
DRAFT – PLEASE DO NOT DISTRIBUTE
COMMENTS SOLICITED

Framing Games: Evidence-Based Decision Making in an
Adversarial Setting∗

Luke M. Froeb† Bernhard Ganglmair‡ Steven Tschantz§

January 14, 2013

Abstract

We study framing in an adversarial setting by turning the scientific process upside
down. Instead of objective truth seekers who formulate hypotheses and then gather
evidence to test them, we introduce a class of games between self-interested parties
who frame existing evidence to influence a decision maker. The decision maker chooses
between the frames based on the likelihood of each, which allows us to characterize the
equilibrium decision as a statistical estimator. We find that the estimator is generally
biased, and the bias favors the party with the more extreme claim. However, the bias
disappears as the amount of evidence grows, and for certain classes of distributions,
this kind of adversarial framing performs better than objective inquiry.

JEL classification: C11; C12; D72; D74; D83; K41

Keywords: frames, counterframes, evidence-based decision making, adversarial justice, Bayesian
hypothesis testing, litigation games

∗We wish to acknowledge thoughtful discussions with Ed Cheng, Rebecca Haw, Brian McCann, Martin
Schonger, Emanuele Tarantino, and conference and seminar participants at EARIE 2012, ETH Zurich, the
Naval Postgraduate School, the University of Bologna, and Vanderbilt University.
†Vanderbilt University, Owen Graduate School of Management, 401 21st Avenue South, Nashville, TN

37203, USA. e-mail: luke.froeb@owen.vanderbilt.edu
‡The University of Texas at Dallas, Naveen Jindal School of Management, 800 W. Campbell Rd. (SM31),

Richardson, TX 75080, USA. e-mail: ganglmair@utdallas.edu
§Vanderbilt University, Department of Mathematics, Nashville, TN 37240, USA. e-mail:

tschantz@math.vanderbilt.edu



1 Introduction

Many institutions and organizations are designed to make decisions in an adversarial setting.
The most obvious example is the judiciary, where litigants propose competing theories of
the case, and the court chooses between them. A two-party political system shares some of
the same characteristics. Less obvious examples are firms or agencies whose divisions pursue
objectives that are different from those of sister divisions. In each of these settings, a final
arbiter (the court, the electorate, or the manager) resolves disagreements (among litigants,
political parties, or divisions of a firm), often by appealing to evidence.

The justification for this appeal is the scientific method which helps decision makers
distinguish between hypotheses whose predictions are consistent with evidence and those
whose predictions are not. Modern statistical decision theory makes precise this notion and
validates it with theorems about consistency and efficiency (e.g. DeGroot, 1970). However, it
is a stretch to think that the scientific method is a good description of behavior in adversarial
settings. Instead of objective truth seekers who formulate ex-ante hypotheses and then gather
evidence to test them, we have self-interested parties who frame existing evidence to influence
a decision maker. The question motivating this paper is how framing affects decsion making
in such a setting.

To answer it, we introduce a class of normal form games of complete information between
two self-interested players who strategically frame data after they have been produced. In
this context, a “frame” is a hypothesis about the data-generating process chosen from a
(common knowledge) family of admissible distributions. A non-strategic decision maker1

chooses between competing frames based on the likelihood of each, and the players receive
a payoff based on the decision. These payoffs, e.g., a payment from one player to another,
is a taken to be a weighted average of the claims, and because more credible claims should
win proportionally more often, the expected payoff is a credibility-weighted average of the
competing claims. Unlike assumed in Daughety and Reinganum (2000a), the credibility of
claims is not fixed but is determined endogenously.

In choosing an optimal frame, each player faces a tradeoff between credibility (the likeli-
hood that the data were generated by the asserted process) and value (following a favorable
decision) of a frame. Moreover, each player also takes the anticipated frame by its rival into
account when choosing its own frame. We solve for the Nash equilibrium (Proposition 1) and
provide conditions under which it is unique (Lemma 2). Uniqueness is not a crucial result
as multiple equilibria are payoff-equivalent. We then argue that the Nash-equilibrium out-
come has properties like those of a statistical estimator of the mean of the data-generating
process. Compared to the maximum likelihood estimate, the equilibrium outcome of the
framing game is unbiased if the players’ choice set is symmetric. The estimator is biased
otherwise, where the bias favors the player with the more extreme frame (Propositions 2 and
3). However, the bias disappears as the amount of data grows (Proposition 4). We conclude
the paper by illustrating that for certain classes of distributions, this kind of adversarial
framing performs better than objective inquiry.

1In the litigation setting, the adversarial process puts limits on the ability of the decision maker to drawing
inference from the behavior of the players. The assumption of nonstrategic behavior by the decision maker
thus comports well with practice (Daughety and Reinganum, 2000a:505). For a discussion of the role of the
decision maker’s sophistication in the litigation game literature, see Froeb and Kobayashi (2012).
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Our findings contribute to several different strands of literature, discussed below. We
contribute to the economic literature on evidence production and revelation by focusing on
the interpretation of evidence after it has been produced. Most of the literature focuses on
the incentives of the parties to produce and reveal evidence. In contrast, we study how parties
optimally frame the evidence after its production. As such, our approach can be viewed as
opening up the “trial” black box in litigation games to show exactly how decision makers
reach decisions. Equivalently, the chosen approach can be viewed as a subgame that is played
after evidence has been produced and discovered. We show that this subgame matters, and
that ignoring it may miss important dimensions of competition between adversaries.

The paper also touches upon the literature on persuasion. However, unlike the recent
work by Kamenica and Gentzkow (2011) or Dziuda (2011) that considers only one persuader,
we assume two persuaders with opposing interests. We also contribute to the rhetorical
literature on framing by formally modeling framing in an adversarial context. The model
allows us to better understand why different frames and counterframes are chosen and what
they mean. For example, we identify situations where one of the parties claims that the
evidence is not very informative, and so should be given little weight. This ”obfuscation
strategy” is used to explain away unfavorable evidence, and essentially sacrifices credibility
to gain a higher payoff.

The structure of the paper is as follows. In Section 2 we discuss the related literature.
We illustrate the main ideas of the paper with a simple framing game in a litigation context
in Section 3. In Section 4 we present a general characterization of the game and provide
proofs for the formal results. We discuss applications in Section 5 and conclude in Section 6.

2 Related Literature

Our analysis of framing touches upon a number of different strands of research. Decision
making in an adversarial setting has been extensively studied in the context of the legal
system. Daughety and Reinganum (2000a) model the behavior of a trial court that is con-
strained by the “rules of evidence, procedure, and higher court review” (p. 502). Here,
courts aggregate credible evidence presented by the litigants, subject to these constraints.
In Daughety and Reinganum (2000b) they extend their model and study the production of
this evidence by the litigants in an effort to understand the “source and nature of biases
that arise in an adversarial system” (p. 366). Evidence is assumed to be credible, and the
evidence presented is strategically chosen by the litigants. We take a different approach by
assuming that evidence is a given, and litigants present their theories as to how the evidence
was generated. The issue in our paper is therefore not one of the credibility of the evidence,
but of an endogenization of the credibility of the assertions the litigants make—given this
evidence—in an adversarial system.

By assuming a (potentially) rule-constrained decision maker that observes the evidence
and the litigants’ theories of the case and then updates her “beliefs” about the evidence-
generating process, our approach is similar to some recent legal literature that models judges’
or juries’ decision making using the metaphor of statistical hypothesis testing (e.g., Cheng,
2012). The positive justification for using the metaphor are the many similarities between
legal decision making and hypothesis testing, e.g., updating after seeing evidence, binary
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decisions, and Type I and Type II errors (Saks and Neufeld, 2011). The metaphor has been
criticized as leading to a false sense of precision, as it makes objective that which is inherently
subjective (Tillers, 2011).

Within the literature on litigation games, our analysis also touches upon evidence (i.e.,
information) production (e.g., Gilligan and Krehbiel, 1997; Froeb and Kobayashi, 1996,
2001, 2012; Yilankaya, 2002) and revelation (e.g., Milgrom and Roberts, 1986; Shin, 1994;
Gentzkow and Kamenica, 2012). However, while this literature studies the incentives to
produce and reveal information, we look at evidence interpretation in the subgame after
production and revelation.

The objective of our paper is similar to that of the persuasion literature, to understand
how persuasion affects decision making. A recent example is Kamenica and Gentzkow (2011)
who consider a setting in which a sender chooses a stochastic information generation process
(e.g., runs or commissions a clinical trial) and reports the realized signal to persuade a
rational decision maker. They find that a sender of information “can structure his arguments,
selection of evidence, etc., so as to increase the probability of conviction by a rational judge”
(Kamenica and Gentzkow, 2011:2590). Their approach of one sender and one receiver2,
however, does not apply to decision making or persuasion in an adversarial setting. Similar
in approach but different in objective are Gilligan and Krehbiel (1989) and Krishna and
Morgan (2001a) who study the submission of competing bills to a decision-making legislature
by two committee members with opposing biases; Krishna and Morgan (2001b) who show
that consulting two experts with opposing viewpoints can be better in deciding on the correct
action than consulting only one3; and Glazer and Rubinstein (2001) where two debaters with
opposing interests know the true state of the world and try to convince a listener.

