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Abstract

We study matching markets from practice, where a set of objects are assigned to a set of

agents in two-steps. The placement of students to the exam and mainstream public schools

in the U.S. and the appointment of teachers to the public schools in Turkey until recently

are two examples of such markets. We analyze the mechanisms currently in use in both

markets and show that they fail to satisfy desirable fairness and welfare criteria. Moreover,

they give participants perverse incentives: misreporting preferences can be bene�cial and

improved performance on admission test may worsen the assignment of a participant. We

characterize the subgame perfect Nash equilibria of the induced preference revelation games

in both markets which motivate us to propose an alternative method, applicable to both

markets, through which assignments take place in a single step. This may also help explain

why Turkish ministry of education abandoned their two-step assignment system.

1 Introduction

In this paper we study indivisible good allocation problems, where a set of agents are to be

assigned a set of (indivisible) objects in a sequential fashion in two-steps, and each agent is

entitled to receive at most one object. More speci�cally, there is a �rst step of assignments in

which all agents actively participate by reporting their rank-ordered preferences when only a

subset of objects is available. The �rst step is then followed by a second step of assignments

in which the set of objects that were unavailable in the �rst step are assigned to those agents

who were unassigned in the �rst step. We study two applications of this problem from practice:

student placement to exam and regular public schools in the U.S. and the appointment of teachers

to state schools in Turkey.

In Boston and New York City, there are two types of public schools: exam and regular

(mainstream) schools.1 Students who wish to apply to exam schools take a centralized test and

are then ranked based on their scores. Meanwhile, regular schools rank students based on certain

predetermined criteria, i.e. proximity and sibling status. The admissions for both type of schools

are processed separately. In general, the admission decisions to the test schools are completed

well before any students are assigned to the regular schools. In particular, students are assigned

1There are di¤erent types of regular schools.
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to exam schools via a serial dictatorship mechanism induced by the test scores in a �rst step, and

the unassigned students are then assigned to regular schools via a student-proposing deferred

acceptance mechanism (Gale and Shapley, 1962) in a second step.

In Boston there are three exam schools.2 Around 25% of the seventh grade students enroll to

the exam schools.3 Sixth grade students take the centralized exam before December and apply to

be accepted one of these schools in the following year. Students are ranked based on their exam

score and their GPA in the previous year. The assignment of the students are done according

to this ranking and the ordered list submitted by the students. Successful students receive their

acceptance letters from the exam schools by mid-March. Sixth graders can also apply to be

transferred to another regular school after mid-March. The assignment for the regular schools

are done via DA mechanism.

In New York City there are nine exam schools.4 The assignments to the exam and regular

schools are done sequentially. However, students submit their preferences over exam and regular

school at the same time. Every year between 25,000 and 30,000 student take the Specialized high

school admission test (SHSAT) which is used for the assignment to the exam schools. Students

who take this test submit two di¤erent list to the central authority. In the �rst one they only rank

exam schools and in the second one they rank regular schools which do not require a test score.

The assignment for the specialized high school is done by a serial dictatorship in which students

are ordered based on their score on SHSAT. The assignment for the regular schools is done by

DA mechanism. The two mechanisms are run at the same time. The central authority aims to

place the students who are given an o¤er at a specialized high school �rstly. Only students who

have an o¤er from both exam and regular schools are informed of their placement from regular

schools together with their exam school assignment. They are asked to pick one of these two

o¤ers. Around 5,000 students are enrolled to the exam school every year. Then students who

are not assigned in this step is considered and DA mechanism used for the assignment to the

regular schools.

There are 4000-5000 students each year in this situation. Only 50% of these students have

an o¤er from their most preferred regular school. Around 70% of these students take the exam

schools.

In Turkey, the assignment of teachers to teaching positions in state schools takes place via a

centralized process overseen by the Turkish Ministry of Education (TMoE). Every year the TMoE

o¤ers a standardized test to those university graduates who wish to serve in state sponsored jobs.

Although this test is mostly taken by new university graduates, many who have graduated in

the past are also eligible to take the test if they wish so.5 In a given year, the appointment of

2These schools are Boston Latin Academy, Boston Latin School and the John D. O�Bryant School of Mathe-
matics and Science.

3 In 2012-2013 school year 836 of 3,795 seventh grade students have enrolled to exam schools.
4These schools are Bronx High School of Science, Brooklyn Latin School, Brooklyn Technical High School, High

School for Math, Science and Engineering at City College, High School of American Studies at Lehman College,
Queens High School for the Sciences at York College, Staten Island Technical High School and Stuyvesant High
School.

5Some of them can be currently employed as a teacher.
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teachers to state schools are based solely on the candidates�performance on that year�s test.

There are two types of teaching positions in each specialization. These are the tenured positions

which o¤er a life time employment guarantee and contractual positions which can be taken only

for a �xed number of years (typically for only a few years) and the conditions of employments

are based on a speci�c contract mutually agreed upon by the school and the teacher. Although

an otherwise identical tenured position is generally preferable to a contractual position, it is also

common to observe strong preference for contractual positions in major metropolitan cities such

as Istanbul over tenured positions in smaller cities or rural areas.

In a given year the TMoE �rst announces the list of all available tenured positions in each

school and each specialization throughout Turkey. Then each applicant, be it a new graduate or

an existing contractual teacher, submits rank-ordered preference lists over the available tenured

positions before a certain deadline announced by the ministry.6 In this �rst step, existing con-

tractual teachers who are seeking a new position are also restricted to rank-list only tenured

positions.7 Applicants are then assigned to the available positions by a serial dictatorship mech-

anism induced by the test scores. If a contractual teacher is unassigned in the �rst step, then

she retains her current job assignment. Otherwise, she is appointed to a tenured position and a

contractual position at her old school opens up for reappointment. Typically within a few weeks

after the �rst step, the TMoE announces the list of available contractual positions. And in this

second step, only the unassigned new graduates are permitted to apply to these contractual

positions. Applicants are again assigned via a serial dictatorship mechanism induced by the test

scores. The number of teachers assigned to tenured and contractual positions in 2009 and 2010

is presented in Table 1. For instance in December 2009, 8,850 tenured positions were �lled by

applicants in the �rst step. 6,323 applicants who were assigned to tenured positions were existing

teachers working in contractual positions. These contractual positions which became available

as a consequence of assignments of existing teachers to the tenured positions were �lled in the

same month.

Time of the Assignment Type of the Positions Number of Positions Filled

February 2009 Tenured 8,285

March 2009 Contractual 6,323

December 2009 Tenured 8,850

December 2009 Contractual 6,323

June 2010 Tenured 10,000

July 2010 Contractual 9,000

December 2010 Tenured 30,000

December 2010 Contractual 6,843
Table 1. Number of Teachers Assigned to Tenured and Contractual Positions (2009-2010)

6Existing teachers employed in tenured positions are not allowed to participate this assignment procedure.
7 In other words, any contractual position currently �lled by an applicant cannot be rank-listed by any applicants

including its current occupant.
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We show that the student assignment system in the U.S. and the teacher appointment system

in Turkey share a number of serious de�ciencies. Among other shortcomings, both systems fail

to generate Pareto-e¢ cient or fair assignments, and both systems induce strategic action on the

part of applicants while deciding what rank-order lists to submit in each step. Our goal in this

paper is to investigate general sequential assignment systems when the mechanisms used in each

step satisfy certain properties that are by and large deemed desirable in the matching literature.

We argue that the de�ciencies of the systems in the U.S. and Turkey are not speci�c to these

particular markets. Our analysis indicates that there may indeed be a fundamental problem

with achieving distributional and strategic goals via sequential assignment systems that employ

mechanisms that satisfy even very mild requirements. More speci�cally, we show that if 	 =

('1; '2) is a sequential assignment system which employs mechanisms '1 and '2 in steps 1

and 2 such that '1 is individually rational and non-wasteful and '2 is non-wasteful, then such a

system is prone to manipulation and cannot generate e¢ cient outcomes; and still worse, it may

even be wasteful (Theorem 1). Similarly, if 	 = ('1; '2) is a sequential assignment system which

employs mechanisms '1 and '2 such that '1 is fair (with respect to a given priority structure)

and non-wasteful and '2 is non-wasteful, then such a system neither generates fair outcomes nor

respects improvements in the priority structure (Theorem 2).

We also characterize the subgame perfect Nash equilibria (SPNE) induced by a sequential

preference revelation game of a sequential assignment system. We �nd that when both '1 and '2

are individually rational, non-wasteful and either population monotonic and non-bossy or fair,

then every SPNE outcome of the preference revelation game associated with system 	 leads to

a non-wasteful and individually rational matching (Theorem 3). On the other hand, when both

'1 and '2 are individually rational, non-wasteful, population monotonic, and minimally fair,

then every SPNE outcome of the preference revelation game associated with system 	 leads to a

matching that has no priority violations (Theorem 4). As corollaries of these results, we provide

a detailed account on the characteristics of the set of SPNE for each of the two applications that

motivate our study.

It is natural to ask whether these sequential assignment systems su¤er from the serious

problem if all the available positions in the �rst step are preferred to the all available positions in

the second step by all agents. The answer is no. In particular, under this preference domain we

can consider the steps separately. However, in the real life we observe that some of the available

objects in the second step are preferred to the some of the available objects in the �rst step.

In particular, 15% of teachers assigned to a contractual position in December 2010 could have

been assigned to a tenured position in the previous step if they had listed those schools in their

preference list. Similarly, around 20% of the students who get both exam and regular school

o¤er in NYC choose to go to the regular one.

