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Abstract

Many puzzling social behaviors, such as avoiding eye contact, using innuendos, and insignificant events that
trigger revolutions, seem to relate to common knowledge and coordination, but the exact relationship has yet to
be formalized. Herein, we present such a formalization. We state necessary and sufficient conditions for what we
call state-dependent equilibria – equilibria where players play different strategies in different states of the world. In
particular, if everybody behaves a certain way (e.g. does not revolt) in the usual state of the world, then in order for
players to be able to behave a different way (e.g. revolt) in another state of the world, it is both necessary and sufficient
for it to be common p-believed that it is not the usual state of the world, where common p-belief is a relaxation of
common knowledge introduced by Monderer and Samet [19]. Our framework applies to many player quorum games
– a generalization of coordination games that we introduce – and r-common p-beliefs – a generalization of common
p-beliefs that we introduce. We then apply these theorems to three particular signaling structures to obtain novel
results. Finally, as a by-product, we resolve some of the outstanding puzzles.
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1 Introduction
In the popular parable “The Emperor’s New Clothes” [2], a gathering of adults pretends to be impressed by the
Emperor’s dazzling new suit despite the fact that he is actually naked. It is not until an innocent child cries out “But
he has nothing on at all!” that the Emperor’s position of authority and respect is questioned. This is a metaphor for
a number of common political situations in which the populace knows the current regime is inept but takes no action
against it until some seemingly insignificant event occurs, such as the child’s cry. In fact, in Tunisia, despite years of
political repression and poverty, it was not until the previously unknown street vendor Mohamed Bouazizi set himself
on fire that citizens rose up in protest. Common knowledge – everyone knows that everyone knows that... – might offer
such an explanation for this strange phenomenon: while the boy’s cry and the self immolation of Mohamed Bouazizi
do not teach anyone that the government is inept, they make it commonly known that the government is inept.

Likewise, common knowledge has been proffered as an explanation for many other puzzling social behaviors: it
is common to avoid eye-contact when caught in an inappropriate act, despite the fact that looking away, if anything,
increases the conspicuousness of a shameful deed. Nevertheless, even Capuchin monkeys look away when they ignore
a request to help an ally in a tussle [25]. And few adults after a nice date are fooled by the inquiry “Would you like to
come upstairs for a drink?” yet all but the most audacious avoid the explicit request [26].

Many authors have aptly noted that common knowledge plays an important role in these puzzling social behaviors
[11, 4, 7, 26]. Avoiding eye contact prevents common knowledge that you were noticed, using innuendos enables
a speaker to request something inappropriate without making the request commonly known, and prohibiting public
displays of criticism of the government while not preventing people from realizing the flaws of their government,
prevent the flaws from being commonly known. Authors have argued that common knowledge is important in these
situations because common knowledge is needed for coordination. But without formal arguments, many important
questions still remain, such as: what exactly needs to be “commonly known” in order to “coordinate”? What exactly
will happen in the absence of common knowledge? Miscoordination? When common knowledge is lacking, but
almost present, e.g. if everyone is pretty sure that everyone is pretty sure... will this have the same effect as common
knowledge? Such details, which may seem pedantic, are crucial for answering practical questions such as: if I cannot
think up an innuendo, will an appropriately placed cough midsentence do the trick? Why is it that sometimes we use
innuendos and sometimes we go out of our way to state the obvious?

We will formalize the role of common knowledge in coordination, which will enable us to address each of these
questions in the discussion section. The crucial step in our formalism is based on the insight of Rubinstein [28].
Rubinstein considers coordination games – games in which players make choices such that they would like to mimic
the choice that others make. Rubinstein supposes that players coordinate on a particular action A in a given situation.
He then supposes that the situation changes and asks whether the players can coordinate on a different action instead.
He shows that unless it is commonly known that the situation has changed, players still must coordinate on A. The
intuition is clear: even if one player knows that circumstances have changed, if he thinks the other player does not know
this, then he expects the other player to play as if circumstances have not changed. Since it is a coordination game, he
best responds by playing as if circumstances have not changed. Likewise, even if both players know that circumstances
have changed, and both players know that both players know this, but one player does not realize the second player
has this second degree of knowledge, then this player will expect the other player to play as if circumstances have not
changed. By the above argument, he best responds by playing as if circumstances have not changed. The same logic
continues indefinitely.

Rubinstein presents a particular instance in which the above logic holds. The contribution of our paper is to
show that this logic holds quite generally, for any two player coordination game, and in fact, for a generalization to
many players. And moreover, we show that common knowledge is not just necessary for changing behaviors when
circumstances change, but common knowledge is also sufficient. We hope that this will lead to a deeper understanding
of these puzzling social behaviors, as well as some novel predictions.

1.1 Our results
In this paper, we introduce state-dependent equilibria, which we define as equilibrium strategies in which players
take different actions when the circumstances change. This notion allows us to address the questions that were left
unanswered by the informal discussions of common knowledge and coordination. In particular, we characterize the
conditions under which rational players are able to play state-dependent equilibria.

We begin by considering two-player coordination games. We show that it is not quite common knowledge that
determines the existence of state-dependent equilibria but rather a relaxation of common knowledge. This notion
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corresponds with common p-beliefs, as developed by Monderer and Samet [19]: each believes with probability at
least p that each believe with probability at least p.... In our framework, we show that p depends on the precise payoffs
of the game and corresponds to the risk dominance of Harsanyi and Selten [15].

We then introduce a natural n-player generalization of coordination games that we call quorum games in which
coordination on an action is successful if at least some fraction of the players take that action. Accordingly, we also
develop a generalization of common p-beliefs for this setting.

In order to derive our results, we provide a unifying theoretical framework for analyzing our games. Our framework
gives tight necessary and sufficient conditions on the players’ beliefs under which a state-dependent equilibrium exists.
These conditions depend on the payoffs of the game (in particular on the risk dominance) and, in the case of quorum
games, on the threshold fraction required for successful coordination.

Our final contribution is to apply this framework both to simple but puzzling social behavior and to more complex
distributed phenomena that arise in biology, economics, and sociology. The first application is eye-contact. We offer
a post hoc explanation for why we avoid eye-contact when caught in an inappropriate act. For the second and third
applications, we show how our results can be applied to situations in which the true state of the world is observed by all
players with arbitrarily small noise, as in the global games literature [21, 23, 22]. This yields some novel predictions
about social behaviors, such as which cues can be used to instigate a revolution, and when a researcher’s reputation can
be resilient to substandard work. We conclude with a discussion of the social puzzles mentioned in the introduction,
suggesting how our theorems can be used to explain these phenomena and what novel prescriptions can be offered.

1.2 Related work
The concept of common knowledge was first formalized in multi-modal logic in 1969 by Lewis [18]. Aumann later
put common knowledge in a set-theoretic framework [3].

In 1986, Rubinstein used common knowledge to analyze a problem related to the coordinated attack problem in
computer science [28]. This problem, called the Electronic Mail Game, was the first example that common knowledge
is very different than any finite order of knowledge. Rubinstein showed that the lack of common knowledge prevents
players from switching strategies (i.e. prevents the existence of state-dependent equilibria) in the Electronic Mail
Game. See [20] for a retrospective on the Electronic Mail Game. Our results show that common knowledge is not just
necessary but also sufficient and holds for any coordination game and even quorum games.

Carlsson and Van Damme showed that when players have noisy signals about the payoffs in a coordination game,
as the noise vanishes, the unique equilibrium in the game becomes the risk dominant equilibrium [5]. Morris and
Shin applied this result to bank runs and currency crisis, showing that there is a unique underlying value at which
currencies collapse and bank runs occur, in contrast to previous models, which permitted multiple equilibria and
prevented comparative static analysis [21, 23, 22]. In some of our applications, we use similar signaling structures, but
the uncertainty does not affect the payoffs. We find circumstances under which no state-dependent equilibria exist.

Monderer and Samet developed an approximate notion of common knowledge called common p-beliefs, which is
relevant in our framework. We will draw heavily on their definitions and results [19].

