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Abstract

We examine a dynamic second-price auction with sequential and costly

entry. We show that collusive equilibria exist in which placing a low early

bid has a signaling effect that deters entry by subsequent bidders. As a

result, fewer bidders enter on expectation, and the bidders who do enter

obtain a higher expected payoff in equilibrium, compared to the benchmark

equilibrium where all bidders submit their true values. A special case of this

equilibrium is one with incremental bidding (i.e., after having submitted low

opening bids, buyers raise their bids by a small incremental amount each

period). Computations show that the social effect of collusion is primarily

a transfer from the seller to the buyers, while efficiency losses are relatively

small.
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1 Introduction

Internet auctions provide a rich platform to observe competitive bidding in real life

and to test wether observed bidding behavior is consistent with the predictions of

auction theory.1 Three types of bidding behavior, in particular, have been docu-

mented by the empirical literature on internet auctions: Early bidding, incremental

bidding, and late bidding. Early bidding occurs when bids are placed shortly after

opening of an internet auction (which typically runs for several days), while late

bidding occurs when bids are placed in the final seconds. Incremental bidding oc-

curs when a bidder places multiple bids over the course of the auction, with most

of these bids being equal to the minimum required increment.2 Together, these

three patterns represent a large fraction of submitted bids in online auctions.3

Yet, these observations are puzzling in light of standard auction theory. Vir-

tually all internet auctions are fundamentally second-price auctions. If valuations

are private and all bidders are rational, then any profile of bidding strategies in

which bidders bid their true valuations before the end of the auction is a Bayesian

equilibrium.4 According to this prediction, one should not observe bunching of

bids early or late in the auction, nor is it clear why bidders should be submitting

multiple bids in small increments. (With common values, bidders may strategically

delay their bids in an effort to learn from other bids. Similarly, in the presence

of naive “adaptive” bidders, late bidding may become a best response by rational

1See Bajari and Hortaçsu (2004), Hasker and Sickles (2010), and Levin (2011) for surveys of
research in internet auction markets.

2Incremental bidding is also referred to as “multiple bidding,” and late bidding is also referred
to as “last-minute bidding” or “sniping.”

3See Roth and Ockenfels (2002), Bajari and Hortaçsu (2003), Ockenfels and Roth (2006).
Many other empirical studies confirm these findings. By examining several thousand eBay auc-
tions for video gaming consoles, Shah et al. (2002) show that early, late, and incremental bidding
make up 28%, 38%, and 34% of bids, respectively. Similarly, Bapna et al. (2003) report that
23% of bidders place early bids, 40% submit late bids, and 37% bid incrementally, in a sample of
internet auctions. Che and Katayama (2013) provide a more detailed account of these bidding
strategies in eBay auctions, reporting that 30–40% of bidders submit bids twice or more, and
at least 70% of incremental bids equal the minimum required increments. Further, they observe
that significant portions of bidders place bids in the last few seconds of the auction, i.e., 2–11% of
bids are submitted in the last 15 second of the auction time, representing 4–17% of bidders. See
also Shmueli et al. (2004), Anwar et al. (2004), Hossain (2008), Wintr (2008), Ely and Hossain
(2009), Engelberg and Williams (2009), and Elfenbein and McManus (2010a,b).

4Note that, unlike in static second-price auctions, there generally exist no weakly dominant
strategies in dynamic second-price auctions (see Ockenfels and Roth 2006).
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bidders. However, early and incremental bidding are still difficult to explain in

these cases.)

In this paper, we provide a common, strategic explanation for all three bidding

patterns. We examine a dynamic second-price auction with independent private

values and risk neutral bidders. Potential bidders arrive to the auction in sequence.

Upon arrival, each potential bidder observes the current auction price and then de-

cides whether to enter the auction. If the bidder enters, he incurs a non-refundable

entry cost and learns his valuation. He is then free to submit bid any number of

bids at any time, until the auction closes at a predetermined time period.

We show that two basic classes of equilibrium exist in this environment, which

differ in the bidders’ participation decisions, the number of bids submitted by each

participating bidder, and the final allocation and prices.

1. In the first, “immediate revelation” equilibrium, a bidder enters if and only

if the current price is below some cutoff price p∗. Then, if the bidder’s value

exceeds the current auction price, he submits exactly one bid, equal to his

valuation, immediately after entry. Once the auction price reaches p∗, entry

ceases. This will be the case after two bidders with valuations above p∗∗
have entered; the one with the higher valuation then wins and pays a price

equal to the next highest valuation.

2. In the second, “delayed revelation” equilibrium, a bidder enters if and only

if the current price is below a different cutoff price, p∗∗. If the entering

bidder’s value exceeds p∗∗, he submits a bid equal to p∗∗ immediately after

entry. Once the auction price reaches p∗∗, all further entry is deterred; this

will be the case after two bidders with valuations above p∗∗ have entered.

These bidders will submit an additional pair of truthful late bids just prior

to closing. In addition, they may periodically increase their bids between the

time they enter and the final period. The bidder with the higher valuation

wins and pays the next highest valuation.

The crucial result is that p∗∗ < p∗. Thus, fewer bidders will enter in the

second type equilibrium on average, and entry will cease earlier, than in the first

equilibrium. By delaying the revelation of their true valuations until the final

period, bidders in the delayed revelation equilibrium in effect collude to deter entry

by potential rival bidders. The colluding bidders then compete against one another

in a single Vickrey auction in the final period. The valuation of the winning bidder,
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and the price the winning bidder pays, are both lower (on expectation) in the

second equilibrium. However, the bidders who do enter in the second equilibrium

obtain higher expected surpluses than they would in the first equilibrium.