Our analysis points to clear disadvantages of sequential assignment systems and provides

justi�cation for the alternative use of single step assignment systems when possible. This con-

clusion is also supported by the recent transition of the TMoE from the system analyzed here
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to a simpler single step assignment system.8 More broadly, these observations motivate us to

advocate the use of a suitable adaptation of Gale and Shapley�s celebrated Deferred Acceptance

(DA) mechanism to the speci�c context as a single step assignment system. In particular, in

the context of teacher assignment the dominant strategy outcome of DA Pareto dominates any

SPNE of the old assignment system.

1.1 Related Literature

The main characteristic of the type of problems we study here that distinguishes them from

the vast majority of the problems considered in the literature is that they involve sequential

assignment of indivisible resources. Whereas the set of agents and resources are predetermined

and �xed in a standard assignment problem, in a sequential assignment problem agents and

resources considered within a step may as well depend on the decisions made in a previous step.

Yet, the two type of problems still share a number of common features.

There is a sense in which a school choice problem with exam and regular schools (SCPwERS)

can be thought as a combination of two separate school choice problems (Abdulkadiro¼glu and

Sönmez, 2003) when the assignment in each step is considered independently. On the other hand,

the teacher assignment problem (TAP) in Turkey, described above, inherits properties of the

Student Placement Problem (SPP) due to Balinksi and Sönmez (1999) and the House Allocation

Problem with Existing Tenants (HAPwET) due to Abdulkadiro¼glu and Sönmez (1999). As in

the context of SPP, in TAP too applicants are ranked based on their test scores, and fairness

(i.e., favoring applicants with better test scores) is a central goal. And, as in HAPwET, some

of the applicants- the contractual teachers- have private endowments-the contractual positions

they currently occupy- that may later become available for reassignment to other applicants.

A paper that is closely related to ours is Ergin and Sönmez (2006), where the authors charac-

terize the set of NE of the widely-used Boston mechanism and show that this set coincides with

the set of stable matchings. We �nd that while this conclusion need not hold generally for any

sequential assignment problem, in the context of TAP (but not in that of SCPwERS) the set of

SPNE of the sequential preference revelation game is also equal to the stable set.9

The only paper, that we are aware of, to consider sequential assignment is Westkamp (2012),

where the author studies the German college admissions system which operates through a com-

bination of Boston and college-proposing deferred acceptance mechanism. Similar to Ergin and

Sönmez (2006), Westkamp (2012) too characterizes the set of SPNE of this game as being the

stable set. While we also provide characterizations of SPNE for both of our applications, we

show that equivalence of SPNE to the stable set may not always be guaranteed. Most notably,

di¤erently than Westkamp (2012), our focus here is on properties of a general sequential assign-

ment system and on showing that the sources of the de�ciencies may be inherently related to

8As far as we are aware, this transition took place without the involvement of any economists in the decision
process.

9 In the context of TAP, stability is characterized by the combination of individual rationality, fairness, and
nonwastefulness.
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the sequential nature of the assignment system. As such, we show that these de�ciencies may be

impossible to avoid regardless of what speci�c mechanism is used in any step.

The rest of the paper is organized as follows. Section 2 introduces the formal model. Section

3 provides a detailed description of the sequential systems in the U.S. and Turkey. Section 3

presents impossibility results concerning general sequential systems. Section 4 characterizes the

SPNE of general sequential systems as well as those of the two motivating applications. Section

5 presents a simple alternative to sequential systems. Section 6 concludes.

2 Model

Let I� = fi1; i2; ::ing be the set of all agents; S� = fs1; s2; :::; smg be the set of all objects,
q� = (qs1 ; qs2 :::; qsm) be the capacity vector for all objects. Let ��= (�s1 ;�s2 ; :::;�sm) denote
a priority pro�le, where �s is the strict priority order for object s such that ; �s i means that
agent i is not acceptable for object s: We allow for an object to be socially or privately owned.

Let h� = (h(i))i2I� be an ownership pro�le, where h(i) is the object for which agent i has the

property right (i.e., her endowment) such that h(i) = ; means that agent i has no property right
over any object. Each agent i can own at most one object, i.e. jh(i)j � 1. On the other hand,
an object can be owned by more than one agent.

Each agent i has a strict (i.e., complete, transitive, and antisymmetric) preference relation

Pi over S [ f;g where ; represents being unassigned. Let Ri denote the associated at least as
good as relation of agent i. We thus have

s Ri s
0 , s Pi s

0 whenever s 6= s0:

A sequential assignment problem, or a problem for short, is a 6-tuple (I; S; P; q;�; h)
where I � I�; S � S�; P = (Pi)i2I is a preference pro�le, q = (qs)s2S ; �= (�s)s2S and
h = (h(i))i2I .

Fix a problem (I; S; P; q;�; h): A matching is a function � : I ! S [ ; such that the number
of agents assigned to a object s does not exceed the total number of the copies of s and each

agent can be assigned to at most one object, i.e., j��1(s)j � qs and j�(i)j � 1 for all s 2 S and
i 2 I: LetM be the set of all matchings. A matching � is non-wasteful if there exists no object
agent pair (i; s) such that j��1(s)j < qs, s Pi �(i); and i �s ;:10 A matching � is individually
rational if no agent is assigned to an object either she �nds worse than being unassigned option
or she is unacceptable for. Formally, a matching � is individually rational if �(i) Ri ; and
i ��(i) ; for all i 2 I: A matching � Pareto dominates another matching �0 if each agent
weakly prefers her assignment in matching � to her assignment in �0 and at least one agent i

strictly prefers her assignment in � to her assignment in �0: A matching � is Pareto e¢ cient if
it is not Pareto dominated. A matching � is fair if whenever an agent prefers some other agent�s
assignment to her own, then the other agent has a higher priority for that object than herself.

10This is di¤erent from the standard non-wastefulness notion (see Balinski and Sonmez (1999)).
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Formally, if � is fair then for every i; j 2 I; �(j) Pi �(i) implies j ��(j) i: A matching � is stable
if it is non-wasteful, individually rational and fair. A matching � is mutually fair if there does
not exist an agent-object pair (i; s) such that (1) i ranks s at the top of his preference list (2)

�(i) 6= s (3) there exists another student i0 with lower priority for s than i and �(i0) = s.11 A
matching � serially fair if it satis�es fairness whenever �s=�s0 for all s; s0 2 S.12

A mechanism ' is a mapping that associates a matching to a given problem. Denote

the outcome selected by mechanism ' for problem (I; S; P; q;�; h) by '(I; S; P; q;�; h) and the
match of agent i 2 I by 'i(I; S; P; q;� h):

A sequential assignment system, or a system for short, is a pair of mechanisms 	 =

('1; '2) such that

1. '1 operates on the restricted problem (I; S1; P 1; qjS1;� jS1; h) whose primitives are the
set of all agents, a subset of all objects available for assignment in the �rst step (de�ned

by the application), and the preferences and priorities over available objects, and13

2. '2 operates on the restricted problem (I2; S2; P 2; q2;� jS2; h) whose primitives are the
set of all agents (without property rights) who are unassigned in the �rst step, the set of

all objects available for assignment in the second step (de�ned by the application), the

preferences, and priorities over available objects. More precisely,

I2 = fi : '1i (I; S1; P 1; qjS1;� jS1; h) = ; and h(i) = ;g; S2 = SnS1;

q2s = qs � jfi : h(i) = s and '1i (I; S1; P 1; qjS1;� jS1; h) = ;gj 8s 2 S2:

It is important to note that since the objects assigned in the �rst step are no longer available

for allocation in the second step, the problem in the second step (including the participating

agents as well as available objects) is �endogenously�determined through the assignments made

in the �rst step. Then; the assignment of agent i for a problem under system 	 is formally

de�ned as:

	i(I; S
1; S2; P 1; P 2; q;�; h) =

8><>:
'1i (I; S

1; P 1; qjS1;� jS1; h) if '1i (I; S1; P 1; qjS1;� jS1; h) 6= ;;
h(i) if '1i (I; S

1; P 1; qjS1;� jS1; h) = ; and h(i) 6= ;;
'2i (I

2; S2; P 2; q2;� jS2; h) otherwise.

A mechanism or a system is said to be non-wasteful {fair} [individually rational] if it
selects a non-wasteful {fair} [individually rational] matching for a given problem.

11Mutual fairness is also used by Morrill (2012).
12Note that both mutual fairness and serial fairness are very weak form of fairness. Boston mechanism, Top

Trading and Cycles mechanism, Serial Dictatorship mechanism which fail to be fair satisfy mutual and serial
fairness.
13The notations qjS1 and � jS1 respectively denote the restrictions of q and � to the set of objects in S1:

Here, P 1 = (P 1i )i2I is the preference pro�le over the available objects in step 1. Similarly, P 2 = (P 2i )i2I2 is the
preference pro�le over the available objects in step 2.
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A mechanism is strategy-proof if it is always a dominant strategy for each agent to report

his preferences truthfully. Formally, for every i 2 I and every P 0i ; and every P; we have

'i(I; S; P; q;�; h) Ri 'i(I; S; P 0i ; P�i; q;�; h):

A system is strategy-proof if no agent ever gains by ranking available objects non-truthfully

in each step she participates. Formally, for every i 2 I, every pair (P 0i ; P 00i ) and every P; we have

	i(I; S
1; S2; P jS1; P j(S2; I2); q;�; h) Ri 	i(I; S1; S2

0
; (P 0i ; P�i)jS1; (P

00
i ; P�i)j(S2

0
; I2

0
); q;�; h):

We say that e� is an improvement in the priorities for agent i 2 I if (1) i �s j =) ie�sj
for all s 2 S; (2) there exists at least one agent j0 and school s0 such that j �s ie�sj; and (3)
k �s j0 () ke�sj0 for all s 2 S and j; k 2 Infig. A mechanism ' respects improvements in
the priorities if e� is an improvement in the priorities for agent i 2 I; then 'i(I; S; P; q; e�; h)
Ri 'i(I; S; P; q;�; h) for any i 2 I:

In the rest of the paper for a given problem we �x the set of agents, objects, quotas, priority

order and the ownership pro�le and represent the outcome of a system for a given problem by

	(P 1; P 2).