Others have discussed the role of common knowledge in social puzzles, albeit less formally than in the aforemen-
tioned literature. Chwe discusses the role of common knowledge in public rituals [7]. Pinker et al discusses the role
of common knowledge in innuendos [26]. Binmore and Friedell discuss the role of common knowledge in eye contact
[10, 4]. In our paper we formalize the role of common knowledge in many of these social puzzles.

The role of common knowledge has been studied in the fields of distributed computing and artificial intelli-
gence [12, 8, 13]. This line of work suggests that knowledge is an important abstraction for distributed systems
and for the design and analysis of distributed protocols, in particular for achieving consistent simultaneous actions.
Fagin and Halpern [14, 9] present an abstract model for knowledge and probability in which they assign to each agent-
state pair a probability space to be used when computing the probability that a formula is true. A complexity-theoretic
version of Aumann’s celebrated Agreement Theorem is provided in [1].

2 Preliminaries
We will adopt the set-theoretic formulation of common knowledge introduced by Aumann [3]. In this model, there
is a set ⌦ of “states of the world”. Each player i has some information regarding the true state of the world. This
information is given by a partition ⇧i of ⌦. In particular, for ! 2 ⌦, ⇧i(!) is the set of states indistinguishable from !
to player i – that is, when ! occurs, player i knows that one of the states in ⇧i(!) occurred but not which one. Finally,
there is a probability distribution µ over ⌦, representing the (common) prior belief of the players over the states of the
world. These parameters all together constitutes the information structure.
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Definition 1 (Information structure). An information structure is a tuple I = (N,⌦, µ, {⇧i}i2N ) where

• N is the set of players. We let n = |N |.
• ⌦ is the set of all possible states of the world.

• µ is a strictly positive common prior probability distribution over ⌦.

• ⇧i is the information partition of player i. ⇧i(!) gives the set of states indistinguishable from ! to player i.

A (Bayesian) game is now defined by an information structure, a set of possible actions for each player and a
state-dependent utility for each player.

Definition 2 (Bayesian game). A Bayesian game � is a tuple (I, {Ai}i2N , {ui}i2N ) where

• I = (N,⌦, µ, {⇧i}i2N ) is an information structure

• Ai is the (finite) set of possible actions that player i can take.

• ui : A1 ⇥ A2 ⇥ . . .⇥ An ⇥ ⌦ ! R is the utility for player i given the state of the world and the actions of all
players.

A strategy profile prescribes the action (possibly randomized) that each player takes at each state of the world.

Definition 3 (Strategy profile). A strategy profile is a function � = (�1,�2, . . . ,�n) : ⌦ ! A1 ⇥A2 ⇥ . . .⇥An that
specifies what action each player take in each state of the world.

Since a player cannot distinguish between states belonging to the same partition, it is enforced that if a player i
plays some strategy � = �i(!) at some state ! 2 ⌦, it must be the case that i plays � at all states !0 2 ⇧i(!). We can
now recall the definition of Bayesian Nash equilibrium.

Definition 4 (Bayesian Nash equilibrium). A strategy profile � = (�1,�2, . . . ,�n) : ⌦ ! A1 ⇥ A2 ⇥ . . . ⇥ An is a
Bayesian Nash equilibrium (BNE) of � if for all i 2 N ,

1. �i(!) = �i(!0
) whenever ! 2 ⇧i(!0

).

2.
R
!2⌦ ui(�i(!),��i(!))dµ(!) �

R
!2⌦ ui(�0

i(!),��i(!))dµ(!) for all �0 satisfying property 1.

2.1 Beliefs
We now define the notion of p-belief, introduced by Monderer and Samet [19], which extends the notion of common
knowledge by Aumann [3]. Let p be a number between 0 and 1. We say that a player i p-believes the event E at state
of the world ! if the subjective probability that i assigns to E at ! is at least p. That is, whenever ! is the true state of
the world, i believes that an event in E occurred with probability at least p. Henceforth, we will use short expressions
such as “i p-believes E at !” to refer to this concept.

We denote by Bp
i (E) the set of all states of the world at which player i p-believes E.

Definition 5 (p-belief). For any 0  p  1, we say that player i p-believes E at ! if µ(E | ⇧i(!)) � p. We will
denote by Bp

i (E) the event that i p-believes E, i.e.

Bp
i (E) = {! | µ(E | ⇧i(!)) � p}.

Observe that by definition of Bp
i (E), the notation ! 2 Bp

i (E) indicates that whenever ! occurs, player i believes
with probability at least p that the event E occurred. An event E is then defined p-evident if whenever it occurs, each
player i believes with probability at least p that it indeed occurred.

Definition 6 (evident p-belief). An event E is evident p-belief if for all i 2 N we have E ✓ Bp
i (E).

The following concept extends the notion of common knowledge.

Definition 7 (common p-belief). An event C is common p-belief at state ! if there exists an evident p-belief event E
such that ! 2 E, and for all i 2 N , E ✓ Bp

i (C).
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Note that an evident p-belief event E is trivially common p-believed at any state ! 2 E. That is, if a state ! 2 E
occurs, the occurrence of E is p-believed by all players.

An alternative (non-fixed point) characterization of a common p-belief event is the following. We refer to [19] for
its proof.

Lemma 1 (common p-belief characterization). Given an event C, let C0
= C and inductively define Cn

=

T
i B

p
i (C

n�1
).

Then C is common p-belief at state ! if and only if ! 2 T
n�1 C

n.

2.2 Game setup
We will focus on a generalization of coordination games in which there are n players, each of whom can take action
A or B. A player’s payoffs are a function of whether the fraction of players who play a specific strategy exceeds a
threshold r̄. When n = 2 and the threshold r̄ = 1, we obtain the classic 2-player coordination game. The precise
definition for the case n > 2 is provided in Section 5.

Definition 8 (State-dependent BNE). We say that a Bayesian Nash equilibrium �⇤ is state-dependent if for some
!,!0 2 ⌦, i 2 N , we have that �⇤

i (!) = A and �⇤
i (!

0
) = B.

Note that in a 2-player game an equilbrium �⇤ is state-dependent if and only if there exist !,!0 2 ⌦ such that
�⇤

(!) = (A,A) and �⇤
(!0

) = (B,B).

3 Two player framework
In this section we consider the classic 2-player, 2-strategy symmetric coordination game. The payoffs are as follows:

A B
A a, a b, c
B c, b d, d

Assumption 1 (Coordination game). We make the following standard assumption on the parameters of a symmetric
coordination game: a > c and d > b.

Throughout this paper, we will use p⇤ =

d�b
d�b+a�c . This value is called risk-dominance [15]. Note that if player

i believes with probability exactly p that the other player will play A at !, then player i will be indifferent between
playing A and B at !.

For convenience, we will use the following definitions throughout this section.

Definition 9. Given any strategy profile �, we let Ai(�) = {!|�i(!) = A} and Bi(�) = {!|�i(!) = B}, i.e. the set
of states where player i plays A and B respectively.

We now state our main result for the 2-player case. The main question we ask is when it is possible for the two
players to coordinate on different actions in different states of the world. We answer this question in terms of the
existence of evident p-belief events (where p depends on the payoff matrix) showing that such events are necessary
and sufficient.

Theorem 1. There exists a state-dependent Bayesian Nash equilibrium �⇤ if and only if there exists a non-empty
evident p⇤-belief event E and a non-empty evident (1� p⇤)-belief event F such that E \ F = ;.

Proof. First we will show that if there exists a state-dependent Bayesian Nash equilibrium �⇤, then there exists a non-
empty evident p⇤-belief event E and a non-empty evident (1� p⇤)-belief event F such that E \ F = ;. In particular,
we will show that A1(�⇤

) \ A2(�⇤
) is evident p⇤-belief and B1(�⇤

) \ B2(�⇤
) is evident (1 � p⇤)-belief. In the rest

of the proof, we will let Ai = Ai(�⇤
) and Bi = Bi(�⇤

).
We need to show that A1 \ A2 and B1 \ B2 are both non-empty. This follows from the fact that �⇤ is state-

dependent; if a player plays A on some state, then he must believe that there is some state in which both players
choose A. If this were not true, then he would best respond by playing B.