In the literature on how best to rhetorically frame arguments to increase their persuasive-
ness, framing means selecting “some aspects of a perceived reality . . . [to] make them more
salient . . . , in such a way as to promote a particular problem definition, causal interpretation,
moral evaluation, and/or treatment recommendation . . . ” (Entman, 1993:52). Recently, this
line of research has noted that “virtually all public debates involve competition between con-
tending parties to establish the meaning and interpretation of issues” (Chong and Druckman,
2007:100) which has led to the notion of counterframes, offered in competition to the original
frame (Brewer and Gross, 2005). Several scholars have presented case studies of framing in
an adversarial context (McCright and Dunlap, 2000; Roth, Dunsby, and Bero, 2003; Dugan,
2004; Squires, 2011). Others have studied how individuals react to frames and counterframes
(Schniderman and Theriault, 2004; Chong and Druckman, 2007; Hansen, 2007). The work
closest to ours is Wedeking (2010) who asks “how do the parties strategically choose which
frames to employ.” He uses a theory of rhetoric to develop a typology of issue frames and
then provides empirical evidence that parties choose frames based not only on the evidence,
but also on the rival’s frame.

2See Dziuda (2011) for a related analysis.
3Kawamura (2011) demonstrates that as the number of agents increases, extreme (or exaggerated) mes-

sages become less informative
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3 Framing in a Simple Litigation Game

Imagine that a plaintiff (P ) sues a defendant (D), and the issue before the court is whether
the defendant is liable for damages. Before trial, evidence z̄ = (z1, z2, ..., zn), with zi ∈ [0, 1],
is produced and discovered, and the parties offer competing theories of the case to explain how
the evidence is related to the liability of the defendant. We model evidence as independent
draws from an unknown probability distribution. The plaintiff asserts that this distribution
is fP (zi) ∈ F while the defendant asserts it is fD(zi) ∈ F where F is the set of admissible
distributions. A “frame” is thus a hypothesis about the evidence-generating process.

The distinguishing feature of our modeling approach is that the parties choose how to
frame the dispute and then the decision maker chooses between the frames. Formally, let γ
be the prior weight the decision maker places on the plaintiff’s theory of the case, and let
(1− γ) be the prior weight on the defendant’s theory. The decision maker updates its prior
belief about the evidence-generating process, f0 = γfP + (1− γ) fD, using Bayes’ rule,

θ

1− θ
=

γ

1− γ
· LP

LD

(1)

where

LP :=
n∏
i=1

fP (zi) and LD :=
n∏
i=1

fD(zi) (2)

are the likelihoods of the parties’ respective frames. Equation (1) says that the posterior
odds are the prior odds times the likelihood ratio (i.e., the odds for P ’s frame to D’s frame
given by the data, also referred to as the Bayes factor). After updating, the court’s posterior
belief about the evidence-generating process is

f1 = θfP + (1− θ)fD,

where

θ =
γLP

γLP + (1− γ) LD

(3)

is obtained from equation (1). With damages normalized to unity, we assume the expected
award to the plaintiff P (and thus the expected payment by the defendant D) is the posterior
mean

µ1 = θµP + (1− θ)µD =
γLPµP + (1− γ) LDµD
γLP + (1− γ) LD

(4)

where µP and µD are the mean values of the evidence under the two framing distributions,
with µj =

∑n
i=1 zifj(zi) for j = P,D. We refer to this mean values of the evidence as the

parties’ claims. The plaintiff’s payoff is thus a likelihood-weighted average of the competing
claims.

The dispute is a zero-sum game where a plaintiff P and defendant D simultaneously
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choose frames fP ∈ F and fD ∈ F . The expected payoffs, as a function of the two
competing frames, are µ1(fP , fD) for the plaintiff and −µ1(fP , fD) for the defendant. A
pure-strategy Nash equilibrium of this game is a strategy profile (f ∗P , f

∗
D) ∈ F × F such

that

µ1(f
∗
P , f

∗
D) ≥ µ1(fP , f

∗
D) ∀fP ∈ F , and

µ1(f
∗
P , f

∗
D) ≤ µ1(f

∗
P , fD) ∀fD ∈ F .

(5)

We illustrate the equilibrium of this game and the main results assuming the evidence is
the result of ten independent coin tosses where zi = 1 if Head and zi = 0 if Tail. We view
these coin tosses as n = 10 independent draws from a binomial distribution where k is the
number of Heads and n−k is the number of Tails. This defines the set of admissible frames,
i.e., F = {f(k|n = 10, p) : p ∈ (0, 1)} with p the probability of Head. Because k and n are
fixed, pP and pD are the parties’ only choice variables. These probabilities can be viewed
as the parties’ claimed liability assessments, or claims. The set of admissible frames in this
binomial framing game can thus be redefined as P ∈ [0, 1] so that pj ∈ P for j = P,D.
A pure-strategy Nash equilibrium of this game is a strategy profile (p∗P , p

∗
D) ∈P ×P such

that p1(p
∗
P , p

∗
D) ≥ p1(pP , p

∗
D) for all pP ∈P and p1(p

∗
P , p

∗
D) ≤ p1(p

∗
P , pD) for all pD ∈P with

p1(pP , pD) = θpP + (1− θ) pD. (6)

In Table A1 we present numerical results for the equilibria of the binomial framing game
for values of k ranging from 0 to 10 and a prior weight γ = 1/2. For instance, let k = 3. In
the pure-strategy Nash equilibrium the plaintiff’s claim is p∗P = 0.464 and the defendant’s
claim is p∗D = 0.184. The posterior weight is θ = 0.459 so that the outcome as likelihood-
weighted average of the competing claims is p1(0.464, 0.184) = 0.312. This posterior mean of
the evidence is above the maximum likelihood estimator, p̂MLE = 3/10.

We graph this equilibrium outcome in Figure 1. The competing frames are represented
by the probability density functions f ∗P = f(k|10, p∗P = 0.464) [dashed line] and f ∗D =
f(k|10, p∗D = 0.184) [solid line]. The Court’s posterior belief f ∗1 = θf ∗P + (1− θ) f ∗D is the
likelihood-weighted average of the two frames, i.e., probability density function f ∗P and f ∗D
[dotted line]. The posterior mean 10 · p1(p∗P , p∗D) = 3.1 is plotted with a vertical dotted
line, just to the right of the solid vertical line at k = 3 which corresponds to the maximum
likelihood estimate. The decision maker places less weight, 0.459 vs. 0.541, on the more
extreme claim, made by the plaintiff, because it is further from the data, |p∗P − p̂MLE| >
|p∗D−p̂MLE|, and therefore less credible, f(3|10, p∗P = 0.464) < f(3|10, p∗D = 0.184). However,
the bias of the posterior mean, measured as the difference between p̂MLE and p1(p

∗
P , p

∗
D), in

equilibrium favors the party with the more extreme claim. For evidence in favor of the
defendant (a low number of Heads, k = 3) the favored party is the plaintiff; for evidence in
favor of the plaintiff (a high number of Heads, e.g., k = 8) the bias is against the plaintiff.

4 A General Framing Game

The simple model above captures a litigation setting in which a plaintiff and a defendant each
propose competing theories of the case, and a court as decision maker delivers a verdict that
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Figure 1: Binomial Framing Game with Three Heads (k = 3)
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takes the liability assessments under these theories as well as their credibility (likelihood of
the assessment given the evidence) into account. The outcome of litigation (i.e., the verdict)
is a payment which is a simple transfer from the defendant to the plaintiff. Applying Bayes’
rule, the payment is a weighted average of the credibility assessments, and because more
credible theories should win proportionally more often, the expected award for the plaintiff
is a credibility weighted average of the competing assessments.

In this section we present a more general model of the framing game. Given existing
data, two players each present their frames or hypotheses of the data-generating process.
A frame consists of a claim y (analogous to a liability assessment) that is directly payoff
relevant and the credibility w of the claim that captures the likelihood of the claim given
the data. This credibility w is analogous to the likelihood-weights in equation (4). These
weights are constrained by the feasible set; and in the previous section this set corresponded
to the likelihood function of the binomial distribution. For convenience, we will often refer
to the incredibility x of the claim which is defined as the reciprocal of the credibility. The
payoffs of the game are determined by a payment v from player ‘−’ (the defendant) to player
‘+’ (the plaintiff) that is a credibility-weighted average of the players’ claims.