3 Two Applications

3.1 School Choice Problem with Exam and Regular Schools (SCPwEXRS)

A school choice problem with exam and regular schools, or a problem for short, consists

of14

1. A set of schools S = fs1; s2; :::; smg: S is composed of two disjoint sets, i.e. exam and

regular schools. Let Se be the set of exam schools and Sr be the set of regular schools and

S = Se [ Sr:

2. A capacity vector q = (qs)s2S where qs is the number of available seats in s 2 S.

3. A set of students I = fi1; i2; :::; ing.

4. A preference pro�le P = (Pi)i2I where Pi is the strict preference of i over S [ ;:

5. A priority order �= (�s)s2S where �sis the strict priority order of applicants in I for
school s.

6. An ownership pro�le h = (h(i))i2I where h(i) is the object for which agent i has the

property right.

14We are using a similar notation with Balinski and Sonmez (1999).
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All the available seats in both type of schools are social endowments. Therefore, h(i) = ;
for all i 2 I. Let c(i) be the test score of applicant i 2 I and c be the test score pro�le of all
applicants, c = (c(i))i2I : In the school choice problem with exam and regular schools only the

exam schools rank the students based on their exam score. That is, for each s 2 Se i �s j if and
only if c(i) > c(j): On the other hand, the regular schools use some predetermined exogenous

rules (proximity, sibling) while ranking students. All exam schools rank students in the same

order. However, the priorities of students for any two di¤erent regular school do not have to be

the same.

The current system used in Boston is a serial dictatorship followed by deferred accep-
tance mechanism (SD-DA) and works as follows:

Step 1:

� Only exam schools, Se, are available for assignment in this step and all students can

participate in. Students submit their preferences over the set Se and ;: Let P 1 = (P 1i )i2I
be the list of submitted preference in step 1. Therefore, the problem considered in Step 1

is (I; Se; P 1; qjSe;� jSe; h).15

� Serial dictatorship mechanism is applied to the problem (I; Se; P 1; qjSe;� jSe; h): The
agent with the highest score is assigned to his top choice in the list he submitted, the next

agent is assigned to his top choice among the remaining schools, and so on.

� Let �1 denote the assignment in step 1.

Step 2:

� The problem considered in Step 2 is (I2; S2; P 2; q2;� jS2; h). I2; S2 and q2 are calculated
as described in Section 2. Note that S2 = Sr, q2 = (qs)s2Sr and all the unassigned students

in the �rst step participate in.

� Student proposing deferred acceptance mechanism is used in the placement process:

�Each agent i 2 I2 applies to the top ranked school in P 2i . Each school s 2 S2

tentatively accepts all best o¤ers up to its quota q2s according to its priority order.

The rest are rejected.

� In general; Each agent i 2 I2 applies to the highest ranked school in P 2i which has
not rejected him yet. Each school, which holds tentatively accepted o¤ers or receives

new o¤ers in this round, tentatively accepts all best acceptable o¤ers, among the new

and previously held ones, up to its quota according to its priority order. The rest are

rejected.

� Let �2 be the �nal assignment in Step 2.
15Since only the exam schools are considered in this step priority order for all available schools will be the same

and it is equivalent to the order of test scores.
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The placement of agent i 2 I induced by the SD-DA is:

�(i) =

(
�1(i) if �1(i) 6= ;;
�2(i) otherwise.

3.2 Teacher Assignment Problem (TAP)

A teacher assignment problem, or a problem for short, consists of16

1. A set of schools S = fs1; s2; :::; smg: S is composed of two disjoint sets, i.e. contractual
and tenured schools. Let Sc be the set of contractual schools and St be the set of tenured

schools and S = Sc [ St:

2. A capacity vector q = (qs)s2S where qs is the number of available seats in s 2 S.

3. A set of students I = fi1; i2; :::; ing. I is composed of two disjoint sets, i.e. existing teachers
and new graduates. Let Ie be the set of existing teachers and In be the set of new graduates

and I = Ie [ In.

4. A preference pro�le P = (Pi)i2I where Pi is the strict preference of i over S [ ;:17

5. A priority order �= (�s)s2S where �sis the strict priority order of applicants in I for
school s.

6. An ownership pro�le h = (h(i))i2I where h(i) is the object for which agent i has the

property right.

Each i 2 Ie has property right over a school in Sc;
X
i2Ie

1( h(i) = s) = qs for all s 2 Sc: For

each new graduate i 2 In h(i) = ;. The number of available seats in s 2 Sc is qs = jh�1(s)j: All
the available seats in tenured schools are social endowments.

The strict priority order of applicants in I for each school s; �s; is determined according to
the centralized test score of each agent and the property rights. Each tenured school s 2 Sr

ranks applicants based on their test score: i �s j if and only if c(i) > c(j): Each existing teacher
currently working in a contractual school s 2 Sc is given right to keep his position unless he is
assigned to a better school. That is, each contractual school s 2 Sc ranks its current teachers at
the top of its priority order. All the other applicants are ranked based on their test score. Each

contractual school s 2 Sc considers each existing teacher working in another contractual school
as unacceptable. The priority order of each contractual school s 2 Sc as:

� For all i; j 2 I such that h(i) = s; h(j) 6= s then i �s j

� For all i; j 2 I such that h(i) = h(j); i �s j if and only if c(i) > c(j)
16We are using a similar notation with Balinski and Sonmez (1999).
17All existing teachers are assumed to prefer their current position to ;:
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� For each s 2 Sc and all i 2 Ie such that h(i) 6= s then ; �s i

� For each s 2 Sc and all i 2 In and j 2 Ie such that h(j) 6= s; i �s j:

As one can notice, in the teacher assignment problem the priority order can be constructed

by using the test scores and the ownership pro�le. Alternatively, we can de�ne the TAP as

(I; S; P; q; c; h). To be consistent with the general framework we de�ne problem as (I; S; P; q;�
; h).

The system that was in use in Turkey until very recently is the two-step serial dictatorship
mechanism (TSSD) and works as follows:

Step 1:

� Only tenured schools, St, are available for assignment in this step and all teachers can
participate in. Teachers submit their preferences over the set St and ;: Let P 1 = (P 1i )i2I
be the list of submitted preference in step 1. Therefore, the problem considered in Step 1

is (I; St; P 1; qjSt;� jSt; h).18

� Serial dictatorship mechanism is applied to the problem (I; St; P 1; qjSt;� jSt; h): The
agent with the highest score is assigned to his top choice in the list he submitted, the next

agent is assigned to his top choice among the remaining schools, and so on.

� Let �1 denote the assignment in step 1.

Step 2:

� The problem considered in Step 2 is (I2; S2; P 2; q2;� jS2; h). I2; S2 and q2 are calculated as
described in Section 2. Note that S2 = Sc and all the unassigned new graduates participate

in. 19

� Serial dictatorship mechanism is used in the assignment process: The agent with the highest
test score is assigned to his top choice in the list he submitted. The number of available

seats in that school is updated and if it falls to zero that school is removed. The agent with

the second highest test score is assigned to his top choice among the remaining schools,

and so on.

� Let �2 be the �nal assignment in Step 2.

The placement of agent i 2 I induced by the TSSD is:

�(i) =

8><>:
�1(i) if �1(i) 6= ;

h(i) if �1(i) = ; and h(i) 6= ;
�2(i) otherwise.

18Since only the tenured schools are considered in this step priority order for all available schools will be the
same and it is equivalent to the order of test scores.
19Since only the new graduates can participate in this step each school s 2 S2 ranks the agents in I2 based on

test scores:
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4 De�ciencies of General Sequential Systems

We next show that sequential systems, regardless of the speci�c mechanisms used in each step,

may be inherently �awed. To this end, we o¤er some impossibility results. In Theorem 1, we

show that if a non-wasteful mechanism is used in both steps and the mechanism used in the

�rst step is individually rational, then that system is vulnerable to manipulation and fails to be

Pareto e¢ cient, or even non-wasteful.

Theorem 1 Let 	 = ('1; '2) be a system. If '1 is non-wasteful and individually rational and
'2 is non-wasteful then 	 fails to be strategy-proof, Pareto e¢ cient and non-wasteful.

Proof. We consider two di¤erent cases. In the �rst case, all schools are social endowment. In
the second case, we allow some schools to be owned by agents.

Case 1: There are three schools S = fs1; s2; s3g with one available seat and two agent
I = fi1; i2g. Let S1 = fs2; s3g; h(i1) = ; and h(i2) = ;. The priority structure of each school is
the same and given as i1 �s i2 �s ; for all s 2 S. Let the true preferences be as follows:

s2Pi1s3Pi1s1Pi1;

s1Pi2s2Pi2s3Pi2;

In the �rst step, if both agents act truthfully and submit their ranking lists by keeping the

relative order of available schools and ; in P then there are two non-wasteful and individually

rational matchings: �11 =

 
s2

i1

s3

i2

!
and �21 =

 
s2

i2

s3

i1

!
: No matter which one of these two

matchings is selected in the �rst step none of the agents can participate the second step and

s1 is available in the second step. Therefore, the unique non-wasteful matching selected in the

second period is �12 = �
2
2 =

 
s1

;

!
: That is, any system satisfying conditions mentioned in the

statement of Theorem 1 assigns i2 to either s2 or s3: Let e	 be a system selecting (�11; �
1
2) and

	 be a system selecting (�21; �
2
2). That is, the outcome of e	 is �1 =

 
s1

;
s2

i1

s3

i2

!
and the

outcome selected by 	 is �2 =

 
s1

;
s2

i2

s3

i1

!
:

Pareto E¢ ciency: The outcomes of both e	 and 	 are Pareto dominated by the following

matching: �0 =

 
s1

i2

s2

i1

s3

;

!
: Therefore both mechanisms fail to be Pareto e¢ cient. It is

worth to mention that �0 is a fair matching. Hence, the outcomes of e	 and 	 mechanisms are

Pareto dominated by a fair matching.

