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Abstract

We characterize ex post equilibria in uniform-price double auctions of divis-

ible assets. Bidders receive private signals and inventories, have interdependent

and linearly decreasing marginal values, and bid with demand schedules. In a

static double auction we characterize a linear ex post equilibrium, in which no

bidder would deviate from his strategy even if he would observe the signals and

inventories of other bidders. Moreover, under certain conditions this ex post

equilibrium is unique. In a dynamic market with a sequence of double auctions

and stochastic arrivals of new signals, we characterize a dynamic ex post equi-

librium, whose allocation path converges exponentially in time to the efficient

level. We demonstrate that the socially optimal trading frequency depends on

the arrival process of new information. Our ex post equilibrium aggregates

dispersed private information and is robust to distributional assumptions and

details of market design.
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1 Introduction

Auctions of divisible assets are common in many markets. Equity trading on ex-

changes, for instance, is typically organized as a batch double auction when the mar-

ket opens and closes, and as continuous double auctions during the day (in the form

of open limit order books). Other notable examples include the auctions of treasury

bills and bonds, defaulted bonds and loans in the settlement of credit default swaps,

and commodities such as milk powder, iron ore, and electricity. Analyzing the bid-

ding behavior in these auctions helps us better understand information aggregation,

allocative efficiency, and market design.

In this paper we propose an ex post equilibrium in divisible-asset double auctions

with interdependent values. Interdependent values naturally arise in financial mar-

kets, as well as in goods markets where winning bidders subsequently resell part of

the assets. We focus on a uniform-price double auction in which bidders bid with

demand (and supply) schedules and pay for their allocations at the market-clearing

price.1 Every bidder receives a private signal and values the asset at a weighted

average of his own signal and the signals of other bidders. Bidders also start with

private inventories of the asset and have diminishing marginal values for owning it.

Under mild conditions, we show that there exists a unique ex post equilibrium—an

equilibrium in which a dealer’s strategy depends only on his private information (i.e.

his signal and inventory), but his strategy optimal even if he learns the private in-

formation of all other bidders (hence the “ex post” notation). That is, an ex post

equilibrium implies no regret. In the ex post equilibrium of our baseline model, a

bidder’s demand schedule is linear in his private signal, private inventory, and the

price.

The intuition for our ex post equilibrium is simple, and we now provide a heuristic

description of its construction. We start by conjecturing that bidders use a symmetric

demand schedule that is linear in the private signal, the private inventory, and the

price. Let us consider bidder 1. Given that other bidders’ demands are linear in their

signals, bidder 1 can infer the sum of other bidders’ signals—hence his valuation—

from the sum of their equilibrium allocations, which is equal to the total supply

less bidder 1’s equilibrium allocation. By submitting a demand schedule, the bidder

1In financial markets such as stock exchanges, the demand schedules are typically represented by
limit orders.
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effectively selects his optimal demand at each possible market-clearing price. We

show that this “price-by-price optimization” ensures the ex post optimality of each

bidder’s strategy, and a linear ex post equilibrium follows. We observe that this

equilibrium construction relies critically on the linearity of the demand schedules

(otherwise, bidder 1 cannot transform the sum of other bidders’ allocations to the

sum of their signals). In fact, we show that under mild conditions, only linear demand

schedules can satisfy ex post optimality. Hence, the linear ex post equilibrium we have

constructed is unique.

Our ex post equilibrium is tractable and can be generalized to various markets. A

simultaneous auction of multiple assets, for example, also admits an ex post equilib-

rium and can be applied to “program trading” of multiple stocks at the NYSE and to

“default management auctions” of derivative portfolios run by clearinghouses. In a

separate paper, we show that the ex post equilibrium is a useful tool in analyzing price

discovery in the settlement auctions of credit default swaps (Du and Zhu (2012)).

We further apply the ex post equilibrium methodology to study dynamic trading as

well as the associated equilibrium price and allocative efficiency. We allow an infinite

sequence of double auctions and stochastic arrivals of new signals over time. As long

as each bidder’s signal process is a martingale, there exists a stationary “periodic ex

post equilibrium,” a notion we adapt from Bergemann and Valimaki (2010). In each

round of double auction, the equilibrium price reflects the average of the most recent

signals possessed by bidders, and is hence a martingale. Moreover, the equilibrium

allocations of assets across bidders converge exponentially to the efficient allocation

over time. In markets with a finite (and potentially small) number of bidders, our

result suggests that a sequence of double auctions is a simple and effective mechanism

to quickly achieve allocative efficiency.

Finally, we employ the dynamic ex post equilibrium to analyze the effect of trad-

ing frequency on social welfare. We demonstrate that the socially optimal trading

frequency depends critically on the arrival process of new information. For sched-

uled information arrival, a slow (batch) market tends to be optimal;2 for stochastic

information arrival, a fast (continuous) market tends to be optimal. Our results sug-

gest that trading frequency affects social welfare even if everyone trades at the same

speed.3

2Fuchs and Skrzypacz (2012) show that a similar result also holds in a lemons market with
competitive buyers. They do not, however, explore markets for which continuous trading is optimal.

3Our approach differs from the small but growing theory literature that focuses on differential

3



Our ex post equilibrium has a number of desirable properties. First, it is robust to

modeling details such as the probability distribution of private information and the

implementation of the double auction. Such robustness is highlighted by the “Wilson

criterion” (Wilson 1987) as a desirable feature for models of auctions and trading.

Second, the ex post equilibrium aggregates private information with a finite number

of bidders, as the market-clearing price reveals the average of dispersed signals. While

information aggregation is also present in Grossman (1976), Kyle (1985), Kyle (1989),

Vives (2011), Ostrovsky (2011), Rostek and Weretka (2012), and Babus and Kondor

(2012), these papers study Bayesian equilibria under the normal distribution.4 The

existence and uniqueness of equilibria for non-normal distributions remains an open

question in these models. Third, our ex post equilibrium is parsimonious: A bid-

der’s one-dimensional demand schedule handles the (n − 1)-dimensional uncertainty

regarding all other bidders’ valuations and inventories.5 A one-dimensional demand

schedule is the standard practice in the trading of financial securities and derivatives.

Last but not least, because of its robustness, ex post optimality is a natural equi-

librium selection criterion. It is particularly useful for the analysis of uniform-price

auctions, which in many cases admit a continuum of Bayesian-Nash equilibria (Wil-

son 1979). In our static double auction, the ex post selection criterion implies the

uniqueness of equilibrium under mild conditions.

1.1 Related Literature on Ex Post Equilibrium

In a static double auction, our ex post optimality condition is similar to the “uni-

form incentive compatible” condition of Holmström and Myerson (1983). In dynamic

games, Hörner and Lovo (2009), Fudenberg and Yamamoto (2011), and Hörner, Lovo,

trading speed. For example, in Foucault, Hombert, and Rosu (2012), Pagnotta and Philippon (2012),
and Biais, Foucault, and Moinas (2012), some agents can potentially trade faster than others, which
has implications for adverse selection, competition, investments in technology, and welfare.

4We note that in Ostrovsky (2011) only the demands of the noise traders need to follow a normal
distribution; the information of the strategic traders needs not be normally distributed. Rochet
and Vila (1994) extend the model of Kyle (1985) to settings with arbitrary distribution of signals,
under the additional assumption that the informed trader observes the demand from noise traders.
Bidders in our ex post equilibrium do not have this superior information.

5Parsimony is one of the key features of our model. In the interdependent-value model of Das-
gupta and Maskin (2000), if the number of bidders is at least three, then each bidder conditions
his bids on the signals of all other bidders—a (n− 1)-dimensional vector. In the network model of
Babus and Kondor (2012), each agent submits a multi-dimensional demand schedules such that the
agent’s execution price with one neighbor depends on execution prices with his other neighbors. In
our ex post equilibrium, each bidder’s demand schedule is one-dimensional.
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and Tomala (2012) have also obtained dynamic ex post equilibria. A major distinc-

tion is that the equilibria of these three studies rely on dynamic punishments to be

sustained and require the discount factors to be close to 1, whereas our dynamic ex

post equilibrium is stationary and imposes no restriction on the discount factor.

A number of papers study equilibria that are ex post optimal with respect to supply

shocks when bidders have symmetric information regarding the asset value. Related

papers include Klemperer and Meyer (1989), Ausubel, Cramton, Pycia, Rostek, and

Weretka (2011) and Rostek and Weretka (2011), among others. Consistent with

these studies, our ex post equilibrium is also ex post optimal with respect to supply

shocks if bidders have purely private values. Separately, Ausubel (2004) proposes an

ascending-price multi-unit auction and characterize an equilibrium in which truthful

bidding is ex post optimal if bidders have purely private values.

Our results complement those of Perry and Reny (2005), who construct an ex post

equilibrium in a multi-unit ascending-price auction with interdependent values. In

their model, a bidder specifies different demands against different bidders as prices

gradually rise throughout the auction; therefore, bidders’ private information is nat-

urally revealed as the auction progresses, and bidders’ subsequent demands depend

on this revealed information. In our ex post equilibrium of the double auction, by

contrast, each bidder submits a single demand schedule against all other bidders, and

no private information is revealed before the final price is determined. (Of course,

our equilibrium is robust to the revelation of private information.) In addition, while

Perry and Reny focus on designing an auction format that ex post implements the

efficient outcome, we focus on the standard uniform-price double auction and show

that multiple rounds of double auctions achieve asymptotic efficiency.

Finally, our results are related to the literature on ex post implementation. In a

general setting with interdependent values and correlated signals, Crémer and McLean

(1985) use bidders’ beliefs to construct a revenue-maximizing mechanism in which

truth-telling is an ex post equilibrium. In contrast, in our model both the equi-

librium and the allocation mechanism (double auction) are independent of bidders’

beliefs. Bergemann and Morris (2005) characterize a “separability” condition under

which ex post implementation is equivalent to Bayesian implementation that is ro-

bust to higher order beliefs. In those separable environments, they conclude, ex post

implementation/equilibrium is desirable because of its robustness to beliefs. Jehiel,

Meyer-Ter-Vehn, Moldovanu, and Zame (2006) show that if agents have multidimen-
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sional signals, any finite, non-constant allocation rule cannot be ex post implemented

for generic valuation functions. As in Perry and Reny (2005), however, we show that

in many real-life markets where each bidder’s signal is one-dimensional (i.e. a subset

of R), an ex post equilibrium exists.

2 Static Double Auction

We consider a uniform-price double auction of a divisible asset, such as commodities

and financial securities and derivatives. For example, the trading of equities, futures

and options are conducted in the form of continuous double auctions on exchanges.

Following the Dodd-Frank Act, auction mechanisms are also gaining traction in the

trading of over-the-counter derivatives such as swaps. For applications in derivatives

markets, the word “asset” in our model should be read as “asset or liability.”

2.1 Model

There are n ≥ 2 bidders. Each bidder i ∈ {1, 2, . . . , n} receives a signal, si ∈ (s, s),

that is observed by bidder i only.6 Given the profile of signals (s1, s2, . . . , sn), bidder

i values the asset at the weighted average of all signals:

vi = α si + (1− α)
1

n− 1

∑
j 6=i

sj, (1)

where α ∈ (0, 1] is a commonly known constant. Thus, bidders have interdependent

values. Because other bidders’ signals {sj}j 6=i are unobservable to bidder i, vi is also

unobservable to bidder i.

An exogenous quantity S of the divisible asset is up for auction, where S can be

positive, negative, or zero. Without loss of generality, we refer to S as the supply

of the asset. This exogenous supply is designed to capture certain applications, such

as price-independent market orders on equity exchanges or new issuance of treasury

securities. Our results do not depend on this exogenous supply.