4.1 Definition and Existence of Equilibrium

We first provide a formal definition of the game. Our approach endogenizes the credibility
of claims, thus extending the trial technology results by Daughety and Reinganum (2000a)
to account for the adversarial nature of litigation and other situations of evidence-based
decision making. We then discuss a geometrical interpretation of the game before we give
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conditions under which a Nash equilibrium of the framing game exists. The remainder of
this section derives the results for the (un)biasedness and consistency of the estimator.

DEFINITION 1 (A Framing Game). Suppose non-empty sets S+ ⊆ R+ × R and S− ⊆
R−×R are given where R+ and R− are the sets of strictly positive and strictly negative real
numbers, respectively. A framing game Γ(S+, S−) is a two-person zero-sum game in which
players ‘+’ and ‘−’ simultaneously choose actions s+ = (x+, y+) ∈ S+ and s− = (x−, y−) ∈
S−. For a pair of actions s+ ∈ S+ and s− ∈ S−, the payment from player ‘−’ to player ‘+’
is a weighted average of values of yj with weights wj = 1/|xj|:

v(s+, s−) =
w+y+ + w−y−
w+ + w−

=
x+y− − x−y+
x+ − x−

. (7)

For action (xj, yj) ∈ Sj, call yj the “claim,” call |xj| the “incredibility” of the claim, and
call the weight wj = 1/|xj| the “credibility” of the claim.

The payment rule in equation (7) is the outcome of a potentially rule-constrained deci-
sion making process, such as in liability litigation where equation (7) represents the court’s
liability assessment based on the presented evidence and the litigants’ theories of the case.
We therefore endogenize the credibility of claims; more specifically, a “theory of the case”
in our analysis consists of both a claim and its credibility. This is quite contrary to the
approach in Daughety and Reinganum (2000a) who assume fixed credibility of claims4 and
propose axioms of trial court behavior that are “broadly descriptive of (rule-constrained)
decision making” (p. 506). Below, we reproduce these axioms for fixed levels of incredibility
xj. This allows for a straightforward assessment of where our analysis differs.

DEFINITION 2. For notational convenience, let ṽ(y+, y−) ≡ ṽ(y+, y−|x+, x−) be the pay-
ment rule for fixed values of x+ and x−.

A1. Strict Monotonicity: ∂ṽ(y+, y−)/∂y+ > 0 and ∂ṽ(y+, y−)/∂y− > 0

A2. Interiority: max {y+, y−} ≥ ṽ(y+, y−) ≥ min {y+, y−}

A3. Homogeneity: ṽ(λy+, λy−) = λṽ(y+, y−) for all λ > 0

A4. Symmetry: for all y+ 6= y−: ṽ(y+, y−) = ṽ(y−, y+)

A5. Independence of Presentation: For all a+, b+, a−, b− ∈ R such that a− 6= b−:

ṽ(ṽ(a+, a−), ṽ(b+, b−)) = ṽ(ṽ(a+, b−), ṽ(b+, a−)).

4“We abstract from the credibility assessment issue by assuming that both parties provide credible
evidence (any noncredible evidence having been discounted or discredited)” (Daughety and Reinganum,
2000a:507). As an alternative, they propose a two-stage approach where at stage 1 the credibility of ev-
idence is assessed “using a Bayesian approach”, and at stage 2 the defendant’s liability is assessed. We
assume that evidence has been presented (evidence is fixed), and its credibility and the defendant’s liability
are assessed in a single stage.
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Under strict monotonicity (A1) the payment v(s+, s−) = ṽ(y+, y−) is increasing in claim
yj; interiority (A2) means that the payment ṽ(y+, y−) lies within the two players’ claims.
It further implies that ṽ(y+, y−) is reflexive, i.e., if both players claim y, then ṽ(y, y) = y.
Homogeneity (A3) allows for proportional scaling of the claims. Symmetry (A4) means that
the role of players should not matter. Finally, Independence of Presentation (A5) guarantees
that the payment rule is “independent of such extraneous factors as the nature, style, or
sequence of presentation of the cases” (Daughety and Reinganum, 2000a:510). It is the
latter two axioms where our decision-making rule deviates from the trial court behavior in
Daughety and Reinganum (2000a). Our payment rule v(s+, s−) depends both on the claims
and the credibility of these claims. A crucial assumption of our analysis is that a more
extreme claim, i.e., one that is further away from the data, implies a lower credibility—an
implication at odds with the assumption of “fixed credibility” in Daughety and Reinganum
(2000a).

LEMMA 1. Let y+ 6= y− and x− > −∞. The payment rule v(s+, s−) is “strictly mono-
tonic” (A1), “interior” (A2), and “homogeneous” (A3). It is “symmetric” (A4) and “in-
dependent of presentation” (A5) if, and only if, the players’ claims have equal credibility,
1/x+ = w+ = w− = −1/x−.

The symmetry axiom (A4) and the independence axiom (A5) hold if, and only if, the
credibility of the players’ claims is the same. In that case, the role of the players and the
“nature of presentation” does not matter since claims come with the same relative weights.
Once credibility enters the payment rule v(s+, s−), the two axioms fail to hold. Our analysis
below sheds light on how endogenous credibility of the theories of the case affects decision
making.

The game in Definition 1 has a useful geometrical interpretation. We provide an illustra-
tion of this in Figure 2. Geometrically, S+ and S− are sets in the (x, y)-plane on opposite sides
of the y-axis, and v(s+, s−) is the y-intercept of the line connecting point s+ = (x+, y+) ∈ S+

with point s− = (x−, y−) ∈ S−. We can rewrite the payment rule in (7) as

v(s+, s−) = y− −m(s+, s−)x− = y+ −m(s+, s−)x+ (8)

where

m(s+, s−) =
y+ − y−
x+ − x−

(9)

is the slope of the line connecting points s+ and s−.
Player ‘+’ seeks to maximize the payments in v(s+, s−) whereas player ‘−’ seeks to

minimize them. Given any point s− = (x−, y−), to maximize v(s+, s−) = y− −m(s+, s−)x−,
since x− < 0, player ‘+’ will choose an s+ = (x+, y+) that maximizes the slope m(s+, s−).
Likewise, given any s+ = (x+, y+) player ‘−’ will choose an s− = (x−, y−) so as to minimize
v(s+, s−) = y+ −m(s+, s−)x+ and thus will also maximize the slope m(s+, s−).

The intuition of the players’ problems is depicted in Figure 2. Given an action s− by
player ‘−’, the best response for player ‘+’ is some action s′+ = (x′+, y

′
+) ∈ S+ such that

the line connecting s− and s+ rotates counter-clockwise in s− and the y-intercept increases
from v(s+, s−) to v(s′+, s−). Likewise, given an action s+ by player ‘+’, the best response for
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Figure 2: Geometry of Framing Games

y
S− ⊆ R− × R S+ ⊆ R+ × R

•
(x−, y−)

•
(x+, y+)

�
���

���
���

���
���

���
���

���
���

��

m

1

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
y

max v(s+, s−)

= maxm
•

(x′+, y
′
+)

#
#
#

#
#
#

#
#
#

#
#

#
#
#

#
#
#

#
#
#

#

z

min v(s+, s−)

= maxm

•
(x′−, y

′
−)

v(s′+, s−)

HH
H
j

v(s+, s−)

v(s+, s′−)

player ‘−’ is some action s′− = (x′−, y
′
−) ∈ S− such that the line rotates counter-clockwise in

s+ and the y-intercept decreases from v(s+, s−) to v(s+, s
′
−).

The following proposition provides a condition for the existence of a Nash equilibrium of
the framing game. Let

M(S+, S−) =

{
y+ − y−
x+ − x−

: (x+, y+) ∈ S+, (x−, y−) ∈ S−
}

(10)

be defined as the set of slopes of lines connecting a point in S− to one in S+.

PROPOSITION 1. A framing game Γ(S+, S−) has a Nash equilibrium
(
s∗+, s

∗
−
)

if and
only if the set of slopes M(S+, S−) contains a maximum value. If multiple Nash equilibria
exist then the payment rule exhibits the same slope, m∗, with the same y-intercept, v∗, for
all equilibria.

The requirement of M(S+, S−) containing a maximum value for the existence of a Nash
equilibrium puts some restrictions on the choice sets S+ and S−. For instance, the set of
slopes M(S+, S−) does not contain a maximum if

S+ = {x ∈ R : x ≥ x > 0} × R

so that the action space is not bounded. For such a S+ player ‘+’ can choose any claim
y+ without compromising the credibility of that claim, i.e., it can choose the lowest feasible
incredibility, x+ = x, for any y+. The best move is then to choose (x+, y+) = (x,∞), but
then no maximum exists because there is always an ε > 0 such that m((x,∞ + ε), s−) >
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Figure 3: Mininimum-Incredibility or Minimum-Unlikelihood U
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m((x,∞), s−), and M(S+, S−) is not bounded above. Likewise, suppose

S+ = R+ × {y ∈ R : y ≤ y <∞} .

so that the action space is not bounded. For such a S+ player ‘+’ can choose any incredibility
x+ for the highest feasible claim, y+ = y. Because for any such x+, there is an even smaller
x′+ = x+ − ε with ε > 0, i.e., a higher credibility for claim y+ = y, so that m((x+, y), s−) <
m((x++ε, y), s−), the set of slopes M(S+, S−) is not bounded above and no maximum exists.