Non-wastefulness: In the outcomes of both e	 and 	 the available seat of s1 is wasted since

i2 prefers s1 to both his assignment under e	 and 	 and i2 is acceptable for s1.

12



Strategy-proofness: Suppose i2 submits the following preference lists in the �rst step: ;P 0i2s2P
0
i2
s3.

There is a unique individually rational and non-wasteful matching in step 1: �01 =

 
s2

i1

s3

;

!
and both e	 and 	 selects �01: Based on the matching selected in the �rst step i2 can participate
second step and s1 is available in the second step. When i2 submits P 00i2 : s1P

00
i2
; then there is

a unique non-wasteful matching: �02 =

 
s1

i2

!
: That is, (P 0i1 ; P

00
i1
) pair is a pro�table deviation

for i2 under e	 and 	.
Case 2: Consider the same example. We only change the example by giving the property

rights of school s1 to i1: That is, h(i1) = s1 and h(i2) = ;. Given the set of available schools
in step 1 is not changed then in the �rst step in any non-wasteful matching i1 will be assigned

to another school and he will give up his property rights for s1. Therefore, s1 will be socially

endowed in the second period as in the Case 1. One can follow the steps in Case 1 and show that

the impossibility result is robust to the ownership structure, i.e. whether all schools are socially

endowed or not.

In Theorem 1, we do not need the individual rationality of '1 to show that impossibility of

having a non-wasteful and Pareto e¢ cient system. The next result says that a sequential system

may perform poorly as far as fairness and respecting improvements when mild requirements are

imposed on the mechanisms used in each step.

Theorem 2 Let 	 = ('1; '2) be a system. If '1 is non-wasteful and serially fair and '2 is

non-wasteful, then 	 is not fair and does not respect improvements in the priority order.

Proof. As in the proof of Theorem 1, we consider two di¤erent cases. In the �rst case, all

schools are social endowment. In the second case, we allow some schools to be owned by agents.

Case 1: There are three schools S = fs1; s2; s3g with one available seat and three agents
I = fi1; i2; i3g. Let S1 = fs2; s3g; and h(i1) = h(i2) = h(i3) = ;. The priority structure of each
school in S is the same and given as i1 �s i2 �s i3 �s ; for all s 2 S. Let the true preferences
be as follows:

s2Pi1s3Pi1s1Pi1;

s1Pi2s2Pi2s3Pi2;

s1Pi2s2Pi2s3Pi2;

When all agents act truthfully all systems satisfying conditions mentioned in the statement of

Theorem 2 select the following matching: � =

 
s1

i3

s2

i1

s3

i2

!
:

Fairness: Agent i2 prefers s1 to �(i2) and has higher priority for s1 then ��1(s1) = i3.

Therefore, any system selecting � cannot be fair.

Respecting improvement: Now consider the following priority order for all s 2 S1 : i1 �0s i3 �0s
i2 �0s ;. When all agents act truthfully any systems satisfying conditions in Theorem 2 selects
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the following outcome: �0 =

 
s1

i2

s2

i1

s3

i3

!
: That is, when agent i2 has lower priority then

he becomes better o¤. Therefore, any system satisfying conditions mentioned in the statement

of Theorem 2 does not respect improvement in the priority order. If all schools in S1 rank the

students based on the test scores then we can also say that any system satisfying conditions

mentioned in the statement of Theorem 2 does not respect improvement in the priority order.

Case 2: Consider the same example. We only change the example by giving the property
rights of school s1 to i1 and keep everything else the same: That is, h(i1) = s1. Given the set

of available schools in step 1 is not changed then in the �rst step in any serially fair mechanism

will assign i1 to another school and he will give up his property rights for s1. Therefore, s1 will

be available in the second period as in the Case 1. One can follow the steps in Case 1 and show

that the impossibility result is robust to the ownership structure, i.e. whether all schools are

socially endowed or not.

In TAP and SCPwEXRS di¤erent combinations of DA and SD mechanisms are used. DA

and SD mechanisms satisfy the conditions given in the statements of Theorem 1 and Theorem

2. Hence, Theorems 1 and 2 have the following immediate corollaries for the two applications

we have considered.

Corollary 1 SD-DA used in SCPwEXRS is manipulable, wasteful, not fair, leads to avoidable

welfare loss and does not respect improvements in the priority order (test scores).

Corollary 2 TSSD used in TAP is manipulable, wasteful, not fair, leads to avoidable welfare

loss and does not respect improvements in the priority order (test scores).

In the teacher assignment system, the sequence in which assignment is done cannot be changed

since in order to have an available contractual position �rst a contractual teacher should be

assigned to another school. On the other hand, in the school choice system the order can be

changed by �rst assigning students to the regular schools and then assign the remaining students

to the exam schools. Then, one can wonder whether the de�ciencies of the two step mechanism

used in school choice system are a consequence of considering exam schools before the regular

school. It is easy to show that even if we �rst consider the regular school then the exam schools

then we face the same de�ciencies. Under this case the mechanism used to place students will

be deferred acceptance followed by serial dictatorship mechanism (DA-SD).

Corollary 3 DA-SD in SCPwEXRS is manipulable, wasteful, not fair, leads to avoidable welfare
loss and does not respect improvements in the priority order.

In the following two examples, we illustrate how SD-DA and TSSD mechanisms fail to satisfy

the desired properties.
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Example 1 Let S = fs1; s2; s3; s4g, Se = fs3; s4g; Sr = fs1; s2g; I = fi1; i2; i3; i4g and h(i1) =
h(i2) = h(i3) = h(i4) = ;: All schools have one available seat, qs = 1 for all s 2 S. Let true
preferences and test scores be as follows:

s2Pi1s3Pi1s1Pi1s4Pi1; c(i1) = 90

s1Pi2s4Pi2s2Pi2s3Pi2; c(i2) = 88

s3Pi3s1Pi3s2Pi3s4Pi3; c(i3) = 85

s4Pi4s2Pi4s1Pi4s3Pi4; c(i4) = 70

The set of available schools in step 1 is S1 = fs3; s4g: The outcome selected in Step 1 when all
the agents act truthfully is �1(i1) = s3; �1(i2) = s4; �1(i3) = ; and �1(i4) = ;: In step 2 the set
of the available schools and set of the applicants allowed to participate are: S2 = fs1; s2g and
I2 = fi3; i4g: The outcome selected in Step 2 when all the agents act truthfully is �2(i3) = s1

and �2(i4) = s2: The �nal outcome of the SD-DA mechanism is � =

 
s1

i3

s2

i4

s3

i1

s4

i2

!
.

SD-DA is not Pareto e¢ cient: There exists another matching �0 =

 
s1

i2

s2

i1

s3

i3

s4

i4

!
that Pareto dominates the outcome of the SD-DA mechanism, �: It is worth to mention that �0

is a fair matching. That is, the outcome of the current mechanism is Pareto dominated by a fair

matching.

SD-DA is not Strategy-proof: If i2 ranks s4 below ; in his list in Step 1 then the �nal

outcome will be �0 =

 
s1

i2

s2

i4

s3

i1

s4

i3

!
and i2 will be strictly better-o¤.

SD-DA does not respect improvements: If we take c0(i2) = 75 then the outcome will be

�0 =

 
s1

i2

s2

i4

s3

i1

s4

i3

!
and �0(i2)Pi2 �(i2): That is, when i2 gets higher score he is assigned

to a less preferred school.

SD-DA is not fair: �(i4)Pi1�(i1) and i1 has higher priority for �(i4) = s2:
SD-DA is wasteful: Consider the same example with only one agent, I = fi1g. SD-DA

mechanism assigns i1 to s3: But i1 prefers s2 to its match s3 and s2 has an empty under the

outcome of SD-DA:

Consider the same example with the following modi�cation, Sr = fs3; s4g and Se = fs1; s2g:
All the other things are kept the same. Then it is easy to see that DA-SD mechanism su¤ers

from the same de�ciencies as the SD-DA mechanism.

Example 2 Consider Example 1 with the following modi�cations: h(i1) = s1; h(i2) = s2;

h(i3) = h(i4) = ;: Take the same test scores for students i1; i3 and i4: Only change the
test score of i2 to c(i2) = 80: Then TSSD mechanism selects the following matching: � = 
s1

i4

s2

i2

s3

i1

s4

i3

!
:
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TSSD is not Pareto e¢ cient: There exists another matching �0 =

 
s1

i3

s2

i4

s3

i1

s4

i2

!
that Pareto dominates the outcome of the TSSD mechanism �: It is worth to mention that �0 is

a fair matching. That is, the current mechanism is Pareto dominated by a fair matching.

TSSD is not Strategy-proof: If i3 ranks s4 below ; in the submitted preferences in Step 1

then the �nal outcome will be �0 =

 
s1

i3

s2

i4

s3

i1

s4

i2

!
and i3 will be strictly better-o¤. Moreover

none of the agents will be hurt.

