be

s(S) := max(S) + 1−min(S) ∈ {1, . . . , n}.

We prove uniqueness by backward induction on the span of S.
First step of the induction. If s(S) = n then 1, n ∈ S. Hence by CSP

ϕ1(N, uS,≺σ) = ϕn(N, uS,≺σ). Uniqueness then follows by EFF.
Inductive hypothesis. Suppose that ϕ(N, uS,≺σ) is uniquely deter-

mined for every S ⊆ N such that s(S) > k with k < n.
Induction step. Let S ⊆ N satisfy s(S) = k. If 1 ∈ S (that is, min(S) =

1 and max(S) = k), then by BCVP, ϕ1(N, uS,≺σ) − ϕk(N, uS,≺σ) =
ϕ1(N, uS,≺σk→). Note that (N, uS,≺σk→) is a unanimity game with carrier
of span k + 1. Hence, it follows that ϕ1(N, uS,≺σ) − ϕk(N, uS,≺σ) is
uniquely determined. Next, by EFF ϕ1(N, uS,≺σ) + ϕk(N, uS,≺σ) = 1
and the uniqueness of ϕ follows. In case n ∈ S, we can repeat the lines
above. Thus, we may assume that 1 < min(S) < max(S) < n. Let
i = min(S) and j = max(S), then by BCVP, ϕi(N, uS,≺σ)−ϕj(N, uS,≺σ
) = ϕi(N, uS,≺σj→) − ϕj(N, uS,≺σ←i). Note that both (N, uS,≺σj→)
and (N, uS,≺σ←i) are unanimity games with carriers of span k + 1, hence
the difference ϕi(N, uS,≺σ) − ϕj(N, uS,≺σ) is unique by the induction
hypothesis. Finally, ϕi(N, uS,≺σ) + ϕj(N, uS,≺σ) = 1 by EFF, which
completes the proof.

4. CASE STUDY: THE ISRAELI GENERAL ELECTIONS OF 1981 AND
1984

4.1. Background.
We present here a case study analysis of the results of the Israeli general

elections for the Knesset (Parliament) in 1981 and 1984 and the subsequent
government coalitions using the spectrum value.

We chose to look at Knesset elections in the 1980s mainly because na-
tional political discourse in Israel in that decade was dominated by a single
issue: the Arab-Israeli conflict and the future disposition of the West Bank
and the Gaza Strip. This meant that there was general agreement on a one
dimensional spectrum that could be applied to virtually all the political par-
ties in the Knesset. The Labour-Alignment party was considered to the left
of the Likud party because it advocated a more conciliatory negotiating po-
sition in peace talks. Parties that were more dovish than Labour-Alignment
comprised the left wing of the Israeli political spectrum in a fairly linear
ordering of positions with respect to the extent of peace negotiation con-
cessions proposed by the parties. Similarly, parties that were more hawkish
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than Likud comprised the right wing. We will list here the political parties
winning representation in the Knesset along a spectrum from left to right,
with the leftmost party appearing in the first position of the list and the
rightmost party in the last position.

It was difficult if not impossible to imagine a party to the left of Labour-
Alignment joining a coalition led by the Likud if that coalition did not in-
clude Labour-Alignment, and conversely it was difficult if not impossible
to imagine a party to the right of Likud joining a coalition led by Labour-
Alignment if that coalition did not include Likud, thus justifying the main
assumption of coalitions being restricted to spectrum connectedness. The
main exception to this rule chiefly involved ultra-Orthodox religious parties,
such as Agudah and Shas, which were open to inclusion in either right-wing
or left-wing coalitions. We therefore place them in the centre of the spec-
trum between Labour-Alignment and Likud.

There are 120 seats in the Israeli Knesset. The coalitional game that is
being played immediately after each general election is a weighted majority
game, with the weights determined by the number of seats held by each
party and the quota for forming a governing coalition being 61 members.

4.2. The Israeli General Election of 1981. Ten political parties won seats
in the Knesset elections conducted on 30 June 1981.5

The election results are presented in Figure 1, with the parties listed in or-
der according to their positioning on the spectrum starting from the extreme
left to the extreme right.