The result in Proposition 1 allows us to put aside the issue of equilibrium multiplicity.
Any equilibrium exhibits the same slope and, more importantly, the same payment rule.
This implies that the outcome of the framing game, our main variable of interest, is unique
for all equilibria. For the remainder of the paper we assume that an equilibrium exists. More
specifically, S+ and S− are convex and compact sets. For the discussion of the equilibrium
properties below we will further assume that the equilibrium is unique. Conditions for
uniqueness are provided in Lemma 2 below.

Before we discuss the equilibrium properties in the next section, we reduce the action
space by an immediate implication of the slope-maximization argument made above and
further illustrated in Figure 3. Given y+ > y−, the action sj that maximizes the slope
m(s+, s−) is the one with the smallest feasible value of |xj|. This means, for a given claim
yj, player j chooses the most credible action sj. Consider player ‘+’ and a move s− by
player ‘−.’ For any given feasible claim y+, player ‘+’ chooses the smallest feasible x+
since, for s+ = (x+, y+) ∈ S+ and s′+ =

(
x′+, y+

)
∈ S+, m(s+, s−) > m(s′+, s−) for any

x′+ > x+. We define this smallest feasible x+ for a given y+ as the minimum-incredibility
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and denote it by U+(y+). The optimal (in)credibility of action s+ is thus determined by the
player’s choice of the claim y+, and the action space is S̃+ = {(U+(y), y) : y ∈ dom(U+)}.
Likewise for player ‘−’ who chooses the largest feasible x− (or: smallest |x−|). We denote
this minimum-incredibility, given some y−, by U−(y−). Player ‘−’s choice set is then S̃− =
{(U−(y), y) : y ∈ dom(U−)}.

Note that S̃+ and S̃− are the graphs of the functions U+ and U− turned 90◦ clockwise
so that the solution of the game is more simply related to slopes. If S+ and S− are mirrored
on the y-axis, then U+(y) = −U−(y). Moreover, if S+ and S− are [strictly] convex sets,
then the functions U+ and U− are [strictly] concave up (or: concave right for the sideways
orientation of the graph) and [strictly] concave down (or: concave left).5 This latter property
is by the fact that we defined U+ such that S+ is the epigraph of U+, S+ = epi(U+); and
U− is defined such that S− is the subgraph of U−, S− = sub(U−). A function is concave up
[concave down] if and only if its epigraph [subgraph] is convex (Rockafellar, 1970:23).

LEMMA 2. If the functions U+ and U− are strictly concave up and strictly concave down,
respectively, then the Nash equilibrium of Γ(S+, S−) is unique.

4.2 Equilibrium Properties

For the discussion of the properties of the equilibrium of the framing game, we assume that
players ‘+’ and ‘−’ are identical but their assigned roles. More specifically, we assume their
choice sets are mirrored on the y-axis so that U+(y) = −U−(y) = U (y) for claims y ∈ Y
where Y ⊆ R is a compact set. Moreover, let U (y) be a positive strictly concave up function
with unbounded derivatives. Given these assumptions, by Lemma 2 the game has a unique
Nash equilibrium in pure strategies. Write Γ(U ) = Γ(S+, S−) for the corresponding game
and v(U ) = v(s+, s−) for the payment rule of the game.

We interpret the equilibrium outcome v∗(U ) = v(s∗+, s
∗
−) as an estimator of the mean of

the data. Similar to the binomial example in the previous section, let there be a vector of
data z̄ = (z1, . . . , zn), zi ∈ Y , of n random draws from a probability distribution function
f ∈ F . The true function f is unknown; instead, the players propose data-generating
processes f+ ∈ F and f− ∈ F . Any such process fj can be characterized by two variables:

- the mean µj = Ej(zi) =
∑
zifj(zi) when zi ∈ Y are random draws from fj;

- the likelihood Lj =
∏
fj(zi) for the process fj given data z̄.

The likelihood-weighted average v∗(U ) of the means of the data under the competing
models f+ and f− is an estimator of the true mean, µtrue, of data z̄. Player ‘+’ prefers high
estimates of the mean of z̄ whereas player ‘−’ prefers low estimates of the mean of z̄. In terms
of the game in Definition 1 the claim yj can be interpreted as the claimed mean µj, and the
credibility wj of the claim can be interpreted as the likelihood Lj, so that |xj| = 1/Lj is the
unlikelihood of the data-generating process fj. In this likelihood interpretation, we define
U (µj) = min {1/Lj : Ej(zi) = µj} as the minimum-unlikelihood of a data-generating process

5We use the terminology “concave up” for convex functions and “concave down” for concave functions.
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fj having a specified mean µj ∈ Y . Given strict convexity of U , the minimum-unlikelihood
U has a unique minimum value at µMLE,

µMLE ≡ arg min
µ∈Y

U (µ) = arg max
µ∈Y
−U (µ). (11)

This µMLE is the mean of a maximum-likelihood model, or the maximum-likelihood estimator.

LEMMA 3. The players’ Nash equilibrium claims y∗+ and y∗− satisfy y∗− < µMLE < y∗+
and y∗− < v∗(U ) < y∗+. Moreover, in Nash equilibrium, the line connecting the points(
U (y∗−), y∗−

)
and

(
U (y∗+), y∗+

)
is tangent to U (y∗+) and −U (y∗−), implying

U ′(y∗+) = −U ′(y∗−) =
U (y∗+) + U (y∗−)

y∗+ − y∗−
=

1

m
. (12)

Equation (12) provides a straightforward equilibrium condition that formalizes the above
slope-maximization argument (illustrated in Figures 2 and 3). The line connecting the points(
U (y∗−), y∗−

)
and

(
U (y∗+), y∗+

)
must be tangent to the minimum-unlikelihood functions U

and −U evaluated at the equilibrium strategies.6

In equilibrium, both players will try to manipulate the outcome by shading their claims.
This means, player ‘+’ will present a claim higher than the claim with the maximum likeli-
hood, y∗+ > µMLE. This comes at the cost of lower credibility (because U (y) > U (µMLE)
for all y 6= µMLE) and thus a lower weight of claim y∗+ in the payment rule v(s∗+, s

∗
−). Player

‘−’, on the other hand, will present a claim lower than the maximum likelihood estimator,
also at the cost of its credibility. As a result, the players will in equilibrium offer different,
i.e., competing claims.

4.2.1 Unbiasedness

If v∗(U ) = µMLE, then the equilibrium outcome of the framing game is an unbiased esti-
mator (relative to the maximum likelihood estimator). The equilibrium outcome is biased if
otherwise.

PROPOSITION 2. Suppose U (y) is a positive strictly concave up function. If for such a
U there are two claims y′+ ∈ Y ⊆ R and y′− ∈ Y ⊆ R such that

U ′(y′+) =
U (y′+)

y′+ − µMLE

(13)

−U ′(y′−) =
U (y′−)

µMLE − y′−
(14)

U (y′+)

y′+ − µMLE

=
U (y′−)

µMLE − y′−
(15)

then y∗+ = y′+, y∗− = y′−, and the equilibrium outcome is an unbiased estimator of the mean
of the data, v∗(U ) = µMLE.

6Note that the expression in (12) is with the reciprocal of the slope, 1/m. This is because the slope in
equation (9) is defined in the 90◦ clockwise sideways view of the minimum unlikelihood functions.
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Observe that the RHS of the equilibrium condition in equation (12) in Lemma 3 is
less strict than the unbiased-equilibrium conditions (13)-(15) in Proposition 2. While the
former characterizes any Nash equilibrium, the latter guarantee an unbiased Nash equilibrium
outcome.