TSSD does not respect improvements: If we take c0(i3) = 75 then the outcome will be

�0 =

 
s1

i3

s2

i4

s3

i1

s4

i2

!
and �0(i3)Pi3 �(i3): That is, when i3 gets higher score he is assigned

to a less preferred school.

TSSD is not fair: �(i4)Pi3�(i3) and i3 has higher priority than i4 for �(i4) = s1:
TSSD is wasteful: Consider the same example with only two agents, I = fi1; i3g and

S = fs1; s3; s4g where h(i1) = s1 and h(i2) = ;: The preference of agents are

s3Pi1s1Pi1s4 c(i1) = 90

s3Pi3s1Pi3s4 c(i3) = 85

The matching selected by the TSSD is �00 =

 
s1

;
s3

i1

s4

i3

!
: But i3 prefers s1 to its match s4

and s1 has an empty seat under �00:

5 Equilibrium Analysis of the Preference Revelation Games

In Section 4, we have shown that current systems in Turkey and US are not strategy-proof.

Moreover, it may not be di¢ cult for the agents to manipulate these systems. In this section we

analyze the properties of the preference revelation game associated with the current systems.

Since both systems are composed of two steps we look at the subgame perfect Nash equilibrium

(SPNE). Here, the set of actions in each step is all the possible orders of available objects in that

step and ;. The outcome of the game is determined by the system.
We analyze the game under complete information of payo¤s, available strategies and prior-

ities. Agents are assumed to play simultaneously and the outcome of the �rst step is publicly

announced. We �rst introduce two axioms that we will use in our analysis.

Fix the set of schools, quota vector, priorities and ownership pro�le. Let I be the initial set

of students and A(I) be a subset of I and represent the set of students listing a school from

S at the top of their preferences, A(I) = fi 2 I : sPi; for some s 2 Sg: Then, InA(I) is the
set of students from I who list ; at the top of their preferences. Then, a problem is a pair of

(I; ((Pi)i2A(I); ( ePj)j2InA(I))). A mechanism ' is population monotonic if A(I 0) � A(I) and

I 0 � I then for all i0 2 A(I 0)
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'i0(I
0; ((Pi)i2A(I0); ( ePj)j2I0nA(I0)))Ri0'i0(I; ((Pi)i2A(I); ( ePj)j2InA(I))):

That is, if the number of applicants ranking a real school at the top of the preference list

decreases then applicants ranking a real school at the top of the preference list cannot be worse

o¤. The number of applicants ranking a real school at the top of the preference list can decrease

as a consequence of either departure of some agents or increase in the number of agents ranking

; at the top.
In Section 3 two applications of the sequential assignment problem are explained. In both

applications the set of priority pro�le is restricted. For instance, in TAP the schools rank all

applicants except the existing teachers in the same order. Moreover, only one applicant can be

ranked at the top of priority order of more than two schools. Then it is natural to analyze the

mechanisms under the possible set of priority pro�les. Let � be the class of all possible priority

pro�les. A mechanism ' is weakly fair if it selects a mutually fair outcome for any problem
(I; S; q; P;� j(I; S); h) such that

[
i2I
h(i) \ S = ; and �2�.

Before analyzing the games played in both problems we �rst show that in the general setting

if an agent can gain from misreporting then this implies that she will also be weakly better o¤

by ranking all available schools below ; in the �rst step and reporting true relative preferences
over the available schools in the second step.

Let ePi be the agent i0s true preference over the objects and ;. Denote agent i�s true relative
preference over the available schools in step t 2 f1; 2g including ; with eP ti .
Proposition 1 Let 	 = ('1; '2) be a system such that both '1 and '2 are strategy-proof, indi-

vidually rational and '1 is non-wasteful and population monotonic. If there exists a pair (Q1i ; Q
2
i )

such that 	i((Q1i ; eP 1�i); (Q2i ; eP 2�i))Pi	i( eP 1; eP 2) then 	i(( eQ1i ; eP 1�i); ( eQ2i ; eP 2�i))Ri 	i((Q1i ; eP 1�i); (Q2i ; eP 2�i))
where eQ1i = ; eQ1ix for all x 2 S1 and eQ2i = eP 2i :
Proof. Suppose not. First note that 	i( eP 1; eP 2) cannot be less preferred to ; by i due to in-
dividual rationality. Therefore, 	i((Q1i ; eP 1�i); (Q2i ; eP 2�i))Pi;. Suppose 	i((Q1i ; eP 1�i); (Q2i ; eP 2�i)) is
an object available in step 1. That is, '1(Q1i ; eP 1�i) = 	i((Q

1
i ;
eP 1�i); (Q2i ; eP 2�i)). Therefore, i is

assigned in step 1 and does not participate in the second step. Given that '1 is strategy-proof,

i cannot get better school than '1( eP 1) in the �rst step. Then, '1( eP 1)Pi; since '1(Q1i ; eP 1�i)Pi;
and '1( eP 1) cannot be less preferred to '1(Q1i ; eP 1�i). Hence, 	i( eP ) = '1( eP 1). This is a

contradiction. Therefore, 	i((Q1i ; eP 1�i); (Q2i ; eP 2�i)) should be a school available in step 2 and
	i((Q

1
i ;
eP 1�i); (Q2i ; eP 2�i)) = '2i (

eQ2i ; eP 2�i). When i submits eQ1i = ; eQ1ix for all x 2 S1 he will

not be assigned in the �rst step. Otherwise, individual rationally would be violated. More-

over, the set of agents assigned to an object under both '1(Q1i ; eP 1�i) and '1( eQ1i ; eP 1�i) are the
same since '1 is population monotonic and non-wasteful. Then the same set of agents will

participate the second step and the quotas of each object in S2 will be the same when i sub-

mits Q1i and eQ1i . Due to the strategy-proofness i cannot get a better school than '2( eP 2) in
17



both '2(Q2i ; eP 2�i) and '2( eQ2i ; eP 2�i). Recall that eQ2i = eP 2i : Therefore, '2i ( eP 2)Ri'2i ( eQ2i ; eP 2�i) and
	i(( eQ1i ; eP 1�i); ( eQ2i ; eP 2�i))Ri	i((Q1i ; eP 1�i); (Q2i ; eP 2�i)):

In Section 1 we have shown that TSSD is not strategy proof. Although TSSD is not strategy-

proof, Proposition 1 shows that not all of the applicants can bene�t from misreporting their

preferences. In particular, existing teachers cannot bene�t from misreporting.

Corollary 4 Under TSSD, existing teachers cannot bene�t from misreporting.

In the following proposition we show that if a system satis�es the conditions in Proposition

2 then the only way to manipulate the mechanism is truncating the reported preferences in step

1.

Proposition 2 Let 	 = ('1; '2) be a system such that both '1 and '2 are strategy-proof

and '1 is individually rational, non-wasteful and resource monotonic. If whenever there exists a

preference pair (Q1i ; Q
2
i ) such that 	i((Q

1
i ;
eP 1�i); (Q2i ; eP 2�i))Pi	i( eP 1; eP 2) then there exists a school

s 2 S1 where ;Q1i s and s eP 1i ;.
Proof. In order to prove the proposition we show that there does not exists a preference pair
( eQ1i ; eQ2i ) such that s eQ1i ; if and only if s eP 1i ; and 	i(( eQ1i ; eP 1�i); ( eQ2i ; eP 2�i))Pi	i( eP 1; eP 2). We �rst
consider the case where '1i ( eP 1) = ;. If '1i ( eP 1) = ; then '1i ( eQ1i ; eP 1�i) = ;. This is a consequence
of strategy-proofness. Then consider the following preference pro�le bQ1i : ; bQ1i s for all s 2 S1.
Due to non-wastefulness and population monotonicity, the same set of students are assigned to

the same set of objects under '1( bQ1i ; eP 1�i), '1( eP 1) and '1( eQ1i ; eP 1�i). Then the same set of agents
will participate the second step and the quotas of each object in S2 will be the same when i

submits eP 1i and eQ1i . Since the mechanism used in second step is strategy-proof i cannot bene�t

from misreporting in the second step. Therefore we should consider the case '1i ( eP 1) 6= ;. Due
to the strategy-proofness if '1i ( eQ1i ; eP 1�i)(i) 6= ; then '1i ( eP 1)Pi'1i ( eQ1i ; eP 1�i). On the other hand
'1i (

eQ1i ; eP 1�i) = ; cannot be true due to the strategy-proofness of '1.
Both DA and SD mechanisms are strategy-proof, non-wasteful, population monotonic and

individually rational. Therefore, all the three systems, TSSD, DA-SD and SD-DA, satisfy the

conditions mentioned in Proposition 1 and Proposition 2.

In the following theorems we provide general results on the equilibrium analysis of systems.

Theorem 3 Let 	 = ('1; '2) be a system such that both '1 and '2 are individually rational,

non-wasteful and either population monotonic and non-bossy or fair. Every SPNE outcome of

the preference revelation game associated with 	 leads to a non-wasteful and individually rational

matching.

Proof. Let Q = (Q1i ; Q
2
i )i2I be an SPNE pro�le and � be the associated equilibrium outcome.

If � is individually irrational then there exists i 2 I such that ;Pi�(i): Then submitting
P 0i = ;P 0ix for all x 2 St in step t 2 f1; 2g is a pro�table deviation for agent i: Therefore, Q
cannot be SPNE pro�le which is a contradiction.
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Suppose � is wasteful. Then, there exists i 2 I such that sPi�(i) and i �s ; and j��1(s)j < qs:
We consider two possible cases and we show that if � is wasteful then there exists a pro�table

deviation for at least one agent and therefore Q cannot be SPNE pro�le.