Each bidder i also has an existing inventory zi of the asset. We let Z ⊂ Rn be

the set of inventory profiles. The inventory zi is the private information of bidder i.

6A common support makes exposition simpler, but our results go through even if different bidders
have different supports of signals, so long as each support of signals is a subset of the real line.
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The total ex ante inventory

Z =
n∑
i=1

zi (2)

is constant and common knowledge. For example, in financial markets the total supply

of a security (e.g., stocks or bonds) is often public information, and the net supply

of a derivative contract (e.g., futures or swaps) is zero. We impose no restriction on

the distribution of {zi}, except the constraint (2). Each bidder i can buy or sell any

additional quantity of the asset in the auction. We use the convention that a positive

quantity qi ≥ 0 means buying qi units, and a negative qi < 0 means selling −qi units.

We assume that bidders have a linear-quadratic utility function. Specifically, after

trading the quantity qi at the price p in the auction, bidder i’s total utility is

U(qi, p; vi, zi) = vizi + (vi − p)qi −
λ

2
(zi + qi)

2. (3)

The utility specification (3) is equivalent to a linearly declining marginal value for

owning the asset. For example, before the auction, bidder i’s marginal value for

owning the last unit of his inventory is vi − λzi. In the auction, bidder i’s marginal

utility on the last traded unit is equal to his marginal value, vi − λ(zi + qi), minus

the price paid, p:
∂U(qi, p; vi, zi)

∂qi
= vi − p− λ(zi + qi). (4)

A linear-quadratic utility function is also used in Vives (2011) and Rostek and Weretka

(2012), although their models have different information structures.

In the auction, each bidder i submits a downward-sloping and differentiable de-

mand schedule xi( · ) : R → R, contingent on his signal si and inventory zi. Hence,

we denote bidder i’s strategy as xi( · ; si, zi). Each bidder’s demand schedule is unob-

servable to other bidders. (As discussed shortly, our equilibrium analysis is robust to

whether demand schedules are observable.) Bidder i’s demand schedule specifies that

bidder i wishes to buy or sell a quantity xi(p; si, zi) of the asset at the price p. Given

the submitted demand schedules (x1( · ; s1, z1), . . . , xn( · ; sn, zn)), the auctioneer de-

termines the transaction price p∗ = p∗(s1, . . . , sn, z1, . . . , zn) from the market-clearing

condition
n∑
i=1

xi(p
∗; si, zi) = S. (5)
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In the equilibrium we state shortly, there exists a unique market clearing price. After

p∗ is determined, bidder i is allocated the quantity xi(p
∗; si, zi) of the asset and pays

xi(p
∗; si, zi)p

∗.

Discussion of Model Assumptions

Before describing our equilibrium concept and solution, we discuss the motivation

and interpretation of our model specification, including the valuation form (1) and

the utility form (3) and (4).

First, for our results on interdependent values, it is important that each bidder

i puts the same additive weight (1 − α)/(n − 1) on other bidders’ signals, as shown

in (1). While equal weighting is not without loss of generality, it does capture a

first-order effect of dispersed information.

Second, a declining marginal utility is natural in many applications. It can be

caused by risk aversion, liquidation costs, or diminishing marginal returns in pro-

duction functions, among other reasons. In general, the declining marginal utility

may take any form and shape, thus hard to analyze. We view a linearly declining

marginal utility (4) as a first-order approximation of the general form of declining

marginal utility. For our results on interdependent valuations (i.e. α < 1), it is im-

portant that the marginal values declines in quantity at the same rate λ > 0. For pure

private values (i.e., α = 1), however, we can generalize our results to heterogeneous

λ’s across bidders (see Section 3.2).

Third, the general form of our model does not impose restrictions on parameter

values. For example, our model does not require the price p or the pre-auction

marginal value vi − λzi to be positive. Indeed, the market prices of many financial

and commodity derivatives—including forwards, futures, and swaps—are zero upon

inception and can become negative as market conditions change. Unlike stocks or

bonds, derivatives positions have unlimited liability, which in our setting means that

marginal values, vi − λ(zi + qi) or vi − λzi, can become arbitrarily negative (e.g.

AIG’s large loss on credit derivatives). Importantly, derivative trades are binding

contracts, signed with trading counterparties and backed by collateral posted to the

clearinghouses. A unilateral break of loss-making contracts constitutes a default and

leads to losses of collateral and reputation. It is for these applications that we do

not impose free disposal as a necessary element of our model. In practice, it is not

uncommon for investors to pay others (e.g. market makers) to dispose of loss-making
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derivative positions, presumably because the negative marginal values for holding

these positions exceed (in absolute value) the negative price for selling them.

On the one hand, assets that have limited liabilities, such as stocks and bonds,

should have nonnegative marginal values. Such restrictions can be satisfied by assum-

ing a sufficiently small λ relative to {vi}, among other conditions.7 Another subtly

associated with limited liability is that bidders may wish to dispose part of their

initial inventory in order to affect the market price. We do not expect this practice

of “burning asset” to be profitable if λ is small and {vi} are large. For the simplicity

of the exposition and analytical solutions, in the remaining of the paper we do not

explicitly state those conditions but leave them implicit. Again, such conditions need

not be imposed for derivatives.

Regardless of parameter restrictions, the post-auction marginal value, vi − λ(zi +

qi), is always greater than price p for buyers (with qi > 0) and is always less than p

for sellers (with qi < 0). Otherwise, the trader would have no incentive to trade that

last unit. All equilibria stated in this paper satisfy the condition sign(qi)[vi − p −
λ(zi + qi)] ≥ 0.

Finally, the linear-quadratic utility form (3) is more restrictive than necessary.

As we discuss in Section 2.4, all equilibrium prices and strategies remain the same if

bidder i’s utility is changed to f(U(qi, p; vi, zi)), for any increasing function f . The

robustness to scaling utilities is another desirable property of our ex post equilibrium.

2.2 Ex Post Equilibrium and Characterization

We now proceed to define our notion of ex post equilibrium and characterize an ex

post equilibrium in this market.

Definition 1. An ex post equilibrium is a profile of strategies (x1, . . . , xn) such

that for every profile of signals (s1, . . . , sn) ∈ (s, s)n and for every profile of inventories

(z1, . . . , zn) ∈ Z, every bidder i has no incentive to deviate from xi. That is, for any

alternative strategy x̃i of bidder i,

U(xi(p
∗; si, zi), p

∗; vi, zi) ≥ U(x̃i(p̃; si, zi), p̃; vi, zi),

7For example, in the case of zero external supply (S = 0), if we restrict the set of signals and
inventories so that vi − λzi is always positive for all i, then the marginal values obtained by our
equilibrium will always be positive as well.
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where vi is given by (1), p∗ is the market-clearing price given xi and {xj}j 6=i, and p̃

is the market-clearing price given x̃i and {xj}j 6=i.

In an ex post equilibrium, no bidder deviates from his equilibrium strategy even if

he observes the other bidders’ signals and inventories. Thus, the optimality condition

in Definition 1 is written in terms of the ex post utility U( · ), rather than the expected

utility E[U( · )]. Therefore, our analysis below is valid for any joint distribution of

(s1, . . . , sn) and (z1, . . . , zn), and we do not have to specify this distribution.

A modeling challenge associated with interdependent values is that the bidding

strategy of bidder i must be optimal for each realization of signals {sj}j 6=i and inven-

tories {zj}j 6=i, but bidder i’s strategy cannot depend on {sj}j 6=i and {zj}j 6=i.
For the simplicity of exposition but at no cost of economic intuition, we first con-

sider the case of no inventory, i.e., Z = {(0, . . . , 0)}, and suppress zi in the strategies.

We conjecture a strategy profile (x1, . . . , xn). For notational convenience, we define

β ≡ 1− α
n− 1

. (6)

Given that all other bidders use this strategy profile and for a fixed profile of signals

(s1, . . . , sn), the profit of bidder i at the price of p is:

Πi(p) =

(
αsi + β

∑
j 6=i

sj − p

)(
S −

∑
j 6=i

xj(p; sj)

)
− 1

2
λ

(
S −

∑
j 6=i

xj(p; sj)

)2

. (7)

We can see that bidder i is effectively selecting an optimal price p given the residual

demand S −
∑

j 6=i xj(p; sj). Taking the first-order condition of Πi(p) at p = p∗, we

have, for all i,

0 = Π′i(p
∗) = −xi(p∗; si) +

(
αsi + β

∑
j 6=i

sj − p∗ − λxi(p∗; si)

)(
−
∑
j 6=i

∂xj
∂p

(p∗; sj)

)
.

(8)

We conjecture a symmetric linear demand schedule:

xj(p; sj) = asj − bp+ cS, (9)

where a, b, and c are constants. In this conjectured equilibrium, all bidders j 6= i use

the strategy (9). Thus, we can rewrite the each bidder j’s signal sj in terms of his

10



demand xj:

∑
j 6=i

sj =
∑
j 6=i

xj(p
∗; sj) + bp− cS

a
=

1

a
(S − xi(p∗; si) + (n− 1)(bp∗ − cS)) ,

where we have also used the market clearing condition. Substituting the above equa-

tion into bidder i’s first order condition (8) and rearranging, we have

xi(p
∗; si) =

α(n− 1)bsi − (n− 1)b [1− β(n− 1)b/a] p∗ + S [1− (n− 1)c] β(n− 1)b/a

1 + λ(n− 1)b+ β(n− 1)b/a

≡ asi − bp∗ + cS.

Matching the coefficients and using the normalization that α+ (n−1)β = 1, we solve

a = b =
1

λ
· nα− 2

n− 1
, c = β =

1− α
n− 1

.

It is easy to verify that under this linear strategy, Π′′i ( · ) = −n(n − 1)αb < 0 if

nα > 2. Thus, we have an ex post equilibrium. Moreover, the first order condition

(8) implies that xi(p
∗; si) > 0 when vi − p∗ − λxi(p∗; si) > 0, and xi(p

∗; si) < 0 when

vi − p∗ − λxi(p
∗; si) < 0. In other words, the bidder always (weakly) increases his

total utility by trading, regardless he is buying or selling.

We now state our first main result, ex post equilibrium under private signals and

inventories.

Proposition 1. Suppose that nα > 2. In a double auction with interdependent values

and private inventories, there exists an ex post equilibrium in which bidder i submits

the demand schedule

xi(p; si, zi) =
nα− 2

λ(n− 1)
(si − p) +

1− α
n− 1

S − nα− 2

nα− 1
zi +

(1− α)(nα− 2)

(n− 1)(nα− 1)
Z, (10)

and the equilibrium price is

p∗ =
1

n

n∑
i=1

si −
λ

n

(
nα− 1

nα− 2
S + Z

)
. (11)

Proof. See Section A.1.
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2.3 Uniqueness of the Ex Post Equilibrium

In this short subsection, we show that under mild conditions, ex post optimality is a

sufficiently strong equilibrium selection criterion such that it implies the uniqueness

of the ex post equilibrium characterized in Proposition 1.

Proposition 2. In addition to nα > 2, suppose that either α < 1 and n ≥ 4, or

α = 1 and n ≥ 3. Let (x1, . . . , xn) be an arbitrary ex post equilibrium in which every

xi is continuously differentiable, ∂xi
∂p

(p; si, zi) < 0, and ∂xi
∂si

(p; si, zi) > 0. Then, for

any s ∈ (s, s)n, z ∈ Z and i ∈ {1, . . . , n}, at the market-clearing price p = p∗(s, z),

xi(p; si, zi) is equal to that given by Proposition 1.

Proof. See Section A.2.

For any fixed si and zi, the uniqueness of xi(p; si, zi) in Proposition 2 applies

only to market-clearing prices, i.e., p = p∗(si, s−i, zi, z−i) for some s−i ∈ (s, s)n−1

and (zi, z−i) ∈ Z, since the demands at non-market-clearing prices do not satisfy any

optimality condition.