In order to analyze the properties of the Nash equilibrium further, let player ‘+’s claim
be y+ = µMLE + ∆y+ and player ‘−’s claim be y− = µMLE − ∆y−. We can therefore
characterize their claims as deviations from the maximum-likelihood estimator. We refer to
such deviations as shading. The payment rule can be rewritten as

v(s+, s−) = µMLE +
U (µMLE −∆y−)∆y+ −U (µMLE + ∆y+)∆y−

U (µMLE + ∆y+) + U (µMLE −∆y−)
. (16)

The equilibrium outcome v∗(U ) is an unbiased estimator if and only if

U (µMLE + ∆y∗+)

U (µMLE −∆y∗−)
=

∆y∗+
∆y∗−

, (17)

where ∆y∗+ and ∆y∗− are the players’ respective equilibrium deviations from µMLE. If this
condition (17) is not satisfied, then we say the equilibrium outcome has an upward bias,
v∗(U ) > µMLE, if

U (µMLE + ∆y∗+)

U (µMLE −∆y∗−)
<

∆y∗+
∆y∗−

, (18)

and a downward bias, v∗(U ) < µMLE, otherwise.
The conditions in Proposition 2 and equations (16)-(18) apply to any positive concave

up function U . Consider for example a symmetric function U where U is defined to be
symmetric if

U (µMLE + ∆y) = U (µMLE −∆y) for all ∆y > 0. (19)

For such a symmetric case, the Nash equilibrium satisfies the no-bias condition in equa-
tion (17). However, symmetry is not a necessary condition, and an asymmetric function U
where

U (µMLE + ∆y) 6= U (µMLE −∆y) for some ∆y > 0 (20)

may yield an unbiased equilibrium outcome. In the following Proposition we summarize the
estimator’s bias properties for a more restrictive shape of functions U what we call regular
asymmetry.

PROPOSITION 3. Suppose U is a positive strictly concave up function with unbounded
derivative and a minimum value at µMLE. Then

1. for a symmetric U the estimator is unbiased, v∗(U ) = µMLE; moreover,

14



2. for a regular asymmetric U with |U ′(µMLE+∆y)| < |U ′(µMLE−∆y)| for all ∆y > 0,
so that U (µMLE + ∆y) < U (µMLE −∆y), for all ∆y > 0, the estimator exhibits an
upward bias, v∗(U ) > µMLE;

3. for a regular asymmetric U with |U ′(µMLE+∆y)| > |U ′(µMLE−∆y)| for all ∆y > 0,
so that U (µMLE + ∆y) > U (µMLE − ∆y), for all ∆y > 0, the estimator exhibits a
downward bias, v∗(U ) > µMLE.

Given the convexity of U , the condition for an upward bias, |U ′(µMLE + ∆y)| <
|U ′(µMLE − ∆y)|, can be rewritten as U (µMLE + ∆y) < U (µMLE − ∆y). This latter
condition implies that shading y+ greater than µMLE gives a more likely theory than shading
y− less than µMLE by the same amount. Intuitively, player ‘+’s costs of shading are lower
than its rival’s, and as we show in the proof of Proposition 3, player ‘+’ will in equilibrium
shade more than its rival so that ∆y∗+/∆y

∗
− > 1. However, it is not obvious what this means

for the credibility of the claim. By condition (18), such a claim by player ‘+’ could be
more or less credible than its rival’s since both U (µMLE + ∆y∗+)/U (µMLE −∆y∗−) > 1 and
U (µMLE + ∆y∗+)/U (µMLE − ∆y∗−) < 1 potentially satisfy the condition. In the following
corollary we show that in equilibrium, more shading implies a less credible claim.

COROLLARY 1. The player who is favored by the regular asymmetry of U will in equi-
librium shade more and this more extreme claim is less credible.

The player who is favored will exploit this advantage and in equilibrium offer a more
extreme and less credible claim.

4.2.2 Consistency

Consider again the vector of data z̄ = (z1, z2, . . . , zn). As n increases, the models the players
propose will be more constrained by the data. This implies that the likelihood of a model
f− as a fraction of the likelihood of the maximum likelihood model should go to 0. Similarly
for a model f+. Under regularity conditions (see Greene, 2003:474), as n increases the mean
of the maximum likelihood model, µMLE, converges to the true mean µtrue. It should follow
then that players will optimally shade their claims less far away from the maximum likelihood
model as data increases and the unlikelihood of exaggerated claims increases. A precise
formulation requires more details of the underlying process and allowable models, but the
following simplified version gives the basic idea.

PROPOSITION 4. Suppose for positive integers n, Un are positive strictly concave up
functions with unbounded derivatives each with a minimum value at the same µMLE. Suppose
for y 6= µMLE,

lim
n→∞

Un(µMLE)

Un(y)
= 0.

Then limn→∞ v
∗(Un) = µMLE.

The implications of Proposition 4 for the performance of the equilibrium outcome v∗(U )
as statistical estimator are straightforward. We saw in Proposition 2 that v∗(U ) is possibly
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biased for small samples. However, as Proposition 4 shows, it is a consistent estimator,
converging to the maximum-likelihood estimator as the number of data points increases.
Intuitively, with more data, extreme claims (or any claim deviating from the maximum-
likelihood estimator) become less credible and thus more “costly.” In equilibrium, players
will shade less as more data are available and their choices are even more constrained by
credibility concerns.

5 Applications

In this section, we demonstrate the ability of our model to explain some of the features
of institutions that use adversarial, evidence-based decision making. We use the model to
compare these institutions to obvious alternatives, like an inquisitorial regime, e.g., as in
(Froeb and Kobayashi, 2001).

5.1 The Obfuscation Strategy

Anyone who has participated in a trial or follows political campaigns will recognize what we
call the “obfuscation strategy.” One party essentially claims that the evidence is not very
informative, and so should be given little weight. Of course, the counter claim is that it
should be given more weight. Although it is usually thought of as a rhetorical device, it
arises in our model in situations where one of the parties chooses a distribution with a mean
further away from the evidence. To minimize the costs of a lower likelihood, the party also
claims that the distribution has a large spread or variance. This is analogous to claiming
that the data are not very informative.

We illustrate the strategy with a distribution where the spread can be varied indepen-
dently of the mean. Using such a class of distributions, each party’s claim has two elements,
the location of the distribution and the spread of the distribution. Despite the added com-
plexity, the framework and theorems of Section 4 still apply. Suppose, for example, that
the parties agree that the data are independent draws from the same Beta(α, β) distribution
which we reparameterize as Beta(p, q) with p = E(zi) = α/ (α + β) and q = α + β, so that
Var(zi) = p (1− p) / (q + 1). With this parameterization, p is the location parameter, and q
is inversely related to the spread.

In Figure 4, we illustrate the equilibrium outcome of the framing game where the evidence,
two draws from a Beta(p, q) distribution, z̄ = (0.2, 0.4), is plotted as dots on the horizontal
axis. In equilibrium, the defendant asserts that the data are generated by a Beta(p =
0.23, q = 15.8) (small spread) while the plaintiff asserts a Beta(p = 0.42, q = 8.3) (large
spread). We plot the defendant’s frame [solid line], the plaintiff’s frame [dashed line], and
the court’s posterior distribution [dotted line]. The mean of the posterior distribution is
about 0.31, plotted with a dotted vertical line, just to the right of the mean of the data 0.3,
plotted with a solid vertical line.

Note that the best response to an obfuscation strategy is what might be called an “elu-
cidation strategy,” choosing a distribution with a smaller spread and a location closer to
the data. The party whose position is favored by the evidence (the defendant in Figure 4),
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Figure 4: Plaintiff’s Obfuscation Strategy for a Beta(α, β) Distribution
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chooses a distribution with most of its probability mass closer to the data, resulting in a
bigger likelihood. This is analogous to claiming that the data are informative.

5.2 The Set of Admissible Claims

Our assumption that both parties choose frames fj from the same admissible set F (or
probabilities pj from the same admissible set P) is significant. The consistency proof of
the previous section, for example, follows from the collapse of the admissible set onto the
maximum likelihood estimate as the number of observations increases. This requires that
the parties agree on the boundaries of admissible set.

To see this why this is important, suppose that the data appeared in the order of three
Heads, and then seven Tails. The order is immaterial for a sequence of independent random
variables, but to a self-interested party trying to frame the data in a favorable light, this
particular sequence suggests another way to frame the data. The plaintiff could claim that
the data-generating process was not i.i.d., but rather, after the first three flips, it became
tainted, and always returned Tails. In other words, the plaintiff could claim that only the first
three observations provide information about the unknown distribution, and that the last
seven were uninformative. And of course, the defendant could counter-claim the opposite.

Our framework rules out these kinds of frames and counterframes. Because they are
outside the admissible set, our decision maker cannot place a credibility weight on the claims,
and so cannot evaluate them. Presented with these kind of claims, the decision maker might
be forced to ignore the evidence. To avoid this outcome, one might expect institutions to
evolve in ways that encourage agreement on the feasible set which would make decision
making more accurate, and therefore more efficient, as in Posner (1981).

The institution of “hot tubbing” can be viewed as serving this purpose. Used in Britain,
New Zealand, and Australia, the court asks the competing experts to confer with each other,
by themselves in a“hot tub,” and then write a report outlining areas of agreement and dis-
agreement (Baker and Morse, 2006:10). For example, expert economists are encouraged
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to clearly articulate their competing theories of the case so that the court can more easily
understand and test their predictions, with the goal of assessing credibility. This kind of
institutional agreement can be viewed as improving the performance of the follow-on com-
petition at trial.7

5.3 Comparison to Scientific Inquiry

With our formal model, we can compare adversarial evidence-based decision making to an
obvious alternative, neutral objective inquiry. In this subsection, we design an experiment
where we know the underlying data-generating process, and then compare the properties of
decision making under the two regimes. We focus on bias but other properties, like variance,
could also be considered.