How does “collusion by bidding low” work? Conditional on having entered the

auction, each bidder will eventually bid his true value—either immediately after

entry, or in the final period. In this regard, our model is not different from other

second-price auctions. Things are slightly more complicated for the bidders’ entry

decisions. Whether entry is worthwhile depends on the expectation a bidder holds

about the valuations of competing bidders when observing the current auction

price. This expectation, in turn, depends on the particular bidding strategies used

by competing bidders, whence the multiplicity of equilibria. To see how expec-

tations matter in the equilibria described above, note that each potential entrant

cares about the distribution of the highest among his competitors’ valuations. In

the first (immediate revelation) equilibrium, the auction price provides a lower

bound for this variable, in that exactly one of the current participants must have a

valuation higher than the current price. In the second (delayed revelation) equilib-

rium, the auction price also provides a lower bound—but because the two highest

bidders pool their bids, there are now two current competitors with valuations

above the auction price. The price that makes a potential indifferent between

entering and not entering the auction is hence lower in the second equilibrium.5

We also show that collusive equilibria exist in which entry is deterred by bidders

adopting more sophisticated incremental bidding strategies. We argue that such

incremental bidding equilibria are appealing, in the sense that bidders may more

easily be able coordinate on such an equilibrium, compared to the simple delayed

revelation equilibrium described earlier.

The remainder of the paper proceeds as follows. Section 2 reviews the literature

related to bidding behavior in internet auctions as well as entry in auctions. In Sec-

tion 3 we introduce our auction model. In Section 4 we characterize the immediate

revelation equilibrium of our model. In Section 5 we explore the strategy of entry

deterrence via delayed revelation, and in Section 6 we construct an equilibrium

in which entry is deterred via a more sophisticated strategy of delayed revelation

coupled with incremental bidding. Section 7 compares the expected buyer payoffs

5Even though bidders care about the distribution of their opponents’ valuations, and learn
about this distribution from previously submitted bids, we remark that our results do not rely
on bidders’ risk aversion, or on an assumption of correlated or common values. We assume risk
neutrality and independent private values throughout.

3



and seller revenues across the different types of equilibria. Section 8 concludes

with a discussion of our results. Most proofs are in the Appendix.

2 Related Literature

[To be added.]

3 Sequential Second-Price Auctions with Entry

A single indivisible object is sold to T > 2 risk neutral potential bidders. All

potential bidders are ex ante symmetric. Bidder i ∈ {1, . . . , T} has private value vi

for the object. All vi are independent draws from a common atomless distribution

F over support [v, v], with 0 ≤ v < v. Initially, a bidder does not know his own

private value, but knows only the distribution F . Bidders will be able to learn

their valuations during the course of the auction.

3.1 Auction format

The auction format is a sequential second-price auction, or English auction, that

is open over T periods. The auction price at the end of period t is denoted pt ≥ 0;

the final ending price is pT . The initial price at the beginning of the auction is

p0 = 0.

The bidders arrive to the auction in sequence, with bidder i ∈ {1, . . . , T}
arriving in period i. Upon arrival, bidder i observes the sequence of past prices

p0, . . . , pi−1 and decides whether to enter the auction. We denote this decision

by ei ∈ {0, 1}, where ei = 1 means “entry” and ei = 0 means “no entry.” If i

enters, he pays an entry cost c > 0 (which is the same for all bidders), learns his

private value vi, and is then free to bid in any period t ∈ {i, . . . , T}. If he does not

enter, he leaves the auction.6 At the onset of the auction, the pool of participating

bidders is B0 = ∅. After potential entry in period t ≥ 1, the pool of participating

bidders becomes Bt = {i ≤ t : ei =1}, so that B0 ⊆ B1 ⊆ . . . ⊆ BT .

In each period t, after potential entry, there is one round of simultaneous bid-

ding during which all bidders in Bt submit simultaneous bids. We denote by

6This assumption is not crucial; even if i were to remain in the pool of potential bidders he
would not enter subsequently in our equilibria.
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bti ∈ [0,∞) bidder i’s bid in period t. We interpret a bid of zero as “no bid.” For

t ≥ 0 and i /∈ Bt, we automatically set bti = 0. For i ∈ Bt, we require that bti ≥ bt−1i

for all t ≥ 1. That is, bidders cannot revise previous bids downward during the

auction. We further require that bti > pt−1 if bti > bt−1i . That is, if a bidder revises

his bid upward, he must bid more than the previous period’s price.

Following submission of period-t bids, the auction price pt will be set to the

second-second-highest bid among bt1, . . . , b
t
T . (If there is more than one highest bid,

the second-highest bid is equal to the highest bid.) Since bti ≥ bt−1i ∀i, t, we have

p0 ≤ p1 ≤ . . . ≤ pT . Figure 1 depicts the timing of events.

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

p0 p1 p2 pT−1 pT

Period 1 Period 2

· · ·

· · ·
Period T

Bidder
1’s entry
decision
e1

If e1 =1:

Bidder 1
learns v1

Bidders
i ∈ B1

submit
bids b1i

Bidder
2’s entry
decision
e2

If e2 =1:

Bidder 2
learns v2

Bidders
i ∈ B2

submit
bids b2i

Bidder
T ’s entry
decision
eT

If eT =1:

Bidder T
learns vT

Bidders
i ∈ BT

submit
bids bTi

Figure 1: Timing

At the end of the final period T , if BT = ∅ (i.e., if no bidders entered during

the auction) the seller retains the object. If BT 6= ∅, the bidder who submitted

the highest bid wins the object and pays pT . If two or more bidder submitted the

highest bid, the object is awarded to the bidder who submitted the highest bid

first. If there are two or more bidders who submitted the highest bid first, one of

them is selected as winner by a random draw. Any bidder who does not win pays

zero.

