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Abstract. Most real-life signalling à la Spence (1973) is noisy and in many cases signalling takes
time. This paper formulates the classic signalling model in continuous time, with Brownian noise
obscuring the signal. Adding noise removes the need for belief-based equilibrium refinements,
since any signalling level observed by the receiver is on the equilibrium path. The model allows
for equilibria where signalling occurs in multiple disjoint intervals of beliefs. There may be no
‘most informative’ equilibrium with a signalling region containing the signalling regions of all other
equilibria. A noisier signal or a less patient sender shrinks the largest range of beliefs for which
signalling can be sustained. If the bad type finds signalling sufficiently costly, then the set of
equilibria shrinks as the noise increases or patience decreases. Patience and signal precision are
interchangeable, as in the previous literature. The bad type prefers the pooling equilibrium, more
so when there is little noise or the signaller is patient. The good type may prefer pooling or
separating, with separating relatively better under more patience and less noise.
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1. Introduction

Consider a long-lived firm advertising its product that each consumer buys only once, e.g.
camera, tour, weight loss surgery. The firm knows whether the product is high or low quality,
but the consumers do not. Both high and low quality firms care only about the net profit, which
is product revenue minus advertising and production costs. The consumers care only about the
quality of the product, not the advertising level. Due to the one-time purchase, there is no
experience-based learning, but many consumers buy over a long time period, so there is learning
from product reviews and media coverage.

The firm may try to bias the information the consumers see about the product by costly ad-
vertising, paying for endorsements, posting fake positive reviews and censoring negative ones etc.
A firm with low quality finds it more costly to achieve a given level of positive coverage than a
high-quality firm, because for a low-quality firm the independent reviews are mostly negative and
must be counterbalanced by more marketing by the firm. Creating a favourable media attitude to
the product is thus a differentially costly signal, opening an opportunity for signalling along the
lines of Spence (1973).

The consumers rationally update their belief about the quality of the product based on the media
coverage they see. The coverage depends on many random factors, e.g. how many sources post
independent reviews, the reviewers’ idiosyncratic preferences for the product, whether the firm’s
marketing department has a lucky idea. Due to this randomness, a given advertising expenditure
by the firm only determines a distribution of favourability levels of reviews. The consumers can
thus never be completely sure of the quality level of the product, but as a group, they learn over
time. On average, the market is not fooled by advertising.

Other examples of noisy signalling over time include a professional taking regular licensing or
certification exams and a manager trying to raise the share price of the managed firm every quarter
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in order to get a bonus. Passing a licensing exam is imperfectly correlated with the professional’s
competence, which the buyers of the professional’s service care about. Conditional on competence,
the buyers are not interested in the exam results. Achieving a given probability of passing the
exam requires less effort from a more qualified professional. Both qualified and unqualified people
are interested in attracting buyers for their services and thus attempt to pass the exam. Since
more qualified people pass with a higher probability, the buyers can use the exam results to update
their belief about the competence of the professional.

In the case of a manager of a firm, it is easier to generate good results at a firm based on a good
business idea, but there is noise in the results. Investors are interested in the future potential of
the business idea, not in the current accounting statements. Nonetheless the investors react to
current performance, because it signals the manager’s effort. The effort in turn depends on the
manager’s private information about the potential of the firm—it is worth putting in more effort
at a good firm.

In such situations of noisy signalling over time, the natural questions are how the amount of
signalling depends on the prior over types, the level of noise, the patience of the signaller and the
costs of the high and the low type. This paper answers them using a model in continuous time
with Brownian noise, where the informed player controls the drift of the noise process. Specific
functional forms are necessary to make the model more tractable, since nonzero sum repeated
games with incomplete information (such as the repeated signalling game) are notoriously difficult
to analyze.

1.1. Literature. The model closest to this paper is Dilme (2012), which also considers continuous
time signalling with Brownian noise, but without discounting and with the signaller receiving a
payoff only when he decides to stop the game. The functional form for the cost of effort is also
different in the two papers. Dilme (2012) finds that the more similar the costs of different types,
the worse off they are (competition effect) and that the payoff of the signaller does not depend on
the volatility of the noise process. These effects are absent in the present paper.

In Daley and Green (2012b) the uninformed players receive information (observations of a dif-
fusion process) exogeneously over time and the informed player decides when to stop the game
(execute the trade) and receive a final payoff. Their equilibrium has three regions: if the proba-
bility on the good type is high, there is immediate trade, which is efficient. For low probability
on the good type, the good type rejects and with positive probability the bad type accepts. For
intermediate beliefs, no trade occurs.

The case where the good type of the informed player is a commitment type who does not
need incentivizing is examined in Gryglewicz (2009). Both players can stop the game and the
payoffs received upon stopping depend on the type of the informed player. The uninformed player
optimally stops at a high belief threshold and the low type informed player at a low belief threshold.

Kremer and Skrzypacz (2007) analyze both noisy and noiseless cases when the informed party
signals by delaying trade and after a finite amount of time the information is exogeneously revealed.
Signalling by delaying trade also occurs in Hörner and Vieille (2009).

Infinitely repeated noiseless signalling in discrete time is considered in Kaya (2009); Roddie
(2011). A large set of equilibria is found in Kaya (2009). One of the sources of the multiplicity
of separating equilibria is that the signalling cost can be distributed over time in many ways.
Roddie (2011) focusses on the least-cost separating equilibrium and finds conditions under which
the signalling level is higher than in the one-shot game.

Nöldeke and Van Damme (1990) use a job market signalling model where time is split into
periods of length ∆ and then take ∆ to zero. The signal is delay in accepting a wage offer. For
fixed ∆, many sequential equilibria are possible. In the limit, the unique equilibrium corresponds
to the one in the static game that satisfies independence of never weak best response. Swinkels
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(1999) studies a variation of the same model where wage offers to the signalling worker are private.
He finds that only the pooling equilibrium is possible.

An early work on one-shot noisy signalling is Matthews and Mirman (1983), where a monopolist
tries to deter entry by setting a low price to convince the entrant that the market is unprofitable.
The entrant observes the price subject to noise generated by a demand shock. Daley and Green
(2012a) consider one-shot signalling where the receivers observe both the signaller’s action and
a noisy grade with a distribution that depends on the signaller’s type and action. Carlsson and
Dasgupta (1997) study one-shot signalling games where the receiver has only two actions. They
prove the existence of noise-proof equilibrium, which is an equilibrium in the noiseless game that
is the limit of equilibria in games perturbed by noise.

Since in a signalling game, belief about the types of the signaller is the central object, signalling
games do not fall under the known-own-payoffs assumption of Shalev (1994); Peski (2008), nor
do they admit belief-free equilibria along the lines of Hörner and Lovo (2009); Hörner, Lovo, and
Tomala (2011) or ex-post public equilibria described in Fudenberg and Yamamoto (2011).

2. One-shot noisy signalling

In order to better distinguish which features of repeated noisy signalling are due to noise and
which to repetition, this section solves two examples of one-shot noisy signalling. In both cases, the
sender has two types, H and L, with probability µ0 of the H type. There is a market of perfectly
competitive receivers, each of whom has action set [0, 1]. The receivers value only the type, not
the signal or signaller’s action. They obtain value 1 from contracting with the H type and 0 from
the L type, and their cost is equal to the offer they make the signaller. These assumptions will
also be made in the continuous time model.

The sender moves first, then the signal is generated and observed by the receivers and finally
the receivers move. The sender’s action determines the signal distribution. Given the signal and a
belief about the equilibrium strategy of the types of the signaller, the receivers update via Bayes’
rule. Due to competition, their offer to the signaller equals their posterior belief µ and thus they
make zero expected profit. Both types of signaller receive the same benefit R(µ) from the same
offer µ of the receivers, but the signalling costs differ between types. R is assumed continuous,
strictly increasing and weakly concave.

The equilibrium concept is perfect Bayesian equilibrium. The public history is the signal gen-
erated by the sender’s action. All public histories have positive probability after any action of
the sender, so the receivers always use Bayes’ rule. There are no off-path beliefs that need to be
specified in an ad-hoc way.

2.1. Binary action and signal. The sender has two actions, denoted 1 and 0, interpreted as
effort and no effort respectively. The cost of 0 is zero for both H and L type, while the costs of
1 are AL > AH > 0 for the types. There are two signals, g and b (good and bad). The signal
probabilities after effort and no effort are Pr(g|1) = Pr(b|0) = p ∈ (1

2
, 1).

If the two types are expected to take the same action, then the receivers’ belief does not depend
on the signal and remains at µ0 after both g and b. So neither type would take the costly 1 action
in this case. If the L type was to take 1 and the H type 0, belief would become less favourable
after the g signal. Since the action 1 that increases the probability of g is costly, L would deviate
to 0. So the only pure action profiles possible in equilibrium are pooling on 0 and separating with
H taking 1, L taking 0.