Models of scientific inquiry are well known. Instead of allowing the parties to frame the
data, we imagine that our decision maker appoints a neutral expert to examine and interpret
the data. Like the decision maker in the framing game, the neutral expert, or “inquisitor,”
uses Bayesian inference. However, she updates her own prior belief about the unknown
parameter p after seeing the evidence, i.e., without considering the parties’ frames. Her prior
belief is characterized by a Beta(α, β) distribution that includes the uniform (α = β = 1)
as a special case. We imagine that a neutral inquisitor would choose a neutral prior like the
uniform, which we assume in what follows, but this is not necessary.

The Beta(α, β) distribution is the conjugate prior to a Binomial likelihood. This means
that the posterior distribution is in the same family as the prior, but is updated with the
evidence. Specifically, if the evidence is of Heads = k and Tails = n − k, the inquisitor’s
posterior belief about the unknown data-generating process is characterized by a Beta(α +
Heads , β + Tails) distribution. This posterior belief has a mean of

p̂INQ =
α + Heads

α + Heads + β + Tails
(21)

which we take as the inquisitorial estimator of the unknown mean. We compare this to the
adversarial estimator p̂ADV = p1(p

∗
P , p

∗
D).

As in Section 3, we assume that the evidence is generated by a binomial distribution
f(k|n = 10, p). For each possible realization of evidence, i.e., k = {0, 1, 2, ..., 10}, we compute
the Nash equilibrium of the framing game and the posterior mean p̂ADV in equation (6)8 as
well as the posterior mean p̂INQ of the inquisitorial regime in equation (21). Because we
know the data-generating process, for each p we can compute how likely each realization k
is,

f(k|10, p) =

(
10

k

)
pk (1− p)10−k ,

which allows us to calculate the expectation of the estimator for each of the two regimes.

7For a more detailed account of hot-tubbing see Adam Liptak: “In U.S., Expert Witnesses Are Partisan,”
New York Times, August 12, 2008.

8See Table A1.
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Figure 5: Bias of Adversarial Framing (p̂ = p̂ADV ) vs. Objective Inquiry (p̂ = p̂INQ)
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In Figure 5, we plot the expected values of our estimators p̂ADV [dotted line] and p̂INQ
[dashed line] against the “true” value of p for p ∈ [0, 0.6]. Our benchmark is the solid line
which has a slope of 1, representing an unbiased estimator. The further away the estimator,
p̂ADV or p̂INQ, is from the solid line, the bigger the bias it has. We see that for p < 0.5, the
inquisitorial regime [dashed line] is biased towards the prior mean of α/(α + β) = 0.5. For
p > 0.5 the inquisitorial estimator has a downward bias.

The adversarial estimator [dotted line] does better than the inquisitorial estimator for all
p 6= 0.5. It is closer to the true p than the inquisitorial system, except for p = 0.5, where
the expected value of the two estimators is the same. Only in this case does the inquisitorial
regime perform as well as the adversarial. We find this surprising because of the framing: two
adversaries, trying to manipulate the outcome of a decision-making process, yield “better”
results than a neutral third party inquisitor when p 6= 0.5.

While suggestive, this finding depends on the characteristics of the evidence-generating
process. In this case, competition between the parties induces them to frame evidence in a
way that results in better decisions than would be reached by neutral inquiry.

6 Conclusions

In this paper, we present a formal model of framing that shows how parties frame evidence.
The model can be used to positively explain some of the observed features of practice,
including parties following an obfuscation strategy. It also can be used to normatively
compare adversarial decision making to policy relevant alternatives, like objective inquiry.
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We find that the adversarial system performs remarkably well: it is consistent, and for certain
processes, performs better than neutral inquiry.

We also conjecture that our model might be useful as an empirical framework for those
studying framing, or as subgame of the more widely studied games of evidence production
and revelation. It may be that explicitly modeling evidence production, knowing how it is
going to be framed by the parties, will lead to other insights about the nature of evidence-
based decision making in an adversarial setting.
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A Appendix A

Table A1: Equilibria in the Binomial Framing Game for k = 1, 2, . . . , 10

Heads D’s claim P ’s claim Posterior Decision MLE Bias
k p∗D p∗P θ p1(p

∗
P , p

∗
D) p̂MLE

0 0.00000 0.11471 0.22822 0.02618 0.0 0.02618
1 0.04529 0.24956 0.38696 0.12433 0.1 0.02433
2 0.10989 0.36141 0.43154 0.21843 0.2 0.01843
3 0.18358 0.46399 0.45914 0.31233 0.3 0.01233
4 0.26371 0.56009 0.48069 0.40617 0.4 0.00617
5 0.34924 0.65076 0.50000 0.50000 0.5 0.00000
6 0.43992 0.73629 0.51931 0.59383 0.6 −0.00617
7 0.53601 0.81642 0.54086 0.68767 0.7 −0.01233
8 0.63859 0.89011 0.56846 0.78157 0.8 −0.01843
9 0.75044 0.95471 0.61304 0.87567 0.9 −0.02433
10 0.88529 1.00000 0.77178 0.97382 1.0 −0.02618

B Appendix B: Proofs

Proof of Lemma 1. Note that ṽ(y+, y−) is continuous and differentiable in yj , j = +,−.

- Strict Monotonicity (A1) is given if

∂ṽ(y+, y−)

∂y+
= − x−

x+ − x−
> 0 and

∂ṽ(y+, y−)

∂y−
=

x+
x+ − x−

> 0

which holds true because x− < 0.

- Interiority (A2): Note that max {y+, y−} = y+ ≥ ṽ(y+, y−) = x+y−−x−y+

x+−x− if y+ > y−,

and min {y+, y−} = y− ≤ ṽ(y+, y−) if y+ > y− because x− < 0. Hence, if y+ > y−,
max {y+, y−} ≥ ṽ(y+, y−) ≥ min {y+, y−}. Conversely, min {y+, y−} = y+ ≤ ṽ(y+, y−) if
y+ < y−, and max {y+, y−} = y− ≥ ṽ(y+, y−) if y+ < y−. Hence, if y+ < y−, max {y+, y−} ≥
ṽ(y+, y−) ≥ min {y+, y−}.

- Homogeneity (A3) is given if

ṽ(λy+, λy−) =
w+λy+ + w−λy−

w+ + w−
=
λ (w+y+ + w−y−)

w+ + w−
= λṽ(y+, y−)

which holds for all λ > 0.

- Let y+ 6= y−. Symmetry (A4) is given if

ṽ(y+, y−) =
w+y+ + w−y−
w+ + w−

=
w+y− + w−y+
w+ + w−

= ṽ(y−, y+),
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which holds true if, and only if w+ = w−. This is because w+y++w−y−
w++w−

= w+y−+w−y+

w++w−
if and

only if (w+ − w−) y+ = (w+ − w−) y− which holds (for y+ 6= y−) if and only if w+−w− = 0.

- Let a− 6= b−, and let x− > −∞ so that w− > 0. Independence of Presentation (A5) is given
if

ṽ(ṽ(a+, a−), ṽ(b+, b−)) = ṽ(ṽ(a+, b−), ṽ(b+, a−)) ⇐⇒ (a− − b−)w− (w+ − w−)

(w+ + w−)2
= 0

which holds true if and only if w+ = w−.

Q.E.D.

Proof of Proposition 1. We first prove the equilibrium existence claim for convex sets S+ and S−
and then show that the maximum value of M(S+, S−) is the unique Nash-equilibrium slope, m∗, and
the equilibrium exhibits a unique y-intercept, i.e., payment rule v∗. We then proceed to non-convex
sets.

- Let S+ and S− be convex sets. The set M(S+, S−) in (10) has a maximum if, and only if,
sets S+ and S− are also compact. If, for instance, no maximum value for y+ exists (because
the choice set for y+ is not bounded above), or if no minimum value for y− exists (because
the choice set for y− is not bounded below), the slope m = y+−y−

x+−x− is not bounded above and

M(S+, S−) has no maximum value. The analogous argument applies to values of x+ and x−.
Further note that v(s+, s−) is continuous in xj and yj . The framing game is a two-person
game with a continuous action space. Such a game has a Nash equilibrium if Sj is a convex
and compact set and the payoff function is continuous (Glicksberg, 1952).