The proof of Proposition 2 is relatively involved, but its intuition is simple.

For strategies to be ex post optimal, each bidder must be able to calculate an

one-dimensional sufficient statistic of other bidders’ signals from variables that he

observes—the equilibrium allocation and price. Because the equilibrium allocations

{xi(p∗; si, zi)} satisfy the linear constraint
∑n

i=1 xi(p
∗; si, zi) = S, and because valu-

ations {vi} are linear in the signals {si}, it is natural to conjecture that the ex post

equilibrium condition holds only if each bidder’s demand is linear in his signal and

the price. The main theme of the proof of Proposition 2 is to establish this linear-

ity. As we discussed in the introduction, the uniqueness property makes the ex post

equilibrium particularly appealing in uniform-price auctions, which usually admit a

continuum of Bayesian-Nash equilibria (Wilson 1979).

2.4 Information Aggregation and Robustness

Information aggregation is an important property of the ex post equilibrium in Propo-

sition 1. Equation (11) reveals that the equilibrium p∗ aggregates the average signal∑n
i=1 si/n, or equivalently the average valuation

∑n
i=1 vi/n, even though the demand

schedule of each bidder depends only on his own signal. In the special case of S = 0,

i.e. if bidders only trade among themselves, the market-clearing price p∗ is exactly
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equal to the average signal
∑n

i=1 si/n. Information aggregation in the ex post equi-

librium applies to double auction with a finite number n of bidders, whereas many

prior models of information aggregation rely on large markets, as in Wilson (1977),

Milgrom (1979), and Kremer (2002), and Reny and Perry (2006), Kazumori (2012),

among others. While Kyle (1985), Kyle (1989), Vives (2011), Ostrovsky (2011), and

Rostek and Weretka (2012) also have information aggregation with a finite number of

agents, their equilibria are Bayesian and rely on the normal distribution. Our ex post

equilibrium, by contrast, does not hinge upon normality or any other distribution

assumption of the signals.

Robustness is another key feature of the equilibrium of Proposition 1. For example,

the ex post equilibrium does not require bidders to have common knowledge about

the signal distributions. Nor does the ex post equilibrium rely on any particular

implementation of the double auction, such as whether the bids are observable, as long

as the implementation method does not change bidders’ preferences.8 Therefore, the

ex post equilibrium is consistent with the Wilson criterion that desirable properties

of a trading model include its robustness to common-knowledge assumptions and

implementation details (Wilson, 1987).

The ex post equilibrium of Proposition 1 has yet another advantage of being less

sensitive to preferences than Bayesian equilibria are. Clearly, maximizing a bidder’s ex

post utility U in equation (3) is equivalent—in terms of equilibrium strategies, prices

and allocations—to maximizing a strictly increasing function of his ex post utility.

In other words, our ex post equilibrium in a static double auction (this section and

Section 3) remains an ex post equilibrium given utility function of the form f(U( · )),
where f is a strictly increasing function, and U is the original utility function (3).

By contrast, in a Bayesian equilibrium and for an arbitrary increasing function f ,

the optimal strategy that maximizes a bidder’s expected utility under the original

preference, E[U( · )], may not maximize his expected utility under the alternative

preference, E[f(U( · ))], because E[U ′( · )f ′(U( · ))] 6= E[U ′( · )]E[f ′(U( · ))] in general

(i.e., the two marginal utilities can be correlated under uncertainty). Compared with

Bayesian equilibrium, therefore, an ex post equilibrium is less sensitive to assumptions

on preferences and can be more appealing for practical applications.

8In a laboratory market, Bloomfield, O’Hara, and Saar (2011) find that market outcomes in terms
of price discovery and liquidity do not vary significantly with transparency, namely whether agents
observe others’ demand schedules.
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There are two main differences between the ex post equilibrium of Proposition 1

and rational expectation equilibria (REE) under asymmetric information (Grossman,

1976, 1981). First, strategies in the ex post equilibrium are optimal for each real-

ization of the n-dimensional signal profile (s1, s2, . . . , sn), whereas strategies in REE

models are optimal for each realization of the one-dimensional equilibrium price. Be-

cause each market-clearing price corresponds to multiple possible signal profiles, the

ex post optimality of this paper seems to be a sharper notation of information ag-

gregation than the Bayesian optimality in REE models. Second, consistent with the

Milgrom 1981 critique of REE models, the double-auction mechanism of this paper

provides an explicit formulation of the price-formation process.

2.5 Efficiency

We now study the efficiency of the ex post equilibrium in Proposition 1. For a fixed

profile of signals (s1, . . . , sn), the ex post efficient allocation, {qei }, maximizes the

social welfare:

max
{qi}

n∑
i=1

(
vi(zi + qi)−

λ

2
(zi + qi)

2

)
subject to:

n∑
i=1

qi = S.

For each bidder i, the (ex post) efficient allocation, {qei }, and the allocation in the ex

post equilibrium, {q∗i }, are given by

qei + zi =
nα− 1

λ(n− 1)

(
si −

1

n

n∑
j=1

sj

)
+

1

n
(S + Z), (12)

q∗i + zi =
nα− 2

λ(n− 1)

(
si −

1

n

n∑
j=1

sj

)
+

1

n
(S + Z) +

1

nα− 1

(
zi −

1

n
Z

)
. (13)

Comparing (12) and (13), we see that in both cases allocations are increasing in

signals; the rate of this increase is less in the ex post equilibrium allocation. This

feature is the familiar demand reduction in multi-unit auctions (see, for example,

Ausubel et al. 2011). The ex post equilibrium allocation in (13) is also corrected by

an extra (zi − Z/n) term, in comparison with the ex post efficient allocation in (12).

This extra term indicates that the allocation in the ex post equilibrium depends not

only on the heterogeneity of information, but also on the heterogeneity of existing
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inventories. As n → ∞ and holding α constant, we see that the difference between

the efficient and the ex post equilibrium allocations vanishes. However, when n is

large but α is small (that is, a large weight on the common-value component), we see

that the difference between the efficient and the ex post equilibrium allocations can

still be substantial due to the (zi − Z/n) term.

We can define allocative inefficiency of the one-shot double auction as the differ-

ence between the total utility associated with the efficient allocation and the total

utility associated with the ex post equilibrium allocation. Using Lemma 3 in Sec-

tion A.7, we calculate the allocative inefficiency as:

n∑
i=1

(
vi(zi + qei )−

λ

2
(zi + qei )

2

)
−

n∑
i=1

(
vi(zi + q∗i )−

λ

2
(zi + q∗i )

2

)
(14)

=
1

2λ(n− 1)2

n∑
i=1

(
si −

1

n

n∑
j=1

sj

)2

+
λ

2(nα− 1)2

n∑
i=1

(
zi −

Z

n

)2

− 1

(n− 1)(nα− 1)

n∑
i=1

(
si −

1

n

n∑
j=1

sj

)(
zi −

Z

n

)
(15)

In this calculation, we have assumed that the total revenues pe
∑n

i=1 q
e
i and p∗

∑n
i=1 q

∗
i

enter linearly into the utility function of the agent who provides the exogenous supply

S. Thus, all payments have a zero effect on total utility. Moreover, in the calculation

we ignore the fixed cost of the agent for providing the supply S, which is presumably

independent of bidders’ allocations.

Equation (14) shows that the allocative inefficiency increases with the variance of

signals and with the variance of inventories. Moreover, the allocative inefficiency de-

creases with the covariance of signals and inventories; this is consistent with intuition:

if the higher signaled bidder tends to hold larger inventory, then the allocative ineffi-

ciency should be small. Finally, fixing α and assuming that the law of large number

holds for signals and inventories, we see that the allocative inefficiency vanishes at a

rate of O(1/n) as n tends to infinity. This rate of convergence is same as the one in

Rustichini, Satterthwaite, and Williams (1994) on double auction of a single indivis-

ible asset. In Section 4 we show that, for a fixed number n of bidders, a sequence

of double auctions achieves exponential convergence to the efficient allocation, as the

number of auction rounds increases.
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3 Extensions

3.1 Auctions of Multiple Assets

In this subsection we extend the analysis of ex post equilibrium to a simultaneous

double auction of multiple assets. For example, NYSE’s “program trading” allows

simultaneous purchase or sale of more than 15 stocks; this trading method now ac-

counts for about 25% of NYSE’s trading volume.9 In derivatives markets, the default

of a member of a clearinghouse can often be resolved by auctioning the defaulting

member’s derivative portfolios to non-defaulting members.10 In addition to bolster-

ing the basic intuition of Proposition 1, this subsection provides additional insight

regarding how the complementarity and substitutability among multiple assets affect

the bidding strategies.

Suppose that there are m ≥ 2 distinct assets. Bidder i receives a vector of private

signals ~si ≡ (si,1, . . . , si,m)′ ∈ (s, s)m and values asset k (1 ≤ k ≤ m) at

vi,k = αk si,k + (1− αk)
1

n− 1

∑
j 6=i

sj,k, (16)

where αk is a known constant. Moreover, bidder i has an inventory zi,k of asset k.

The inventory vector ~zi = (zi,1, . . . , zi,m)′ is bidder i’s private information. As before,

the total ex-ante vector of inventory,

n∑
i=1

~zi = ~Z, (17)

is common knowledge, where ~Z ≡ (Z1, . . . , Zm)′ is a constant vector.

Again, the joint probability distribution of (~s1, . . . , ~sn)′ and (~z1, . . . , ~zn)′ are in-

consequential because we focus on ex post equilibrium. Let ~α ≡ (α1, . . . , αm)′.

With multiple assets, bidder i’s utility after acquiring ~qi ≡ (qi,1, . . . , qi,m)′ units of

9See https://usequities.nyx.com/markets/program-trading for more details. The word “program”
in “program trading” does not mean that trading is done by a computer program.

10For example, see http://www.swapclear.com/service/default-management.html and
http://www.eurexclearing.com/standalone/pdf/143818/default management process.pdf for details
of default management processes at SwapClear and Eurex Clearing.
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assets at the price vector ~p ≡ (p1, . . . , pm)′ is

U(~qi, ~p; ~vi, ~zi) =
m∑
k=1

vi,kzi,k +
m∑
k=1

(vi,k − pk)qi,k −
1

2

m∑
k=1

m∑
l=1

(zi,k + qi,k)Λk,l(zi,l + qi,l)

(18)

≡ ~vi · ~zi + (~vi − ~p) · ~qi −
1

2
(~zi + ~qi)

′Λ(~zi + ~qi),

where ~vi ≡ (vi,1, . . . , vi,m)′ is the vector of bidder i’s valuations and Λ ≡ {Λk,l} is a

symmetric, positive definite matrix. The matrix Λ captures the complementarity and

substitutability among the assets. For example, a negative Λk,l indicates that asset

k and asset l are complements because holding one of them increases the marginal

valuation of holding the other.

In this double auction, each bidder i simultaneously bids on all assets by sub-

mitting a demand schedule vector ~xi(~p) ≡ (xi,1(~p), . . . , xi,m(~p))′. Bidder i’s strategy

is thus ~xi(~p; ~si, ~zi). Due to the complementarity and substitutability among assets,

bidder i’s demand for any given asset can depend on the prices of all assets. The

market-clearing price vector ~p∗ ≡ (p∗1, . . . , p
∗
m)′ is determined such that, for each asset

k ∈ {1, . . . ,m} that has the supply Sk,

n∑
i=1

xi,k(~p∗; ~si, ~zi) = Sk. (19)

We denote by ~S ≡ (S1, . . . , Sm)′ the vector of asset supplies.