More generally, it cannot be the case that both types are mixing in equilibrium or that L puts
higher probability on 1 than H. If H is indifferent between 1 and 0, then L strictly prefers 0 due
to the higher cost of 1 to L. Recall that the benefit from a higher belief is the same for both
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types. Similarly, if L is indifferent between 1 and 0, then H strictly prefers 1. Mixed equilibria
can therefore only feature L mixing and H taking 1 or H mixing and L taking 0.

If the receivers expect the equilibrium strategies of the types to be such that H puts probability
qH on 1 and L puts probability qL on 1, then the updated probabilities after g and b are

µg =
µ0[qHp+ (1− qH)(1− p)]

µ0[qHp+ (1− qH)(1− p)] + (1− µ0)[qLp+ (1− qL)(1− p)]
(1)

µb =
µ0[qH(1− p) + (1− qH)p]

µ0[qH(1− p) + (1− qH)p] + (1− µ0)[qL(1− p) + (1− qL)p]
. (2)

Given the expectations of receivers, a sender of type θ chooses 1 if R(µb)+p[R(µg)−R(µb)]−Aθ ≥
R(µb) + (1− p)[R(µg)−R(µb)], which is equivalent to Aθ ≤ (2p− 1)[R(µg)−R(µb)]. For both H
and L to follow the strategy the receivers expect, it must be the case that

AH ≤ (2p− 1)[R(µg)−R(µb)] ≤ AL (3)

at the µg, µb resulting from the expected strategy. Call the first inequality in (3) ICH and the
second ICL. Note that the IC conditions only depend on the actions the receivers expect the
sender to take (qH , qL in Eq. (1)), not on the sender’s actual choice.

Due to the assumption that AL > AH , if ICH is violated, then ICL is slack and if ICL is violated,
then ICH is slack. Since the receivers’ expectation of mixing brings both µg and µb closer to µ0

compared to expectation of separation, it reduces R(µg) − R(µb). It thus makes ICH harder and
ICL easier to satisfy.

The dependence of the equilibrium set on the ICs is characterized in the following proposition.

Proposition 1. (1) Pooling is possible at all parameter values.
(2) At parameter values where ICH is violated under expectation of separation, pooling is the

only equilibrium.
(3) At parameter values where a separating equilibrium exists, an equilibrium where H mixes

also exists.
(4) The equilibrium where L mixes exists iff ICL fails under expectation of separation.
(5) At parameter values where ICL is violated under expectation of separation, there are three

equilibria—pooling, L mixing and H playing 1, and H mixing and L playing 0.

Proof. (1) If the receiver expects both types to take action 0, the updated belief after both
signals is µ0. Thus there is no benefit to the sender in choosing 1 and increasing the
probability of g. So both types will choose 0.

(2) The expectation of separation (qH = 1, qL = 0) creates the maximal benefit to playing 1.
If H is not willing to play 1 in this situation, then neither type is willing to play 1 for any
other expected qH , qL.

(3) In a separating equilibrium both ICs must hold. Suppose at qH = 1, qL = 0 the ICH

condition holds. Then due to the continuity of µg, µb in qH , qL and the continuity of R
there exists a qH > 0 that together with qL = 0 makes ICH hold with equality. In that case
ICL is slack, so the equilibrium where H mixes exists.

(4) If at qH = 1, qL = 0 the ICL condition fails, then due to the continuity of µg, µb in qH , qL
and the continuity of R there exists a qL < 1 that together with qH = 1 makes ICL hold
with equality. ICH is slack in that case, so the equilibrium where L mixes exists. If ICL

holds under expectation of separation, there cannot be an equilibrium where L plays 1 with
positive probability, because the expectation of separation creates the maximal benefit to
playing 1. With L mixing, the benefit is reduced, but the cost stays the same, so ICL holds
strictly and L chooses 0.
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(5) If ICL is violated under expectation of separation, then ICH is slack and by continuity of
µg, µb in qH , qL and the continuity of R, there exists qH > 0 that together with qL = 0
makes ICH hold with equality, and there exists qL > 0 that together with qH = 1 makes
ICL hold with equality. In the first case the result is an equilibrium where H mixes, in the
second case an equilibrium where L mixes. Pooling is always possible.

�

The dependence of the ICs on the parameters is clear from (3). As the signal gets more precise,
i.e. p increases, ICH gets easier and ICL harder to satisfy, since both (2p− 1) and [R(µg)−R(µb)]
increase in p. An increase in AH makes ICH harder and an increase in AL makes ICL easier to
satisfy. With a linear R, the payoff difference R(µg)− R(µb) gets smaller as µ0 moves away from
1
2
, which makes ICH harder and ICL easier to satisfy.
From Eq. (3) it can be seen that if AH is too high, then even under expectation of separation, H

does not want to pay the cost of action 1. Then under other expected qH , qL, neither type wants
to take action 1, so no equilibria but pooling are possible. If p is too low or R is too unresponsive
to µ, the benefit of taking action 1 is low, so neither type will signal. Again pooling is the only
equilibrium. If AL is too high, then even under expectation of separation, L does not want to
pay the cost of action 1. Then under other expected qH , qL, L strictly prefers action 0, so the
equilibrium where L mixes does not exist. If AL is too low, then under expectation of separation,
L would deviate to action 1, so separation cannot be sustained.

With a concave R, the L type expected utility is higher in a pooling equilibrium than in the other
equilibria. This is because L pays no signalling cost in the pooling equilibrium and expects the
receivers’ belief to go down if there is any signalling. For the same reason, L prefers the equilibrium
where H mixes to the separating equilibrium. The payoff of L from a pooling equilibrium relative
to an equilibrium with signalling is the higher the more precise the signal. These results fail with
a sufficiently convex R, e.g. if µ0 = 1

2
, p = 3

4
and R(µ) = µn, then for n ≥ 4, the utility of L from

pooling is lower than from separating.
The H type utility comparison depends on the parameters. If there is any signalling, then H

expects the receivers’ belief to go up, but must pay a signalling cost. For a low AH relative to p
and the slope of R, the separating equilibrium is the best for H. For a high AH , low p and low R′,
pooling is best for H.

To compare the noisy one-shot signalling game to the noiseless case, first the noiseless game
corresponding to a given noisy game must be defined. A noisy game is defined by the parameters
AL, AH , µ0, p and R. Assume AH , AL and µ0 remain the same in the corresponding noiseless
case, and of course p = 1 there. In that case if R was the same as in the noisy game, then
there would be a greater incentive to signal, e.g. if separation was expected in equilibrium, the
ICs would be AH ≤ R(1) − R(0) ≤ AL. In order to keep the ICs the same, replace R(µ) by

R̃(µ) = (2p−1)[R(µg)−R(µb)]

R(1)−R(0)
R(µ). This satisfies R̃(1)− R̃(0) = (2p− 1)[R(µg)−R(µb)]. The values of

AH , AL and µ0 at which a separating equilibrium exists are the same in the noiseless game with
R̃ as in the noisy game with p and R.

The set of equilibria in the noiseless game depends on how the belief of the receivers is defined.
The pooling equilibrium can be eliminated if beliefs after signal g must rise to 1 and AH ≤
R̃(1) − R̃(0) < AL. An equilibrium where both types always signal can be added if belief after
b falls to zero and AH , AL ≤ R̃(µ0) − R̃(0). It is thus not clear whether noise generally enlarges
or reduces the equilibrium set. This may be due to the discreteness of the action set. The next
subsection will examine the case where a continuum of actions are available to the signaller. The
optimal action can then vary continuously with the parameters of the model.
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In the noiseless game with a linear R, a lower µ0 increases the payoff of H from separation
relative to pooling, because after a good signal belief jumps to 1. In the noisy game, separation is
most attractive for H at intermediate µ0, because R(µg)−R(µb) is largest there.

2.2. Continuum of actions, binary signal. The sender’s action e ∈ [0, e] now generates a signal
g or b with probabilities Pr(g|e) = λe + (1 − λ)1

2
and Pr(b|e) = λ(1 − e) + (1 − λ)1

2
respectively.

Assume e = 1+λ
2λ

in order to make the probabilities well-defined. Seeing g, the receivers update the

probability of the H type to µg =
µ0 Pr(g|e∗H)

µ0 Pr(g|e∗H)+(1−µ0) Pr(g|e∗L)
, where e∗θ is the action receivers expect

type θ to take in equilibrium. A similar updating rule holds for signal b.
Type θ sender’s utility from action e and receivers’ belief µ is uθ(e, µ) = µ − Aθ

2
e2, with AL >

AH > 0. The sender’s benefit from the receivers’ belief is thus equal to the belief. Given a best
response by the receivers to the realized signal and the sender’s equilibrium play, the sender’s
expected utility from action e is

−Aθ
2
e2 + µb + (µg − µb)λe+ (µg − µb) (1− λ)

1

2
.