- This maximum value maxM(S+, S−) is the Nash-equilibrium slope. Suppose there is a
maximum value of M(S+, S−) denoted by m(ŝ+, ŝ−) = maxM(S+, S−), then

(ŝ+, ŝ−) ∈ arg max
s+∈S+,s−∈S−

m(s+, s−) s.t. m(s+, s−) ∈M(S+, S−). (A1)

Because ‘+’s best response to ŝ− is s′+ ∈ arg maxs+∈S+ m(s+, ŝ−) = arg maxs+∈S+ v(s+, ŝ−)
so that m(s′+, ŝ−) = m(ŝ+, ŝ−) and ŝ+ = s′+, and because ‘−’s best response to ŝ+ is
s′− ∈ arg maxs−∈S−m(ŝ+, s−) = arg maxs−∈S− v(ŝ+, s−) so that m(ŝ+, s

′
−) = m(ŝ+, ŝ−) and

ŝ− = s′−, (ŝ+, ŝ−) is a Nash equilibrium of the framing game,
(
s∗+, s

∗
−
)

= (ŝ+, ŝ−). Because
there is only one maximum value of M(S+, S−), the slope m∗ ≡ m(ŝ+, ŝ−) ∈ M(S+, S−) is
unique. Moreover, the y-intercept and payment rule v∗ ≡ v(ŝ+, ŝ−) is unique. To see this,
suppose two profiles

(
s′+, s

′
−
)
∈ S+×S− and

(
s′′+, s

′′
−
)
∈ S+×S− with slope m∗ = m(s′+, s

′
−) =

m(s′′+, s
′′
−) but v(s′+, s

′
−) > v(s′′+, s

′′
−). These two profiles are not Nash equilibrium profiles

because player ‘−’ would deviate from s′− to s′′− and player ‘+’ would deviate from s′′+ to s′+
(per the argument in Figure 2).

While the framing game has a unique Nash-equilibrium slopem∗ and unique Nash-equilibrium
payment rule v∗, the Nash equilibrium need not be unique. Any pair

(
s′+, s

′
−
)

so that
m(s′+, s

′
−) = m∗ and v(s′+, s

′
−) = v∗ is a pure-strategy profile in Nash equilibrium. If more

than one such profile exists, then any mixture of these Nash equilibrium pure strategies will
also be a Nash-equilibrium strategy on the line with slope m∗ and y-intercept v∗; and any
such mixture of Nash equilibrium pure strategies is itself a pure-strategy Nash equilibrium.
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- Now, suppose S+, or S−, or both are not convex. Take Sh+ and Sh− to be the convex hulls
of S+ and S−. We first show that the framing game Γ(S+, S−) has a solution if and only
Γ(Sh+, S

h
−) has a solution.

* We first establish that if Γ(S+, S−) has a solution then Γ(Sh+, S
h
−) has a solution; more

specifically, we show that if Γ(S+, S−) has a solution then this solution is a solution of
Γ(Sh+, S

h
−): Let

(
s∗+, s

∗
−
)
∈ S+×S− be a solution of Γ(S+, S−). Suppose

(
s∗+, s

∗
−
)

is not
a solution of Γ(Sh+, S

h
−). Then there is a

(
sh+, s

h
−
)
∈ Sh+ × Sh− such that m(sh+, s

h
−) >

m(s∗+, s
∗
−) but

(
sh+, s

h
−
)
/∈ S+×S− (otherwise,

(
sh+, s

h
−
)

is a solution of Γ(S+, S−)). This
profile

(
sh+, s

h
−
)

represents two points on a line with slope m(sh+, s
h
−) and y-intercept

v(sh+, s
h
−). When

(
sh+, s

h
−
)
/∈ S+×S−, then either sh+ ∈ Sh+ but sh+ /∈ S+, or sh− ∈ Sh− but

sh− /∈ S−, or both. Suppose sh− = s∗− ∈ S− but sh+ /∈ S+. Then, by convex hull, there
must be at least two points s′+, s

′′
+ ∈ S+ that are points on the line with slope m(sh+, s

h
−)

and y-intercept v(sh+, s
h
−). But then m(s′+, s

h
−) = m(s′′+, s

h
−) > m(s∗+, s

h
−) = m(s∗+, s

∗
−)

and
(
s∗+, s

∗
−
)

is not a solution of Γ(S+, S−).

* Next we show that if Γ(Sh+, S
h
−) has a solution then Γ(S+, S−) has a solution, although

it may not be the same solution: Suppose
(
sh+, s

h
−
)

is a solution of Γ(Sh+, S
h
−). If(

sh+, s
h
−
)
∈ S+ × S−, then it is also a solution of Γ(Sh+, S

h
−). Conversely, suppose(

sh+, s
h
−
)
/∈ S+ × S− and let sh− ∈ S− but sh+ /∈ S+. Then there are at least two

points s′+, s
′′
+ ∈ S+ and s′+, s

′′
+ ∈ Sh+ with m(sh+, s

h
−) = m(s′+, s

h
−) = m(s′′+, s

h
−) and

v(sh+, s
h
−) = v(s′+, s

h
−) = v(s′′+, s

h
−). Hence, by uniqueness of slope m∗ and v∗, s′+ and

s′′+ are parts of a solution of Γ(S+, S−).

Because Γ(S+, S−) has a solution if and only if Γ(Sh+, S
h
−) has a solution, and Γ(S+, S−) (for

convex S+ and S−) has a solution if and only if M(S+, S−) has a maximum value, Γ(Sh+, S
h
−)

(when S+ or S− are not convex) has a solution if and only if M(S+, S−) has a maximum
value. The results in the proposition thus apply to both convex and non-convex sets S+ and
S−. Q.E.D.

Proof of Lemma 2. The action profile (ŝ+, ŝ−) that implements the maximum value of M(S+, S−),
m∗ = m(ŝ+, ŝ−), is not unique if more than one point of S+ and S− lie on the line with slope m∗,
connecting a point ŝ+ ∈ S+ and ŝ− ∈ S− (Proposition 1). The same then holds for ŝ+ ∈ S̃+ and
ŝ− ∈ S̃− because a solution of Γ(S+, S−) is a solution of Γ(S̃+, S̃−) if y+ > y−. If U+ is strictly
concave up, then there is at most one point ŝ+ ∈ S+ that lies on the line with slope m∗ and on S̃+.
Likewise, if U− is strictly concave down, then there is at most one point ŝ− ∈ S− that lies on the
line with slope m∗ and on S̃−. Thus the Nash equilibrium of Γ(S+, S−) is unique. Q.E.D.

Proof of Lemma 3. 1. Recall from equation (9) that m = (y+ − y−) / (x+ − x−) and therefore

m =
y+ − y−

U (y+) + U (y−)
.

Players maximize their payoffs by maximizing the slope m. The first derivative of this slope
with respect to y+ is:

dm

dy+
=

U (y+) + U (y−)− (y+ − y−) U ′(y+)

(U (y+) + U (y−))2
.

Evaluate the slope at y+ = µMLE so that U ′(µMLE) = 0: Because U (y) > 0 for all y so
that U (µMLE) > 0 and U (µMLE) + U (y−) > 0, we obtain m′ > 0. Slope m is increasing in
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y+, and player ‘+’ can increase his payoffs by choosing y+ > µMLE . The analogous is true
for player ‘−’ where

dm

dy−
= −U (y+) + U (y−) + (y+ − y−) U ′(y−)

(U (y+) + U (y−))2
.

Thus y∗− < µMLE < y∗+ and y∗− < y∗+. Moreover, y∗− < v∗(U ) = v(s∗+, s
∗
−) < y∗+ by the proof

of axiom A2 in Lemma 1.

2. For a given y−, player ‘+’s choice of y∗+ (and x∗+ = U (y∗+)) solves dm/dy+ = 0. Likewise for
player ‘−’. Rearranging the expressions for dm/dy+ and dm/dy− we obtain

U ′(y∗+) =
x∗+ − x−
y∗+ − y−

and −U ′(y∗−) =
x+ − x∗−
y+ − y∗−

so that the equilibrium slope is

U ′(y∗+) = −U ′(y∗−) =
x∗+ − x∗−
y∗+ − y∗−

=
1

m
.

Q.E.D.

Proof of Proposition 2. Setting y′+ ≡ µMLE + ∆y′+ and y′− ≡ µMLE − ∆y′−, we can rewrite the
outcome v(s′+, s

′
−) in equation (7) as:

v(s′+, s
′
−) = µMLE + ∆y′+ −

∆y′+ + ∆y′−
U (y′+) + U (y′−)

U (y′+).

The outcome is unbiased, v(s′+, v
′
−) = µMLE , if:

∆y′+ −
∆y′+ + ∆y′−

U (y′+) + U (y′−)
U (y′+) = 0 or

U (y′+)

U (y′−)
=

∆y′+
∆y′−

. (A2)

The expression U (y′+)/
(
y′+ − µMLE

)
in (13) is the reciprocal of the slope of the line through

points (0, µMLE) and
(
U (y′+), y′+

)
; the expression U (y′−)/

(
µMLE − y′−

)
in (14) is the reciprocal of

the slope of the line through points (0, µMLE) and
(
−U (y′−), y′−

)
. For a line going through points(

−U (y′−), y′−
)

and
(
U (y′+), y′+

)
(so that v(s′+, s

′
−) is the vertical intercept) these two slopes must

be the same, as in equation (15). Rearranging (15) we obtain

U (y′+)

y′+ − µMLE
=

U (y′−)

µMLE − y′−
if and only if

U (y′+)

U (y′−)
=

∆y′+
∆y′−

,

i.e., if and only if the condition for an unbiased estimator is satisfied. This means, the maximum-
likelihood estimator v = µMLE is a point on the line connecting points

(
−U (y′−), y′−

)
and

(
U (y′+), y′+

)
.