We assume that the auction rules, the entry cost c, the distribution F of values,

and the arrival sequence of bidders are common knowledge. We also assume that

c <
∫ v

v
(1− F (v))F (v)dv. (This assumption ensures that at least two bidders can

enter and obtain a positive expected surplus by bidding their valuations.)
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3.2 Remarks

The entry cost c in our model has several possible interpretations. It could simply

be the mental cost of introspection to determine one’s willingness to pay for an

item. Alternatively, c may represent the opportunity cost of the time and effort

a potential bidder must spend to read and process the item description on an

auction platform, in order to determine his willingness to pay. The assumption of

valuations are independent and private then implies that the result of a bidder’s

introspection or research effort is idiosyncratic.

This interpretation is quite natural for objects such as collectibles, artwork,

clothes, furniture, and the like. However, even for more “standardized” items

such as electronics, some features (e.g., color) may be valued independently across

buyers, or shipping costs may depend on a buyer’s location (which is independent

of the other location of others). Thus, the variation of the vi should be interpreted

to reflect such idiosyncratic differences. On the other hand, vi may also contain

a common value component, reflected in the level of vi (i.e., the expectation of

F ). An implicit assumption in our model is that this common value component,

if present, can be observed costlessly.

4 Equilibrium: Basics

In this Section, we introduce our notation for the bidders’ decision rules and beliefs,

and describe our immediate revelation equilibrium.

4.1 Strategies and beliefs

A bidder must make two decisions: Whether to enter the auction or not, and

conditional on having entered, whether and how much to bid after entry and in

each subsequent period.

An entry strategy for bidder i is, in general, a mapping from the sequence of

past auction prices p0, p1, . . . , pi−1 to entry decisions (either 0 or 1):

ei : [0,∞)i → {0, 1}.

(Since p0 = p1 = 0, inclusion of these variables in the entry strategy is not strictly

necessary.) Note that entry never depends on the bidder’s valuation, since the

bidder learns his valuation only after having entered the auction.
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Once a bidder has entered the auction, he can submit a bid in the present

bidding round and in any round thereafter. Thus, a bidding strategy for bidder

i prescribes, for each period t = i, . . . , T , a bid bti as a function of i’s informa-

tion in period t. This information set includes i valuation vi, the sequence of

prices p0, . . . , pt−1, and i’s previous bids bii, . . . , b
t−1
i . Thus, a bidding strategy is a

mapping

bti : [v, v]× [0,∞)t × [0,∞)t−i → [0,∞)

that complies with the restrictions on bids imposed in Section 3.1 (that is, bti(·) ≥
bt−1i (·) ∀t and bti(·) > bt−1i (·)⇒ bti(·) > pt−1).

Finally, a bidder will also entertain beliefs about the distribution of oppo-

nents’ valuations, conditional on observed information. The belief that will be

relevant in our equilibria is a potential bidder’s belief about the highest valuation

among the currently participating bidders, conditional on observed previous prices

p0, . . . , pt−1. For t ≤ T , let wt ≡ maxi∈Bt vi be the highest valuation among the

bidders who have entered up to period t. In period t, the entering bidder’s belief

about wt−1 is then a conditional distribution

Gt(wt−1|p0, . . . , pt−1) : [v, v]→ [0, 1].

Our solution concept is, essentially, a version of sequential equilibrium (Kreps

and Wilson 1982). We say that a profile of entry strategies (ei)i=1,...,T , bidding

strategies (bi)i=1,...,T , and beliefs G(·), constitutes an equilibrium of the auction

game if the following conditions hold for all i = 1, . . . , T :

(i) Bidder i’s bidding strategy bi are optimal given (bj)j 6=i and (ej)j 6=i;

(ii) bidder i’s entry strategy ei are sequentially rational given beliefs Gi for all

pi−1 ∈ [0, v];

(iii) there exists a sequence of perturbed strategy profiles (̃bi(ε), ẽi(ε)) → (bi, ei)

as ε → 0 such that any weakly increasing price sequence is possible under

(̃bi(ε), ẽi(ε)), and for every p0, . . . , pt−1 ∈ [0, v] the belief Gt( · |p0, . . . , pt−t)
is the limit of conditional distributions derived from Bayes’ Rule under the

perturbed strategies, as ε→ 0.

Whenever a strategy or belief depends on fewer variables than the ones included

above, any unnecessary arguments will be dropped.

7



4.2 Immediate revelation equilibrium

In this section, we focus on very simple strategies and beliefs. We call a bidding

strategy an immediate revelation strategy if, immediately after entry, each bidder

submits a bid equal to his private valuation (if it exceeds the current price) and

never revises his bid thereafter:

bti(vi, p
t−1, bt−1i ) =


0 if

[
t = i and vi ≤ pt−1

]
,

vi if
[
t = i and vi > pt−1

]
,

bt−1i otherwise.

(1)

We will show that an equilibrium exists where all bidders follow the immediate

revelation bidding strategy.

The optimality of the bidding strategy (1) is readily established: Conditional

on all other bidders following strategy (1), and conditional on a fixed set of par-

ticipants, a single bidder who enters the auction clearly cannot do better than bid

his true valuation at some point before the end of the auction. But since potential

bidders adopt a threshold entry strategy (as will be shown below), it is optimal for

every bidder who has already entered the auction to bid his valuation immediately

after entry—doing so results in a weakly higher price path than delaying a truthful

bid, and thus reduces the likelihood of entry by competitors.