If e∗H ≤ e∗L, then both types of sender will choose eθ = 0, because there is no benefit to signalling,
but there is a cost. Therefore pooling at e∗L = e∗H = 0 is always an equilibrium.

If the expected actions of the types satisfy e∗H > e∗L, then µg > µb. The marginal cost of
signalling is zero at e = 0, the marginal benefit is (µg − µb)λ everywhere. Due to this, both types
will choose eθ > 0. Given the expected equilibrium actions, the chosen actions satisfy the FOCs

AHeH = (µg − µb)λ, ALeL = (µg − µb)λ.
The FOCs already allow the comparison of the signalling efforts and expected utilities of the types,
formalized in the following proposition.

Proposition 2. The equilibrium signalling efforts of types H and L satisfy e∗H = AL
AH
e∗L and the

expected utilities uH , uL satisfy uH − µb − 1−λ
2

(µg − µb) = AL
AH

[
uL − µb − 1−λ

2
(µg − µb)

]
.

Proposition 2 holds for both separating and pooling equilibria. Under pooling, e∗H = e∗L = 0 and
µg = µb = µ0, so uH = uL = µ0. Under separation, it is clear that uH ≥ uL.

There are no mixed equilibria in this model, because even if mixing is expected in equilibrium,
both types will deviate to a pure action. For any expected equilibrium actions, the best response
is unique. So only pure actions need be used in updating µ0.

To find the equilibrium actions, equate the chosen and the expected action, eθ = e∗θ in the FOCs.
The solutions for which e∗H , e

∗
L ∈ [0, 1+λ

2λ
] for at least some λ ∈ [0, 1] are

e∗H =
AHALλ−

√
AHAL[AHAL − 4(AL − AH)λ2µ0(1− µ0)]

2AHλ[ALµ0 + AH(1− µ0)]

e∗L =
AHALλ−

√
AHAL[AHAL − 4(AL − AH)λ2µ0(1− µ0)]

2ALλ[ALµ0 + AH(1− µ0)]

For any parameter values, at most one separating equilibrium is possible. The conditions on
parameters that permit a separating equilibrium to exist are partially characterized in the following
proposition.

Proposition 3. If AH = 1, then a separating equilibrium exists for λ ≥
√

AL
AL+4µ0(1−µ0)(AL−1)

.

Proof. Taking AH = 1, the solutions for e∗H , e
∗
L are in the range [0, 1+λ

2λ
] iff λ ≥ λ, where λ =√

AL
AL+4µ0(1−µ0)(AL−1)

. For 0 < µ0 < 1 and AL > 1 = AH , we have λ ∈ (0, 1). �
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It can be seen from Proposition 3 that even with AL close to AH and beliefs close to zero or
one, there exists a separating equilibrium at λ = 1.

The comparative statics results yielded by this model are limited to Proposition 4 below. The
changes in the efforts as µ0, AL or AH vary do not have clear signs.

Proposition 4. In a separating equilibrium the efforts of both types are increasing in λ, the
precision of the signal.

Proof.

∂e∗H
∂λ

=
AHA

2
L

2λ2[ALµ0 + AH(1− µ0)]
√
AHAL[AHAL − 4(AL − AH)λ2µ0(1− µ0)]

,

which is positive. Based on Proposition 2,
∂e∗L
∂λ

= AH
AL

∂e∗H
∂λ

, which is also positive. �

The expected utility from a pooling equilibrium is µ0 for both types. The L type prefers pooling
to separating, because in a separating equilibrium L pays an effort cost and expects µ to go down.
The expected utilities of the types from a separating equilibrium are complicated functions of the
parameters and do not yield clear comparative statics.

With a continuum of sender actions, a noiseless game would have a large set of equilibria and
belief refinements would be needed to pick out those of interest. In contrast, the noisy game with a
continuum of sender actions only has one or two equilibria, depending on parameter values. Noise
thus provides results that are easier to interpret, in addition to making the model more realistic.
The drawback is that noise makes the game more difficult to solve.

The preceding one-shot models cannot describe what happens when noisy signalling occurs over
a period of time. The next section turns to the main model where the sender has a binary action
and controls a Brownian signal process.

3. Signalling with a binary action in continuous time

Time is continuous and the horizon is infinite. There is an infinitely lived strategic sender who
can be one of two types, H or L, with probability µ0 of H. Both types of sender have discount
rate r and action set {0, 1}. The cost of action 0 is zero for both types, but the costs of action 1
to L and H are AL > AH > 0 respectively.

The sender’s action eθt controls the drift of a signal process (Xt)t∈R+ subject to Brownian noise
Bt. The signal process satisfies dXt = eθtdt+σdBt. The receivers at time t observe (Xτ )τ∈[0,t] and,
given the equilibrium actions (e∗Hτ , e

∗
Lτ )τ∈[0,t] of the types of the sender, form a belief µt that the

sender is the H type.
The utility of a sender of type θ at instant t is R̂(µt) − Aθeθt. Both types of sender have the

same benefit R̂(µ) from belief µ, but the H type has a lower cost of effort. Assume R̂ is bounded,
strictly increasing and twice continuously differentiable in µ.

The utility function of the sender could be motivated by a continuum of receivers in perfect
competition who value the type of the sender, but not the signalling effort or signal realization.
The receivers get flow utility 1 from contracting with the H type, but 0 from contracting with
the L type. The receivers offer the sender his expected productivity µt at every t and make zero
expected profit due to competition.

The focus is on pure-strategy Markov stationary equilibria (the sender’s action depends only
on the belief of the receivers), where outside an interval of beliefs (µ, µ) both types choose 0 and
inside that interval at least one type chooses 1. These will be called interval equilibria in what
follows. The interval (µ, µ) is subsequently referred to as the signalling region and its complement
as the pooling region. Existence of an interval equilibrium is shown in the next lemma.
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Lemma 5. An interval equilibrium always exists.

Proof. If e∗H = e∗L at some µ̂, then the receivers cannot use the signal to distinguish the types of
the sender, so belief does not respond to the signal at µ̂. Given this, both types will optimally
choose eθ = 0 at µ̂. Therefore a pooling equilibrium, in which e∗H = e∗L = 0 for all µ, exists
for all parameter values. The signalling region is empty in this case: µ = µ. Since the pooling
equilibrium always exists and fits the definition of interval equilibrium, an interval equilibrium
always exists. �

Solving for an equilibrium has two parts. First, given equilibrium strategies (signalling region)
the receivers expect, both types of the sender will solve a control problem to choose their optimal
strategy. Second, the chosen strategies are set equal to the expected strategies and the resulting
system is solved to find the equilibrium strategies. Before moving to the actual solution, some
preliminary observations are in order.

In the pooling region the belief does not change and both types optimally choose eθ = 0, so if
the belief reaches some µ the pooling region, both types get payoff R̂(µ) forever. In an interval
equilibrium the game essentially ends upon reaching any µ in the pooling region, with a final payoff
R̂(µ)
r

to both types. The pooling region and therefore the final payoff is endogeneous.
To set up the control problems of the types, the process of the state variable must be defined.

The usual state variable in the literature is the belief of the uninformed agents (Faingold and
Sannikov, 2011; Dilme, 2012). In the signalling region, the receivers update their belief using the
standard continuous time Bayes’ rule

dµ = σ−2µ(1− µ)(e∗H − e∗L)[dXt − µe∗Hdt− (1− µ)e∗Ldt]. (4)

This is also applicable in the pooling region: if e∗H = e∗L, then dµ = 0 and belief does not change.
In the signalling region it must be that e∗H = 1, e∗L = 0, otherwise belief would fall or remain
constant in the costly signal, which would make both types deviate to eθ = 0. The belief process
is well-defined and unique, as shown in the following lemma.

Lemma 6. There is a unique belief process satisfying Eq. (4).