Case 1: Suppose s is available in the �rst step. Since '1 is non-wasteful s should be ranked

after ; in Q1i . Consider following preference pro�le P
0
i = sP 0i;P 0ix for all x 2 S1nfsg. Due to

the individual rationality i can be assigned to s or ; when he deviates and submits P 0i . If the
�rst case is true we are done. If the second case is true then all the seats of s are �lled by other

students who rank s before ;. Denote the new matching by �1. Due to the non-wastefulness of
'1 all students in �1(s) should have been assigned to a school in � and they weakly prefer � to

�1. Moreover, all the seats of their assignment in � should be �lled �lled by other students

under �1. We �rst show that this cannot be true if '
1 is fair. Not to violate fairness all agents

assigned to the assignments of agents in �1(s) under � should have higher priority than agents

in �1(s) and they should prefer � to �1. Not to violate individual rationality all of these agents

should be assigned to a school in �. If we continue we will �nally show that either �1 or � fails

to be fair. Now we show that i cannot be assigned to ; when he deviates given '1 is non-bossy
and resource monotonic. Suppose not. Due to the non-bossiness and individual rationality �1
will be selected when i ranks ; at the top of his submitted preferences. We know that some of
the students in �1(s) prefer � to �1. Therefore resource monotonicity of '

1 is violated.

Case 2: Suppose s 2 S2. If �(i) 2 S2 [ ; then we refer to the Case 1. By using the same
steps in Case 1 one can show that (Q1i ; P

0
i ) is a pro�table deviation for i. If �(i) 2 S1 then we

show that submitting eP 1i = ; eP 1i x for all x 2 S1 in the �rst step and eP 2i = s eP 2i x for all x 2 S2[;
in the second step is a pro�table deviation for student i: First consider the case where '1 is fair.

In this case, all students assigned to a school when i submits Q1i will also be assigned to a school

in step 1 when i submits eP 1i : This is also true when '1 is resource monotonic. Therefore, in the
second step the set of agents is a subset of I2 [ fig and set of available seats weakly increases
compared to the case in which i plays Qi. Suppose i is not assigned to s. Then due to the

individual rationality he will be assigned to ;. Denote the selected matching in the second step
by �2. If '

2 is fair the students who participate in step 2 except i cannot �ll all the available

seats of s. Otherwise fairness would be violated. If '2 is resource monotonic and non-bossy

then �2 will be selected when i ranks ; at the top of his preferences. We know that some of the
students in �2(s) prefer � to �2. Therefore resource monotonicity of '

2 is violated.

Theorem 4 Let 	 = ('1; '2) be a system such that '1 is individually rational, non-wasteful,

population monotonic, non-bossy and either weakly fair and only the socially owned objects are

available in step 1 are social endowment or mutually fair. Every SPNE outcome of the preference

revelation game associated with 	 leads to a matching � in which there does not exist (i; j; s)

triple such that

� s 2 S1 and j 2 ��1(s);

� sPi�(i) and i �s j:
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Proof. Let Q = (Q1i ; Q
2
i )i2I be an SPNE pro�le and � be the associated equilibrium outcome.

Suppose there exist two agents i; j 2 I such that s 2 S1, sPi�(i), j 2 �(s) and i �s j: Note that
Q1i cannot be equivalent to Q

0 : sQ0;Q0x for all x 2 S1nfsg. Otherwise, mutual fairness (or weak
fairness given only the socially owned objects are available in step 1) of '1 would be violated.

We claim that submitting Q0 is a pro�table deviation for some agents. We �rst start checking

whether it is a pro�table deviation for i.

Denote the matching selected by '1 in step 1 for preference pro�le (Q0; Q1�i) by e�1. Since
'1 is individually rational then i will be either assigned to s or ;. If i is assigned to s then
Q0 is a pro�table deviation for i and Q cannot be SPNE. If i is assigned to ; then all agents
assigned to s should have higher priority than i and all the seats of s are �lled. Otherwise mutual

fairness (or weak fairness given only the socially owned objects are available in step 1) and/or

non-wastefulness of '1 would be violated. Suppose e�1 = ; then consider the pro�le (Q00; Q1�i)
where i submits Q00 : ;Q00x for all x 2 S1. Due to non-bossiness and individual rationality

the allocations of all agents are unchanged. Given the number of agents ranking a real object

decreases due to the population monotonicity all the agents in e��11 (s) should be weakly better o¤
compared to �1. Moreover, the ones who were not assigned to s in �1 should be strictly better

o¤ under e�1. Moreover, there exists a student i1 such that e�1(i1) = s 6= �1(i1), sQ1i1�1(i1)Q1i1;.
Otherwise, non-wastefulness and/or individual rationality would be violated.

Given i �s j and i1 �s i, i1 has higher priority than at least one student in ��11 (s) for
school s. Therefore, Q1i1 6= Q

0 otherwise mutual fairness (or weak fairness given only the socially

owned objects are available in step 1) would be violated. Now consider the following preference

pro�le (Q0; Q1�i1) where i1 submits Q
0 and all other players keep their strategies in Q: Denote

the matching selected by '1 for preference pro�le (Q0; Q1�i1) by e�2. Since '1 is individually
rational then either e�2(i1) = s or e�2(i1) = ;. If e�2(i1) = s then Q0 is a pro�table strategy

for i1. Otherwise, all students in e��12 (s) have higher priority than i1 and je��12 (s)j = qs. Now

consider the pro�le (Q00; Q1�i1) where i1 submits Q
00. Due to the non-bossiness the allocations of

all agents are unchanged. Due to population monotonicity all the students in e��12 (s) should be
weakly better o¤ compared to �1. Moreover, agents in e��12 (s) who were not assigned to s in �1
strictly prefer e�2 to �1. Moreover, there exists a student i2 such that e�2(i2) = s 6= �1(i2), sQ1i2;
and i2 prefers s to �1(i1). Otherwise, non-wastefulness and/or individual rationality would be

violated.

In each repetition of this procedure it is easy to see there does not exist a student in e��1n (s)
with lower priority than all the students in e��1n�1(s) and je��1n�1(s)j = je��1n (s)j = qs. Due to the
�niteness of students at some point we will never observe the case where a student is assigned

to ; when he submits Q0 and all the others keep their strategies in Q. Therefore, Q cannot be a
SPNE strategy pro�le.

Theorem 5 Let 	 = ('1; '2) be a system such that '1 is individually rational, population

monotonic and '2 is individually rational, population monotonic, non-wasteful and weakly fair.

Every SPNE outcome of the preference revelation game associated with 	 leads to a matching �
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in which there does not exist (i; j; s) triple such that

� s 2 S2 and j 2 ��1(s);

� sPi�(i) and i �s j:

First note that according to our de�nition in Section 2 in any system agents with endowment

are not allowed to participate in step 2. Let Q = (Q1i ; Q
2
i )i2I be an SPNE pro�le and � be the

associated equilibrium outcome. Suppose there exist two agents i; j 2 I and s 2 S2 such that
s 2 S2, sPi�(i), j 2 �(s) and i �s j: There are two possible cases: (1) �(i) 2 S1 and i does

not participate in the second step or (2) i participate the second step but his strategy is not

Q0 : sQ0;Q0x for all x 2 S2nfsg. Note that, if i 2 I2 and Q2i = Q0 then weak fairness of '2 would
be violated. We show that Q cannot be a SPNE.

Proof. First suppose that agent i participates the second step. We claim that there exists an

agent among the ones assigned in the second step who can be better of by only deviating in the

second step and submitting Q0. Note that when nobody deviates from his strategy in the �rst

step the set of schools and agents in the second step will not change. Therefore, we can prove

that some agents participating the second step can bene�t from deviating to Q0 by following the

same steps in the proof of Theorem 4.

Now suppose that there does not exist an agent i0 such that (1) �(i0) 2 S2, (2) sPi0�(i0) and
(3) j �s i0 for all j 2 �(s). Then agent i should be assigned in step 1. We claim that ranking ;
at the top of the submitted preference list in the �rst step and submitting Q0 in the second step

is a pro�table deviation for i. To see this �rst note that i will be assigned to ; in the �rst step.
Due to the population monotonicity and individual rationality the agents assigned to a school

in S1 under Q1 will be assigned to weakly better schools in S1 when i deviates. No new agents

other than i can participate the second step. Moreover, the number of available seats in each

object will not decrease. Then when i submits Q0 he will be assigned to either s or ;. Denote
the matching by �2. If �2(i) = s then we are done. If �2(i) = ; then all agents in ��12 (s) should
have higher priority than i for s and all the seats of s are �lled. Otherwise weak fairness and/or

non-wastefulness would be violated. We continue with �2(i) = ;. Now consider the case where
i ranks ; at the top of his list in the second step. Due to non-bossiness the allocations of all
agents are unchanged. Moreover there exists at least one agent i1 such that �2(i) = s 6= �(i1)

since agent j is not assigned to s anymore and all the seats of s is �lled. Given the number of

agents ranking a real object weakly decreases due to the population monotonicity all the agents

in e��12 (s) should be weakly better o¤ compared to �. Moreover, the ones who were not assigned
to s in � should be strictly better o¤ due to the strict preferences. However, this violates the fact

that i1 prefers his assignment in � to s: Therefore, i cannot be assigned to ; when he submits
Q0 in the second step.
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5.1 Subgame Perfect Nash Equilibria of SD-DA in SCPwEXRS

In this subsection, we analyze the SPNE of the current sequential assignment system used in

SCPwEXRS. Recall that in SCPwEXRS serial dictatorship mechanism is applied in the �rst step

and deferred acceptance mechanism is applied in the second step. Serial dictatorship mecha-

nism is individually rational, non-wasteful, population monotonic, non-bossy and strategy-proof.