Let us, therefore, assume a profile of immediate revelation bidding strategies

in order to fully characterize the bidders’ entry decisions under this hypothesis.

Given bidding strategy (1) and observed price pt−1, the conditional distribution of

wt−1 at time t is

G(wt−1|pt−1) =
F (wt−1)− F (pt−1)

1− F (pt−1)
. (2)

Now consider bidder T , who observes price pT−1 before deciding whether to enter

in period T . The payoff relevant variables for this bidder are his own valuation,

vT , and the highest valuation among participating rival bidders, wT−1. Since vT is

itself a draw from F , bidder T ’s expected surplus after entry, if he bids according

to (1), is given by

UT (pT−1) =

∫ v

pT−1

∫ v

pT−1

(vT − wT−1) dG(wT−1|pT−1) dF (vT ). (3)

Bidder T enters if and only if UT (pT−1) > c.
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Using the belief (2), we can express T ’s expected post-entry payoff (3) as

UT (pT−1) =

∫ v

pT−1

[∫ vT

pT−1

(vT − wT−1)
1

1− F (pT−1)
dF (wT−1)

]
dF (vT )

=

∫ v

pT−1

1

1− F (pT−1)

[
−F (pT−1)(vT − pT−1)

+

∫ vT

pT−1

F (wT−1)dwT−1

]
dF (vT )

=

∫ v

pT−1

1

1− F (pT−1)

[∫ vT

pT−1

F (wT−1)− F (pT−1)dwT−1

]
dF (vT )

=

∫ v

pT−1

1

1− F (pT−1)

[∫ v

wT−1

dF (vT )

]
(F (wT−1)− F (pT−1))dwT−1

=

∫ v

pT−1

F (wT−1)− F (pT−1)

1− F (pT−1)
(1− F (wT−1))dwT−1. (4)

(The second line is obtained by integration by parts, and the fourth line is obtained

by reversing the order of integration.) The expression in (4) is strictly decreasing

in pT−1, larger than c at pT−1 = v (by our assumption on c), and zero at pT−1 =

v. Thus a unique price p∗ ∈ (v, v) exists at which bidder T becomes indifferent

between entering and not entering the auction. This price is implicitly defined by

the condition ∫ v

p∗

F (v)− F (p∗)

1− F (p∗)
(1− F (v))dv = c. (5)

Bidder T hence enters in period T if pT−1 < p∗, and stays out if pT−1 ≥ p∗.

We show in the Appendix that, given a profile of immediate revelation strate-

gies, p∗ is the entry threshold adopted by all potential bidders, regardless of their

position in the arrival queue. Thus, the equilibrium entry strategy for bidder

i = 1, . . . , T is given by a stationary treshold strategy

ei(p
i−1) =

{
1 if pi−1 < p∗,

0 if pi−1 ≥ p∗.
(6)

We thus obtain the following result:
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Proposition 1. (Immediate Revelation Equilibrium) There exists an equi-

librium of the auction game in which the following holds for all i = 1, . . . , T

(i) Upon arrival, bidder i’s belief about the distribution of the highest value

among bidders 1, . . . , i− 1 is given by (2);

(ii) bidder i’s entry strategy is given by (6); that is, bidder i enters if and only

if pi−1 < p∗ where p∗ is implicitly defined by (5);

(iii) bidder i’s bidding strategy is an immediate revelation strategy (1).

The equilibrium characterized in Proposition 1 is interim efficient, in that the

participating bidder with the highest valuation wins (and pays a price equal to

the second-highest value among the participants). However, the outcome is not

necessarily ex-post efficient. Once the auction price reaches p∗, entry ceases. Since

only participating bidders learn their valuation, it is possible for a non-participating

bidder to have a higher valuation than the winning bidder.

5 Delayed Revelation and Entry Deterrence

In this section, we explore how early entrants in the auction can deter entry by

later potential participants via a strategy of delayed revelation. By this, we mean a

strategy of bidding below one’s true value after entry and revising this bid upward

later.

5.1 Preliminaries

Delayed revelation will impact bidders’ beliefs about the distribution of their op-

ponents’ valuations, and thereby affect entry in the auction. We now establish a

preliminary result connecting bidders’ beliefs and entry decisions. This result will

then be used to construct various equilibria with entry deterrence.

If at the start of period t there are exactly two bidders participating in the

auction whose values are larger than pt−1, the conditional distribution of wt−1 is

H(wt−1|pt−1) =

[
F (wt−1)− F (pt−1)

1− F (pt−1)

]2
. (7)

Now suppose that potential entrant T , after observing pT−1, believes that two

bidders in BT−1 have valuations larger than pT−1, and that these two bidders will
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truthfully bid their valuations in period T . Bidder T ’s expected surplus from

entering the auction and then bidding his own valuation in period T is

UT (pT−1) =

∫ v

pT−1

∫ vT

pT−1

(vT − wT−1) dHT (wT−1|pT−1) dF (vT ).