Proof. Fix a control eθ. If the the initial state µ0 is constant and the drift and variance in Eq. (4)
are bounded and Lipschitz in µ, then by Theorem 3.1 of Touzi (2013), Eq. (4) has a unique strong
solution given the controlling process eθ. Since in the signalling region e∗H = 1 and e∗L = 0, the
drift of the belief process is σ−2µ(1− µ)(eθ − µ) and the variance is σ−2µ2(1− µ)2. Both of these
are Lipschitz in µ and bounded. �

For mathematical convenience, the log likelihood ratio l of the types is subsequently used as the
state variable, instead of the probability µ of the H type. Since l = ln(µ)− ln(1− µ) is infinitely
differentiable, Itô’s formula can be used to transform the belief process (4) into the log likelihood
ratio process

dlt = σ−2(e∗H − e∗L)[dXt −
1

2
e∗Hdt−

1

2
e∗Ldt]

= σ−2(e∗H − e∗L)(eθ −
1

2
e∗H −

1

2
e∗L)dt+

e∗H − e∗L
σ

dBt,

where Bt is a standard Brownian motion. Since in the signalling region e∗H = 1 and e∗L = 0, the l
process is a simple Brownian motion with drift. The drift is either 1

2
or −1

2
, depending on whether

eθ = 1 or 0. The signalling region in log likelihood ratio space is denoted (l, l). The benefit function

R̂(µ) is replaced by R(l) = R̂
(

exp(l)
1+exp(l)

)
, since µ = exp(l)

1+exp(l)
.
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Both types of the sender maximize their expected discounted payoff by choosing Markov sta-
tionary control processes eH , eL. The solutions to these control problems can be written as
value functions. Define T̂t,lt as the first exit time after t of the l process from (l, l), i.e. T̂t,lt =

inf
{
τ > t : lτ /∈ (l, l)

}
≤ ∞. In the signalling region, the value function of type θ is

Wθ(lt) = sup
eθ(·)

E

[∫ T̂t,lt

t

exp(−rs) [R(ls)− Aθeθ(ls)] ds+ exp(−rT̂t,lt)
R(lT̂t,lt

)

r
1
{
T̂t,lt <∞

}]
,

where 1 {A} denotes the indicator function for the set A. The interpretation of the value function
expression is straightforward: the agent gets flow benefit R(l) depending on l and chooses the
optimal signalling effort eθ at each l, which determines the flow cost. When the log likelihood ratio
exits the signalling region (if ever), the sender gets R(lT̂t,lt

) forever, where lT̂t,lt
is the value of l

upon exit, which equals either l or l due to the continuity of the sample paths of the l process.
Some observations about the value functions are formalized in the following lemma.

Lemma 7. Wθ is finite for θ = H,L. WH ≥ WL, with strict inequality in the signalling region.
Wθ is strictly increasing.

Proof. Due to the boundedness of R(l) and eθ, discounting ensures that Wθ is finite—even without
the expectation, the integral in the definition of Wθ is finite for any path of l and any control eθ.

It is clear that WH > WL in the signalling region, because H can follow L’s strategy at a strictly

lower cost than L. Outside the signalling region, WH(l) = WL(l) = R(l)
r

.
To prove Wθ is strictly increasing, a standard coupling argument is used. Consider two diffusion

processes: the l process with optimal effort starting from l1 and the l process under zero effort
starting from l2 > l1. Call the former process le

∗
and the latter l0. Define the stopping time

τ ∗ = inf
{
t > 0 : l0t − le

∗
t = 0

}
. The receivers expect the optimal strategy in both cases.

Starting at l2, the strategy s =“play 0 until τ ∗ and the optimal strategy thereafter” yields a
weakly lower payoff than Wθ(l2), the payoff to the optimal stationary strategy starting from l2.
This holds even though s is not stationary, because if the receivers expect a stationary strategy,
then among the optimal strategies for the sender there is a stationary one. The argument is
standard—the competitive receivers always play a static best response, which depends on their
belief about the type, but not the sender’s strategy, so if at some l, a sender action ê is optimal at
one point in time, then ê is optimal at that l at another point in time.

Starting at l2, the strategy s yields a strictly higher payoff than Wθ(l1), the payoff to the optimal
strategy starting from l1. This is because the revenue R(l0) is strictly higher than R(le

∗
) before τ ∗

and the same in expectation after τ ∗. The cost of l0 is zero while the cost of le
∗

is positive before
τ ∗. The costs of the two strategies are the same in expectation after τ ∗. Overall, Wθ(l2) > Wθ(l1)
for l1, l2 in the signalling region.

If both l1, l2 are outside the signalling region, then since R was assumed strictly increasing, the

payoffs are ordered Wθ(l2) = R(l2)
r

> R(l1)
r

= Wθ(l1). If l2 is above the signalling region while l1 is in
the signalling region, then the expected benefit is strictly higher from l2 onwards and the expected
cost is the lowest possible from l2 onwards, so Wθ(l2) > Wθ(l1). If l2 is in the signalling region while
l1 is below the signalling region, then Wθ(l2) is higher than the payoff to the strategy of taking
zero effort forever starting from l2. The cost of this strategy is the same as the cost of the optimal
strategy from l1 onwards, while the benefit is strictly greater, so again Wθ(l2) > Wθ(l1). �

With a concave R, the L type strictly prefers less signalling, in the sense that for any log
likelihood ratio of the receivers, the payoff of L is higher in a pooling equilibrium than with
signalling. Comparing signalling equilibria, L’s payoff is higher in an equilibrium with a smaller
signalling region.
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Proposition 8. Assume R is weakly concave. Then WL(l) < R(l)
r

for all l in the signalling region.

For equilibria 1, 2 with L type value functions WL1,WL2 and signalling regions (l1, l1) ( (l2, l2), we
have WL1(l) > WL2(l) for all l ∈ (l2, l2).

Proof. L takes no effort in pooling or signalling equilibria, so the flow cost is the same in both
cases. The flow benefit R is increasing in the log likelihood ratio l. In a pooling equilibrium l stays
constant forever, while in a signalling equilibrium L expects l to strictly decrease. With a weakly

concave R, there is no benefit from the noise in the l process. This establishes WL(l) < R(l)
r

.

For l ∈ (l2, l2) \ (l1, l1), it follows from the above that WL1(l) = R(l)
r
> WL2(l). Since (l1, l1) is

a proper subset of (l2, l2), at least one of WL1(l1) > WL2(l1), WL1(l1) > WL2(l1) holds (the other
may be an equality).

From any point in (l1, l1), the log likelihood ratio process has positive probability of hitting l1 and
positive probability of hitting l1. The flow cost to L is zero in all interval equilibria for all l. For the
same l, the flow benefit to L is the same in all interval equilibria. The distribution over paths of l up
to hitting l1 or l1 starting from l0 ∈ (l1, l1) is the same in the two equilibria with signalling regions
(l1, l1) and (l2, l2), because in both equilibria in the region (l1, l1), H takes action 1 and L takes 0.
Therefore the continuation value comparisons WL1(l1) ≥ WL2(l1) and WL1(l1) ≥ WL2(l1), at least
one of which is strict, determine the payoff comparison WL1(l) > WL2(l) for any l ∈ (l1, l1). �

To solve the control problems of the types of the sender, the HJB equations are solved and a
verification theorem is used to check that the solutions of the HJB equations coincide with the
value functions. The HJB equations are

rwH(l) = R(l) + max

{
−AH +

1

2
w′H(l)σ−2, −1

2
w′H(l)σ−2

}
+

1

2
w′′H(l)σ−2

rwL(l) = R(l) + max

{
−AL +

1

2
w′L(l)σ−2, −1

2
w′L(l)σ−2

}
+

1

2
w′′L(l)σ−2

Given the signalling region (l, l) the receivers expect, the optimal strategy of type θ is to choose

eθ(l) =

{
1
{
−Aθ + 1

2
w′θ(l)σ

−2 ≥ −1
2
w′θ(l)σ

−2} if l ∈ (l, l)

0 if l /∈ (l, l)

For H to choose eH(l) = 1 in the signalling region, we need w′H(l) ≥ AHσ
2. For L to choose

eL(l) = 0, we need w′L(l) ≤ ALσ
2. Call these constraints ICH and ICL. After finding the candi-

date equilibrium strategies, it must be verified that the IC constraints hold at every point in the
signalling region.

Proceeding to the second part of the solution, set the chosen actions equal to the equilibrium
actions. The HJBs become the pair of linear second-order ODEs

rwH(l) = R(l)− AH +
1

2
w′H(l)σ−2 +

1

2
w′′H(l)σ−2

rwL(l) = R(l)− 1

2
w′L(l)σ−2 +

1

2
w′′L(l)σ−2.

This is where using the log likelihood ratio instead of the belief is helpful—in the case of belief, the
ODEs would not have constant coefficients. After solving the ODEs for wL, wH , the IC conditions
w′H(l) ≥ AHσ

2 and w′L(l) ≤ ALσ
2, as well as the smoothness conditions for the verification theorem

must be checked at every point in the signalling region.
The solutions to the ODEs are the sum of the general solution of the homogeneous equation

and a particular solution of the inhomogeneous equation, wθ = Cθ1yθ1 +Cθ2yθ2 + yθp. The general
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solutions for H and L respectively are

CH1yH1 + CH2yH2 = CH1 exp

(
l
−1−

√
1 + 8rσ2

2

)
+ CH2 exp

(
l
−1 +

√
1 + 8rσ2

2

)

CL1yL1 + CL2yL2 = CL1 exp

(
l
1−
√

1 + 8rσ2

2

)
+ CL2 exp

(
l
1 +
√

1 + 8rσ2

2

)
.