In an ex post equilibrium of this multi-asset auction, bidder i’s demand schedule

vector ~xi, which depends only on his own signal vector ~si and inventory vector ~zi, is

optimal even if he learns all other bidders’ signal and inventory vectors ex post. We

now characterize such an ex post equilibrium in the following proposition, where we

denote by Diag(~a) the diagonal matrix whose diagonal vector is ~a, and by n~α−1
n(n~α−2)

the

vector whose k-th component is nαk−1
n(nαk−2)

.

Proposition 3. Suppose that nαk > 2 for every k ∈ {1, . . . ,m}. In a double auction

with multiple assets and interdependent values, there exists an ex post equilibrium in
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which bidder i submits the demand schedule vector

~xi(~p; ~si, ~zi) =Λ−1 Diag

(
n~α− 2

n− 1

)
(~si − ~p) + Λ−1 Diag

(
1− ~α
n− 1

)
Λ~S (20)

−Λ−1 Diag

(
n~α− 2

n~α− 1

)
Λ~zi + Λ−1 Diag

(
(n~α− 2)(1− ~α)

(n~α− 1)(n− 1)

)
ΛZ,

and the equilibrium price vector is

~p∗ =
1

n

n∑
i=1

~si −Diag

(
n~α− 1

n(n~α− 2)

)
Λ~S − 1

n
Λ~Z. (21)

Proof. See Section A.3.

Proposition 3 reveals that a bidder’s equilibrium demand for any asset can de-

pend on his signals, prices and inventories on all other assets. This interdependence

of strategies is a natural consequence of the complementarity and substitutability

among multiple assets. And similar to Proposition 1, the equilibrium price vector

(21) aggregates bidders’ dispersed information on all assets and is independent of any

distributional assumption about the signals and inventories.

3.2 Heterogeneous λ’s under Private Values

In this subsection we explore equilibrium bidding strategies if bidders have different

declining rates of marginal valuations, i.e., different λ’s. We focus on the case of pure

private values (i.e. α = 1). Private values are common in the auction literature and

are reasonable in many applications. For example, the value of a commodity can be

specific to a firm’s production function, just as the value of a treasury security or

swap contract can be specific to an investor’s hedging demand.

We let λi be the declining rate of bidder i’s marginal valuation, where the profile

{λi}ni=1 is common knowledge. We can interpret the heterogenous λi as heterogenous

risk aversion or heterogeneous diminishing returns in production functions. We work

with private valuations with α = 1 and vi = si. Other aspects of the model is the

same as the one in Section 2.1. Thus, bidder i’s utility is

Ui(qi, p; vi, zi) = vizi + (vi − p)qi −
1

2
λi(zi + qi)

2. (22)
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Each bidder submits a demand schedule x(p; vi, zi). As in Section 2, our objective is

to find an ex post equilibrium.

Proposition 4. Suppose that n > 2. In a double auction with private values and

private inventories, there exists an ex post equilibrium in which bidder i submits the

demand schedule

xi(p; vi, zi) = bi(vi − p− λizi), (23)

where

bi =
2 + λiB −

√
λ2
iB

2 + 4

2λi
, (24)

and where B ≡
∑n

i=1 bi is the unique positive solution to the equation

B =
n∑
i=1

2 + λiB −
√
λ2
iB

2 + 4

2λi
. (25)

The equilibrium price of the double auction is

p∗ =

∑n
i=1 bi(vi − λizi)− S∑n

i=1 bi
. (26)

Proof. See Section A.4.

Note that the equilibrium demand schedules xi in (23) is independent of the

supply S and the total inventory Z. Therefore, Proposition 4 remains an equilibrium

even if bidders face uncertainties regarding S and Z. This feature is reminiscent to

Klemperer and Meyer (1989), who characterize supply function equilibria that are

ex post optimal with respect to demand shocks. In their model, however, bidders’s

marginal values are common knowledge. Similarly, in a setting with a commonly

known asset value, Ausubel, Cramton, Pycia, Rostek, and Weretka (2011) characterize

an ex post equilibrium with uncertain supply.

The final price p∗ with heterogenous {λi} is the weighted average of the marginal

values vi− λzi, adjusted for the external supply S. The smaller is λi, the larger is bi,

and the more influence bidder i has on the final price.
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4 Dynamic Trading

In this section we study dynamic trading in a market with stochastic arrivals of new

information and an infinite sequence of uniform-price double auctions. We character-

ize a stationary ex post equilibrium, demonstrate its efficiency properties, and study

comparative statics as we vary the frequency of trading.

The clock time is continuous. Trading occurs in repeated rounds of double auctions

at each clock time in {0,∆, 2∆, 3∆, . . .}, where ∆ > 0 is the length of clock time

between consecutive rounds of trading. The smaller is ∆, the higher is the frequency

of trading. (We later discuss the limiting behavior of the market as ∆ → 0 and as

∆ → ∞; the later case reduces to the static model of Section 2.) Bidders have a

discounting factor of e−rτ at the clock time τ , where r > 0 is the discount rate per

unit of clock time. We will refer to each trading round as a “period,” indexed by

t ∈ {0, 1, 2, . . .}, so the period-t auction occurs at the clock time t∆. We will use the

letter τ to denote a generic clock time.

Signals arrive stochastically. For each bidder i, his signals {si,τ}τ≥0 follow a

continuous-time martingale. That is, for every i and τ ′ > τ ≥ 0,

E[si,τ ′ | {sj,τ ′′}1≤j≤n,0≤τ ′′≤τ ] = si,τ . (27)

Under the martingale assumption, bidder i’s current signal si,τ is the best estimate of

his future signals. As long as this martingale property is satisfied, the exact detail of

the signal processes is inconsequential to our equilibrium analysis. For example, future

signals can arrive continuously and follow a diffusion process; or, they can arrive in

discrete, irregular intervals, in which case the signal process exhibits “jumps.” Each

bidder’s signal process can have arbitrary autocorrelation and conditional variance,

and any pair of signal processes, {si,τ}τ≥0 and {sj,τ}τ≥0, for i 6= j, can have arbitrary

conditional covariance. The realizations of bidder i’s signal process are bidder i’s

private information.

In each period t ≥ 0, a new uniform-price double auction is held to reallocate the

asset among the bidders. At the clock time 0, which is also the trading time of the

first auction, each bidder i starts with a private inventory of zi,0 of the asset, where

z0 ∈ Z ⊂ Rn. The initial total inventory Z =
∑n

i=1 zi,0 is common knowledge as

before. The external supply S is zero in each trading period, which implies that the

total inventory in each period t ≥ 1 is also Z. In the period-t auction, bidder i starts
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with an inventory of zi,t∆ and submits a demand schedule xi,t∆(p). The auctioneer

determines the market-clearing price p∗t∆ by

n∑
i=1

xi,t∆(p∗t∆) = 0, (28)

and bidder i receives qi,t∆ = xi,t∆(p∗t∆) units of the asset at the price of p∗t∆. Inventories

therefore evolve according to

zi,(t+1)∆ = zi,t∆ + qi,t∆. (29)

Bidder i’s inventory history is his private information.

After describing the information structure and trading protocol, we now turn to

the preferences. Given the new quantity qi,t∆ in period t, bidder i’s “flow” utility (not

counting the price) in period t is

vi,t∆(zi,t∆ + qi,t∆)− λ

2
(qi,t∆ + zi,t∆)2,

where the value is interdependent:

vi,t∆ = α si,t∆ + (1− α)
1

n− 1

∑
j 6=i

sj,t∆, (30)

and α ∈ (0, 1] is a constant known to all bidders. Thus, bidder i’s utility in period t

alone is the integral of time-discounted flow utility less the one-off payment of asset

transaction, i.e.,

U(qi,t∆, p
∗
t∆; vi,t∆, zi,t∆)

=

∫ ∆

τ=0

e−τr
(
vi,t∆(zi,t∆ + qi,t∆)− 1

2
λ(qi,t∆ + zi,t∆)2

)
dτ − p∗t∆ qi,t∆

=
1− e−r∆

r

(
vi,t∆(zi,t∆ + qi,t∆)− 1

2
λ(qi,t∆ + zi,t∆)2

)
− p∗t∆ qi,t∆. (31)

Note that bidder i’s flow value in period t, vi,t∆, depends only on the profile of signals

at the clock time t∆, {sj,t∆}nj=1. This valuation structure is natural in markets where

a bidder’s information about his valuation improves over time (and thus a later signal
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subsumes an earlier one).11

Bidder i’s overall utility, or “continuation value,” at the clock time t∆ (including

the period-t auction) is

Vi,t∆ =
∞∑
t′=t

e−r(t
′−t)∆U(qi,t′∆, p

∗
t′∆; vi,t′∆, zi,t′∆)

= U(qi,t∆, p
∗
t∆; vi,t∆, zi,t∆) + e−r∆Vi,(t+1)∆. (32)

We emphasize that in period t before the new auction is held, bidder i’s informa-

tion consists of the paths of his signals {si,t′∆}t′≤t and of his inventories {zi,t′∆}t′≤t,
as well as his submitted demand schedules {xi,t′∆(p)}0≤t′<t. For notational simplicity,

we let bidder i’s information set at the beginning of period t be

Hi,t∆ = {{si,t′∆}0≤t′≤t, {zi,t′∆}0≤t′≤t, {xi,t′∆(p)}0≤t′<t} . (33)

Notice that by the identity zi,(t′+1)∆ − zi,t′∆ = qi,t′∆ = xi,t′∆(p∗t′∆), a bidder can infer

the previous price path {p∗t′∆}t′<t from his history Hi,t∆. Bidder i’s period-t strategy,

xi,t∆ = xi,t∆(p;Hi,t∆), is measurable with respect to Hi,t∆.

In this dynamic market we use the notion of periodic ex post equilibrium intro-

duced by Bergemann and Valimaki (2010). In this notion of ex post equilibrium, for

any period t each bidder’s strategy is ex post optimal with respect to other bidders’

histories up to period t, but is Bayesian optimal with respect to signals in the future.

This equilibrium is “ex post” because, in the absence of new information immediately

after the period-t auction, each bidder still has no regret.

Definition 2. A periodic ex post equilibrium consists of the strategy profile

{xj,t∆}1≤j≤n,t≥0 such that for every bidder i and for every path of his history Hi,t,

bidder i has no incentive to deviate from {xi,t′∆}t′≥t even if he learns the profile of

other bidders’ histories. That is, for every alternative strategy {x̃i,t′∆}t′≥t and every

11In principal, a new signal may arrive between two trading clock times t∆ and (t+ 1)∆. Given
the martingale property, however,

E[vi,τ | {sj,τ ′}1≤j≤n,τ ′≤t∆] = vi,t∆

for all τ ∈ (t∆, (t+ 1)∆). Thus, the specification of flow utility is almost without loss of generality.
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profile of other bidders’ histories {Hj,t∆}j 6=i,

E[Vi,t∆({xi,t′∆}t′≥t, {xj,t∆}j 6=i,t′≥t) | Hi,t∆, {Hj,t∆}j 6=i]

≥E[Vi,t∆({x̃i,t′∆}t′≥t, {xj,t∆}j 6=i,t′≥t) | Hi,t∆, {Hj,t∆}j 6=i],

where the expectations are taken over all possible realizations of future signals {sj,τ}1≤j≤n,τ>t∆.

We now characterize a periodic ex post equilibrium. This equilibrium is stationary,

that is, a bidder’s strategy only depends on his current signal and current level of

inventory, but does not depend explicitly on t.