We also must show that A1 \A2 \B1 \B2 = ;. This follows from the fact that A1 \B1 = ;.
Assume for contradiction that A1 \ A2 is not evident p⇤-belief, and without loss of generality, assume that A1 \

A2 6✓ Bp⇤

1 (A1 \ A2). Consider some ! 2 A1 \ A2 such that ! 62 Bp⇤

1 (A1 \ A2). It must be the case that
µ1(A1 \ A2|⇧1(!)) < p⇤. Furthermore, by definition 4.1, ⇧1(!) ✓ A1. Therefore, we must have µ1(A2|⇧1(!)) <

4



p⇤, i.e. at !, player 1 believes with probability strictly less than p⇤ that player 2 will play A. Thus, with probability
strictly less than p⇤, player 1 will get payoff a if he plays A and payoff c if he plays B. Furthermore, with probability
at least 1 � p⇤, he will get payoff b if he plays A and payoff d if he plays B. Since a � c � b � d (from assumption
1), we obtain

ui(A|⇧i(!))� ui(B|⇧i(!)) < p⇤(a� c) + (1� p⇤)(b� d) = 0 (1)

Equation (1) implies that �⇤ is not a Bayesian-Nash equilibrium, and hence we obtain a contradiction. The proof
that F is evident (1� p⇤)-belief is analogous.

Now we will prove that if there exists a non-empty evident p⇤-belief event E and a non-empty evident (1 � p⇤)-
belief event F such that E \ F = ;, then there exists a state-dependent Bayesian-Nash equilibrium �⇤. We will do so
by constructing such a Bayesian-Nash equilibrium.

First, we will recursively define the sequence of events En
i and Fn

i as follows. For all i, let E0
i = E and F 0

i = F .
For all i and for all n � 1, let En

i = Bp⇤

i (En�1
�i ) and Fn

i =

S
q<p⇤ B

1�q
i (Fn�1

�i ). Finally, let ˆEi =
S1

n=0 E
n
i and

ˆFi =
S1

n=0 F
n
i .

Now let �⇤ be a strategy profile such that �⇤
i (!) = A for all ! 2 ˆEi, �⇤

i (!) = B for all ! 2 ˆFi, and �⇤
i (!) = B

for all ! 2 ˆEi
c \ ˆFi

c
. We will show that �⇤ is a Bayesian Nash equilibrium using the following 4 steps:

1. En
i ✓ En+1

i and Fn
i ✓ Fn+1

i .

2. En
i \ Fn

i = ; for all n � 0.

3. For all ! 2 ˆEi, player i will be no better off by playing B.

4. For all ! 2 ˆEi
c \ ˆFi

c
, player i will be no better off by playing A.

The first two steps show that �⇤ is well defined. The final two steps, combined with an analogous argument for all
! 2 ˆFi show that �⇤ is a Bayesian Nash equilibrium.

Proof of step 1: We will show that En
i ✓ En+1

i by induction on n. For the base case, note that E0
i = E ✓

Bp⇤

i (E) = E1
i for all i because E is an evident p⇤-belief event. Now suppose En�1

i ✓ En
i for all i. Then by

monotonicity of p-beliefs,1 En
i = Bp⇤

i (En�1
�i ) ✓ Bp⇤

i (En
�i) = En+1

i . An analogous argument proves that Fn
i ✓

Fn+1
i .

Proof of step 2: We will show that En
i \ Fn

i = ; for all n � 0 by induction on n. For the base case, note that
E0

i \F 0
i = E\F = ;. Now suppose En

i \Fn
i = ; for all i. Then µ(En

�i |⇧i(!))+µ(Fn
�i |⇧i(!))  1 for all ! and

for all i. If ! 2 En+1
i , then by definition of En+1

i , µ(En
�i | ⇧i(!)) � p⇤. This implies that µ(Fn

�i | ⇧i(!))  1� p⇤.
Therefore, ! 62 Fn+1

i .
Proof of step 3: Suppose ! 2 ˆEi. Then by the construction of ˆEi, ! 2 En

i for some n � 1 or ! 2 E. First
consider the case in which ! 2 E. Since E is evident p⇤-belief, µ(E | ⇧i(!)) � p⇤. Since player �i plays A on E,
player i can do no better by playing B at !.

Now consider the case in which ! 2 En
i for some n � 1. In this case, µ(En�1

�i | ⇧i(!)) � p⇤. Since player �i

plays A on En�1
�i , player i can do no better by playing B at !.

Proof of step 4: Suppose ! 2 ˆEi
c \ ˆFi

c
. Then for all n, ! 62 En

i . Therefore, there is no n such that
µ(En�1

�i | ⇧i(!)) � p⇤. Since player �i only plays A on ˆEi, this means that at !, player i believes with proba-
bility strictly less than p⇤ that player �i will play A. Therefore, player i will be no better off by playing A at !.

While evident knowledge is both necessary and sufficient for state-dependent equilibria, our theorem further allows
us to specify how the strategies must depend on these evident events, which we express in the following corollary:

Corollary 1. A strategy profile �⇤ is a state-dependent Bayesian Nash equilibrium if and only if there exists a non-
empty evident p⇤-belief event E and a non-empty evident (1� p⇤)-belief event F such that Bp⇤

i (E) \B1�p⇤

i (F ) = ;
and Bp⇤

i (E) [B1�p⇤

i (F ) = ⌦ for all i, in which case Ai(�⇤
) = Bp⇤

i (E) and Bi(�⇤
) = B1�p⇤

i (F ) for all i.

Our next corollary states the relationship between state-dependent equilibria and common knowledge.

Corollary 2. If �⇤ is a Bayesian Nash equilibrium such that �⇤
i (!) = A and �⇤

i (!
0
) = B, then ¬!0 is common

p⇤-belief at ! and ¬! is common (1� p⇤)-belief at !0.
1If F ✓ G, then Bp

i (F ) ✓ Bp
i (G) for any i and any p [19].
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4 Two player applications
4.1 A Rationale for Avoiding Eye-Contact
In this section, we use corollary 2 to provide a rationale for avoiding eye-contact when one has committed a socially
deviant act. The basic intuition is that avoiding eye-contact prevents switching from a more desirable equilibrium to a
less desirable equilibrium.

THE STORY. Two Charedi men, Bob and Dave, go to a bar, and each spots the other, purposely looking away before
meeting eyes. Why?

Suppose that the next day they have to decide whether to tell the Rabbi. If one expects the other to tell, he is
better off also admitting to his actions. On the other hand, if one does not expect the other to tell, then he is better off
also not admitting to his transgression. The payoffs can be interpreted as the coordination game from the two-player
framework by interpreting A as the act of not telling the Rabbi, B as the act of telling the Rabbi.

We make the reasonable assumption that if at least one of the men stays home, neither tells the Rabbi that he saw
the other player at the bar (since he in fact did not).

We will use our framework from section 3 to show that (a) there is always an equilibrium in which they both tell
the Rabbi if they make eye-contact at the bar, and (b) under mild assumptions, if they do not make eye contact, neither
will tell the Rabbi.

THE MODEL. We now specify the information structure: we suppose that in one state of the world, at least one of
them stays home (H) while in another state of the world, Dave enters the bar, and Bob is already sitting at the bar.
When Dave walks in, Bob is either staring at the bartender, in which case he would not see Dave, or looking at the
door, in which case he would. As soon as Dave enters, he sees Bob, so he quickly turns around and walks out. Dave
turns around before or after noticing if Bob saw him.

The set of possible states of the world is given by

⌦ = {H, (R,G), (R,G0
), (R0,G), (R0,G0

)}.
We interpret the states of the world as follows: H is the state where Dave does not go to the bar and stays at (H)ome.
(R,G) is the state where Dave goes to the bar, Bob is looking at the bartender, and Dave leaves the bar before checking
if Bob saw him. (R0,G0

) is the state where Dave goes to the bar, Bob sees him, and Dave sees that Bob saw him (i.e.
they make eye-contact).