The particular solutions are

yHp =− AH
r

+
2σ2

√
1 + 8rσ2

exp

(
l
−1−

√
1 + 8rσ2

2

)∫
R(l) exp

(
l
1 +
√

1 + 8rσ2

2

)
dl

− 2σ2

√
1 + 8rσ2

exp

(
l
−1 +

√
1 + 8rσ2

2

)∫
R(l) exp

(
l
1−
√

1 + 8rσ2

2

)
dl

yLp =
2σ2

√
1 + 8rσ2

exp

(
l
1−
√

1 + 8rσ2

2

)∫
R(l) exp

(
l
−1 +

√
1 + 8rσ2

2

)
dl

− 2σ2

√
1 + 8rσ2

exp

(
l
1 +
√

1 + 8rσ2

2

)∫
R(l) exp

(
l
−1−

√
1 + 8rσ2

2

)
dl,

where the integrals are nonelementary even for simple functional forms of R, e.g. for R(l) = exp(l)
1+exp(l)

or equivalently R̂(µ) = µ.

Imposing the boundary conditions wθ(l) = R(l)
r

and wθ(l) = R(l)
r

, the constants in the general
solution for H are

CH1 =
yH2(l)[

R(l)
r
− yHp(l)]− yH2(l)[

R(l)
r
− yHp(l)]

yH1(l)yH2(l)− yH2(l)yH1(l)

CH2 =
−yH1(l)[

R(l)
r
− yHp(l)] + yH1(l)[

R(l)
r
− yHp(l)]

yH1(l)yH2(l)− yH2(l)yH1(l)
.

The constants for L are determined by a similar expression, replacing the H subscripts with L.
Now that all components of the solutions of the HJB equations have been found, it can be

verified that they coincide with the value functions.

Lemma 9. The solutions wH , wL of the HJB equations equal the value functions WH ,WL in the
signalling region. The Markov controls for the HJB equations maximize the value functions.

Proof. For any signalling region (l, l), the solutions of the ODEs are differentiable at least as many
times as R on (l, l) and continuous on [l, l]. Since R was assumed twice continuously differentiable,
wL and wH are as well. Given the signalling region, wH , wL are bounded for any path of l and
control eθ. Therefore wH(l), wL(l) are integrable in the probability law of the l process that starts
from l0 and is controlled by eθ, uniformly over Markov controls eθ. So by Theorem 11.2.2 of
Øksendal (2010), wL, wH coincide with the value functions WL,WH .

Under the previous conditions, Theorem 11.2.3 of Øksendal (2010) shows that the optimal
Markov control does as well as the optimal nonanticipating control, so if the receivers expect
Markov strategies, then both types of the sender have a Markov best response among their best
responses.1 �

1This does not imply that the payoffs of all non-Markov equilibria can be attained with Markov equilibria, since
in a non-Markov equilibrium the receivers expect non-Markov strategies.
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Some comparative statics for payoffs and behaviour can be derived based on the form of wθ
alone. These are presented in the next proposition.

Proposition 10. In an equilibrium with signalling, starting from l0 ∈ (l, l), the dependence of the
payoff of type θ on r and σ2 is of the form Wθ = σ2fθ(rσ

2). The set of signalling regions possible
in interval equilibria depends on r and σ2 only through their product rσ2.

Proof. The general solutions yθ1, yθ2 of the ODEs resulting from the HJB equations depend on r
and σ2 only through the product rσ2. The particular solutions depend on rσ2, except for a σ2 term

multiplying the whole expression (the AH
r

term in yHp can be turned into AHσ
2

rσ2 ). The constants

Cθ1, Cθ2 similarly depend on rσ2, except for a σ2 term multiplying them, if R(l)
r

is rewritten as
R(l)σ2

rσ2 . So the full solutions wθ, θ = H,L of the HJB equations depend on rσ2, except for a σ2

term multiplying them.
Since Wθ = σ2f(rσ2), the σ2 term is on both sides of the IC conditions w′H(l) ≥ AHσ

2 and
w′L(l) ≤ ALσ

2. Cancelling the σ2 terms, the ICs only depend on rσ2. �

Proposition 10 echoes the result of Faingold and Sannikov (2011) that the equilibrium is affected
by r and σ2 only through rσ2. Dilme (2012) finds that the value functions are independent of the
volatility of the noise, which is a similar result, since r = 0 in Dilme’s paper.

It is not possible to analytically express the parameters or signalling region for which the IC
constraints hold. Only for AL is there a simple comparative statics result: if ICL holds for some
ÂL, it holds for all AL ≥ ÂL. The same cannot be said for AH , which enters on both sides of ICH ,
unlike in the one-shot binary action model. The comparative statics for other parameters will be
based on numerical simulation. Before turning to numerics, simple necessary conditions for the
IC constraints are presented in Proposition 11. These provide outer bounds for the region of log
likelihood ratios in which signalling can occur. Outside that region, the only interval equilibrium
is pooling.

Proposition 11. For (l, l) to constitute a signalling region, l, l must satisfy

AH ≤
R(l)−R(l)

σ2r(l − l)
≤ AL.

Signalling regions are bounded away from plus and minus infinity in log likelihood ratio space (away

from zero and one in belief space). If R(l) = exp(l)
1+exp(l)

(benefit to the sender equals the receivers’

belief) and ALσ
2r < 1

4
, then small signalling regions around l = 0 are ruled out.

Proof. The necessary conditions are obtained by integrating the ICs over the signalling region:∫ l

l

w′H(l)dl ≥ AHσ
2(l − l),

∫ l

l

w′L(l)dl ≤ ALσ
2(l − l).

Using
∫ l
l
w′θ(l)dl = wθ(l) − wθ(l) and the boundary conditions, the necessary conditions become

AHσ
2(l − l) ≤ R(l)−R(l)

r
≤ ALσ

2(l − l). These conditions bound the average slope of R(l) over the
signalling region from below and above. The slope of R(l) must go to zero as l approaches plus
or minus infinity, because R is bounded. So for any AHσ

2r the bounds l, l of possible signalling
regions are bounded above and below by the H type necessary condition.

If R(l) = exp(l)
1+exp(l)

, then the maximum slope of R(l) is 1
4

and occurs at l = 0. In that case

for ALσ
2r < 1

4
, the L type necessary condition rules out small nonempty signalling regions near

l = 0. �
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(a) AH = 0.15, AL = 0.2 and r = σ2 = 1 (b) AH = 0.1, AL = 0.24 and r = σ2 = 1

Figure 1. Necessary conditions for a signalling region (satisfied in the shaded area).

The necessary conditions in Proposition 11 are of a similar form to the IC conditions of the

one-shot binary action model given in (3). They are illustrated in Figure 1. For R(l) = exp(l)
1+exp(l)

,

AH = 0.15, AL = 0.2 and r = σ2 = 1, the left panel depicts in white the values of l and l ≥ l
for which (l, l) cannot be the signalling region of any interval equilibrium. As AL rises, the white
area inside the horseshoe shape will shrink and when ALσ

2r ≥ 1
4
, it will disappear. As AH falls,

the outer border of the horseshoe will move further from the origin, so wider signalling regions
can be sustained in equilibrium. These effects are illustrated on the right panel of Figure 1, where
AH = 0.1, AL = 0.24 and r = σ2 = 1. Note the different scale of the axes compared to the left
panel.

Numerical results on how the set of possible signalling regions depends on the parameters are

presented next. Until the end of this section, it is assumed that R(l) = exp(l)
1+exp(l)

, so the sender’s

benefit from the receivers’ belief equals the belief.
For AH = 0.1, AL = 0.24 and r = σ2 = 1, the region where the ICs hold is depicted in the

left panel of Figure 2 as the shaded area. For (l, l) to be the signalling region of a separating
equilibrium, it is necessary and sufficient that its pair of endpoints belong to the shaded area. The
middle panel shows the area where ICH holds and the right panel the area where ICL holds.

Based on Figure 2, there is in general no signalling region containing all other possible signalling
regions. A separating equilibrium can feature two or more disjoint signalling intervals.

If AH = 0.15, AL = 0.2 and r = σ2 = 1, then the region where both ICs hold is limited to
the diagonal, so the only interval equilibrium is pooling. The region where ICH holds for these
parameters is depicted in the left panel of Figure 3. The region where ICL holds is in the right
panel. The intersection of the two regions is the diagonal (empty signalling intervals).