Moreover, it selects a fair (mutually fair) outcome when only the exam schools are available.

Deferred acceptance mechanism is individually rational, non-wasteful, strategy-proof and fair

(mutually fair). By following Theorem 3 one can see that every SPNE outcome of SD-DA leads

to a non-wasteful and individually rational matching under the true preferences.

Corollary 5 Every SPNE outcome of the preference revelation game associated with SD-DA
leads to a non-wasteful and individually rational matching under agents�true preferences.

Proof. Follows from Theorem 3.

In the school choice problem, not all SPNE of the preference revelation game associated with

SD-DA leads to a fair matching under agents�true preferences. However, SPNE of the preference

revelation game associated with SD-DA leads to a matching where the priorities of the exam

schools are respected under agents�true preferences.

Corollary 6 Every SPNE outcome of the preference revelation game associated with SD-DA

leads to a matching � in which there does not exist (i; j; s) triple such that

� s 2 Se and j 2 ��1(s);

� sPi�(i) and i �s j:

Proof. Follows from Theorem 4.

Recall that only the students who have not been assigned to an exam school participate in

the second step. Since it is the last step and we are using a strategy-proof mechanism to assign

the participants to the available schools agents cannot bene�t from misreporting. That is, it is

weakly dominant strategy for all students to submit true preference over the available schools

in step 2. Without loss of generality in the rest of this subsection we assume that students act

truthfully in the second step of SD-DA.

Let (S; I; P; PS ; q) be the associated college admission problem of the school choice problem

with exam and regular schools, (S; I; P;�; q; h) where for each school s iPsj if and only if i �s j.
In particular, the unique di¤erence between college admission problem and school choice problem

is that in college admission problem schools are active and have preferences over students, PS =

(Ps)s2S , whereas in school choice problem schools are passive and considered as objects to be

consumed. A matching � in school choice problem is individually rational, non-wasteful and

fair if and only if it is stable for its associated college admission problem (Balinski and Sönmez,

1999). Moreover, for each college admission problem there exists a unique stable matching
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which is preferred to any other stable matching by all students. This matching is called student

optimal stable matching. Similarly, student optimal stable matching is individually rational, non-

wasteful, fair and preferred to any other individually rational, non-wasteful and fair matching

by all students. In the following proposition, we show that in any school choice problem with

exam and regular schools there exists at least one SPNE outcome of preference revelation game

associated with SD-DA mechanism which is (weakly) preferred to any individually rational,

non-wasteful and fair matching by all students.

Proposition 3 In any SCPwEXRS, there always exists at least one SPNE outcome of prefer-
ence revelation game associated with SD-DA mechanism which (weakly) Pareto dominates any

individually rational, non-wasteful and fair matchings

Proof. We show the existence of a SPNE outcome which (weakly) Pareto dominates the student

optimal stable matching20. Denote the student optimal stable matching with �. Then consider

the following strategy pro�le:

� Student i submits eP 1i : �(i) eP 1i x for all x 2 Senf�(i)g in the �rst step if �(i) 2 Se

� Student i submits eP 1i : ; eP 1i x for all x 2 Se in the �rst step if �(i) 2 Sr;
� Student i submits his true preferences over the regular schools in the second step whenever
he is active, i.e. eP 2i = PijSr.

Denote the outcome of SD-DA mechanism under this preference pro�le by �. It is easy to

see that the students assigned to the exam schools in � are assigned to the same school under

this preference pro�le.

We need to �rst show that this preference pro�le is SPNE. First look at the subgames in

the second step. Each subgame can be considered as an independent school choice problem.

Truthtelling is weakly dominant strategy under DA mechanism. Therefore, submitting true

preferences in the second step is a Nash equilibrium in each subgame.

Now we analyze the strategies in the �rst step. First consider a student i who is assigned

to a regular school. Given that � is fair and non-wasteful all the seats of the exam schools

that i prefers to �(i) are �lled by students with better exam score under this preference pro�le.

Therefore, i cannot be assigned to a better exam school by deviating in the �rst step. Moreover,

he can only change the outcome by being assigned to an exam school and that school cannot be

preferable to �(i) due to strategy-proofness.

Now consider student j who is assigned to an exam school. Given that � is fair and non-

wasteful all the seats of the exam schools that i prefers to �(i) are �lled by students with better

exam score under this preference pro�le. We should also check whether he can be assigned to a

more preferred regular school. If j deviates and participates in the second step then we should

consider the subgame where students assigned to regular school in � and j are active. We know

20Here, we mean the most preferred individually rational, fair and non-wasteful matching.

23



that truthtelling is a Nash equilibrium. We need to �nd the outcome of DA mechanism for the

following school choice problem (Sr; I2; (qs)s2Sr ; ( eP 2i )i2I2 ;�Sr) where I2 = S
s2Sr[;

��1(s)[ j:We

use the sequential DA mechanism of McVitie and Wilson (1972). We consider student j after

all students. Denote the matching that we have just before the turn of j with e�. Matching e� is
non-wasteful, individually rational and fair. Moreover, e� is the outcome of DA mechanism for

problem (Sr; I2nfjg; (qs)s2Sr ; ( eP 2i )i2I2nj ;�Sr). De�ne a new matching �0 : S
s2Sr[;

��1(s) ! Sr

such that �0(i) = �(i) for all i 2
S

s2Sr[;
��1(s). It is easy to see that �0 is individually rational,

fair and non-wasteful for the problem (Sr; I2nfjg; (qs)s2Sr ; P;�Sr) and all students in I2nfjg
weakly prefers their assignment in e� to the one in �0 and �. As a consequence of the rural
hospital theorem (Roth, 1986) the number of students assigned to each regular schools is same

in e� to �0.
For student j we should consider the regular schools which is preferred to �(j). Let s0 be a

regular school that i prefers to �(i): Then, all the seats of s0 should be �lled in e� . Otherwise �
cannot be non-wasteful. Also note that each student in I2nfjg prefers his assignment in � to the
schools with un�lled seats in �0 and e�. Without loss of generality we change the preference pro�le
of j by placing ; just before �(j) and represent it with P 0j : Let eP 0j = P 0j jSr. It is easy to see that if
j can be assigned to a better school than �(j) in (Sr; I2; (qs)s2Sr ; ( eP 2i )i2I2 ;�Sr) then he will be
assigned to the same school in (Sr; I2; (qs)s2Sr ; ( eP 0j ; ( eP 2i )i2I2nj);�Sr): De�ne a new matching �00 :S
s2Sr[;

I2 ! Sr such that �00(i) = �(i) for all i 2 I2nj and �00(j) = ;: Then it is easy to see that �00

is individually rational, fair and non-wasteful in problem (Sr; I2; (qs)s2Sr ; ( eP 0j ; ( eP 2i )i2I2nj);�Sr).
Moreover, in all stable matchings the set of students assigned to a real school will be the same

(Roth, 1986). Therefore, DA mechanism will not assign j to a better school then �(j) if he

deviates and participates the second step.

Given that the strategy pro�le is SPNE then we need to look at the welfare comparison

between � and �. All students assigned to an exam school in � will be assigned to the same

school in �. Therefore, the set of students participating the second step will be the students

who were not assigned to exam schools in �: Then in the second step the outcome will be e�: We
already mention that all students in I2nfjg weakly prefer e� to �. Therefore, the outcome of the
above strategy pro�le is weakly preferred to � by all students.

We illustrate the result of Proposition 3 in the following example.

Example 3 There are 1 exam school, Se = fs1g; two 2 regular schools, Sr = fs2; s3g and three
students, I = fi1; i2; i3g: Priorities and preferences are given as

�s1 �s2 �s3
i1 i2 i3

i2 ii i2

i3 i3 i1

Pi1 Pi2 Pi3

s2 s3 s2

s1 s2 s3

; ; ;
s3 s1 s1

:
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We can �nd the student optimal individually rational, fair and non-wasteful matching by

applying DA mechanism. The steps of the DA mechanism is:

s1 s2 s3

Step 1 i�1; i3 i�2
Step 2 i�i i2; i

�
3

Step 3 i1; i
�
2 i�3

Step 4 i�1 i�2 i�3

The �nal outcome of DA mechanism is � =

 
s1

i1

s2

i2

s3

i3

!
:

Consider the following strategy pro�le:

� In the �rst period students submit following pro�les: s1 eP 1i1;; ; eP 1i2s1; ; eP 1i3s1.
� All students participating the second step submit their true preference over the regular
schools.

One can verify that the strategy pro�le is SPNE equilibrium by checking the proof of Propo-

sition 3. The outcome of this strategy pro�le is: �0 =

 
s1

i1

s2

i2

s3

i3

!
and it Pareto dominates

the student optimal individually rational, fair and non-wasteful matching � =

 
s1

i1

s2

i2

s3

i3

!
:

As a consequence of Proposition 3 we cannot say that every SPNE outcome of the preference

revelation game associated with SD-DA leads to a non-wasteful, individually rational and fair

matching under agents�true preferences. On the other hand we can relate every non-wasteful,

individually rational and fair matching to an SPNE outcome.

Theorem 6 Every non-wasteful, individually rational and fair matching under agents� true
preferences is led by a SPNE outcome of the preference revelation game associated with SD-DA.

Proof. We refer to the proof of Theorem 7. One can easily modify the proof of Theorem 7 and

follow the same steps.