Proposition 5. Suppose that nα > 2, ∆ > 0 and r > 0. In the market with dynamic

trading, there exists a stationary periodic ex post equilibrium in which bidder i submits

the demand schedule

xi,t∆(p; si,t∆, zi,t∆) = a

(
si,t∆ − rp−

λ(n− 1)

nα− 1
zi,t∆ +

λ(1− α)

nα− 1
Z

)
, (34)

where

a =
nα− 1

2(n− 1)e−r∆λ

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
> 0.

(35)

The period-t equilibrium price is

p∗t∆ =
1

r

(
1

n

n∑
i=1

si,t∆ −
λ

n
Z

)
. (36)

Proof. See Section A.5.

With dynamic trading, an asset purchased in period t gives a bidder a stream of

utilities during the clock time τ ∈ (t∆,∞). Thus, the equilibrium price p∗t∆ under

dynamic trading is adjusted by a factor of
∫∞
τ=0

e−rτ dτ = 1/r. In every period,

the equilibrium price p∗t∆ aggregates the current information on the value of the

asset. Although bidders learn from p∗t∆ the average signal
∑

i si,t∆/n in period t, new

information may arrive by the clock time (t + 1)∆ of the next auction. Therefore, a

period-(t+1) strategy that depends explicitly on the lagged price p∗t∆ is generally not

ex post optimal. Moreover, since the signal processes are martingales, the equilibrium

prices {p∗t∆}t≥0 also form a martingale.
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The next proposition characterizes the allocative efficiency in the periodic ex post

equilibrium of Proposition 5. Let us use {z∗i,t∆} to denote the path of inventories

obtained by the periodic ex post equilibrium.

Proposition 6. Given any 0 ≤ t < t, if si,t∆ = si,t∆ for all i and all t ∈ {t, t +

1, . . . , t}, then

z∗i,t∆ − zei,t∆ = (1 + d)t−t(z∗i,t∆ − zei,t∆), (37)

where

zei,t∆ =
nα− 1

λ(n− 1)

(
si,t∆ −

1

n

n∑
j=1

sj,t∆

)
+

1

n
Z, (38)

is the the efficient allocation in period t, and

1 + d =
1

2e−r∆

(√
(nα− 1)2(1− e−r∆)2 + 4e−r∆ − (nα− 1)(1− e−r∆)

)
∈ (0, 1).

(39)

Moreover, let us define the rate of convergence to efficiency per unit of clock time

to be − log[(1 + d)1/∆]. This convergence rate is increasing with the number n of

bidders, the weight α of the private components in bidders’ valuations, the discount

rate r, and the clock-time frequency of trading 1/∆.

Proof. It is easy to verify that the allocation {zei,t∆} solves

max
{zi}

n∑
i=1

(
vi,t∆ zi −

λ

2
(zi)

2

)
subject to:

n∑
i=1

zi = Z.

The convergence result and comparative statics are proved in Section A.6.

Proposition 6 reveals that a sequence of double auctions serves as an effective

method to dynamically achieve allocative efficiency. Allocations under the periodic

ex post equilibrium converge exponentially in time to the efficient one, as determined

by the most recent signals. Once new signals arrive, the efficient allocation changes

accordingly, and allocations under the periodic ex post equilibrium start to converge

toward the new efficient level. This convergence result complements Rustichini, Sat-

terthwaite, and Williams (1994), Cripps and Swinkels (2006), and Reny and Perry

(2006), among others, who show that allocations in a one-shot double auction con-

verge, at a polynomial rate, to the efficient level as the number of bidders increases.
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The intuition for the comparative statics of Proposition 6 is simple. A larger n

makes bidders more competitive, and a larger r makes them more impatient. Both

effects encourage aggressive bidding and speed up convergence. The effect of α is

slightly more subtle. Intuitively, the interdependence of valuations, represented by 1−
α, creates adverse selection for the bidders. To protect themselves from trading losses,

bidders reduce their demand or supply relative to the fully competitive market. The

higher is α, the more bidders care about the private components of their valuations,

and the less they worry about adverse selection. Therefore, a higher α implies more

aggressive bidding and faster convergence to the efficient allocation. Finally, a higher

trading frequency increases the convergence speed in clock time, even though it makes

bidders more patient and thus less aggressive in each trading period.

The dynamic ex post equilibrium of Proposition 5 differs in several aspects from

those of Kyle (1985) and Kyle (1989), who model the trading behavior of informed

speculator(s) in the presence of noise traders. First, while Kyle (1985, 1989) rely on

the normal distribution to derive Bayesian equilibria, the equilibrium of Proposition 5

is ex post optimal and thus robust for any distribution of signals. Second, because

we do not rely on noise traders to generate trades, the economic implications of

allocative efficiency and welfare are more transparent in the ex post equilibrium.

Third, the equilibrium price in our dynamic model immediately reflects the average

current signals of all bidders, whereas prices in the Kyle (1985) model gradually reveal

the information of the informed speculator over time. This last feature of Kyle (1985)

can be attributed to noise traders, who provide camouflage to informed speculators.

4.1 Low and High Trading Frequency Limits

In this subsection we examine the limit of the equilibrium in Proposition 5 as ∆→∞
(trading frequency tending to zero) and as ∆ → 0 (trading frequency tending to

infinity).

One can easily show that the constant a in Equation (35) of Proposition 5 tends

to

lim
∆→∞

a =
nα− 2

λ(n− 1)
, (40)

which is the coefficient in the equilibrium of Proposition 1. Thus, after we adjust

si and λ in Proposition 1 to si/r and λ/r to account for the accumulation of time-

discounted flow utilities, we have that as ∆ → ∞, the equilibrium in Proposition 5
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converges to the equilibrium in Proposition 1 with S = 0. This convergence is intu-

itive: if the interval between ∆ trading is large, then trading in period 0 is essentially

the only round of trading, and hence the bidding behavior in period 0 should be

similar to that in static trading.

We now study the other extreme, namely as trading becomes infinitely frequent

in clock time. By letting ∆ → 0 in the equilibrium of Proposition 5 and using

L’Hospital’s rule, we obtain the following limiting equilibrium in continuous time.

Proposition 7. Suppose that nα > 2 and r > 0. As ∆ → 0, the equilibrium of

Proposition 5 converges to the following ex post equilibrium:

1. Bidder i’s equilibrium strategy is represented by a process {x∞i,τ}τ∈R+. At the

clock time τ , x∞i,τ specifies bidder i’s rate of order submission and is defined by

x∞i,τ (p; si,τ , zi,τ ) = a∞
(
si,τ − rp−

λ(n− 1)

nα− 1
zi,τ +

λ(1− α)

nα− 1
Z

)
, (41)

where

a∞ =
(nα− 1)(nα− 2)r

2λ(n− 1)
. (42)

Given a clock time T > 0, in equilibrium the total amount of trading by bidder

i in the clock-time interval [0, T ] is

z∗i,T − zi,0 =

∫ T

τ=0

x∞i,τ (p
∗
τ ; si,τ , z

∗
i,τ ) dτ. (43)

2. The equilibrium price at any clock time τ is

p∗τ =
1

r

(
1

n

n∑
i=1

si,τ −
λ

n
Z

)
. (44)

3. Given any 0 ≤ τ < τ , if si,τ = si,τ for all i and all τ ∈ [τ , τ ], then

z∗i,τ − zei,τ = e−
1
2
r(nα−2)(τ−τ)

(
z∗i,τ − zei,τ

)
, (45)

where

zei,τ =
nα− 1

λ(n− 1)

(
si,τ −

1

n

n∑
j=1

sj,τ

)
+

1

n
Z (46)
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is the the efficient allocation at clock time τ .

Proposition 7 reveals that even if all information arrives at the very beginning

and if trading occurs continually, in equilibrium the efficient allocation is not reached

instantaneously. The delay comes from bidders’ price impact and associated demand

reduction. Although submitting aggressive orders allows a bidder to achieve his de-

sired allocation sooner, aggressive bidding also moves the price against the bidder and

increases his trading cost. Facing this tradeoff, each bidders uses a finite rate of order

submission in the limit. Consistent with Proposition 6, the rate of convergence to

efficiency in Proposition 7, r(nα− 2)/2, is increasing in the number of bidders n, the

discount rate r, and the weight α of the private components in bidders’ valuations.

4.2 Welfare and Optimal Trading Frequency

In this subsection we study the effect of trading frequency on welfare and characterize

the optimal trading frequency, 1/∆. We show that the optimal trading frequency

depends critically on the nature of information (i.e., the signals). If new information

arrives at deterministic times, then slow, batch trading (i.e., a large ∆) tends to be

optimal. If new information arrives at stochastic times, then fast, continuous trading

(i.e., a small ∆) tends to be optimal. Our primary objective in this subsection is to

demonstrate the intuition through a simplistic but useful special case of our dynamic

trading model, and our results here may serve as building blocks for future research.

We suppose that bidders enter the market at time zero with the initial inventory

profile {zei,0}, which are efficient given the time-0 signal profile {si,0}:

zei,0 =
nα− 1

λ(n− 1)

(
si,0 −

1

n

n∑
j=1

sj,0

)
+

1

n
Z. (47)

Labeling the starting time to be zero is without loss of generality, and the efficient

initial allocation can be interpreted as the result of previous rounds of trading. We

also suppose that a new profile of signals, {si}, arrives at the clock time T , after which

no new signals arrive. This simplistic process of information arrival is sufficient to

convey the intuition. As in the main model of the dynamic market, trading can occur

at clock times τ ∈ {0,∆, 2∆, . . .}, and the signals are martingales:

E[si | {si′,0}1≤i′≤n] = si,0. (48)
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We separately analyze two cases: T = 0 or T is an exponential random variable.

Information arrives at T = 0

Given that new information arrives at time T = 0, the first round of trading (at

time 0) immediately reacts to this new information. By Proposition 5, the path of

allocations from the periodic ex post equilibrium is:

z∗i,t∆ = zei + (1 + d)t(zei,0 − zei ), t ∈ {1, 2, 3, . . .}, (49)

where {zei,0} is the efficient allocation given the old signals {si,0}, and {zei } is the

efficient allocation given the new signals {si}:

zei =
nα− 1

λ(n− 1)

(
si −

1

n

n∑
j=1

sj

)
+

1

n
Z. (50)

In this case, we can define the welfare of bidders as the sum of time-discounted

utilities:

W (∆) =
n∑
i=1

∞∑
t=0

1− e−∆r

r
e−t∆r

(
viz
∗
i,(t+1)∆ −

λ

2
(z∗i,(t+1)∆)2

)
. (51)

Proposition 8. Suppose that nα > 2 and T = 0. For any realization of the initial

signals {si,0} and any distribution of new signals {si} that satisfies (48), the social

welfare W (∆) is increasing in ∆, and the optimal ∆∗ =∞.

Proof. See Section A.7.

Proposition 8 suggests that if information arrives at the moment of trading, then

slower trading (i.e., a larger ∆) is better for total welfare. The intuition for this result

is simple. For a high ∆, bidders have to wait for a long time before the next round

of trading. So they bid aggressively whenever they have the opportunity to trade,

which leads to a relatively efficient allocation early on. For a low ∆, however, bidders

know that they can trade again soon. Consequently, they bid less aggressively in each

round of trading and end up paying a higher costs of holding inefficient allocations.

Although it may appear artificial that the information arrival time coincides with

the trading time, in practice the trading time can adjust to meet the scheduled infor-

mation announcement. Moreover, Proposition 8 provides the natural intuition that
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if new information repeatedly arrives at scheduled times (e.g., macroeconomic data

releases or corporate earnings announcements), the optimal trading frequency should

be no higher than the frequency of information arrival.