The effect of increased patience or reduced noise on the ICs is shown in Figure 4, where AH = 0.1,
AL = 0.24, r = 1 and σ2 = 0.5. Note the different scale of the axes compared to Figure 2. Since
r and σ2 affect the ICs only through their product, reducing σ2 by half has the same effect as
reducing r by half.

Figure 4 clearly shows that the same equilibrium may feature signalling in two disjoint intervals,
e.g. for l ∈ (−2.5,−2)∪(2.5, 3) in this case. A similar situation is also possible with the parameters
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(a) Both ICs hold (b) ICH holds (c) ICL holds

Figure 2. Region where ICs hold (shaded) for AH = 0.1, AL = 0.24 and r = σ2 = 1.

(a) ICH holds (b) ICL holds

Figure 3. Region where ICs hold (shaded) for AH = 0.15, AL = 0.2 and r = σ2 = 1.

in Figure 2. In fact, whenever a signalling region of positive measure touches the diagonal over
an interval of positive length, there exists an equilibrium that has a countably infinite number of
disjoint signalling intervals. An example of such an equilibrium could be depicted in the figures
as a sequence of points, with the i-th at vertical distance ε2−i from the diagonal and at horizontal
distance ε2−i+1 from the (i− 1)-th.

There need not exist a signalling region containing all others, as in the previous figures. Figure 5
shows that for AH = 0.15, AL = 0.28 and r = σ2 = 1, a higher l permits a higher l for a signalling
region. This is due to both ICs depending on both boundaries of the signalling region in such
a way that increasing or decreasing either boundary can loosen or tighten either IC, except for
increasing l, which does not tighten ICL. Figure 6 shows the seven ways in which changing l, l
can lead to violations of the ICs. In the figure, ICH is written as wHσ

−2 − AH ≥ 0 and ICL as
wHσ

−2 − AL ≤ 0. The left column depicts the situation where the IC holds, the right column
where it fails after a boundary of the signalling region is changed. In each case only one IC is
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(a) Both ICs hold (b) ICH holds (c) ICL holds

Figure 4. Region where ICs hold (shaded) for AH = 0.1, AL = 0.24, r = 1 and σ2 = 0.5.

(a) Both ICs hold (b) ICH holds (c) ICL holds

Figure 5. Region where ICs hold (shaded) for AH = 0.15, AL = 0.28, r = 1 and σ2 = 1.

drawn, since the other continues to hold. The figure assumes R(l) = exp(l)
1+exp(l)

. Other forms of R

may result in different behaviour.
If ICH is violated at the boundary that is being changed, the reason is that the slope of R at

the changed boundary is smaller and no longer incentivizes H to signal. Similarly if ICL fails at
the changing boundary, it is because the slope of R becomes larger after the change and entices L
to signal. If l < 0, then increasing it increases R′(l), while if l > 0, then R′′(l) < 0. Similarly for l
and R′(l).

One curious feature of the model is that changing one boundary of the signalling region may
lead to a violation of an IC at the other boundary (third row in Figure 6) or in the interior (second
row).

As with the necessary conditions for the ICs, ICH rules out signalling regions that have one
boundary too far from l = 0 and ICL rules out too narrow signalling regions close to zero. In
addition, ICL excludes signalling regions with only the upper boundary l near zero.

Figure 7 shows that the payoff of the L type in the signalling region of a signalling equilibrium is
always strictly below the payoff in a pooling equilibrium at the same log likelihood ratio, as argued

in Proposition 8. The topmost curve in Figure 7 is exp(l)
r(1+exp(l))

and the three bottom curves starting

and ending on exp(l)
r(1+exp(l))

are the solutions of the L type HJB equation if r = σ2 = 1, l = 3 and l
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(a) AL = 0.4, r = σ2 = 1,
l = −1, l = 0. ICL holds.

(b) AL = 0.4, r = σ2 = 1,
l = −1, l = 1. ICL fails.

(c) AH = 0.1, r = σ2 = 1,
l = 0, l = 3.3. ICH holds.

(d) AH = 0.1, r = σ2 = 1,
l = 0, l = 3.5. ICH fails.

(e) AH = 0.2, r = σ2 = 1,
l = −0.1, l = 3. ICL holds.

(f) AH = 0.2, r = σ2 = 1,
l = −1, l = 3. ICL fails.

(g) AH = 0.1, r = σ2 = 1,
l = −2, l = 0. ICH holds.

(h) AH = 0.1, r = σ2 = 1,
l = −2.4, l = 0. ICH fails.

Figure 6. Ways in which changing l or l may violate ICL or ICH .

takes values −3, −1 and 1. The wider the signalling region, the lower the payoff of L. Intuitively,
in the signalling region L expects the log likelihood ratio of the receivers to fall, while in a pooling
equilibrium the ratio remains constant forever. The payoff is increasing in the log likelihood ratio
of the receivers, so in a signalling equilibrium L expects the payoff to fall. The wider the signalling
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(i) AL = 0.3, r = σ2 = 1,
l = −1, l = 2.3. ICL holds.

(j) AL = 0.3, r = σ2 = 1,
l = −1, l = 2. ICL fails.

(k) AH = 0.1, r = σ2 = 1,
l = −2.15, l = −1. ICH holds.

(l) AH = 0.1, r = σ2 = 1,
l = −2.15, l = −1.5. ICH fails.

(m) AH = 0.1, r = σ2 = 1,
l = 1, l = 2.5. ICH holds.

(n) AH = 0.1, r = σ2 = 1,
l = 1.5, l = 2.5. ICH fails.

Figure 6. Ways in which changing l or l may violate ICL or ICH .

region, the greater the fall in the receivers’ log likelihood ratio that L expects, so the lower the
payoff.

In a given signalling equilibrium the H type payoff can be higher or lower than the pooling

payoff exp(l)
r(1+exp(l))

for different log likelihood ratios. This is shown in Figure 8, where wH is strictly

higher than exp(l)
r(1+exp(l))

for l ∈ (−1.5,−0.2) and strictly lower for l ∈ (−0.2, 3). This comparison of

signalling and pooling payoffs accords well with Spence (1973), where for higher fractions of good
types in the population, the payoff to the good type from signalling is lower relative to pooling.
In Spence’s model, the reason is that for a higher prior there is less scope for the belief to rise (the
posterior is 1 after the signal). In the present model this mechanism does not work, because the
rise in belief after a good signal is highest for intermediate priors.
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Figure 7. From bottom to top: wL for signalling regions (−3, 3), (−1, 3), (1, 3)
and ∅. The parameters are r = σ2 = 1.

Figure 8. wH for signalling region (−1.5, 3) (the curve that is lower on the right),

and exp(l)
r(1+exp(l))

. The parameters are AH = 0.1 and r = σ2 = 1.

As r or σ2 increases, the payoff of H from a signalling equilibrium falls relative to pooling.
Intuitively, patience favours signalling and noise favours pooling. Across values of r and σ2, the
payoff difference between signalling and pooling can be positive or negative.

For the L type, as r increases, the payoff from a signalling equilibrium increases relative to
pooling and the level of the payoff falls. Since in the signalling region L expects the receivers’ log
likelihood ratio (and L’s own future payoff) to fall, the more the future payoff matters, the worse
off the occurrence of signalling makes L. As σ2 increases, L’s payoff from a signalling equilibrium
increases—noise is good for L, since the receivers learn about the types more slowly.

The comparative statics are similar in the continuous time and one-shot models with binary
action. In both cases, the L type’s payoff is higher in a pooling equilibrium than in an equilibrium
with signalling. An increase in AH tightens ICH , while an increase in AL loosens ICL. A more
precise signal makes ICH easier and ICL harder to satisfy, increases the payoff of H and lowers that
of L from a signalling equilibrium relative to pooling. ICH is harder to satisfy at beliefs further
from 1

2
(log likelihood ratio further from zero), while ICL is tighter nearer to belief 1

2
.

The comparative static that differs from the one-shot model is that decreasing AH does not
unambiguously increase the set of signalling regions in the continuous time model.

In the one-shot model with a continuum of actions, the efforts of both types increase in the
precision of the signal. In the continuous time binary action model, this corresponds loosely to the
expansion of the widest possible signalling region as the noise decreases. A better comparison to
the one-shot model with a continuum of actions might be hoped from the continuous time model
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with a continuum of actions and quadratic cost. As Section 4 shows, this hope is not realized—
the quadratic cost case presents rather different behaviour in continuous time than in a one-shot
model. One reason might be that the noise structure in the one-shot model is quite different from
the Gaussian noise resulting from a Brownian motion in the continuous time model.

4. Quadratic cost of signal in continuous time

With quadratic cost of signalling effort, a continuum of different effort profiles of the types of
sender constitute equilibria due to unusual mathematical behaviour of the model. The divergence
from the usual solution path occurs when the equilibrium condition is imposed, so from the point of
view of the types of the sender, the optimization problem is standard. Conceptually, the continuum
of equilibria are a continuum of self-fulfilling expectations about the signalling efforts of the types.
The setup of the model resembles the binary action case in the previous section.