The information partitions are given as follows:

• ⇧A = {{H, (R,G), (R,G0
)}, {(R0,G)}, {(R0,G0

)}}
• ⇧M = {{H}, {(R,G), (R0,G)}, {(R,G0

)}, {(R0,G0
)}}

Observe that (R0,G0
) is an evident p⇤-belief event, that is, when eye contact happens, it becomes common knowl-

edge between Bob and Dave as expected.
We use the following independent probabilities to deduce the priors over the state space: pb is the probability that

Dave goes to the bar i.e., he does not stay home; pr is the probability that Bob is looking at the bartender when Dave
walks in; pg is the probability that, conditioned on Dave going to the bar, he leaves the bar before checking if Bob saw
him.

Our first claim is an almost trivial one which shows that there always exists an equilibrium in which they both tell
the Rabbi if they make eye-contact at the bar.

Claim 1. There exists a Bayesian-Nash equilibrium of � such that �⇤
(H) = (A,A) and �⇤

((R0,G0
)) = (B,B) for

any pb, pr, pg .

Proof. Let �⇤
(!) = (A,A) for all ! /2 ⇧i((R0,G0

)) for both i. The sufficiency conditions for Corollary 1 is then met
by letting F = {(R0,G0

)} and E = ⌦\F .

Our next claim shows conditions under which if Bob and Dave do not make eye-contact, they must continue
playing A if they play A on H. That is, suppose Bob and Dave coordinate on (A,A) when Dave stays home; under
what conditions is it the case that they can play (B,B) only at (R0,G0

), i.e. only when they make eye-contact. We
defer the proof to appendix A.1.
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Claim 2. Suppose �⇤ is a Bayesian-Nash equilibrium of � with �⇤
(H) = (A,A). If pr > p⇤ and pbpr

pbpr+(1�pb)
< 1�p⇤

then �⇤
(!) 6= (B,B) for all ! 2 ⌦\{(R0,G0

)}.

Now that we have formalized why someone might want to avoid eye contact, we can discuss when this is worth-
while. For instance, avoiding eye contact will not serve any purpose when it is very likely that they saw each other, e.g.
if the bar had nobody else present and was very well lit (i.e. when pr and pg are small). Likewise, avoiding eye contact
serves no purpose if, when it is commonly known that both parties see each other doing an act, neither is expected
to play any differently than if neither transgressed (i.e. �⇤

(R0,G0
) = (A,A)). For example, the transgression is not

perceived as related to the ensuing coordination game, e.g. if the two religious men have already discussed their secret
abhorrence of the religion.

Moreover, avoiding eye contact only serves a purpose if there will be an ensuing coordination game (i.e. a > c).
If in fact Bob would prefer to rat on Dave, regardless of whether Dave rats on Bob (e.g. because he knows the Rabbi
will believe him, and he would like Dave to be excommunicated) then Dave does not help himself by avoiding Bob’s
eyes. In fact, to the extent that Dave thinks this might be the case, he might want to avoid eye contact, as it may make
his presence more conspicuous to Bob.

Lastly, Bob may even purposely make eye contact, or yell out “hey Dave, is that you,” if he in fact wants to switch
from them both playing A to both playing B (which would be the case if d > a). For instance, this would be the case
if Dave was looking for someone to leave the community with him and help him start a new life in the secular world.

5 n-player framework
5.1 Game setup
Let ⌦ be all possible states of the world. There are n players, each of whom can take action A or B. A player’s payoff
for a particular action is a function of the fraction of players who play B. In particular, a player’s payoffs are a function
of whether the fraction of players who play B exceeds a threshold r̄. Let r denote the fraction of players who play B.
The payoffs are as follows.

ui(A, r) =

⇢
a : r  r̄
b : r > r̄

ui(B, r) =

⇢
c : r  r̄
d : r > r̄

We again use assumption 1 on the values of the parameters, namely that a > c and d > b. In this context, these
assumptions on the payoff parameters generalize that of a 2 player coordination game in that a player best respond by
playing A if and only if sufficiently many others play A.

We will also assume that n is sufficiently large such that a particular player’s decision to play A or B does not
affect whether r exceeds r̄.

Furthermore, we will again use p⇤ =

d�b
d�b+a�c . For n-players, p⇤ is a generalization of risk dominance. If player

i believes with probability exactly p that at least (1 � r̄) players will play A at !, then player i will be indifferent
between playing A and B at !.

Note that this setup is a generalization of the two player setup. In particular, if there are two players, then we can
let r̄ be any value in (0, 1) in order to obtain the two player model.

5.2 Main Result
Definitions 10, 11, and 12 generalize p-beliefs and evident p-beliefs, and common p-beliefs to n players.

Definition 10 (r, p-belief). For any 0  p  1 and any 0  r  1, we say that event E is r, p-belief at ! if
|{i | ! 2 Bp

i (E)}| � rn. We will denote by Br,p
(E) the event that at least a fraction of r players p-believes E, i.e.

Br,p
(E) = {! | |{i | ! 2 Bp

i (E)}| � rn}

The following lemma extends a property of p-beliefs, proved in [19], to r, p-beliefs.

Lemma 2 (Monotonicity of r, p-beliefs). If F ✓ G, then Br,p
(F ) ✓ Br,p

(F ).

Proof. This follows from monotonicity of p-beliefs [19].

Definition 11 (r-evident p-belief). An event E is r-evident p-belief if E ✓ Br,p
(E).
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Definition 12 (r-common p-belief). Given an event C, let C0
= Br,p

(C) and inductively define Cn
= Br,p

(

T
i<n C

i
)

for all n � 2. Then C is r-common p-belief at ! if ! 2 T
n�1 C

n

While r-common p-beliefs is identical to common p-beliefs when n = 2 and r = 1 , it should be noted that there
are multiple ways one could have extended common p-beliefs to n players that are not all equivalent. Definition 12
gives the only way of extending common p-beliefs such that they relate to r-evident p-beliefs, as described in the
following lemma. The proof is deferred to appendix A.2.

Lemma 3 (r-common p-belief fixed point characterization). C is r-common p-belief at ! if and only if there exists an
r-evident p-belief event E such that ! 2 E and E ✓ Br,p

(C).

The following theorem and corollaries are analogous to our two-player theorems and corollaries, despite the dif-
fering setup and proofs. The proof of theorem 2 is provided in appendix A.3.

Theorem 2. There exists a state-dependent Bayesian Nash equilibrium �⇤ if and only if there exists a non-empty
(1 � r̄)-evident p⇤-belief event E and a non-empty s-evident (1 � p⇤)-belief event F such that E \ F = ; for some
s > r̄.

Corollary 3. A strategy profile �⇤ is a state-dependent Bayesian Nash equilibrium if and only if there exists a non-
empty (1 � r̄)-evident p⇤-belief event E and a non-empty s-evident (1 � p⇤)-belief event F for some s > r̄ such
that Bp⇤

i (E) \ B1�p⇤

i (F ) = ; and Bp⇤

i (E) [ B1�p⇤

i (F ) = ⌦ for all i, in which case Ai(�⇤
) = Bp⇤

i (E) and
Bi(�⇤

) = B1�p⇤

i (F ) for all i.

Corollary 4. If �⇤ is a Bayesian Nash equilibrium such that |{j | �⇤
j (!) = A}| � 1� r̄ and |{j | �⇤

j (!
0
) = B}| > r̄,

then ¬!0 is (1� r̄)-common p⇤-belief at ! and ¬! is r̄-common (1� p⇤)-belief at !0.

6 n-player applications
6.1 Tea Taxes

THE STORY. Before the American Revolution, the British government raised and lowered existing taxes on numerous
occasions without instigating a revolution, even when the taxes were high. However, as soon as the British introduced
a new tax on tea, then the colonists revolted, even though the tax was lower than before [6]. Why?