If U (y′+)/
(
y′+ − µMLE

)
= U (y′−)/

(
µMLE − y′−

)
, then the line connecting the points

(
−U (y′−), y′−

)
and

(
U (y′+), y′+

)
has the same slope as the two line segments (in equations (13) and (14)). This

slope is equal to
(
U (y′+) + U (y′−)

)
/
(
y′+ − y′−

)
. From Lemma 3 we know that two claims y′+ and

y′− such that

U ′(y′+) = −U ′(y′−) =
U (y′+) + U (y′−)

y′+ − y′−
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Figure A1: Biased Estimator with Regular Asymmetric U
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are the Nash equilibrium claims, y∗+ = y′+ and y∗− = y′−, where
(
U (y∗+), y∗+

)
and

(
−U (y∗−), y∗−

)
are the players’ respective equilibrium strategies. Hence, claims y′+ and y′− satisfying equation
(13)-(15) yield an unbiased outcome in Nash equilibrium. Q.E.D.

Proof of Proposition 3. Define UL : (µMLE ,maxY ] → R+, UL(y) = U for y > µMLE as the
LHS arm of U ; define UR : [minY, µMLE) → R+, UR(y) = U for y < µMLE as the RHS arm
of U ; define U R : (µMLE ,maxY ] → R+, U R(y) = U (2µMLE − y) for y > µMLE as the RHS
arm mirrored in the x axis; and define U L : [minY, µMLE) → R+, U L(y) = U (2µMLE − y) for
y < µMLE as the LHS arm mirrored in the x axis. See Figure A1 for an illustration of these
functions and their negative values, −UL, −UR, −U R, and −U L.

1. We begin by showing Claim (1): If U is symmetric then the estimator is unbiased, v∗(U ) =
µMLE . First, note that by symmetry in equation (19), UL(y) = U R(y). This is be-
cause, for y > µMLE , UL(y) = U (y) = U (µMLE + ∆y) and U R(y) = U (2µMLE − y) =
U (µMLE − ∆y) = U (µMLE + ∆y) where the latter equality holds by symmetry in equa-
tion (19). Moreover, by symmetry and because U (y) is strictly convex so that UL(y) is
strictly convex for y > µMLE , we have U ′

L(y) = U ′
R(y) for all y > µMLE . The analo-

gous can be shown for UR(y) = U L(y) and U ′
R(y) = U ′

L(y). By equation (12), the Nash
equilibrium claims y∗+ and y∗− are such that

U ′(y∗+) = −U ′(y∗−) ⇐⇒
U ′(µMLE + ∆y∗+) = −U ′(µMLE −∆y∗−) ⇐⇒
U ′
L(µMLE + ∆y∗+) = −U ′

R(µMLE −∆y∗−) ⇐⇒
U ′
L(µMLE + ∆y∗+) = U ′

R(µMLE + ∆y∗−)

Because U ′
L(y) = U ′

R(y) for all y and by strict convexity of U , ∆y∗+ = ∆y∗− in order
for the equilibrium condition to hold. Moreover, symmetry implies that for ∆y∗+ = ∆y∗−,
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U (µMLE + ∆y∗+) = U (µMLE − ∆y∗−). Then, U (y∗+)/U (y∗−) = 1 = ∆y∗+/∆y
∗
−, satisfying

the no-bias condition in (A2) (or (17)).

2. In a next step we Claim 2: For a regular asymmetric U with |U ′(µMLE+∆y)| < |U ′(µMLE−
∆y)| for all ∆y, the equilibrium outcome exhibits an upward bias, v∗(U ) > µMLE . We
quantify this bias as follows: v̄+ = v∗(U )− µMLE so that the bias is upward if v̄+ > 0. For
the proof, consider Figure A1. Note that it is a version of Figure 3 rotated 90◦ counterclock-
wise. The origin is at (µMLE , 0). Note that the figure is mirrored sideways, i.e., larger
values of y are to the left of the origin. Let σL(+) ≡

(
µMLE + ∆y∗+,UL(µMLE + ∆y∗+)

)
and

σR(−) ≡
(
µMLE −∆y∗−,−UR(µMLE −∆y∗−)

)
. A positive bias, v̄+ > 0 implies that the line

connecting points σL(+) and σR(−) has a y-intercept at µMLE + v̄+ which is depicted to the
left of µMLE .

By the equilibrium condition in Lemma 3, U ′
L(µMLE + ∆y∗+) = −U ′

R(µMLE − ∆y∗−) and
therefore, by construction of U R, U ′

L(µMLE +∆y∗+) = U ′
R(µMLE +∆y∗−). For ∆y∗+ > ∆y∗−,

note that by condition |U ′(µMLE + ∆y)| < |U ′(µMLE − ∆y)| in the claim, ∆y∗+ 6= ∆y∗−.
Moreover, by the convexity of UL, |U ′(µMLE + ∆y′)| < |U ′(µMLE + ∆y′′)| for ∆y′ < ∆y′′;
therefore ∆y∗+ ≮ ∆y∗−. For the regular asymmetry in Claim 2 we thus find that ∆y∗+ > ∆y∗−.
To show that v̄+ > 0, we show that v̄+ 6= 0 and v̄+ ≮ 0.

Suppose v̄+ = 0. The line connecting points (i.e., actions) σL(+) and σR(−) runs through
the origin. Moreover, the line segments connecting points σL(+) and the origin, the origin
and σR(−), and (equivalently) σR(−) ≡

(
µMLE + ∆y∗−,U R(µMLE + ∆y∗−)

)
and the origin

must be of equal slope. For ∆y∗+ > ∆y∗−, UL(µMLE + ∆y∗+) must lie in the extension of the
line connecting points σR(−) and the origin. By the equilibrium condition (12), the slopes
at U R(µMLE + ∆y∗−) and UL(µMLE + ∆y∗+) must be the same. But because UL 6= U R

and by strict convexity of U , equal slopes (with both points lying on the same line) require
that UL and U R intersect for some y > µMLE . Because UL(µMLE) = U R(µMLE), such
a crossing violates the assumption of |U ′(µMLE + ∆y)| < |U ′(µMLE − ∆y)| in the claim.
Hence, v̄+ 6= 0.

Suppose v̄+ < 0. The line connecting points σL(+) and σR(−) runs through σ(v̄+) ≡
(µMLE + v̄+, 0). Moreover, the line segments connecting points σL(+) and σ(v̄+), points
σ(v̄+) and σR(−), and (equivalently) the points σR(−) and σ(v̄+) must be of equal slope. This
requires that point σR(−) lies below the line connecting points σL(−) and σ(v̄+) (otherwise,
the two respective line segments cross). The line segment connecting σL(−) lies below U
(and below UL for y > µMLE). In order for σR(−) to lie below the line it must lie below
UL. But this violates the assumption of |U ′(µMLE + ∆y)| < |U ′(µMLE − ∆y)| so that
U (µMLE + ∆y) < U (µMLE −∆y). Hence v̄+ ≮ 0. v̄+ 6= 0 and v̄+ ≮ imply v̄+ > 0 and an
upward bias, v∗(U ) > µMLE .

3. The proof for Claim 3 is analogous to Claim 2 and omitted. Q.E.D.

Proof of Proposition 4. Translate in the y direction to make the mimima of the Un at µMLE = 0.
Normalize the Un such that Un(0) = 1, say, since scaling leaves the values v(Un) unchanged.
Suppose there is a v0 > 0, such that for infinitely many n, v(Un) > v0. Then for these n, and
s− = (x−, y−) = (−1, 0) there must be a move s+ = (x+, y+) = (Un(y+), y+) of the ‘+’ player with
v(s−, s+) = y+/ (x+ + 1) > v0. Hence 1 < Un(y+) = x+ < y+/v0 − 1. In particular then y+ > v0,
and by concavity,

Un(v0) < Un(0) (1− v0/y+) + Un(y+) (v0/y+) < 1 (1− v0/y+) + (y+/v0 − 1) (v0/y+) = 2
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contradicting the hypothesis limn→∞ 1/Un(v0) = 0. Hence, for any v0 > 0 only finitely many
v(Un) > v0, and similarly for any v0 < 0 only finitely many v(Un) < v0. Thus limn→∞ v(Un) =
0 = µMLE . Q.E.D.
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