Time is continuous and the horizon is infinite. There is an infinitely lived strategic sender who
is one of two types, H or L, with probability µ0 of H. Both types of sender have discount rate r
and a bounded action set [0, e] at each t. The action (signalling effort) of type θ sender at time t
is denoted eθt.

The sender’s effort eθt determines the drift a signal process (Xt)t∈R+ , which is subject to Brownian
noise Bt. The signal process satisfies dXt = eθtdt+σdBt. The receivers at time t observe (Xτ )τ∈[0,t]
and, given the equilibrium actions (e∗Hτ , e

∗
Lτ )τ∈[0,t] of the types of the sender, form belief µt.

The utility of a sender of type θ at instant t is R(µt)− Aθ
2
e2θt, so the cost of effort is quadratic.

Both types of sender have the same benefit R(µ) from belief µ, but the H type has a lower cost of
effort. The benefit function R is assumed bounded, with R′ and R′′ bounded and continuous on
[0, 1].

Overall, the game consists of two stochastic control problems, one for each type, related by
an equilibrium condition. The solution procedure can be divided in two parts. First, given the
equilibrium strategies the receivers expect from the two types of sender, a standard stochastic
control problem is solved for each type to find the best response. Second, the chosen strategy is
set equal to the expected strategy for each type and the strategies are solved for. The unusual
mathematical features arise in the second part, where many strategies satisfy the equilibrium
condition that if the receivers expect a certain strategy, then it is optimal for the sender to choose
that strategy.

I focus on pure-strategy Markov stationary equilibria (the sender’s action depends only on the
belief of the receivers), where outside an interval of beliefs (µ, µ) both types choose eθ = 0 and
inside that interval at least one type chooses eθ > 0. Such equilibria are called interval equilibria.
The interval (µ, µ) is called the signalling region and its complement the pooling region. By the
same reasoning as in the binary action case, an interval equilibrium always exists.

Lemma 12. An interval equilibrium always exists.

Proof. Same as for Lemma 5. �

In the pooling region the belief does not change and both types optimally choose eθ = 0, so if
the belief reaches some µ the pooling region, both types get payoff R(µ) forever. In an interval
equilibrium the game essentially ends upon reaching any µ in the pooling region, with a final payoff
R(µ)
r

to both types.
In the signalling region, the receivers update their belief using the standard continuous time

Bayes’ rule

dµ = σ−2µ(1− µ)(e∗H − e∗L)[dXt − µe∗Hdt− (1− µ)e∗Ldt]. (5)



20 SANDER HEINSALU

This is also applicable in the pooling region: if e∗H = e∗L, then dµ = 0 and belief does not change.
In the signalling region it must be that e∗H > e∗L, otherwise belief would fall or remain constant in
the costly signal, which would make both types deviate to eθ = 0. As a sufficient condition for the
belief process to be well-defined and unique, assume the receivers expect strategies e∗H(µ), e∗L(µ)
that are Lipschitz in µ. It will turn out that the sender has a best response that is Lipschitz, so
this assumption can be satisfied.

Lemma 13. If the receivers expect strategies e∗H(µ), e∗L(µ) that are Lipschitz in µ, then there is a
unique belief process satisfying Eq. (5).

Proof. If for any control eθ, the drift and variance in Eq. (5) are bounded and Lipschitz in belief,
then by Theorem 3.1 of Touzi (2013), Eq. (5) has a unique strong solution. Since e∗H(µ), e∗L(µ) are
Lipschitz in µ by assumption and the action space [0, e] is bounded, the drift of the belief process
σ−2µ(1− µ)(e∗H(µ)− e∗L(µ))(eθ − e∗H(µ)µ− (1− µ)e∗L(µ)) and the variance σ−2µ2(1− µ)2(e∗H(µ)−
e∗L(µ))2 are both Lipschitz in µ and bounded. �

Both types of the sender maximize their expected discounted payoff by choosing Markov sta-
tionary control processes eH , eL. The solutions to these control problems can be written as
value functions. Define T̂t,µt as the first exit time after t of the µ process from (µ, µ), i.e.

T̂t,µt = inf
{
τ > t : µτ /∈ (µ, µ)

}
≤ ∞. In the signalling region, the value function of type θ is

Vθ(µt) = sup
eθ(·)

E
∫ T̂t,µt

t

exp(−rs)
[
R(µs)−

Aθ
2
e2θ(µs)

]
ds+ exp(−rT̂t,µt)

R(µT̂t,µt
)

r
1
{
T̂t,µt <∞

}
,

where 1 {A} denotes the indicator function for the set A. The interpretation of the value function
expression is straightforward: the agent gets flow benefit R(µ) depending on µ and chooses the
optimal signalling effort eθ at each µ, which determines the flow cost. When the belief exits the
signalling region (if ever), the sender gets R(µT̂t,µt

) forever, where µT̂t,µt
is the value of µ upon exit.

The same observations as in the binary action case can be made about the value functions.

Lemma 14. Vθ is finite for θ = H,L. VH ≥ VL, with strict inequality in the signalling region. Vθ
is strictly increasing.

Proof. Same as for Lemma 7. �

With a concave R, the L type strictly prefers pooling to signalling, in the sense that for any
belief of the receivers, the payoff of L is higher in a pooling equilibrium than with signalling.

Proposition 15. If R is weakly concave, then VL(µ) < R(µ)
r

for all µ in the signalling region.

Proof. Same as for Proposition 8. �

To solve the control problems of the types of the sender, the HJB equations are solved and a
verification theorem is used to check that the solutions of the HJB equations coincide with the
value functions. To use Theorem 11.2.2 of Øksendal (2010) to prove that the solutions vH , vL of the
HJB equations equal the value functions VH , VL, it is sufficient that vH , vL are twice continuously
differentiable on (µ, µ), continuous on [µ, µ] and integrable in the probability law of µ given the
starting state µ0, uniformly over Markov controls eH , eL. As will be seen, these conditions are
satisfied by the solutions of the HJB equations.

Under these conditions, Theorem 11.2.3 of Øksendal (2010) shows that the optimal Markov
control does as well as the optimal nonanticipating control, so if the receivers expect Markov
strategies, then both types of the sender have a Markov best response. This does not imply
that the payoffs of all non-Markov equilibria can be attained with Markov equilibria, since in a
non-Markov equilibrium the receivers expect non-Markov strategies.
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The HJB equation of type θ = H,L is

rvθ(µ) = max
eθ
{R(µ)− Aθ

2
e2θ

+ v′θ(µ)σ−2µ(1− µ)(e∗H − e∗L) [eθ − µe∗H − (1− µ)e∗L] + v′′θ (µ)
µ2(1− µ)2(e∗H − e∗L)2

2σ2
}.

The FOC of the type θ HJB equation is −Aθeθ+v′θσ
−2µ(1−µ)(e∗H−e∗L) = 0, so given the expected

equilibrium actions, both types have a unique optimal action eθ =
v′θµ(1−µ)(e

∗
H−e

∗
L)

Aθσ2 . The SOC is
−Aθ < 0 for all eθ, so the FOCs are necessary and sufficient for a strict global maximum. This is
not surprising, because the cost is quadratic and the benefit is linear in the control variable eθ.

Thus far, the control problems of the two types of the sender were solved for a given pair of
equilibrium strategies expected by the receivers. For the second part of the solution of the signalling
game, the equilibrium condition eθ = e∗θ is imposed. The L type FOC then becomes

e∗L(µ) =
v′L(µ)µ(1− µ)

ALσ2 + v′L(µ)µ(1− µ)
e∗H(µ). (6)

Substituting for e∗L in the H type FOC gives AHe
∗
H = v′Hσ

−2µ(1 − µ)
[
1− v′Lσ

−2µ(1−µ)
AL+v

′
Lσ
−2µ(1−µ)

]
e∗H .

Therefore for any µ, either e∗H(µ) = 0 = e∗L(µ) or AHAL+AHv
′
L(µ)σ−2µ(1−µ) = ALv

′
H(µ)σ−2µ(1−

µ). The latter is equivalent to

v′H(µ) =
AHσ

2

µ(1− µ)
+
AH
AL

v′L(µ). (7)

The only corner solution is e∗H = e∗L = 0. Other corner solutions would involve e∗H(l) > 0 and
e∗L(l) = 0 for some l in the signalling region. The H type control problem has an interior solution
if e∗H(l) > 0 and the H type FOC is then satisfied. This implies an equation similar to (6), except
derived from the H type FOC, requiring both e∗H and e∗L to be positive or both zero.