5.2 Subgame Perfect Nash Equilibria of TSSD

Recall that in TAP serial dictatorship mechanism is applied in both steps. Serial dictatorship

mechanism is individually rational, non-wasteful, population monotonic, non-bossy and strategy-

proof. Moreover, it selects a fair (mutually fair) outcome in a TAP when none of the applicants

own the available schools. By following Theorem 3 one can see that every SPNE outcome of TSSD

leads to a non-wasteful and individually rational matching and fair under the true preferences.
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Corollary 7 Every SPNE outcome of the preference revelation game associated with TSSD

leads to a non-wasteful, individually rational and fair matching under agents�true preferences.

Proof. Follows from Theorem 3, Theorem 4 and Theorem 5.

We illustrate this result in the following example.

Example 4 Suppose there are 3 schools, S = fa; b; cg;1 existing teacher Ie = feg and 2 new
graduates In = ft1; t2g. Teacher e is currently working in school a and the other two schools are
tenured positions. Suppose the ranking based on the test score is given by: c(t1) > c(t2) > c(e).

The true preferences over schools and utilities of teachers are given as:

e t1 t2 U

c a a 3

b b b 2

a c c 1

; ; ; 0

Teachers can act strategically only in the �rst stage and they cannot bene�t from a deviation in

the second step. In step 1 strategies are: bc; cb; b; c and ;: The simultaneous game induced by
the current 2 stage mechanism for the teacher assignment problem is given below. In this game,

t2 is the matrix player, t1 is the column player and e is the row player.

bc

bc cb b c ;
bc 1,2,1 1,1,2 1,2,1 1,1,2 3,3,2
cb 1,2,1 1,1,2 1,2,1 1,1,2 3,3,2
b 1,2,1 1,1,2 1,2,1 1,1,2 1,0,2

c 1,2,1 1,1,2 1,2,1 1,1,2 3,3,2
; 1,2,1 1,1,2 1,2,1 1,1,2 1,0,2

cb

bc cb b c ;
bc 1,2,1 1,1,2 1,2,1 1,1,2 2,3,1

cb 1,2,1 1,1,2 1,2,1 1,1,2 2,3,1

b 1,2,1 1,1,2 1,2,1 1,1,2 2,3,1

c 1,2,1 1,1,2 1,2,1 1,1,2 1,0,1

; 1,2,1 1,1,2 1,2,1 1,1,2 1,0,1

b

bc cb b c ;
bc 3,2,3 1,1,2 3,2,3 1,1,2 3,3,2
cb 3,2,3 1,1,2 3,2,3 1,1,2 3,3,2
b 1,2,0 1,1,2 1,2,0 1,1,2 1,0,2

c 3,2,3 1,1,2 3,2,3 1,1,2 3,3,2
; 1,2,0 1,1,2 1,2,0 1,1,2 1,0,2

c

bc cb b c ;
bc 1,2,1 2,1,3 1,2,1 2,1,3 2,3,1

cb 1,2,1 2,1,3 1,2,1 2,1,3 2,3,1

b 1,2,1 2,1,3 1,2,1 2,1,3 2,3,1

c 1,2,1 1,1,0 1,2,1 1,1,0 1,0,1

; 1,2,1 1,1,0 1,2,1 1,1,0 1,0,1
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;
bc cb b c ;

bc 3,2,3 2,1,3 3,2,3 2,1,3 2,3,0

cb 3,2,3 2,1,3 3,2,3 2,1,3 3,3,0

b 1,2,0 2,1,3 1,2,0 2,1,3 2,3,0

c 3,2,3 1,1,0 3,2,3 1,1,0 3,3,0

; 1,2,0 1,1,0 1,2,0 1,1,0 1,0,0

The bold payo¤s represent the NE. (1,2,1) corresponds to the payo¤ of the school optimal fair,

non-wasteful and individually rational matching and (3,3,2) corresponds to the payo¤ of the agent

optimal fair, non-wasteful and individually rational matching.

In the following theorem, we show that in TAP every non-wasteful, individually rational and

fair matching can be related to an SPNE outcome of TSSD.

Theorem 7 Every non-wasteful, individually rational and fair matching under agents� true
preferences is led by a SPNE outcome of the preference revelation game associated with TSSD.

Proof. Let � be a non-wasteful, individually rational and fair matching. Then consider the
following strategy pro�le Q = (Qi)i2I and Qi = (Q1i ; Q

2
i ) where Q

t
i is the submitted preference

pro�le in step t 2 f1; 2g such that

� if �(i) 2 St then student i ranks �(i) at the top of Q1i ;

� if �(i) 2 Se and h(i) = ; then student i ranks ; at the top of Q1i and �(i) at the top of
Q2i ;

� if �(i) = h(i) 6= ; then student i ranks ; at the top of Q1i .

� if �(i) = h(i) = ; then student i ranks ; at the top of Q1i and Q2i .

It is clear that the outcome of this strategy pro�le is �:

First of all any agent assigned to a school in S cannot be better o¤ by submitting a preference

pro�le which makes him unassigned due to individual rationality.

First consider the second step. Agent i participates in the second step if h(i) = ; and she
ranks ; at the top of Q1i : Suppose there exists a teacher among the ones participating step 2
who can get a better allocation by deviating. Denote this teacher by j. Let he get s when he

deviates. Since � is non-wasteful all the seats of s are �lled by other students. Moreover, due to

the fairness all students assigned to s have higher test scores. Therefore, all seats of s are �lled

before student j�s turn and he cannot get that school no matter what he submits. If �(j) 2 S
then j cannot be better o¤ by ranking ; above �(j) since � is individually rational. Therefore,
in the subgame a Nash equilibrium is selected under preference pro�le Q2:

Now consider the �rst step. We �rst show that a contractual teacher cannot be better o¤

by deviating. Suppose there exists a contractual teacher j who can get a better allocation by
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deviating. Let he get s when he deviates. First note that s cannot be a contractual position.

Because the system does not allow an agent with ownership to participate in the second step.

Then, s is a tenured position. Since � is non-wasteful and fair all seats of s is �lled before

student j�s turn and she cannot get that school no matter what she submits. Now we show that

a new graduate cannot be better o¤ by deviating. First of all, a new graduate cannot increase

the number of available seats when each contractual teacher k 2 Ie submits Q1k. Due to the
fairness and non-wastefulness a new graduate student who is assigned to a tenured school cannot

be assigned to a contractual school when he deviates. Therefore if a new graduate deviates and

gets a better school s then that school should be a tenured school. However, due to the fairness

and non-wastefulness all seats of that school is �lled before it is her turn and she cannot get that

school no matter what she submits.

6 A Simpler Alternative System

Theorem 1 and Theorem 2 show that the main reason behind the de�ciencies observed in the

current procedures may simply be due to the fact that assignments are done in sequential fashion.

These impossibilities motivate us to advocate one-step assignment systems as alternative systems

to sequential assignment whenever it is feasible to do so.

In the assignment systems discussed in this paper, one of the important concerns is assigning

the agents to the school without violating the order in the test scores or the predetermined

priorities. Additionally, decreasing the level of gaming and thereby encouraging agents to report

their true preferences over the schools is another important concern. Speci�c to the teacher

assignment system in Turkey, it would violate the laws if a contractual teacher were to be moved

from her current position and assigned to a less preferred one.

Applying the agent-proposing deferred acceptance algorithm (DA) in both market will readily

ful�ll the concerns mentioned above. For a given assignment problem (S; I; q; P;�; h) we can
�nd the outcome of the DA mechanism as follows:

Step 1: Each agent applies to her top choice school. Each school, which receives an o¤er,
tentatively accepts all best acceptable o¤ers up to its quota according to its priority ordering. Any

unacceptable o¤er or any o¤er not honored due to the quota constraint is rejected. If an agent

applies to the being unassigned option, then she is permanently assigned to it.

In general,

Step k: Each agent who does not have a tentatively accepted o¤er from the previous step

makes an o¤er to the best school, which has not rejected him yet. If there is no such school, she

is tentatively matched with the null college. Each agent, which holds tentatively accepted o¤ers

or receives new o¤ers in this step, tentatively accepts all best acceptable o¤ers, among the new

and previously held ones, up to its quota according to its priority ordering. Any unacceptable

o¤er or any o¤er not honored due to the quota constraints is rejected permanently. If an agent

applies to the being unassigned option, then she is permanently assigned to it.
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The algorithm terminates when no agent is rejected any more. For any problem, DA mech-

anism selects a fair, non-wasteful and individually rational outcome, i.e., it is stable. Moreover,

DA mechanism is immune to preference manipulation and respects the improvements in the test

scores (priorities). A natural question to ask is whether or not there is another alternative which

satis�es all these desirable features. The following result based on Alcalde and Barbera (1994)

and Balinski and Sönmez (1999) gives a negative answer to this question and makes a strong case

for DA as a remedy to the de�ciencies of the systems used in the two applications we discussed.21

Theorem 8 DA is the unique mechanism which is

� fair, individually rational, non-wasteful, strategy-proof, or

� fair, individually rational, non-wasteful, respects improvements in priorities.

7 Conclusion

Although the social objectives of a standard (one-step) assignment problems and those of se-

quential assignment problems are quite similar, we have shown that the latter type of problems

may be fundamentally di¤erent and more challenging when compared with the former type. We

have shown that under sequential systems, most desirable properties are lost even though they

may be satis�ed stepwise. Most remarkably, sequential systems are strategically vulnerable (even

if they are strategy-proof stepwise) and force participants to make hard judgment calls about

what rank-order to choose in each step. As a result these systems may lead to highly ine¢ cient

and even wasteful assignments. This suggests that even though sequential systems may arguably

be easier to implement in practice (e.g., in the context of school choice), such convenience may

come at an important cost. The alternative use of one-step systems, such as the DA, may help

avoid these costs when doing so is feasible.
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