This is the same expression as (3) in Section 4.2, with H replacing G. Similar to

our previous steps, we can thus express UT as follows:

UT (pT−1) =

∫ v

pT−1

[∫ vT

pT−1

(vT − wT−1)
2(F (wT−1)− F (pT−1))

(1− F (pT−1))2
dF (wT−1)

]
dF (vT )

=

∫ v

pT−1

1

(1− F (pT−1))2

[
vT (F (vT )− F (pT−1))2

−
∫ vT

pT−1

2wT−1(F (wT−1)− F (pT−1))dF (wT−1)

]
dF (vT )

=

∫ v

pT−1

1

(1− F (pT−1))2

[∫ vT

pT−1

(F (wT−1)− F (pT−1))2dwT−1

]
dF (vT )

=

∫ v

pT−1

1

1− F (pT−1)

[∫ v

wT−1

dF (vT )

]
(F (wT−1)− F (p∗∗))2dwT−1

=

∫ v

pT−1

(F (wT−1)− F (pT−1))2

1− F (pT−1)
(1− F (wT−1))dwT−1.

A unique price p∗∗ ∈ (0, v) exists such that UT (p∗∗) = c, implicitly defined by the

condition ∫ v

p∗∗

[
F (v)− F (p∗∗)

1− F (p∗∗)

]2
(1− F (v))dv = c. (8)

If pT−1 < p∗∗ bidder T enters in period T , and if pT−1 ≥ p∗∗ he does not enter.

As was the case for p∗ in the immediate revelation equilibrium, it can be shown

that p∗∗ is also the entry threshold for every bidder i < T in the arrival queue.

More specifically, we can show the following result:
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Lemma 2. Suppose that every bidder i adopts a bidding strategy (conditional on

entry) such that (i) if pi−1 < p∗∗ and vi > pi−1 then bii = min{vi, p∗∗}; and (ii)

if vi > pT−1 then bTi = vi. Then in any equilibrium the profile of entry strategies

satisfies the following for all i: If in period i bidder i believes that exactly two

bidders in Bi−1 have valuations above pi−1, then i enters the auction in period i if

and only if pi−1 < p∗∗, as defined in (8). Moreover, p∗∗ < p∗, as defined in (5).

The proof of Lemma 2 is in the Appendix; however, the intuition why p∗∗ < p∗

is straightforward: At any price p, the larger the number of participating bidders

whose valuation exceeds p, the lower is the expected surplus for an additional

bidder who enters at price p. Thus, there exist values of p for which entering the

auction is worthwhile if only one existing bidder’s valuation exceeds p, and is not

worthwhile if two existing bidders’ valuations exceed p. This effect can be exploited

by early bidders to deter entry by later bidders. We will show how in the following

section.

5.2 A simple delayed revelation equilibrium

We call a bidding strategy a delayed revelation strategy if, after entry, some bidder

submits a bid below his valuation, and then revises this bids to reflect his true

valuation in the final bidding round. In particular, we will focus on the following

bidding strategy:

bti(vi, p
t−1, bt−1i ) =



0 if
[
t = i and vi ≤ pt−1

]
or
[
t = i < T and pt−1 = p∗∗

]
,

vi if
[
t = i < T and p∗∗ > vi > pt−1

]
or
[
t = i < T and vi > pt−1 > p∗∗

]
or
[
t = T and vi > pT−1

]
,

p∗∗ if
[
t = i < T and vi ≥ p∗∗ > pt−1

]
,

bt−1i otherwise,

(9)

where p∗∗ is the price defined in (8). Strategy (9) is identical to the immediate

revelation strategy (1), with two exceptions: First, a bidder whose valuation is

above the threshold p∗∗ does not bid his valuation upon entry if the current price

is below p∗∗. Instead, this bidder submits p∗∗ after entry, but will revise his bid to

reflect his true valuation by the final period. Second, a bidder who enters at price

p∗∗ does not bid until the final period, at which time he bids his valuation.
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We will show that an equilibrium exists where all bidders follow the delayed rev-

elation bidding strategy. Note that, if all participating bidders adopt this strategy,

we have pt ≤ p∗∗ for all t < T . Furthermore, the distribution of wt−1 conditional

on price pt−1—and thus an entering bidder’s belief about wt−1—is

G(wt−1|pt−1) if pt−1 < p∗∗, H(wt−1|pt−1) if pt−1 = p∗∗, (10)

where G and H are the beliefs given in (2) and (7), respectively. This is so because

the only possibility that a price of p∗∗ is observed—under the presumed bidding

strategy—is for exactly two bidders to have submitted a bid of p∗∗. In this case,

there will be exactly two bidders with valuations above p∗∗ in Bt.

By Lemma 2, bidder t does not to enter if pt−1 = p∗∗. If all participating

bidders continue to follow the strategy (9), the price will stay at p∗∗ until the final

round of bidding, so that entry will be deterred in all subsequent periods as well.

On the other hand, if pt−1 < p∗∗ then exactly one bidder has a valuation above

pt−1 given the presumed bidding strategy, and the analysis in Section 4.2 implies

that bidder t should enter in period t. Our equilibrium entry strategy will hence

remain as it were in the immediate revelation equilibrium, except when the price

equals p∗∗, in which case entry is deterred:

ei(p
i−1) =

{
1 if pi−1 < p∗∗ or pi−1 ∈ (p∗∗, p∗),

0 if pi−1 = p∗∗ or pi−1 ≥ p∗.
(11)

As shown above, for pt−1 ≤ p∗∗ this entry strategy is optimal assuming bidding

proceeds as prescribed in (9). Unlike in the immediate revelation equilibrium, how-

ever, prices pt−1 > p∗∗ cannot be observed under the prescribed bidding strategy

for any t. Yet, the equilibrium entry strategy must be sequentially rational given

beliefs at such prices as well. It is straightforward to construct perturbed entry

and bidding strategies that generate out-of-equilibrium beliefs to support (11) at

prices above p∗∗ (this will be done in the Appendix).7 We then have the following

result:

7We employ the following construction. Any bidder who observes an out-of-equilibrium price
explains this observation as the result of truthful bidding by two or more players who either
should have have bid the entry deterring price p∗∗, or who should not have entered the auction
but did so mistakenly and then bid truthfully. In either case, the out-of-equilibrium price will be
equal to the second-highest valuation among participating bidders, and as long as this is below
the threshold p∗ a potential bidder will enter.
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Proposition 3. (Delayed Revelation Equilibrium) There exists an equilib-

rium of the auction game in which the following holds for all i = 1, . . . , T :

(i) Upon arrival, bidder i’s belief along the equilibrium price path about the dis-

tribution of the highest value among bidders 1, . . . , i− 1 is given by (10);

(ii) bidder i’s entry strategy is given by (11); that is, bidder i enters if and only

if pi−1 < p∗∗ or p∗∗ < pi−1 < p∗, where p∗ and p∗∗ are implicitly defined by

(5) and (8), respectively;

(iii) bidder i’s bidding strategy is the delayed revelation strategy (9).

Just like in the immediate revelation equilibrium of Section 4.2, the object

will get awarded to the bidder with the highest valuation among the participating

bidders, and this bidder pays the second-highest valuation among the participants.

However, the pool of participants will be different across the two equilibria. In

particular, in the delayed revelation equilibrium entry ceases once the auction

price is p∗∗ or above. As shown in Lemma 2, the entry threshold p∗∗ is less than

the threshold p∗ in the immediate revelation equilibrium. Thus, it has a positive

probability that the participants with the highest and second-highest valuations

in the immediate revelation equilibrium do not enter in the delayed revelation

equilibrium. In this case, the final allocation and price will be different across the

two equilibria.

6 Incremental Bidding

6.1 Collusion and coordination

By delaying the revelation of their true valuations until the final period, the first

and second bidder to arrive who have valuations above p∗∗ in effect collude to

deter entry by potential rival bidders. The two colluding bidders then compete

against one another in a single Vickrey auction in the final period. Thus, the

delayed revelation equilibrium described in Proposition 3 leads to larger expected

surpluses for these bidders than the immediate revelation equilibrium described in

Proposition 1.8

8More precisely, the distribution of surpluses received by the two colluding bidders in the
delayed revelation equilibrium first-order stochastically dominates the distribution of surpluses
these bidders obtain in the immediate revelation equilibrium.
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The outcome of this collusive effort depends on whether two coordination at-

tempts succeed. First, the equilibrium calls on the first two first bidders with

valuations above p∗∗ to initially submit matching bids p∗∗. Suppose that only one

of these bidders were to bid p∗∗, and the second bidder submitted some other bid

upon entry—say, his valuation, if this bidder was under the impression that the

immediate revelation equilibrium was being played instead. In this event, the price

would still not rise above p∗∗. Thus, a single bidder who wants to collude can at-

tempt to do so safely, even if the bidder who he is colluding with is not aware

of this attempt, as long as all future buyers react price p∗∗ by staying out of the

auction.

Second, potential entrants who see a price of p∗∗ must interpret this price to

mean that two bidders participate in the auction whose valuations exceed p∗∗.

However, the same price can also occur in the immediate revelation equilibrium—

namely, if the second highest bidder in some period happens to have a valuation

equal to p∗∗—and in this case entry would not cease at p∗∗. Thus, the entry-

deterring effect of bidding p∗∗ in the delayed revelation equilibrium rests on all

other bidders believing that this equilibrium, and not the immediate revelation

equilibrium, is being played. Unlike coordination among the two colluding bidders,

coordination among the many potential entrants may be harder to achieve. Is there

a way for colluding bidders to signal to potential entrants more strongly that the

price they observe was generated by a delayed revelation strategy? In other words,

does a collusive bidding strategy exist that induces in a price path which would

be even less likely to occur under truthful bidding, compared to a path where the

price simply remains stuck at p∗∗?

Consider the following bidding strategy. Upon entry, i bids 0 if vi ≤ pi−1, vi

if pi−1 < vi < p∗∗, and p∗∗ if vi ≥ p∗∗ = pi−1. Once two bidders i, j with values

vi, vj ≥ p∗∗ have entered in period t, we have pt = p∗∗. In all subsequent periods

t < t′ < T , bidders i and j submit bids bt
′
i = bt

′−1
i + κ and bt

′
j = bt

′−1
j + κ, where

κ > 0 is some small increment. If bt
′−1
i +κ > vi for some t′, i stops raising his bids,

and similarly for j. In the final period both bidders reveal their valuations, that

is, bTi = vi and bTj = vj.

If no other bidders enter after t, this strategy will induce a slowly rising price

path where

pt+1 = pt + κ.
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In the immediate revelation equilibrium, this sequence of prices is infinitely less

likely to be observed than the price sequence

pt = pt+1 = . . . = p∗∗.

The first sequence would require that in every period a bidder enters whose val-

uation is exceeds the previous entrant’s valuation exactly by the amount κ. On

the other hand, the second sequence only requires that one bidder enters with a

valuation exactly equal to p∗∗, one bidder enters with a valuation larger than p∗∗,

and all other participants have valuations below p∗∗. Thus, observing the former

sequence virtually guarantees that it was generated by two bidders submitting

incremental bids below their true valuations. But since pt ≥ p∗∗ and no bidder

bids above his valuation, an incremental price path signals that two bidders have

valuations above p∗∗. Hence, as long as the price is slowly rising by the increment

κ in every period, no new bidders will enter.