Stochastic arrival of new information

Now we turn to stochastic arrival of information. For tractability, we let T be an

exponential random variable with mean 1/ν and independent of all else. We let T̄ be

the clock time of the next trading period after T : T̄ ≡ min{t∆ : t∆ ≥ T}.
We also use {z∗i,t∆} to denote the path of allocations in the periodic ex post

equilibrium of Proposition 5. Before time T̄ , we have z∗i,t∆ = zei,0, and after time T̄ ,

the allocations start to converge toward {zei }. Therefore, the social welfare is:

W (∆) =E

[
n∑
i=1

∫ T̄

τ=0

e−τr
(
vi,0z

e
i,0 −

λ

2
(zei,0)2

)
dτ

]
(52)

+ E

[
e−rT̄ ·

n∑
i=1

∞∑
t=0

1− e−r∆

r
e−t∆r

(
viz
∗
i,T̄+(t+1)∆ −

λ

2
(z∗i,T̄+(t+1)∆)2

)]
.

Proposition 9. Suppose that nα > 2 and T is an exponential random variable. For

any realization of the initial signals {si,0} and any distribution of new signals {si}
that satisfies (48), W (∆) is decreasing in ∆, and the optimal ∆∗ = 0.

Proof. See Section A.8.

Proposition 9 suggests that faster trading is better if the arrival time of new

information is stochastic and unpredictable. This is because more frequent trading

enables bidders to react sooner after new information arrival, which dominates the

cost of lower bidding aggressiveness in the subsequent rounds of trading. As a result,

a continuous market (with ∆∗ = 0) is optimal.

5 Conclusion

In this paper we characterize an ex post equilibrium in a uniform-price double auction

with interdependent values. In the ex post equilibrium, a bidder’s strategy depends

only on his own private information, but he does not deviate from it even after ob-

serving the private information of other bidders. This ex post equilibrium aggregates
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private information dispersed across bidders, and is robust to distributional assump-

tions and details of auction design. Under mild conditions this ex post equilibrium

is unique in the class of continuously differentiable strategy profiles. Our ex post

equilibrium can be easily adapted to auctions of multiple assets.

We further generalize our ex post equilibrium to a dynamic market with an infi-

nite sequence of double auctions and stochastic arrivals of new signals. If signals are

martingales, there exists a stationary periodic ex post equilibrium, in which the equi-

librium price in each auction aggregates the most recent signals, and the allocations

of assets among bidders converge exponentially to the efficient level over time. A key

economic implication of our analysis is that a sequence of double auctions is a simple

and effective mechanism to achieve allocative efficiency. Our results also suggest that

the socially optimal trading frequency is lower for scheduled information releases, but

higher for information that arrives at stochastic times.
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A Appendix: Proofs

A.1 Proof of Proposition 1

With inventory and given other bidders’ demand schedules, bidder i’s utility is

Πi(p) =

(
S −

∑
j 6=i

xj(p; sj, zj)

)(
αsi + β

∑
j 6=i

sj − p

)
− 1

2
λ

(
zi + S −

∑
j 6=i

xj(p; sj, zj)

)2

,

where β = (1− α)/(n− 1), as in Section 2. Taking the first-order condition of Πi(p),

we obtain

0 = Π′i(p
∗) = −xi(p∗; si, zi) +

(
−
∑
j 6=i

∂xj
∂p

(p∗; sj, zj)

)[
αsi + β

∑
j 6=i

sj − p∗ − λ (zi + xi(p
∗; si, zi))

]
.

(53)

As before, we conjecture a linear demand schedule

xj(p; sj, zj) = asj − bp+ cS + dzj + eZ,

and write

∑
j 6=i

sj =
1

a

[∑
j 6=i

xj(p
∗; sj, zj) + (n− 1)bp∗ − (n− 1)cS − d

∑
j 6=i

zj − (n− 1)eZ

]

=
1

a
[S − xi(p∗; si, zi) + (n− 1)bp∗ − (n− 1)cS − d(Z − zi)− (n− 1)eZ] .

Substituting the above expression into (53) and rearranging, we have

xi(p
∗; si, zi) = [1 + λ(n− 1)b+ β(n− 1)b/a]−1 · (n− 1)b

· {αsi − [1− β(n− 1)b/a] p∗ + S [1− (n− 1)c] β/a

+ (βd/a− λ)zi − Z[d+ (n− 1)e]β/a}

≡ asi − bp∗ + cS + dzi + eZ.

Matching the coefficients and using the normalization that α+ (n−1)β = 1, we solve

a = b =
1

λ
· nα− 2

n− 1
, c =

1− α
n− 1

, d = −nα− 2

nα− 1
, e =

1− α
n− 1

· nα− 2

nα− 1
.
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A.2 Proof of Proposition 2

We fix an ex post equilibrium strategy (x1, . . . , xn) such that for every i, xi is contin-

uously differentiable, ∂xi
∂p

(p; si, zi) < 0 and ∂xi
∂si

(p; si, zi) > 0 for every p, (s1, . . . , sn) ∈
(s, s)n and (z1, . . . , zn) ∈ Z.

Fix an arbitrary s = (s1, . . . , sn) ∈ (s, s)n and z = (z1, . . . , zn) ∈ Z. There exists

a unique market-clearing price p∗(s, z) 12. We will prove that there exist a δ′ > 0

sufficiently small and constants A′, B′, D′ and E ′ such that

xi(p; s
′
i, zi) = A′s′i −B′p+D′zi + E ′ (54)

holds for every p ∈ (p∗(s, z)−δ′, p∗(s, z)+δ′), s′i ∈ (si−δ′, si+δ′), and i ∈ {1, . . . , n},
Once (54) is established, the derivation in Section A.1 pins down the values of A′,

B′, D′ and E ′ to be those in Proposition 1; in particular, those values are independent

of (s1, . . . , sn), (z1, . . . , zn), and δ′. Since s = (s1, . . . , sn) and z = (z1, . . . , zn) are

arbitrary, the same constants A′, B′, D′ and E ′ in (54) apply to any s = (s1, . . . , sn) ∈
(s, s)n, z = (z1, . . . , zn) ∈ Z, and p = p∗(s, z). This proves Proposition 2.

To prove (54), we work with the inverse function of xi(p; · , zi), to which we refer as

s̃i(p; · , zi). That is, for any realized allocation yi ∈ R, we have xi(p; s̃i(p; yi, zi), zi) =

yi. Because xi(p; si, zi) is strictly increasing in si, s̃i(p; yi, zi) is strictly increasing

yi. Throughout the proof, we will denote dealer’s realized allocation by yi and his

demand schedule by xi( · ; · , · ). With an abuse of notation, we denote ∂xi
∂p

(p; yi, zi) ≡
∂xi
∂p

(p; si(p; yi, zi), zi).

Fix s = (s1, . . . , sn) ∈ (s, s)n and z = (z1, . . . , zn) ∈ Z. Let p̄ = p∗(s, z) and

ȳi = xi(p
∗(s); si, zi). By continuity, there exists some δ > 0 such that, for any i and

any (p, yi) ∈ (p̄ − δ, p̄ + δ) × (ȳi − δ, ȳi + δ), there exists some s′i ∈ (s, s) such that

xi(p; s
′
i, zi) = yi. In other words, every price and allocation pair in (p̄ − δ, p̄ + δ) ×

(ȳi − δ, ȳi + δ) is “realizable” given some signal.

We will prove that there exist constants A 6= 0, B, D and E such that

s̃i(p; yi, zi) = Ayi +Bp+Dzi + E (55)

12Suppose not, i.e., for every price p ∈ R,
∑n
i=1 xi(p; si, zi) 6= S, and every bidder gets qi = 0. Then

there exists an i such that
∑
j 6=i xj(p; sj , zj) 6= 0 for every p ∈ R. Suppose that

∑
j 6=i xj(p; sj , zj) < S

for every p ∈ R. This means that bidder i can buy S−
∑
j 6=i xj(p; sj , zj) > 0 at any negative price p,

which is strictly more profitable than not trading (qi = 0). This contradicts the ex post optimality
of (x1, . . . , xn). Likewise when

∑
j 6=i xj(p; sj , zj) > S for every p ∈ R.
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for every (p, yi) ∈ (p̄ − δ/n, p̄ + δ/n) × (ȳi − δ/n, ȳi + δ/n), i ∈ {1, . . . , n}. Clearly,

this implies (54). We now proceed to prove (55). There are two cases. In Case 1,

α < 1 and n ≥ 4. In Case 2, α = 1 and n ≥ 3. Since z = (z1, . . . , zn) ∈ Z is fixed in

the rest of the proof, we omit the dependence on zi in s̃i(p; yi, zi) and ∂xi
∂p

(p; yi, zi) to

simplify notations.

A.2.1 Case 1: α < 1 and n ≥ 4

The proof for Case 1 consists of two steps.

Step 1 of Case 1: Lemma 1 and Lemma 2 below imply equation (55).

Lemma 1. There exist functions A(p), {Bi(p)} such that

s̃i(p; yi) = A(p)yi +Bi(p), (56)

holds for every p ∈ (p̄− δ, p̄+ δ) and every yi ∈ (ȳi − δ/n, ȳi + δ/n), 1 ≤ i ≤ n.

Proof. This lemma is proved in Step 2 of Case 1. For this lemma we need the condition

that n ≥ 4; in the rest of the proof n ≥ 3 suffices.

Lemma 2. Suppose that l ≥ 2 and that

l∑
i=1

fi(p; yi) = fl+1

(
p,

l∑
i=1

yi

)
, (57)

for every p ∈ P and (y1, . . . , yl) ∈
∏l

i=1 Yi, where Yi is an open subset of R, fi is

differentiable and P is an arbitrary set. Then there exist functions G(p) and {Hi(p)}
such that

fi(p; yi) = G(p)yi +Hi(p)

holds for every i ∈ {1, . . . , l}, p ∈ P and yi ∈ Yi.

Proof. We differentiate (57) with respect to yi and to yj, where i, j ∈ {1, 2, . . . , l},
and obtain

∂fi
∂yi

(p; yi) =
∂fl+1

∂yi

(
p;

l∑
j=1

yj

)
=
∂fj
∂yj

(p; yj)

for any yi ∈ Yi and yj ∈ Yj. Because (y1, . . . , yl) are arbitrary, the partial derivatives

above cannot depend on any particular yi. Thus, there exists some function G(p)

such that ∂fi
∂yi

(p; yi) = G(p) for all yi. Lemma 2 then follows.
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In Step 1 of the proof of Case 1 of Proposition 2, we show that Lemma 1 and

Lemma 2 imply equation (55). Let us define

β =
(1− α)

n− 1
, (58)

and rewrite bidder i’s ex post first-order condition as:

− yi +

(
αs̃i(p; yi) + β

∑
j 6=i

s̃j(p; yj)− p− λ(zi + yi)

)(
−
∑
j 6=i

∂xj
∂p

(p; yj)

)
= 0, (59)

where yn = S −
∑n−1

j=1 yj, p ∈ (p̄− δ, p̄+ δ) and yj ∈ (ȳj − δ/n, ȳj + δ/n). 13

Our strategy is to repeatedly apply Lemma 1 and Lemma 2 to (59) in order to

arrive at (55).

First, we plug the functional form of Lemma 1 into (59). Without loss of generality,

we let i = n and rewrite (59) as

n−1∑
j=1

∂xj
∂p

(p; yj)︸ ︷︷ ︸
left-hand side of (57)

= − yn

α(A(p)yn +Bn(p)) + β
∑n−1

j=1 (A(p)yj +Bj(p))− p− λ(zn + yn)︸ ︷︷ ︸
right-hand side of (57)

.

Applying Lemma 2 to the above equation, we see that there exist functions G(p) and

{Hj(p)} such that
∂xj
∂p

(p; yj) = G(p)yj +Hj(p), (60)

for j ∈ {1, . . . , n − 1}. Note that we have used the condition n ≥ 3 when applying

Lemma 1.