Clearly if too few people revolt, then the British empire can easily quash the rebellion and punish those who
participated. However, if sufficiently many revolt, the British cannot quash the rebellion and those who participated
get the rewards of a new government, with the possibility of punishing the “benedict arnolds” who did not participate.
This can be represented as a quorum game by interpreting A as the act of not revolting, B as the act of revolting, and
r̄ as the number of revolters needed to overwhelm the British.

THE MODEL. We model the gradual adjustments of the existing tax as follows: the true tax rate is !, which is
uniformly distributed between 0 and 1. We assume that the players do not perfectly observe the tax rate; instead each
colonist i observes a noisy signal si of the true tax rate drawn independently from U [! � ✏,! + ✏]. Possible reasons
why they might not exactly know the tax rate include that each individual does not know how much of the various
taxed goods they will consume, they do not know how perfectly the taxes will be enforced, and it is hard to keep up
with the exact taxes since they change fairly often. Our results are robust to any amount of noise ✏ > 0. This signal
structure is reminiscent of the global games literature [21, 23, 22].

We contrast the gradual adjustments of the existing tax with the discrete signal from the tea tax. We model this
scenario as follows. The government creates a new tax only if their total tax rate is above a certain threshold, i.e. if
! > M for some M . However, the colonists only observe whether there is a new tax with some noise. To make this
situation comparable to the previous, we will assume that the colonists have strictly less information. In particular,
we will assume that the discrete signal is produced based on the same signaling structure as above, but instead of
observing si, player i observes only hi, which is 0 if si is below M and 1 otherwise. If a new tax is rumored to be
introduced but is not actually introduced, there is a small probability that some individual might wrongly think the
new tax was introduced (i.e. ! < M , but si > M , hence hi = 1).
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Using our n-player framework, we will show that it is not possible for the colonists to revolt if the existing taxes
increase gradually, but it is possible for them to revolt when a new tax is introduced.2

As in the general setup, the payoff from each action is a function of the fraction of players who play B. Let r
denote the fraction of players who play B. The payoffs are as follows.

ui(A, r) =

⇢
a : r  r̄
b : r > r̄

ui(B, r) =

⇢
c : r  r̄
d : r > r̄

6.1.1 Gradual tax increase

We first consider the scenario in which each player observes a private continuous noisy signal. In this scenario, player
i observes a private signal si that is drawn from U [! � ✏,! + ✏]. We want to show conditions under which it is not
possible for players to coordinate on whether their signal is above or below a particular value. Theorem 3 gives such
a result.

Theorem 3 (Continuous signals). Let ! ⇠ U [0, 1] and si ⇠iid U [! � ✏,! + ✏] for all i and for ✏ > 0. Let �⇤ be a
strategy profile such that �⇤

i (si) = B when si � s⇤ and �⇤
i (si) = A when si < s⇤ for some s⇤ 2 [✏, 1� ✏]. Then �⇤

is not a Bayesian Nash equilibrium except in the knife edge case in which r̄ = p⇤.

Proof. We will use corollary 3 to demonstrate that no Bayesian Nash equilibrium exists of the form specified in this
theorem. Let E be the set of states in which at least (1� r̄) fraction of the players choose A and let F = Ec, i.e. the
set of states in which at least r̄ fraction of the players choose B. By corollary 3, every state in E must be p⇤-believed
by at least (1 � r̄) fraction of the players, and every state in F must be (1 � p⇤)-believed by at least r̄ fraction of the
players. We will show that this is true only if r̄ = p⇤.

First, observe that if the true state is ! and ! 2 [s⇤ � ✏, s⇤ + ✏], then the fraction of players who receive a signal
above s⇤ (and thus play B) is given by !+✏�s⇤

2✏ . For ! � s⇤ + ✏, the fraction of players who play B is 1 and for
!  s⇤ � ✏, the fraction of players who play B is 0. Therefore, there exists some threshold !⇤, above which at least
r̄ fraction of the players choose B and below which at least (1 � r̄) fraction of the players choose A. In particular,
!⇤

= 2✏r̄ � ✏+ s⇤, F = {! | ! � !⇤}, and E = {! | ! < !⇤}.
It must be the case that for any ! 2 F , at least r̄ fraction of the players will receive private signals that induce a

posterior probability of at least (1 � p⇤) that ! � !⇤. For any player i with private signal si 2 [!⇤ � ✏,!⇤
+ ✏], the

posterior probability that ! � !⇤ is s+✏�!⇤

2✏ . Thus, in order for player i to have posterior probability at least (1� p⇤)

that ! � !⇤, his private signal must satisfy the condition s+✏�!⇤

2✏ � 1� p⇤. Thus, it must be the case that

si � ✏� 2✏p⇤ + !⇤ (2)

The fraction of players who receive such a signal is increasing in !. This implies that if at least r̄ fraction of the
players receive a signal satisfying equation (2) at !⇤, then at least r̄ fraction receive such a signal for any ! � !⇤.
When ! = !⇤, the fraction of players who receive a private signal satisfying equation (2) is given by

!⇤
+ ✏� (✏� 2✏p+ !⇤

)

2✏
= p⇤ (3)

This means that at least r̄ fraction of the players will (1� p⇤)-believe F at every state in F if and only if p⇤ � r̄.
However, it must also be the case that for any ! 2 E, at least (1 � r̄) fraction of the players will receive private

signals that induce a posterior probability of at least p⇤ that ! < !⇤. By an analogous argument, the fraction of
players who receive such a signal as ! approaches !⇤ is (1p). Therefore, �⇤ is a Bayesian Nash equilibrium only if
1� p⇤ � 1� r̄ and p⇤ � r̄, which happens only when p⇤ = r̄.

6.1.2 Introduction of new tax

We now contrast the previous result with a scenario in which signals are discrete, rather than continuous. As mentioned
before, we apply a filter to each private signal si before player i observes it. Each si will be drawn independently from
a distribution that is a function of !. However, player i will not observe si. Instead, player i will observe a hi = 0 if
si < M and hi = 1 if si � M . In other words, each player observes whether his signal is less than or greater than
some commonly known threshold M , but does not observe the actual value of his signal.

2We imagine that the taxes do not effect the payoffs in the quorum game. In this particular example, this is somewhat reasonable given that
the tax rate under consideration was much smaller than the amount spent on the war effort or the gains or losses from winning or losing the war.
Nonetheless, our results are robust to state dependent payoffs, so long as the state does not have too dire an impact on the payoffs.
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Theorem 4 (Binary signals). Let ! ⇠ U [0, 1] and si ⇠iid U [! � ✏,! + ✏] for all i. Then there exists a Bayesian Nash
equilibrium �⇤ in which �⇤

i (0) = A and �⇤
i (1) = B when M 2 [✏, 1� ✏], and p⇤ 2 [

✏
1�M , 1� ✏

M ].

Proof. We will use corollary 3 to construct the appropriate Bayesian Nash equilibrium for this theorem. We will let
the state space ⌦ be the set of binary vectors of length n, where the ith element is the private signal of player i. Player
i can only distinguish vectors in which the ith element is a 0 from vectors in which the ith element is a 1.

By corollary 3, it is sufficient to demonstrate two events E and F such that at least (1� r̄) fraction of the players
p⇤-believe E at every state in E, strictly more than r̄ fraction of the players (1 � p⇤)-believe F at every state in F ,
Bp⇤

i (E) \B1�p⇤

i (F ) = ;, and Bp⇤

i (E) [B1�p⇤

i (F ) = ⌦. We let E = {0n} and F = {1n}.
First we will show that F ✓ Br̄,1�p⇤

(F ). Since hi = 1 at F for all i, all players (1 � p⇤)-believe F at F if
Pr(F | hi = 1) = Pr(! � M + ✏ | hi = 1) � 1� p⇤. Since the true state and noise are both uniform,

Pr(! � M + ✏ | hi = 1) =

1� (M + ✏)

1� (M + ✏) + ✏
� 1� p⇤ (4)

By an analogous argument, every player p⇤-believes E at E since

Pr(! < M � ✏ | hi = 0) =

M � ✏

M
� p⇤ (5)

Furthermore, Pr(E | hi = 1) = 0 and Pr(F | hi = 0) = 0. Thus, player i p⇤-believes E exactly when hi = 0 and
(1� p⇤)-believes F exactly when hi = 1. Therefore, Bp⇤

i (E) \B1�p⇤

i (F ) = ;, and Bp⇤

i (E) [B1�p⇤

i (F ) = ⌦.
Finally, corollary 3 states that player i plays A exactly when he p⇤-believes E and plays B exactly when he

(1� p⇤)-believes F . This is what �⇤ specifies, so �⇤ is a Bayesian Nash equilibrium.