As the table in Figure 1 shows, Likud and Labour-Alignment together
won 95 seats, representing approximately 80 percent of the 120 Knesset
seats. Individually they were of almost exactly equal size, with Labour-
Alignment holding 47 seats (about 39 percent of seats) to Likud’s 48 (40

5 Cf. a detailed analysis of the 1981 Israeli elections in Rapoport and Golan (1985).
In that paper the analysis is conducted using six indices, the Shapley-Shubik index, the
Banzhaf index, the Deegan-Packel index, the generalised Shapley-Shubik index, the gen-
eralised Banzhaf index and the generalised Deegan-Packel index. The generalised indices,
which are based on an analysis of a multi-dimensional “ideological space” that considers
how the players in a coalitional game will vote with respect to various issues (which are
combinations of parameters of the ideological space) appear to give weights that are closer
to observed political power than the non-generalised indices. The generalised Shapley-
Shubic index in that paper, in particular, indicates a preponderance of political weight on
the right side of the political spectrum following the 1981 Knesset elections, as does the
spectrum value index of this paper.

6 National Religious Party
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Party Seats Seats (%) Spectrum (%) Shapley (%)
1 Hadash 4 3.33 0 6.9841
2 Ratz 1 0.833 0 1.5873
3 Shinui 2 1.66 0 3.0952
4 Labour 47 39.166 31.25 26.4286
5 Agudah 4 3.33 7.8125 6.9841
6 Telem 2 1.66 1.5625 3.0952
7 Likud 48 40.0 34.375 29.9603
8 NRP6 6 5.0 15.625 11.7857
9 Tami 3 2.5 7.8125 5.0397

10 Tehiya 3 2.5 1.5625 5.0397

FIGURE 1. The Israeli Knesset election results of 1981. The
quota for forming a governing coalition is 61 seats.

percent of seats). Their spectrum values are also quite close: Labour-
Alignment’s spectrum value is 0.3125 compared to Likud’s 0.34375. Look-
ing at those numbers alone one might consider the election results a near
dead heat.

An analysis of the spectrum value reveals a different result. The key to
this analysis involves looking not only at the absolute spectrum value but
also regarding in detail the connected coalitions leading to that number. In
this case, the bulk of the weight of the spectrum value is on the right side of
the spectrum, and this comes about because of the relatively large number
of ways that right-wing or mostly right-wing connected coalitions can be
formed with right-wing parties playing pivotal roles given these election
results. In contrast, parties such as Ratz and Shinui get 0 under the spectrum
value because they can never be pivotal relative to a connected coalition:
any connected coalition that adds Ratz or Shinui to it will already have
contained more members than the quota. Note that the Shapley value does
not capture this at all. For obvious reasons, it grants equal value to Agudah
and Hadash because they are symmetric, both having 4 seats. The spectrum
value here strongly distinguishes between the two, giving Aguda nearly 8
percent but giving Hadash zero, since there is no connected coalition for
which Hadash is pivotal.

The governing coalition formed on 5 August 1981 was a right-wing gov-
ernment comprised of the connected coalition Agudah, Telem, Likud, NRP
and Tami.7

7 Tehiya later joined the governing coalition on 26 August 1981.
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4.3. The Israeli General Election of 1984. Fifteen political parties won
seats in the Knesset elections conducted on 23 July 1984. However, one of
those parties, Yahad, with three seats, later merged with Labour-Alignment
while Ometz (1 seat) and Tami (1 seat) merged with Likud. We will there-
fore regard the election results as including only 12 parties, with the seats
held by the small merging parties counted among the total seats held by the
larger parties. Based on that the election results were as presented in Fig-
ure 2, with the parties listed in order according to their positioning on the
spectrum starting from the extreme left to the extreme right.

Party Seats Seats (%) Spectrum (%) Shapley (%)
1 PLP8 2 1.66 0 2.8319
2 Hadash 4 3.3 7.421875 6.0137
3 Ratz 3 2.5 0 4.347
4 Shinui 3 2.5 0 4.347
5 Labour 47 39.166 46.875 33.759
6 Shas 4 3.33 5.078 6.0137
7 Agudah 2 1.66 0 2.8319
8 Likud 43 35.833 39.0625 21.829
9 NRP 4 3.33 0 6.0137
10 Morasha 2 1.66 0 2.8319
11 Tehiya 5 4.166 0 7.8283
12 Kach 1 0.833 1.5625 1.3528

FIGURE 2. The Israeli Knesset election results of 1984. The
quota for forming a governing coalition is 61 seats.

As in 1981, in 1984 the two largest parties split about 80 percent of the
Knesset seats between them. The situation, however, was very different
when one considers the spectrum values of the parties. Two extreme par-
ties, Hadash on the left and Kach on the right, garnered non-zero spectrum
values because the only way to compose a purely left-wing coalition (re-
spectively, a purely right-wing coalition) would involve including Hadash
(respectively, Kach) in a pivotal position. Neither of these options was po-
litically feasible given public opinion.

Note the extreme change in Hadash’s payoff between 1981 and 1984 de-
spite it garnering the same number of seats in the parliament. This change
is due to the increase in the number of seats for the Labour which turned
Hadash into a pivotal player within a potential connected left-wing coali-
tion.