By the same argument, we apply Lemma 2 to (59) for i = 1, and conclude that

(60) holds for j = n as well.

Using (56) and (60), we rewrite bidder i’s ex post first-order condition as:(
(α− β)s̃i(p; yi) + β

(
A(p)S +

n∑
j=1

Bj(p)

)
− p− λ(zi + yi)

)(
−G(p)(S − yi)−

∑
j 6=i

Hj(p)

)
−yi = 0.

(61)

13We restrict yj to (ȳj − δ/n, ȳj + δ/n) so that yn = S −
∑n−1
j=1 yj ∈ (ȳn − δ, ȳn + δ), and as a

result s̃(p; yn) and ∂xn

∂yn
(p; yn) are well-defined.
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Solving for s̃i(p; yi) in terms of p and yi from equation (61), we see that for the so-

lution to be consistent with (56), we must have G(p) = 0. Otherwise, i.e. if G(p) 6= 0,

then (61) implies that s̃i(p; yi) contains the term yi/
(
−G(p)(S − yi)−

∑
j 6=iHj(p)

)
,

contradicting the linear form of Lemma 1.

Inverting (56), we see that xi(p; si) = (si−Bi(p))/A(p). Therefore, for ∂xi
∂p

(p; si) to

be independent of si (i.e., G(p) = 0), A(p) must be a constant function, i.e. A(p) = A

for some constant A ∈ R. This implies that

Hi(p) = −B
′
i(p)

A
, (62)

by the definition of Hi(p) in (60).

Given G(p) = 0 and A(p) = A, (61) can be rewritten as

(α− β)s̃i(p; yi) + β

(
AS +

n∑
j=1

Bj(p)

)
− p− λ(zi + yi)−

yi
−
∑

j 6=iHj(p)
= 0. (63)

For (63) to be consistent with s̃i(p; yi) = Ayi +Bi(p), we must have that Hj(p) = Hj

for some constants Hj, j ∈ {1, . . . , n}, and that

1∑
j 6=iHj

=
1∑

j 6=i′ Hj

, for all i 6= i′,

which implies that for all i, Hi ≡ H for some constant H.

By (62), this means that Bi(p) = Bp + Fi, where B = −HA, and {Fi} are some

constants. Finally, (63) implies that Fi = Dzi + E for some constants D and E.

Hence, we have shown that Lemma 1 implies (55). This completes Step 1 of the

proof of Case 1 of Proposition 2. In Step 2 below, we prove Lemma 1.

Step 2 of Case 1: Proof of Lemma 1.

Bidder n’s ex post first order condition can be written as:

n−1∑
j=1

∂xj
∂p

(p; yj) = − yn

αs̃n(p; yn) + β
∑n−1

j=1 s̃j(p; yj)− p− λ(zn + yn)
, (64)

where yn = S −
∑n−1

j=1 yj. Differentiate (64) with respect to yi, i ∈ {1, . . . , n − 1},
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gives:

∂

∂yi

(
∂xi
∂p

(p; yi)

)
=

Γ(y1, . . . , yn−1) + yn

(
−α ∂s̃n

∂yn
(p; yn) + β ∂s̃1

∂y1
(p; y1) + λ

)
Γ(y1, . . . , yn−1)2

, (65)

where

Γ(y1, . . . , yn−1) = αs̃n(p; yn) + β
n−1∑
j=1

s̃j(p; yj)− p− λ(zn + yn). (66)

Solving for Γ(y1, . . . , yn−1) in (65), we get

Γ(y1, . . . , yn−1) = ρi

(
yi,

n−1∑
j=1

yj

)
(67)

for some function ρi, i ∈ {1, 2, . . . , n− 1}.
We let ρi,1 be the partial derivative of ρi with respect to its first argument, and

let ρi,2 be the partial derivative of ρi with respect to its second argument. For each

pair of distinct i, k ∈ {1, . . . , n− 1}, differentiating (67) with respect to yi and yk, we

have

dΓ(y1, . . . , yn−1)

dyi
= ρi,1 + ρi,2 = ρk,2,

dΓ(y1, . . . , yn−1)

dyk
= ρk,1 + ρk,2 = ρi,2,

which imply that for all i 6= k ∈ {1, . . . , n− 1},

ρi,1 + ρk,1 = 0. (68)

Clearly, (68) together with n ≥ 4 imply that ρi,1 = −ρi,1, i.e., ρi,1 = 0 for all

i ∈ {1, . . . , n− 1}. That is, each ρi is only a function of its second argument:

ρi

(
yi,

n−1∑
j=1

yj

)
= ρi

(
n−1∑
j=1

yj

)
. (69)
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Then, using (66), (67) and (69) for i = 1, we have

β
n−1∑
j=1

s̃j(p; yj) = ρ1

(
n−1∑
j=1

yj

)
+ p+ λyn − αs̃n(p; yn). (70)

Applying Lemma 2 to (70) (recall that yn = S −
∑n−1

j=1 yj), we conclude that, for all

j ∈ {1, . . . , n− 1},
s̃j(p; yj) = A(p)yj +Bj(p). (71)

Finally, we repeat this argument to bidder 1’s ex post first-order condition and con-

clude that (71) holds for j = n as well. This concludes the proof of Lemma 1.

A.2.2 Case 2: α = 1 and n ≥ 3

We now prove Case 2 of Proposition 2. Bidder n’s ex post first order condition in

this case is:
n−1∑
j=1

∂xj
∂p

(p; yj) =
−yn

s̃n(p∗; yn)− p− λ(zn + yn)
, (72)

for every p ∈ (p̄− δ, p̄+ δ) and (y1, . . . , yn−1) ∈
∏n−1

j=1 (ȳj − δ/n, ȳj + δ/n), and where

yn = S −
∑n−1

j=1 yj.

Applying Lemma 2 to (72) gives:

∂xj
∂p

(p; yj) = G(p)yj +Hj(p), (73)

for j ∈ {1, . . . , n − 1}. Applying Lemma 2 to the ex post first-order condition of

bidder 1 shows that (73) holds for j = n as well.

Substituting (73) back into the first-order condition (72), we obtain:

(s̃i(p; yi)− p− λ(zi + yi))

(
−G(p)(S − yi)−

∑
j 6=i

Hj(p)

)
− yi = 0,

which can be rewritten as:

∂xi
∂p

(p; yi) = G(p)yi +Hi(p) =
yi

s̃i(p; yi)− p− λ(zi + yi)
+G(p)S +

n∑
j=1

Hj(p). (74)

We claim that G(p) = 0. Suppose for contradiction that G(p) 6= 0. Then matching
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the coefficient of yi in (74), we must have s̃i(p; yi) = λyi + Bi(p) for some function

Bi(p). But this implies that ∂xi
∂p

(p; yi) = −B′i(p)/λ, which is independent of yi. This

implies G(p) = 0, a contradiction. Thus, G(p) = 0.

Then, (74) implies that s̃i(p; yi) − p − λzi = Ai(p)yi for some function Ai(p).

And since ∂xi
∂p

(p; yi) is independent of yi, Ai(p) must be a constant function, i.e.,

s̃i(p; yi)− p− λzi = Aiyi for some Ai ∈ R. Substitute this back to (74) gives:

∂xi
∂p

(p; yi) = − 1

Ai
=

1

Ai − λ
−

n∑
j=1

1

Aj
,

which implies
1

Ai − λ
− 1

Aj − λ
=

1

Aj
− 1

Ai
, for all i 6= j,

which is only possible if Ai = Aj ≡ A ∈ R for all i 6= j. Thus, s̃i(p; yi)−p−λzi = Ayi,

which concludes the proof of this case.

A.3 Proof of Proposition 3

We define ~β ≡ (β1, . . . , βm)′ where, for each k ∈ {1, . . . ,m},

βk =
1− αk
n− 1

.

We conjecture an ex post equilibrium in which bidder i uses the demand schedule:

~xi(~p; ~si, ~zi) = B(~si − ~p) + C~S + D~zi + E~Z, (75)

where B, C, D and E are m-by-m matrices. Furthermore, we assume that B is

symmetric and invertible.

Fix a profile of signals (~s1, . . . , ~sn) and inventories (~z1, . . . , ~zn). Bidder i’s ex post

first order condition at the market-clearing prices ~p∗ is:

−~xi(~p∗; ~si, ~zi)+(n−1)B

(
Diag(~α)~si + Diag(~β)

∑
j 6=i

~sj − ~p∗ −Λ(~zi + ~xi(~p∗; ~si, ~zi))

)
= 0.

(76)
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The demand schedules in (75) yield the market-clearing price vector of

~p∗ =
1

n

n∑
i=1

~si + B−1

(
C− 1

n
I

)
~S + B−1

(
1

n
D + E

)
~Z.

where I is the identity matrix. Substituting this expressions of ~p∗ into (76) and

rearranging, we have:

(I + (n− 1)BΛ) ~xi(~p∗; ~si, ~zi)

=(n− 1)B

(
Diag(~α− ~β)(~si − ~p∗)−Diag(n~β)B−1

((
C− 1

n
I

)
~S +

(
1

n
D + E

)
~Z

)
−Λ~zi

)
.

Matching coefficients with the conjecture in (75), we obtain (where n~α−2
n~α−1

denotes

the vector whose k-th component is nαk−2
nαk−1

, etc.):

B = Λ−1 Diag

(
n~α− 2

n− 1

)
,

C = Λ−1 Diag

(
1− ~α
n− 1

)
Λ,

D = −Λ−1 Diag

(
n~α− 2

n~α− 1

)
Λ,

E = Λ−1 Diag

(
(n~α− 2)(1− ~α)

(n~α− 1)(n− 1)

)
Λ.

A.4 Proof of Proposition 4

We conjecture that bidder i submits the demand schedule xi(p; vi, zi) = bi(vi−p−λizi),
where bi > 0. Then, bidder i’s ex post first order condition is:

− xi(p∗; vi, zi) + (vi − p∗ − λi(zi + xi(p
∗; vi, zi)))

(∑
j 6=i

bj

)
= 0. (77)

Solving for xi(p
∗; vi, zi) in (77) and matching coefficients with xi(p

∗; vi, zi) = bi(vi −
p∗ − λizi), we obtain

bi =

∑
j 6=i bj

1 + λi
∑

j 6=i bj
⇐⇒ bi + (λibi − 1)(B − bi) = 0, (78)
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where we use the fact that
∑

j 6=i bj = B − bi. Solving for bi in (78), we get (24).

(The quadratic equation has two solutions, but only the smaller one is the correct

solution.14) Thus, B must solve the equation (25). To show that (25) has a unique

positive solution B, we rationalize the numerators of (25) and rewrite it as

0 = B

(
−1 +

n∑
i=1

2

2 +Bλi +
√
λ2
iB

2 + 4

)
.

Under the conjecture that B > 0, we have

0 = f(B) ≡ −1 +
n∑
i=1

2

2 +Bλi +
√
λ2
iB

2 + 4
.

It is straightforward to see that f ′(B) < 0, f(0) = n
2
− 1 > 0, and f(B) → −1 as

B →∞. Thus, (25) has a unique positive solution B.

A.5 Proof of Proposition 5

We conjecture that bidders use the stationary and symmetric strategy:

xi,t∆(p; si,t∆, zi,t∆) = asi,t∆ − bp+ dzi,t∆ + fZ. (79)

We let p∗t∆ be the market-clearing price in period t as determined by the conjec-

tured strategy (79):

p∗t∆ =
a

nb

n∑
j=1

sj,t∆ +
d+ nf

nb
Z. (80)

For notational simplicity we write xi,t∆(p∗t∆; si,t∆, zi,t∆) as xi,t∆.