With our results behind us, we can discuss some implications. First, while it is not necessary that the distribution
of ! and that of si | ! are both uniform, the result certainly does not hold for all distributions. In particular, the result
holds when either the true distribution is close to uniform or the noise is small. Thus, it is only useful for the British
government to avoid introducing new taxes if the prior beliefs on the true tax rate is close to uniform in a sufficiently
large range. Our results also do not hold if the value of the taxes have too large an effect on the players’ payoffs (i.e.
if the payoff parameters change significantly with respect to !).

6.2 The Emperor’s Clothes

THE STORY. Suppose that John Doe is on his way to being the next game theorist superstar. He finally comes out with
his first paper, and superficially it is a spectacular paper. However, the paper offers no real insight, a fact that John
attempts to hide with mathematical complexity. And this is fairly clear to nearly everyone in the field. Nevertheless,
editors start requesting the paper, departments start offering him positions, conferences start asking him to give the
keynote. Why?

Presumably, no one wants to be the lone person in the field who disrespects the superstar. For example, nobody
wants to be the only person not to invite John to a conference or a special journal issue; he might end up with a
powerful enemy, even if John’s research is not good. However, if everyone in the field disrespects John Doe, then
everyone benefits from doing likewise, since no one wants his keynote speaker to be unpopular or his new recruit
never to be invited to conferences. Thus, we can model this as a quorum game where A is the act of showing John
Doe respect (e.g. inviting him to a conference), and B is an act of disrespect.3

We make the assumption that if in fact John Doe’s research were as great as people expected, then everyone would
treat him with respect. Furthermore, we assume that if a person can detect that John’s research is bad, he can only
approximately estimate how many others can detect this as well. We will show that, under mild conditions, if John’s
research is bad, no matter what fraction of people in the field can detect that his research has no insight, he will still
be treated with respect. However, if people know exactly what fraction of the field know that John’s research is bad,
and that fraction is sufficiently high, then it is possible to treat John with disrespect. This is in stark contrast with the
case where the error in a person’s estimate is arbitrarily small.

THE MODEL. We model the information structure as follows: we assume that if John’s research is in fact bad, then
1 � ✏ of the population can detect that it is bad. Everyone who can detect that it is bad has some impression of how

3Note that “The Emperor’s New Clothes” can be seen as a metaphor for this story. John Doe is analogous to the Emperor and his colleagues are
analogous to the citizens who do not, initially, publicly disrespect the obviously flawed superstar.
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easy it is for others to detect how bad it is; namely, they each get a signal ✓i which is independently drawn from
U [✏� �, ✏+ �]. After observing his private signal, but not ✏, player i can choose to play A or B.

As in the general setup, the payoff from each action is a function of the fraction of players who play B. Let r
denote the fraction of players who play B. The payoffs are as follows.

ui(A, r) =

⇢
a : r  r̄
b : r > r̄

ui(B, r) =

⇢
c : r  r̄
d : r > r̄

Theorem 5. Let ✏ ⇠ U [0, 1] and ✓i ⇠iid U [✏� �, ✏+ �] for all i and for some � > 0. Let �⇤ be a strategy profile such
that �⇤

i (✓i) = B when ✓i  ✏̄ and �⇤
i (✓i) = A when ✓i > ✏̄ for some ✏̄ 2 [�, 1 � �]. Then for � ! 0, �⇤ is not a

Bayesian Nash equilibrium if p⇤ < r̄.

Proof. We will use corollary 3 to show necessary conditions for �⇤ to exist. Let E be the set of states in which at least
(1� r̄) fraction of the players choose A and let F = Ec, i.e. the set of states in which at least r̄ fraction of the players
choose B. By corollary 3, every state in E must be p⇤-believed by at least (1 � r̄) fraction of the players, and every
state in F must be (1� p⇤)-believed by at least r̄ fraction of the players.

First, observe that if the true state is ✏ and ✏ 2 [✏̄� �, ✏̄+ �], then the fraction of players who receive a signal less
than ✏̄ (and thus play B) is (1� ✏) ✏̄�✏+�

2� . For ✏ > ✏̄+ �, the fraction of players who play B is 0, and for ✏ < ✏̄� �, the
fraction of players who play B is (1� ✏). Therefore, there exists some threshold ✏⇤ at which exactly r̄ players play B,
below which at least r̄ players play B, and above which at least (1� r̄) play A. Since (1� ✏⇤) ✏̄�✏⇤+�

2� is the fraction
of players who play B when the true state is ✏⇤ and exactly r̄ fraction of the players play B when ✏⇤ is the true state,
✏⇤ must satisfy the condition (1� ✏⇤) ✏̄�✏⇤+�

2� = r̄. Thus, we obtain 4

✏⇤ =

1 + ✏̄+ � �p
(1 + ✏̄+ �)2 � 4(✏̄+ � � 2�r̄)

2

(6)

Thus, we have that E = {✏ | ✏ > ✏⇤}, and F = {✏ | ✏  ✏⇤}.
It must be the case that for any ✏ 2 E, at least (1 � r̄) fraction of the players must p⇤-believe E. Observe that

if a player receives no signal, then he believes with probability (1 � ✏⇤) that the true state is in E. If the true state
✏ = 1 2 E, then no players receive a signal. Therefore, if 1 � ✏⇤ < p⇤, then E cannot be (1 � r̄)-evident p⇤-belief.
For this reason, we can assume that 1� ✏⇤ � p⇤.

Now we will consider the necessary condition on F . It must be the case that for any ✏ 2 F , at least r̄ fraction of
the players must (1 � p⇤)-believe F . Since we assume 1 � ✏⇤ � p⇤, if a player does not receive a signal, he does
not (1 � p⇤)-believe F . Thus, we only consider the case in which a player receives a signal. If player i receives
signal ✓i 2 [✏⇤ � �, ✏⇤ � �], then the probability that the true state is less or equal to ✏⇤ (true state is in F ) is ✏⇤�✓i+�

2� .
Therefore, player i (1� p⇤)-believes F if and only if ✏⇤�✓i+�

2� � 1� p⇤. From this condition we obtain

✓i  2�p⇤ � � + ✏⇤ (7)

The fraction of players who receive such a signal is decreasing in the true state ✏. Therefore, if at least r̄ receive a
signal satisfying equation (7) at ✏⇤, then at least r̄ receive a signal satisfying equation (7) at all states in F . At ✏⇤, the
fraction of players who receive a signal satisfying equation (7) is given by

(1� ✏⇤)
(2� � � + ✏⇤)� ✏⇤ + �

2�
= (1� ✏⇤)p⇤ (8)

This means that at least r̄ fraction of the players will (1�p⇤)-believe F at every state in F if and only if p⇤ � r̄
1�✏⇤ .

Using equation (6), we obtain the following necessary condition:

p⇤ � 2r̄

1� ✏̄� � +
p
(1 + ✏̄+ �)2 � 4(✏̄+ � � 2�r̄)

(9)

Equation (9) is decreasing in ✏̄, so as � ! 0, �⇤ is not a Bayesian Nash equilibrium if p⇤ < r̄.

We contrast this result with the scenario in which the exact value of ✏ is observed by those who can detect that
John’s research is bad (i.e. ✓i = ✏). The following claim can be easily established.