6.2 Incremental bidding equilibria

To fully formalize the ideas introduced above, let us introduce a state variable

θt ∈ {0, 1} defined as follows:

θt =


1 if t ≥ 3 and

[[
pt−1 = pt−2 + κ > p∗∗

]
or[

pt−1 = p∗∗ and pt−2 < p∗∗
]]
,

0 otherwise.

(12)

If θt = 1, the auction is in a state of incremental bidding in period t. This is the

case after the price equals p∗∗ for the first time, and in every period thereafter in

which the last observed price is a κ-increment above the second-last price. The

increment κ > 0 will be endogenous to the equilibrium; however, its value will be

arbitrary.

We now assume that a potential entrant observes the last two prices, and can

hence condition his entry and bidding strategies in period t on the state variable

θt. In particular, we consider the entry strategy

ei(p
i−1, θt) =

{
0 if θt = 1 or pt−1 ≥ p∗,

1 otherwise.
(13)
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Under this strategy, a potential bidder enters the auction unless the auction is

in the incremental bidding state, or the price has reached the entry threshold p∗.

After entry, bidder i’s plays the following bidding strategy:

bti(vi, p
t−1, bt−1i , θt) =



0 if
[
t = i and vi ≤ pt−1

]
or
[
t = i < T and pt−1 ≥ p∗

]
or
[
t = i < T and θt = 1

and vi < pt−1 + κ
]
,

vi if
[
t = i < T and pt−1 < vi < p∗∗

]
or
[
t = T and vi > pT−1

]
,

p∗∗ if
[
t = i < T and vi ≥ p∗∗ > pt−1

]
,

pt−1 + κ if
[
θt = 1 and vi ≥ pt−1 + κ

]
or
[
t = i < T and θt = 0

and vi − κ ≥ pt−1 ≥ p∗∗
]
,

bt−1i otherwise.

(14)

This k-incremental bidding strategy is identical to the delayed revelation strategy

(9), with two exceptions: First, bidders with values above the current price plus κ

submit incremental bids, if the auction is in the incremental bidding state. Second,

should a bidder enter at price p∗∗ or higher and the auction is not in the incremental

bidding state, the entering bidder will attempt to restart an incremental bidding

phase by submitting an incremental bid.9

Now consider the beliefs of potential entrants. In any period t, assuming that

all previous bids were generated by the k- incremental bidding strategy (14), the

distribution of wt−1 conditional on observed prices pt−1 which are consistent with

this strategy is given by

G(wt−1|pt−1) if θt = 0, H(wt−1|pt−1) if θt = 1. (15)

Under these beliefs, the arguments made in Section 4 imply that bidder t should

enter the auction if θt = 0 (as long as pt−1 < p∗), and the arguments made in

Section 5 imply that bidder t should not enter the auction if θt = 1. Entry strategy

9This case will occur if the auction was in the incremental bidding state but has left that
state because the price increased to the valuation of one of the bidders who were submitting
incremental bids.
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(13) is therefore sequentially rational given Bayesian beliefs under the presumed

bidding strategy.

The optimality of the bidding strategy given the entry strategy still needs to be

established, and out-of-equilibrium beliefs taken care of. Again, this will be done

in the Appendix. We then have:

Proposition 4. (κ-Incremental Bidding Equilibrium) Let κ > 0. There

exists an equilibrium of the auction game in which the following holds for all i =

1, . . . , T :

(i) Upon arrival, bidder i’s (i > 1) belief along the equilibrium price path about

the distribution of the highest value among bidders 1, . . . , i − 1 is given by

(15);

(ii) bidder i enters if and only if pi−1 < p∗ and θt = 0, where p∗ is implicitly

defined by (5) and θt is the state variable given by (12);

(iii) bidder i’s bidding strategy (conditional on entry) is the κ-incremental bid-

ding strategy; that is, bidder i adopts the strategy (14) using κ as the bid

increment.

Note that many incremental bidding equilibria exist which differ by the value

of the increment κ. The smaller is κ, the more closely will the equilibrium price

sequence under κ-incremental bidding resemble the price sequence in the delayed

revelation equilibrium characterized in Proposition 3.

Furthermore, note that in an incremental bidding equilibrium, entry may re-

sume after a phase of entry deterrence. This will be the case whenever the price

increases to the valuation of one of the colluding bidders, who then stops incre-

menting his bid and thereby halts the progression of increasing prices. If, at this

moment, the price is still below the entry threshold p∗ (i.e., the threshold in the

immediate revelation equilibrium), entry resumes until a bidder enters whose val-

uation exceeds the current price sufficiently to reinitiate the incremental bidding

phase. Therefore, the final price in an incremental bidding equilibrium will be

larger than that in the delayed revelation equilibrium with positive probability.

The smaller κ, however, the smaller is the probability that an incremental bidding

phase is interrupted, and the larger is the probability that the final allocation and

price in the incremental bidding equilibrium coincides with that in the delayed

revelation equilibrium.
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It is also possible that the final price in the incremental bidding equilibrium

exceeds that in the immediate revelation equilibrium. This happens when the bid-

der who wins in the immediate revelation equilibrium is deterred from entering

because the auction is an an incremental bidding state, and when this state is

interrupted additional bidders enter who would not enter in the immediate revela-

tion equilibrium because that price at that point already exceeds p∗. Again, this

event is very unlikely if k is small.

7 Comparison of Equilibria

In the previous three sections, we characterized three types of bidding strategies

that can arise in equilibrium of our auction game: immediate revelation, delayed

revelation, and incremental bidding. In the latter two cases, early bidders collude

to deter entry by future competitors. In this section, we will illustrate the three

equilibria with an example, and then examine the effects of bidder collusion on

prices, allocations, and welfare.