For a fixed period t and fixed arbitrary profiles (s1,t∆, . . . , sn,t∆) and (z1,t∆, . . . , zn,t∆),

we want to construct the strategy in (79) so that every bidder i does not have an

incentive to deviate from this strategy in period t if he anticipates that (i) others are

using this strategy from period t on, and (ii) he himself will return to this strategy

from period t+1 and onwards. Then, by the single-deviation principle, this symmetric

strategy profile is a periodic ex post equilibrium.

14If bi =
2+λiB+

√
λ2
iB

2+4

2λi
, then we would have bi > B, which contradicts the definition of B.
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Bidder i’s ex post first-order condition (with respect to p∗t∆) in period t is:

E

[(
−
∑
j 6=i

∂xj,t∆
∂p

(p∗t∆; sj,t∆, zj,t∆)

)
·

(
1− e−r∆

r

(
vi,t∆ − λ(xi,t∆ + zi,t∆)

+
∞∑
k=1

e−rk∆∂(zi,(t+k)∆ + xi,(t+k)∆)

∂xi,t∆
(vi,(t+k)∆ − λ(zi,(t+k)∆ + xi,(t+k)∆))

)
−p∗t∆ −

∞∑
k=1

e−rk∆∂xi,(t+k)∆

∂xi,t∆
p∗(t+k)∆

)
− xi,t∆ −

∞∑
k=1

e−rk∆ xi,(t+k)∆

∂p∗(t+k)∆

∂p∗t∆

∣∣∣∣∣ si,t∆, {sj,t∆}j 6=i
]

= 0,

(81)

where the expectation E is taken over all realizations of future signals {sj,τ}1≤j≤n,τ>t∆.

If bidders follow the conjectured strategy in (79) from period t + 1 and onwards,

then we have the following evolution of inventories: for k ≥ 1,

zi,(t+k)∆ + xi,(t+k)∆ =(asi,(t+k)∆ − bp∗(t+k)∆ + fZ) + (1 + d)(asi,(t+k−1)∆ − bp∗(t+k−1)∆ + fZ)

+ · · ·+ (1 + d)k−1(asi,(t+1)∆ − bp∗(t+1)∆ + fZ) + (1 + d)k(xi,t∆ + zi,t∆),

(82)

where p∗t′∆, t+ 1 ≤ t′ ≤ t+ k, is defined in (80). Equations (80) and (82) imply that

∂(zi,(t+k)∆ + xi,(t+k)∆)

∂xi,t∆
= (1 + d)k, (83)

∂xi,(t+k)∆

∂xi,t∆
= (1 + d)k−1d, (84)

∂p∗(t+k)∆

∂p∗t∆
=
∂p∗(t+k)∆

∂xi,t∆
= 0. (85)

Given the conjectured strategy in (79), the derivatives in (83), (84) and (85), and
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the martingale property of signals, the ex post first order condition in (81) becomes:

(n− 1)b

[
1− e−r∆

r

(
vi,t∆ − λ(xi,t∆ + zi,t∆)

+
∞∑
k=1

e−rk∆(1 + d)k(vi,t∆ − λ(E[zi,(t+k)∆ + xi,(t+k)∆ | si,t∆, {sj,t∆}j 6=i]))

)

− p∗t∆ −
∞∑
k=1

e−rk∆(1 + d)k−1d p∗t∆

]
− xi,t∆ = 0, (86)

where, because equilibrium prices follow a martingale,

E[zi,(t+k)∆ + xi,(t+k)∆ | si,t∆, {sj,t∆}j 6=i]

= (asi,t∆ − bp∗t∆ + fZ)

(
1

−d
− (1 + d)k

−d

)
+ (1 + d)k(xi,t∆ + zi,t∆). (87)

Averaging (86) across all bidders and using the fact that
∑n

i=1 xi,(t+k)∆ = 0 and∑n
i=1 zi,(t+k)∆ = Z, we get:

p∗t∆ =
1

r

(
s̄t∆ −

λ

n
Z

)
, (88)

where

s̄t∆ ≡
1

n

n∑
i=1

si,t∆.

Therefore, in (79) we must have

b = ra,
aλ

n
+
d

n
+ f = 0. (89)
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Substituting (87), (88) and (89) into the first-order condition (86), we have:

(n− 1)(1− e−r∆)a

[
1

1− e−r∆(1 + d)

(
vi,t∆ − s̄t∆ +

λ

n
Z

)
(90)

−
∞∑
k=1

λe−rk∆(1 + d)k
(

1

−d
− (1 + d)k

−d

)(
a(si,t∆ − s̄t∆)− d

n
Z

)

− λ

1− e−r∆(1 + d)2
(xi,t∆ + zi,t∆)

]
− xi,t∆ = 0.

Rearranging the term gives:(
1 +

(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2

)
xi,t∆

= (n− 1)(1− e−r∆)a

[
1

1− e−r∆(1 + d)

(
α− 1− α

n− 1

)
(si,t∆ − s̄t∆)

− λe−r∆(1 + d)

(1− (1 + d)e−r∆)(1− (1 + d)2e−r∆)
a(si,t∆ − s̄t∆)

− λ

1− e−r∆(1 + d)2
zi,t∆ +

1

1− e−r∆(1 + d)2

λ

n
Z

]
. (91)

On the other hand, (79) and (89) simplify the conjectured strategy to

xi,t∆ = a(si,t∆ − s̄t∆) + dzi,t∆ −
d

n
Z.

Matching the coefficients in the above expression with those in (91), we obtain two

equations for a and d:(
1 +

(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2

)
=

(1− e−r∆)(nα− 1)

1− e−r∆(1 + d)
− (n− 1)(1− e−r∆)λe−r∆(1 + d)a

(1− (1 + d)e−r∆)(1− (1 + d)2e−r∆)
,(

1 +
(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2

)
d = −(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2
.
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The solution to the above system of equations is

a =
nα− 1

2(n− 1)e−r∆λ

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
,

(92)

d = − 1

2e−r∆

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
,

where we have a > 0 and −1 < d < 0. Finally, we have b = ra and f = −d/n−aλ/n.

This completes the construction of the stationary periodic ex post equilibrium.

A.6 Proof of Proposition 6

By (82) and (89), if signals do not change between period t and period t, then

z∗i,t∆ =

(
a

(
si,t∆ −

1

n

n∑
j=1

sj,t∆

)
− d

n
Z

)(
1

−d
− (1 + d)t−t

−d

)
+ (1 + d)t−tz∗i,t∆.

Substituting the explicit values of a and d from Equation (92) to the above equa-

tion and noticing that a/(−d) = (nα− 1)/(λ(n− 1)), we obtain

z∗i,t∆ = zei,t∆(1− (1 + d)t−t) + (1 + d)t−tz∗i,t∆,

where

zei,t∆ =
nα− 1

λ(n− 1)

(
si,t∆ −

1

n

n∑
j=1

sj,t∆

)
+

1

n
Z.

The comparative statics with respect to n, α and r follow by differentiating 1 + d

with respectively n, α and r and straightforward calculations.

For the comparative statics with respect to ∆, we find that

∂(log(1 + d)/∆)

∂∆
= − 1

∆2

(
r∆

η
√
η2(er∆ − 1)2 + 4er∆ − η2(er∆ − 1)− 2√

η2(1− e−r∆)2 + 4e−r∆
(√

η2(er∆ − 1)2 + 4er∆ − η(er∆ − 1)
)

+ log

(
1

2

(√
η2(er∆ − 1)2 + 4er∆ − η(er∆ − 1)

)))
,

where we let η ≡ nα − 1. Given η > 1, it is easy to show that the two terms in the

right-hand side of the above equation are both positive, which implies our conclusion.
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A.7 Proof of Proposition 8

We first prove the following two lemmas.

Lemma 3.

n∑
i=1

(
vizi −

λ

2
(zi)

2

)
=

n∑
i=1

(
viz

e
i −

λ

2
(zei )

2

)
− λ

2

n∑
i=1

(zi − zei )2 (93)

Proof. We have:

n∑
i=1

(
vizi −

λ

2
(zi)

2

)
=

n∑
i=1

(
viz

e
i −

λ

2
(zei )

2

)
+

n∑
i=1

(vi−λzei )(zi− zei )−
λ

2

n∑
i=1

(zi− zei )2.

(94)

The middle term in the right-hand side of (94) is zero because vi − λzei = pe for the

competitive equilibrium price pe, and
∑n

i=1 zi − zei = 0. This proves the lemma.

Lemma 4.
(1− e−∆r)(1 + d)2

1− e−r∆(1 + d)2
=

1 + d

nα− 1
. (95)

Proof. We have:

e−r∆(1 + d)2 =
2(nα− 1)2(1− e−r∆)2 + 4e−r∆ − 2(nα− 1)(1− e−r∆)

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

4e−r∆

= 1− (nα− 1)(1− e−r∆)(1 + d).

Now we prove Proposition 8. By Lemma 3 and Lemma 4, we have

n∑
i=1

∞∑
t=0

1− e−∆r

r
e−t∆r

(
viz
∗
i,(t+1)∆ −

λ

2
(z∗i,(t+1)∆)2

)
(96)

=
1

r

n∑
i=1

(
viz

e
i −

λ

2
(zei )

2

)
− λ(1− e−∆r)(1 + d)2

2r(1− e−r∆(1 + d)2)

n∑
i=1

(zei,0 − zei )2 (97)

=
1

r

n∑
i=1

(
viz

e
i −

λ

2
(zei )

2

)
− λ(1 + d)

2r(nα− 1)

n∑
i=1

(zei,0 − zei )2. (98)

It is straightforward to show that 1 + d is decreasing in ∆.
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A.8 Proof of Proposition 9

We can rewrite the first term on the right-hand side of (52) as

1− E[e−rT̄ ]

r

n∑
i=1

(
vi,0z

e
i,0 −

λ

2
(zei,0)2

)
. (99)

Furthermore,

E
[
e−rT̄

]
=
∞∑
t=0

e−(t+1)∆r
(
e−t∆ν − e−(t+1)∆ν

)
=
e−∆r − e−∆(r+ν)

1− e−∆(r+ν)
. (100)

By Equation (96), we have

E

[
n∑
i=1

∞∑
t=0

1− e−∆r

r
e−t∆r

(
viz
∗
i,T̄+(t+1)∆ −

λ

2
(z∗i,T̄+(t+1)∆)2

)]
(101)

=
1

r

n∑
i=1

E
[
viz

e
i −

λ

2
(zei )

2

]
− 1 + d

nα− 1

λ

2r

n∑
i=1

E[(zei,0 − zei )2]. (102)

Because E[vi | {sj,0}1≤j≤n] = vi,0, applying Lemma 3 we have:

n∑
i=1

E
[
viz

e
i −

λ

2
(zei )

2

]
−
(
vi,0z

e
i,0 −

λ

2
(zei,0)2

)
=
λ

2

n∑
i=1

E[(zei,0 − zei )2] ≡ X. (103)

Setting

Y ≡ 1

r

n∑
i=1

(
vi,0z

e
i,0 −

λ

2
(zei,0)2

)
, (104)

we see that (52) is equivalent to:

W (∆)− Y =
e−∆r − e−∆(r+ν)

1− e−∆(r+ν)

(
X − 1 + d

nα− 1
X

)
=
e−∆r − e−∆(r+ν)

1− e−∆(r+ν)
·

(nα− 1)(1 + e−r∆)−
√

(nα− 1)2(1− e−r∆)2 + 4e−r∆

2e−r∆(nα− 1)
·X.

By taking derivatives it is easy to show that both

e−∆r/2 − e−∆(r/2+ν)

1− e−∆(r+ν)
(105)
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and
(nα− 1)(1 + e−r∆)−

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

2e−r∆/2(nα− 1)
(106)

are decreasing in ∆, which proves the proposition.
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