8 Progressive List for Peace
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Disregarding Hadash and Kach leaves positive values concentrated in the
center of the spectrum. Furthermore, a careful analysis reveals that the large
spectrum value of Labour-Alignment arises solely from considering poten-
tial coalitions that contain both Labour-Alignment and Likud, and similarly
the large spectrum value of Likud arises solely from considering potential
coalitions that contain both Labour-Alignment and Likud. Again, the Shap-
ley value, which does not take into account the relationships between the
parties in terms of their ideological positioning relative to each other, fails
to capture any of these subtleties.

The governing coalition formed on 13 September 1984 was an unprece-
dented ‘rotation government’ that gave both Labour-Alignment and Likud
equal power; the prime minister during the first half of the Knesset’s four-
year term was the leader of Labour-Alignment and the prime minister dur-
ing the second half of the Knesset’s four-year term was the leader of Likud.
The coalition itself was a connected coalition that included Shinui, Labour-
Alignment, Shas, Agudah, Likud, NRP and Morasha.

5. EXTENDING THE MODEL

The model presented here is a simple one, leaving room for further ex-
tensions, in particular for the sake of applications in studying more complex
situations.

Most obviously, a major simplification of this model is that it is entirely
one-dimensional. It reduces all differences between players of a coalitional
game to a single position along a strict linear ordering. The analysis of most
political situations is much more complex and multi-dimensional. For ex-
ample, a political party may be to the right of a rival party with respect to
foreign affairs issues and to the left with respect to social policy. Further-
more, the exact position of a player in the spectrum may be critical for the
measure of his or her power under the spectrum value. This is especially
clear in unanimity games, where there are only two players in each carrier,
at its extreme edges, who receive positive values.

There are several directions in which a multi-dimensional analogue to the
spectrum value introduced here could be studied, which we intend to fol-
low up in future research. One possibility would be to consider a different
unidimensional spectrum for every voting issue, calculate a value for each
such spectrum, and then take an appropriately weighted average of these
values for calculating an overall value. In principle, the model should also
be given to being extended to a fully general graph model in which each
player is a vertex and a connected coalition is formed by a connected subset
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of the graph. Accomplishing this would enable much more complex ‘affin-
ity’ relationships between the players than a linear spectrum to be studied
in this context.

Another possible direction would be to allow different weights to the ad-
missible coalitions instead of uniform weights. This might be accomplished
by overcoming another simplification of our model: the fact that we use
only ordinal ordering between players, without measuring any ‘distances’.
Taking cues from (Alonso-Meijide et al., 2011), measures of distances be-
tween players could be added to the spectrum ordering which would then be
used for deriving weights for admissible coalitions, leading to a weighted
spectrum values.

Finally, we note that the simplicity of the model presented here has its
advantages. It has enabled the introduction of the basic ideas and intu-
itions behind the new value we are suggesting in an uncluttered manner and
yielded results that are clear and crisp while containing content.
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APPENDIX

Claim 5. The properties used in the characterization of Theorem 1 are in-
dependent.

Proof.

• Let ϕ1 be a value on GS defined for every (N, v,≺σ) and i ∈ N by

ϕ1
i (N, v,≺σ) = 0.

Then ϕ1 satisfies all properties but EFF.
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• Let ϕ2 be a value on GS defined for every (N, v,≺σ) and i ∈ N by

If v(1) = v(n) = 0 ϕ2
i (N, v,≺σ) = φi(N, v,≺σ)

Otherwise ϕ2
i (N, v,≺σ) =

{
v(N)v(i)
v(1)+v(n)

if i ∈ {1, n}
0 otherwise

Then ϕ2 satisfies all properties but ADD.
• Let ϕ3 be a value on GS defined for every (N, v,≺σ) and i ∈ N by

ϕ3
i (N, v,≺σ) =

{
v(N)

2
if i ∈ {1, n}

0 otherwise

Then ϕ3 satisfies all properties but CNP.
• Let ϕ4 be the additive extension of the following value defined for

unanimity games:

ϕ4(N, uN ,≺σ) = (1, 0, . . . , 0)

and ϕ4(N, uS,≺σ) = φ(N, uS,≺σ) for every S ( N.

Then ϕ4 satisfies all properties but CSP.
• Let ϕ5 be a value on GS defined for every (N, v,≺σ) and i ∈ N by

ϕ5
i (N, v,≺σ) =

1

2
(v([1 · · · i])− v([1 · · · i− 1])

+ v([i · · ·n])− v([i+ 1 · · ·n]))

Then ϕ5 satisfies all properties but BCVP.
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