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Abstract

We consider games with perfect information and deterministic transitions. A common solution con-
cept is the concept of subgame-perfect ε-equilibrium, where ε ≥ 0, which is a strategy profile such that
no player can improve his payoff in any subgame by more than ε. We propose and examine a number
of refinements of this concept. A major emphasis lies on existence results. Roughly speaking, the most
important refinements require the following respective properties: (1) no player makes a big mistake
with positive probability, (2) the mistakes vanish as the horizon approaches infinity, i.e. ε depends on
the subgame and goes to 0 as play proceeds, and (3) for pure strategy profiles, the induced play paths
are continuity points of the payoff functions.

The game: We consider games with perfect information and deterministic transitions, i.e. without
chance moves. Such a game can be given by a triple G = (N, T, u = (ui)i∈N), where

• N is a finite and nonempty set of players.
• T is a directed tree with a root, in which each node is associated with a player, who controls this

node. We assume that, at each node in the tree, the number of outgoing arcs is finite and is at least one.
This implies that there are no terminal nodes and the tree has an infinite depth.1 Let P denote the set of
all infinite paths (often called plays) starting at the root. We endow P with the topology induced by the
cylinders.2

• ui : P→ R is a payoff function for player i. We assume that ui is bounded and Borel measurable.3

Play of the game starts at the root, and at any node z that play visits, the player who controls z has to
choose one of the outgoing arcs at z, which brings play to a next node. This induces an infinite path p in
the tree, and each player i ∈ N receives the corresponding payoff ui(p).

1This way we allow for fairly general games, since every tree with finite depth can be easily transformed into a strategically
equivalent tree with infinite depth. Indeed, we can extend a finite tree by simply adding one infinite sequence of arcs to every
terminal node. So, instead of termination, play will continue along a unique path in which the players have no further strategic
choices.

2If z is a node in the tree, then the cylinder set corresponding to z is the set of all infinite paths from the root that go through z.
3Note that these payoffs are very general. Indeed, only a very special case would be a common situation when these payoffs

arise by aggregating certain daily payoffs in the game, possibly by taking the total discounted sum.
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Strategy: A strategy σi for a player i is a map that, to each node z controlled by player i, assigns a
probability distribution σi(z) on the outgoing arcs. The interpretation is that if node z is visited during the
play, then player i should choose the outgoing arc according to σi(z). A vector of strategies σ = (σi)i∈N is
called a strategy profile, and ui(σ) denotes the corresponding expected payoff for player i.

ε-Equilibrium: A strategy profile σ = (σi)i∈N is called an ε-equilibrium, where ε ≥ 0, if no player can
gain more than ε by deviating alone: for every player i ∈ N and every strategy σ′i for player i we have
ui(σ

′
i , σ−i) ≤ ui(σ) + ε. Here, (σ′i , σ−i) denotes the strategy profile in which player i uses the strategy σ′i

whereas all other players j follow σj. One can interpret ε as an error-term. It is shown by Mertens and
Neyman (cf. Mertens [4]) that every game G admits an ε-equilibrium, for every ε > 0.

Subgame-perfect ε-equilibrium: Let G be a game and let z denote a node in the tree. The subgame Gz

is the game that starts at node z. The payoff function of player i in this subgame is denoted by uiz, and it
is simply derived from the original payoff function ui as follows: if p is an infinite path starting at z, then
uiz(p) = ui(hz ⊗ p) where hz ⊗ p is the path that starts at the root, reaches z and then follows p.

A strategy profile σ = (σi)i∈N is called a subgame-perfect ε-equilibrium, where ε ≥ 0, if σ induces an
ε-equilibrium in every subgame, i.e. σz = (σiz)i∈N is an ε-equilibrium in Gz for every node z. Flesch et al.
[1] presented a game in which a subgame-perfect ε-equilibrium fails to exist for small ε > 0. Nevertheless,
if the payoff functions are all lower-semicontinuous or they are all upper-semicontinuous, then a subgame-
perfect ε-equilibrium does exist for every ε > 0 (cf. Flesch et al. [3] and Purves and Sudderth [5]). However,
mainly from a conceptual point of view, there are good reasons to look for refinements of the concept of
subgame-perfect ε-equilibrium.

Strong subgame-perfect ε-equilibrium: The concept of subgame-perfect ε-equilibrium has the draw-
back that it does not rule out that a player chooses, with small probability, an outgoing arc that leads to
a low payoff. So, if one interprets the probability distribution, which a player’s strategy prescribes on the
outgoing arcs, as a lottery that the player uses for the choice of an action, and the lottery picks an action
with low payoff, then the player may become reluctant to execute this action. We (cf. Flesch et al. [1])
propose and examine a refinement, called strong subgame-perfect ε-equilibrium, which avoids this short-
coming.

Subgame-perfect ε-equilibrium with vanishing errors: The concept of subgame-perfect ε-equilibrium
uses the same upper-bound on the error-term, i.e. ε, in every subgame. We (cf. Flesch and Predtetchinski
[2]) propose an additional requirement: roughly speaking, the error-terms should go to 0 as the time hori-
zon approaches infinity. More formally, for a strategy profile σ and a node z, let e(σ, z) denote the maximal
improvement that a player can achieve in the subgame Gz by deviating alone:

e(σ, z) = max
i∈N

sup
σ′iz

[
uiz(σ

′
iz, σ−iz)− uiz(σz)

]
.

A subgame-perfect ε-equilibrium σ is said to have vanishing errors, if in every subgame Gz, the following
holds: if the players use σ, the errors e(σ, zn) converge to 0 with probability 1, where zn denotes the node
visited at period n.
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The motivation to consider this requirement is two-fold. First, if the payoff functions are continuous
(for example, for discounted payoffs), then the following property holds for every infinite path p from the
root and every δ > 0: there is a node z on p such that the payoffs are essentially fixed at z, i.e. they can vary
at most δ depending on the continuation after z. This means that, if δ < ε, then requiring that the errors are
at most ε is automatically satisfied and the concept of subgame-perfect ε-equilibrium does not have a bite
for such deep nodes. (For discounted payoffs, one may wish to require that not only the payoffs, but also
the error ε is discounted.) Another motivation might be that once play arrives at deeper nodes, the players
may have a better overview of future possibilities. So, it may be reasonable to assume that their mistakes
also become smaller.

We (cf. [2]) prove that if all payoff functions are upper-semicontinuous, then a pure subgame-perfect
ε-equilibrium with vanishing errors exists, for every ε > 0.4 However, given errors r(z) > 0 for all nodes
z, there may be no strategy profile such that e(σ, z) ≤ r(z) for every node z. Not even when the payoffs
are upper-semicontinuous nor when they are lower-semicontinuous, which we (cf. [2]) demonstrate by
counter-examples.

Subgame-perfect ε-equilibrium that is robust to small perturbations in the strategies: If the payoff
functions are not continuous, and a pure subgame-perfect ε-equilibrium induces an infinite path which is a
discontinuity point of the payoff functions, then small perturbations in the strategies may lead to drastically
different payoffs. Such small perturbations may occur when players are not able to execute their strategies
with full precision. We (cf. [2]) examine when a pure subgame-perfect ε-equilibrium exists which induces
a path in every subgame such that these paths are all continuity points of the payoff functions. We prove
that if all payoff functions are lower-semicontinuous, then this is indeed the case. The proof is based on
the transfinite induction used in Flesch et al. [3]. Then, we present a simple counter-example for the case
when the payoff functions are upper-semicontinuous.
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