The relationship between the efforts and payoffs of the two types given by Eqs. (6) and (7) is
similar to the one-shot model with quadratic cost, where e∗L = AH

AL
e∗H and the expected utilities of

the types are linearly related. This is not surprising, as in both cases the conditions are derived
from the FOCs of quadratic problems with a similar structure.

The following Lemma gives conditions on solutions of the HJB equations that are sufficient for
these solutions to form an interval equilibrium with a nonempty signalling region (a separating
equilibrium). The following Proposition 17 provides restrictions on parameters that are sufficient
for the existence of a particular kind of separating equilibrium.

Lemma 16. e∗L, e∗H , vL and vH constitute an interval equilibrium with signalling region (µ, µ),
where µ < µ, if all of the following hold

(1) e∗L, e∗H , vL satisfy Eq. (6) for all µ ∈ (µ, µ),
(2) vL and vH satisfy Eq. (7) for all µ ∈ (µ, µ),
(3) vL, vH are twice continuously differentiable on (µ, µ),
(4) vL, vH are continuous on [µ, µ],
(5) vL, vH are integrable in the probability law of µ given the starting state µ0, uniformly over

Markov controls eH , eL,
(6) e∗L, e

∗
H are Lipschitz in µ,

(7) 0 < e∗L, e
∗
H ≤ e,

(8) vL ≤ vH .

Proof. If µ < µ, then Eqs. (6) and (7) together are necessary and sufficient for e∗L, e∗H , vL and vH
to solve the HJB equations and satisfy the equilibrium condition.
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If vL, vH are twice continuously differentiable on (µ, µ), continuous on [µ, µ] and integrable in
the probability law of µ given the starting state µ0, uniformly over Markov controls eH , eL, then
by Theorem 11.2.2 of Øksendal (2010), vL and vH coincide with the value functions VL and VH .
In that case, e∗L, e∗H are the optimal Markov controls for VL and VH and by Theorem 11.2.3 of
Øksendal (2010), e∗L and e∗H maximize VL and VH in the class of all nonanticipating controls.

The Lipschitz condition on e∗L, e
∗
H is sufficient for the belief process to be well-defined (Lemma 13).

The restrictions 0 < e∗L, e
∗
H ≤ e and VL ≤ VH come from first principles and Lemma 14. �

Proposition 17. VH(µ) = R(µ)
r

, VL(µ) =

{
ALR(µ)
AHr

− ALσ2 [ln(µ)− ln(1− µ)] if µ ∈ (µ, µ)
R(µ)
r

if µ /∈ (µ, µ)
,

e∗H = 1
{

(µ, µ)
}

and e∗L(µ) =

{
1− AHrσ

2

R′(µ)µ(1−µ) if µ ∈ (µ, µ)

0 if µ /∈ (µ, µ)
form an interval equilibrium with

signalling region (µ, µ) if the following hold

(1) e > 1,
(2) µ < µ satisfy

R(µ) =
ALAHrσ

2

AL − AH
[ln(µ)− ln(1− µ)] , R(µ) =

ALAHrσ
2

AL − AH
[
ln(µ)− ln(1− µ)

]
, (8)

(3) R′(µ)
r

> AHσ
2

µ(1−µ) for all µ ∈ (µ, µ),

(4) R(µ)
r
≤ ALAHσ

2

AL−AH
[ln(µ)− ln(1− µ)] for all µ ∈ (µ, µ).

Proof. For VH , VL, e∗H and e∗L to form an interval equilibrium with signalling region (µ, µ), it is
sufficient that they satisfy the assumptions of Lemma 16. Here by definition, e∗L, e∗H , VL satisfy
Eq. (6) and VL and VH satisfy Eq. (7) for all µ ∈ (µ, µ).

Since R is assumed bounded and twice continuously differentiable, VH , VL are twice continuously
differentiable on (µ, µ), bounded and integrable in the probability law of µ given the starting state
µ0, uniformly over Markov controls eH , eL.

The payoff in the pooling region provides the boundary conditions Vθ(µ) =
R(µ)

r
and Vθ(µ) =

R(µ)
r

. Since Vθ is twice continuously differentiable on (µ, µ), for it to be continuous on [µ, µ]

it is sufficient that limµ→µ+ Vθ(µ) =
R(µ)

r
and limµ→µ− Vθ(µ) = R(µ)

r
. These conditions clearly

hold for VH = R(µ)
r

. For VL, they hold iff Eqs. (8) hold. This may be seen by rearranging

limµ→µ+ VL(µ) =
ALR(µ)

AHr
− ALσ2

[
ln(µ)− ln(1− µ)

]
=

R(µ)

r
= VL(µ).

If R′(µ)
r

> AHσ
2

µ(1−µ) , then e∗L(µ) > 0. In the signalling region, e∗H > 0 holds by definition. By the

assumption e > 1, we have e∗H , e
∗
L < e.

VH(µ) ≥ VL(µ) may be written as R(µ)
r
≥ ALR(µ)

AHr
− ALσ

2 [ln(µ)− ln(1− µ)], or equivalently
R(µ)
r
≤ ALAHσ

2

AL−AH
[ln(µ)− ln(1− µ)]. �

Slightly perturbing vH and e∗H (while ensuring e∗H ≤ e) in Proposition 17 and again deriving vL
and e∗L from (7) and (6) results in a different interval equilibrium with the same signalling interval.
Proposition 17 essentially says that in a certain parameter region, there is a degree of freedom in
specifying e∗L, e∗H and also in specifying vL, vH . In the signalling region, fixing one of e∗L, e∗H and
one of the other three functions determines the remaining two via Eqs. (6) and (7). The degree
of freedom is specific to the model with a quadratic cost of effort and does not have a natural
interpretation.

Despite the quadratic cost of effort and the bounded benefit from belief, it is possible to have
arbitrarily large signalling efforts in equilibrium. The key is that the difference in efforts also



CONTINUOUS TIME NOISY SIGNALLING 23

becomes large and the drift and volatility of the belief process are proportional to this difference.
With large efforts, beliefs quickly move out of the region where the equilibrium prescribes the large
efforts. As the cost of effort gets large, it is only paid for a very short time in expectation. This
may be the case for many other cost functions, but only with quadratic cost is the increase in the
effort cost exactly offset by the decrease in the duration of the effort.

5. Conclusion

This paper presents two models of noisy signalling in continuous time. One has a binary action
for both types of the sender, the other has a continuum of actions with quadratic cost. In both
cases, equilibrium behaviour (the set of equilibria where signalling occurs in an interval of beliefs)
is characterized, as well as the equilibrium payoffs.

Overall, the continuous time signalling model with binary action yields intuitive comparative
statics results. More patience, less noise and a lower signalling cost encourage signalling, which
is good for incentivizing the good type to signal, but bad because it may encourage the bad type
to signal as well. The range of beliefs for which signalling can occur (size of the largest signalling
region) expands as the signalling cost of the good type falls.

The payoff of the bad type from a signalling equilibrium is always below that from pooling and
decreases as the range of beliefs for which signalling occurs expands. For the good type there is
no clear payoff comparison between signalling and pooling equilibria.

The dependence of the payoffs of the types on parameters is intuitive. Patience increases the
payoff of the good type from a signalling equilibrium relative to pooling, and noise decreases it.
For the bad type the situation is reversed—patience lowers the relative payoff from a signalling
equilibrium and noise raises it. All the above results are in line with the one-shot noisy signalling
model where the sender has a binary action. The difference from the one-shot model is in the
effect of the signalling cost of the good type—decreasing it always expands the set of beliefs where
signalling can occur in the one-shot model, but has an ambiguous effect in the continuous time
model.

The continuous time noisy signalling model with a continuum of actions and quadratic cost
exhibits unusual mathematical behaviour. It has many equilibria even for a fixed region of beliefs
where signalling occurs. Generally there is a continuum of possible signalling regions.

The set of separating equilibria expands as the difference of the signalling costs of the types
increases, patience increases or noise decreases. In the binary action model, the counterpart of the
effect of the difference of the signalling costs is the expansion of the set of separating equilibria as
the cost of the good type decreases or the cost of the bad type increases.

The one-shot noisy signalling model with a continuum of actions has fewer equilibria than the
corresponding noiseless model. For the one-shot model with binary action, the comparison is not
clear. Both noiseless and noisy repeated signalling models have a large set of equilibria, but for
different reasons. In the noiseless models, off-path beliefs may be used to provide incentives for a
wide range of behaviours and the signalling cost can be distributed in many ways over time. In
the noisy models, there are many possible self-fulfilling beliefs about the set of receivers’ beliefs at
which the sender chooses to signal. With quadratic cost, another source of equilibrium multiplicity
is a feature of the mathematics of the problem, without an obvious conceptual foundation.
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