Claim 3. The strategy profile �⇤ is a Bayesian Nash equilibrium if �⇤
i (✓i) = A if ✏  1� r̄ and �⇤

i (✓i) = B otherwise.
4There are two roots for ✏⇤, but only one falls in the interval [0, 1]. This root is given by equation (6).
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7 Discussion
We are now in a position to address some of the questions posed in the introduction, which we claimed require a
formalism. Suppose that most players behave a certain way (e.g. do not revolt) in the “usual” state of the world.
What conditions must hold in order for most players to behave abnormally (e.g. revolt)? Our framework demonstrates
that when sufficiently many players behaves abnormally it must be commonly believed among them that it is not the
“usual” state of the world. What exactly will happen in the absence of common knowledge? While mis-coordination
seems to be the natural answer, our formalism demonstrates that this is not the case. Instead, a lack of common
knowledge prevents people from taking an action that is different from the “usual” behavior. Is common knowledge
exactly what is needed? In fact, common knowledge is not necessary. Instead, it is only necessary that the players
believe it is likely that circumstances are not as usual, and believe it is likely that enough players believe it is likely
that the circumstances are not as usual, and so on – where “enough” and “likely” can be precisely stated as a function
of the payoffs in the game.

Not only can our framework abstractly answer the aforementioned questions, but it can also explain the puzzles
described throughout the paper. We explained how eye-contact relates to common knowledge and coordination and
prescribed that avoiding eye contact, when one is “caught” violating a social norm, can avoid undesirable social
consequences. We observed that in global-like games, in which players observe a noisy signal of the true state, players
cannot coordinate on continuous signals but can coordinate on discrete ones. As discussed in section 6.1, this offers
an explanation for the Boston Tea Party. Furthermore, we considered situations modeling examples such as The
Emperor’s New Clothes, academic reputations, and the Tunisian revolution.

We believe that our framework can be broadly applied. We now informally discuss a few additional example. We
begin with innuendos for which we will provide some prescriptions. Are innuendos necessary when making illicit
requests? Our framework can be used to infer that a person wishing to make an illicit request without harming a
relationship has to avoid explicit speech and use an innuendo. If he cannot think of an innuendo, an aptly placed
cough that creates some noise, but not so much that the recipient is unlikely to hear the illicit request, would not do
the trick. To understand why, observe that both players know that a cough laden request is likely to be heard, thereby
creating common p-belief, provided “likely” is sufficiently high.

When would we wish to use an innuendo and when would we wish to go out of our way to explicitly state the
obvious? If the expected behavior, in the absence of any illicit request is desirable (e.g. the relationship is healthy),
an innuendo is preferred to explicit speech. On the other hand, if the expected behavior in the absence of any unusual
circumstances is undesirable (e.g. two individuals are not committed to their relationship) then an explicit statement
of something obvious can be useful. For example, a meaningless and costless apology, or perhaps an inconsequential
bodily gesture, such as a handshake can cause two individuals to both move past a prior disagreement. The first time
the words “I love you” are uttered can be quite powerful, even if both have expressed strong affection before. Such acts
create common knowledge that the two are in love or “in a relationship” enabling them to coordinate on, for instance,
mutual monogamy.

In some circumstances, the two players might disagree on whether the expected equilibrium is preferred. For
instance, the U.S. might appreciate using Pakistan’s airspace without her permission. If both expect the US to behave
this way, it would be foolish for Pakistan to hawkishly5 shoot down an American plane flying overhead. And it
would be foolish of America not to take advantage of Pakistan’s dovish response. Pakistan, naturally, would prefer
an equilibrium in which they were expected to play hawkishly, and the US dovishly, thereby restoring Pakistan’s
sovereignty. A simple apology from the US could be sufficient to change the equilibria, even though the apology is
mere words with no legal ramifications. Nevertheless, Pakistan was willing to expend millions of dollars in aid in order
to pressure the US into apologizing, and the US was willing to sacrifice the ability to send troops through Pakistani
territory in order to avoid such an apology.

Finally we discuss a couple of examples from the biological world. There are many examples of “quorum sensing,”
particularly among bacteria [24]. For example, bacteria emit and also detect the local concentration of certain signaling
molecules. When they detect sufficiently high concentrations they produce light. Since the light is only useful when
produced in sufficient quantity, the production of light can be modeled as a quorum game. Our results from section 6.2
apply to this scenario. Another example is mast seeding. Many plants benefit from synchronizing their pollen dispersal
[16, 17, 27]. Since pollen predators satiate, one plant benefits from dispersing pollen when he expects many others to
disperse their pollen. Such plants are known to use public cues to synchronize their pollen dispersal. Our results from

5The hawk and dove game is a model of two individuals fighting over a contested resource. It can framed as a asymmetric coordination game
by permuting the columns of the payoff matrix.
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section 6.1 can be applied to this example.
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A Appendix
A.1 Proof of Claim 2
Proof. Suppose �⇤

(H) = (A,A) and �⇤
(!) = (B,B) for some ! 2 ⌦\{(R0,G0

)}. Let E = {H} and F = {!}
Then by corollary 2, we need Ec to be common (1� p⇤)-belief at !.

We will make use of the inductive characterization of a common belief event provided in Lemma 1. Let us first
find B1�p

B (Ec
) and B1�p

D (Ec
) to identify C1. On Bob’s end we have

µ(Ec|⇧B((R0,G)) = µ(Ec|⇧B((R0,G0
)) = 1

µ(Ec|⇧B(H)) = µ(Ec|⇧B((R,G)) = µ(Ec|⇧B((R,G0
))

= µ({(R,G), (R,G0
)}|{H, (R,G), (R,G0

)})
=

pbpr
pbpr + (1� pb)

< 1� p⇤

Hence, B1�p⇤

B (Ec
) = {(R0,G), (R0,G0

)}.
On Dave’s end we have

µ(Ec|⇧D(H)) = 0

µ(Ec|⇧D((R,G)) = µ(Ec|⇧D((R0,G)) = 1

µ(Ec|⇧D((R,G0
)) = µ(Ec|⇧D((R0,G0

)) = 1

Hence, B1�p⇤

D (Ec
) = {(R,G), (R0,G), (R,G0

), (R0,G0
)}.

Therefore,
C1

= B1�p⇤

B (Ec
) \B1�p⇤

D (Ec
) = {(R0,G), (R0,G0

)}.
Next we find B1�p⇤

B (C1
) and B1�p⇤

D (C1
) to identify C2. On Bob’s end we have

µ(C1|⇧B((R0,G)) = µ(C1|⇧B((R0,G0
)) = 1

µ(C1|⇧B(H)) = µ(C1|⇧B((R,G)) = µ(C1|⇧B((R,G0
)) = 0

Hence, B1�p⇤

B (C1
) = {(R0,G), (R0,G0

)}.
On Dave’s end we have

µ(C1|⇧D((R0,G0
)) = 1

µ(C1|⇧D(H)) = µ(C1|⇧D((R,G0
)) = 0

µ(C1|⇧D((R,G)) = µ(C1|⇧D((R0,G))
= µ({(R0,G)}|{(R,G), (R0,G)}) = 1� pr < 1� p⇤

Hence, B1�p⇤

D (C1
) = {(R0,G0

)} and

C2
= B1�p⇤

B (C1
) \B1�p⇤

D (C1
) = {(R0,G0

)}.
Continuing similarly gives E1�p⇤

(Ec
) = {(R0,G0

)} which contradicts the fact that Ec is common (1� p⇤)-belief at
! 2 ⌦\{(R0,G0

)}.
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A.2 Proof of Lemma 3
Proof. We will first prove that if C is r-common p-belief at !, then there exists an r-evident p-belief event E such
that ! 2 E and E ✓ Br,p

(C). In particular, we will let E =

T
n�1 C

n. By definition of r-common p-belief, ! 2 E.
Furthermore, E =

T
n�1 C

n ✓ C1
= Br,p

(C). Thus, it only remains to show that E ✓ Br,p
(E).

Suppose ! 62 Br,p
(E) = Br,p

(

T
n�1 C

n
). Then there must be strictly more than (1 � r) fraction of the players

who do not p-believe
T

n�1 C
n at !. For each player j, let mj be the lowest integer such that ! 62 Bp

j (
Tmj

n�1 C
n
).

Now let k be the largest such integer amongst all players, i.e. k = maxj (mj). For all j,
Tk

n�1 C
n ✓ Tmj

n�1 C
n.

Thus, by monotonicity of p-belief, Bp
j (
Tk

n�1 C
n
) ✓ Bp

j (
Tmj

n�1 C
n
) for all j. Therefore, ! 62 Bp

j (
Tk

n�1 C
n
) for all

j. This means that there are strictly more than (1� r) fraction of the players who do not p-believe
Tk

n�1 C
n at !, so

! 62 T
n�1 C

n
= E.

Now we will show that if there exists an r-evident p-belief event E such that ! 2 E ✓ Br,p
(C) and E ✓ Br,p

(E),
then C is r-common p-belief at all ! 2 E. It suffices to show that E ✓ T

n�1 C
n. We can do so by induction on

n. The base case follows from the hypothesis that E ✓ Br,p
(C). For the inductive step, suppose that E ✓ Ci for all

i < n. Using lemma 2 and the inductive hypothesis, we have E ✓ Br,p
(E) ✓ Br,p

(

T
i<n C

i
) = Cn.

A.3 Proof of Theorem 2
Proof. First, we will show that if there exists a state-dependent Bayesian Nash equilibrium �⇤ then there exists a
non-empty (1� r̄)-evident p⇤-belief event E and a non-empty s-evident (1� p⇤)-belief event F such that E \F = ;
for some s > r̄.

Let
E = {! : |{i | �⇤

i (!) = A}| � (1� r̄)n},
i.e. the set of states at which at least (1� r̄)n players choose A. We need to show that E is non-empty. This follows
from the fact that �⇤ is state-dependent; if a player plays A on some state, then he must believe that there is some state
in which at least (1� r̄) fraction of the players choose A. If this were not true, then he would best respond by playing
B.

Now suppose for contradiction that there exists some !̂ 2 E such that ! 62 B1�r̄,p⇤
(E). By construction of E,

at least (1 � r̄) fraction of the players play A at !̂. This implies that there exists at least one player i who plays A
on !̂ but does not p⇤-believe E. By construction of E, strictly less than (1 � r̄) play A outside of E. Therefore, i
believes with probability strictly less than p⇤ that he will get payoff a from playing A and c from playing B at !̂.6
More precisely,

ui(A|⇧i(!̂))� ui(B|⇧i(!̂)) < p⇤(a� c) + (1� p⇤)(b� d) = 0

Therefore, �⇤ is not a Bayesian Nash equilibrium. An analogous proof shows that F ✓ Bs,1�p⇤
(F ), where F =

{! | |{i | �⇤
i (!) = B}| � sn} for some s > r̄.7

Now we will show that if there exists a non-empty (1 � r̄)-evident p⇤-belief event E and a non-empty s-evident
(1�p⇤)-belief event F such that E\F = ; and s > r̄, then there exists a state-dependent Bayesian Nash equilibrium
�⇤. We will do so by constructing such a Bayesian-Nash equilibrium.

First, we will recursively define the sequence of events Et and F t as follows. Let E0
= E and F 0

= F . For all
t � 1, let Et

= B1�r̄,p⇤
(Et�1

) and F t
=

S
q<p⇤ Bs,1�q

(F t�1
). Finally, let ˆE =

S1
t=0 E

t and ˆF =

S1
t=0 F

t.
Now let �⇤ be a strategy profile such that

�⇤
i (!) = A 8! 2 Bp⇤

i (

ˆE)

�⇤
i (!) = B 8! 2 B1�p⇤

i (

ˆF )

�⇤
i (!) = B 8! 2 Bp⇤

i (

ˆE)

c \B1�p⇤

i (

ˆF )

c

We will show that �⇤ is a Bayesian Nash equilibrium using the following 4 steps:

1. Et ✓ Et+1 and F t ✓ F t+1.

2. Et \ F t
= ; for all t � 0.

6As noted in the setup, we can ignore the contribution of player i to the fraction of players who play B because n is sufficiently large.
7We use strict inequalities to construct F because strictly more than r̄ players must play B in order to achieve payoffs b or d.
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3. For all ! 2 Bp⇤

i (

ˆE), player i will be no better off by playing B.

4. For all ! 2 Bp⇤

i (

ˆE)

c \B1�p⇤

i (

ˆF )

c, player i will be no better off by playing A.

The first two steps show that �⇤ is well defined. The final two steps, combined with an analogous argument for all
! 2 ˆF show that �⇤ is a Bayesian Nash equilibrium.

Proof of step 1: We will show that Et ✓ Et+1 by induction on n. For the base case, note that E0
= E ✓

B1�r̄,p⇤
(E) = E1 because E is a (1 � r̄)-evident p⇤-belief event. Now suppose Et�1 ✓ Et. Then by lemma 2

(monotonicity of r, p-beliefs), Et
= B1�r̄,p⇤

(Et�1
) ✓ B1�r̄,p⇤

(Et
) = Et+1. An analogous argument proves that

F t ✓ F t+1.
Proof of step 2: We will show that Et \ F t

= ; for all t � 0 by induction on t. For the base case, note that
E0 \ F 0

= E \ F = ;. Now suppose Et \ F t
= ;. Then µ(Et | ⇧i(!)) + µ(F t | ⇧i(!))  1 for all ! and for

all i. If ! 2 Et+1, then by definition of Et+1, for at least (1 � r̄) fraction of the players, µ(Et | ⇧i(!)) � p⇤. This
implies that for at least (1 � r̄) fraction of the players, µ(F t | ⇧i(!))  1 � p⇤. Therefore, for at most r̄ fraction of
the players, µ(F t | ⇧i(!)) � 1� q. Since s > r̄, ! 62 F t+1

i .
Proof of step 3: Suppose ! 2 Bp⇤

i (

ˆE). Then from the definition of ˆE, µ(Et | ⇧i(!)) � p⇤ for some t � 0. First,
consider the case in which t = 0, i.e. µ(E | ⇧i(!)) � p⇤. Since E ✓ B1�r̄,p⇤

(E) and E ✓ ˆE, by monotonicity
of r, p-beliefs, E ✓ B1�r̄,p⇤

(

ˆE). Therefore, at !, player i believes with probability at least p⇤ that at least (1 � r̄)
players will play A. Thus, player i will be no better off by playing B.

Now consider the case in which t > 0. Since Et�1 ✓ ˆE, by monotonicity of r, p-beliefs, B1�r̄,p⇤
(Et�1

) ✓
B1�r̄,p⇤

(

ˆE). Therefore, µ(B1�r̄,p⇤
(

ˆE) | ⇧i(!)) � p⇤, and hence, at !, player i believes with probability at least p⇤
that at least (1� r̄) players will play A. Thus, player i will be no better off by playing B.

Proof of step 4: Suppose ! 2 Bp⇤

i (

ˆE)

c \ B1�p⇤

i (

ˆF )

c. Suppose ! 2 Bp⇤

i (B1�r̄,p⇤
(

ˆE)). Then player i believes
with probability at least p⇤ that at least (1� r̄) fraction of the players p⇤-believe ˆE. Since Et ✓ Et+1 for all t, there
must be some t⇤ such that ! 2 Bp⇤

i (B1�r̄,p⇤
(Et⇤

)). Since B1�r̄,p⇤
(Et⇤

) = Et⇤+1 ✓ ˆE, ! 2 Bp⇤

i (

ˆE). This is a
contradiction, so ! 62 Bp⇤

i (B1�r̄,p⇤
(

ˆE)). Therefore, at !, player i believes with probability strictly less than p⇤ that
at least (1 � r̄) fraction of the players will play A. This implies that player i would be no better off by playing A at
!.
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