7.1 Collusion and entry deterrence: An illustration

Figure 2 shows the bids, entry decisions, and price sequences that arise in all three

equilibria, in an example with twenty potential buyers. The top panel depicts the

bidders’ valuations (shaded vertical bars) along with their bids. The middle panel

shows the evolution of prices, and the bottom panel the bidders’ entry decisions.

The immediate revelation (IR) equilibrium is shown in blue, the delayed revelation

(DR) equilibrium in red, and the incremental bidding (IB) equilibrium in green.

The IR equilibrium is very simple: Entering participants bid their valuations

if they exceed the current price, and maintain these bids to the end. The price

sequence under this bidding strategy is the blue line in the middle panel. The IR

price first exceeds the entry threshold p∗ at the end of period 13, and no further

bidders enter from period 14 onward. Bidder 7 eventually wins and pays v13.

Things are quite different in the two collusive equilibria. In both cases, bidders

4 and 6 (the first two bidders with valuations above p∗∗) submit coordinated bids

equal to p∗∗ after entering in periods 4 and 6, respectively. Thus, the price equals

p∗∗ at the end of period 6 and entry is deterred starting in period 7. In the DR

equilibrium, nothing changes from this moment onward until period 20. In the

final round, the colluding bidders reveal their valuations; bidder 6 then wins and
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Figure 2: Bids, entry decisions, and prices in three types of equilibrium
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pays v4. In the IB equilibrium, on the other hand, the colluding bidders slowly

increment their bids in lockstep, and the price gradually increases from p7 = p∗∗

to p8 = p∗∗ + κ to p9 = p∗∗ + 2κ, and so on. This process stops in period 14 as

bidder 4’s valuation is reached, which means that entry resumes in period 15. The

incremental phase is restarted by entering bidder 17, who replaces bidder 4 in the

group of colluding bidders. In the final period, these buyers submit truthful bids;

bidder 17 wins and pays v6.

The top and bottom panel of Figure 2 show that, for prices between p∗∗ and

p∗, entry is deterred whenever the gap between the highest and second-highest

submitted bid vanishes. This is consistent with our result in Lemma 2: If exactly

two bidders have valuations above the current price, and that price is at least p∗∗,

entry is not profitable on expectation. But since valuations and bids are private,

potential entrants can only know that this is the case by observing patterns in the

price path that reveal, in effect, the same information. In the DR equilibrium, the

signal to “stay out” is a price that equals p∗∗ exactly. In the IB equilibrium, the

signal is a price that is gradually increasing in κ-increments. As we discussed in

Section 6.1, the second pattern is infinitely less likely to occur in the IR equilibrium

than the first, and thus sends a clearer message to potential entrants that a collusive

equilibrium is being played by the currently participating bidders. This message

comes at the expense of potential intermittent periods of entry, as is the case in

our example in rounds t = 15, 16, 17. However, the likelihood that incremental

bidding breaks down is small when κ is small.

7.2 Effects on outcomes and welfare

Wether collusion by early bidders affects the final outcome of the auction depends

on whether later bidders, who are deterred from entering, would have affected the

identity of the winner or the price paid by the winner. In the example of Figure 2,

both outcomes are different in all three equilibria. But this need not necessarily be

the case: If bidders 7, . . . , 20 had valuations below v4, for example, the fact that

fewer bidders enter in the DR or IB equilibrium than in the IR equilibrium would

be of no consequence.

We now examine the probability that the DR equilibrium (and thus the IB

equilibrium with κ ≈ 0) results in different allocations and prices, relative to the

IR equilibrium, as well as the magnitude of the resulting changes in seller surplus

and social welfare. Seller surplus is simply the price at which the auction ends,
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pT , and since fewer bidders enter in DR equilibrium pT is lower on expectation in

the DR equilibrium. The effect of the equilibrium on social welfare is a little more

complicated to assess. Social welfare is the valuation of the winning bidder, which

is wT , minus any entry costs that were paid. Since fewer bidders enter in the DR

equilibrium, wT is lower on expectation this equilibrium. Thus, collusion by early

bidders not only reduces the seller’s surplus, but also the payoffs received by later

bidders, who are deterred from entering in the DR equilibrium. However, these

bidders do not pay an entry cost, and so the overall effect of collusion on welfare

is ambiguous.

To gauge the likelihood that outcomes are different across equilibria, and to

measure the size of this difference, let us assume that all valuations are uniformly

distributed on the unit interval. Under the uniform value assumption, conditions

(5) and (8) readily yield the following values for the entry thresholds in IR and

DR equilibrium:

p∗ = 1−
√

6c, p∗∗ = 1−
√

12c. (16)

We can then characterize the differences between the IR equilibrium and the DR

equilibrium asymptotically, as the number of bidders becomes large:

Proposition 5. Suppose that vi ∼ U [0, 1] for all i = 1, . . . , T . Comparing the im-

mediate revelation equilibrium and the delayed revelation equilibrium of the auction

game, we have the following:

lim
T→∞

Pr
[
PriceIR 6= PriceDR

]
=

1

2
,

lim
T→∞

Pr
[
WinnerIR 6= WinnerDR

]
= 1−

√
1/2,

lim
T→∞

E
[
PriceDR

]
E
[
PriceIR

] =
1− 2

3

√
12c

1− 2
3

√
6c

lim
T→∞

E
[
WelfareDR

]
E
[
WelfareIR

] =
1−
√

3c

1−
√

(8/3)c
.

To say more, we consider four different entry costs (c = .001, .005, .01, .02)

and four different values for the number of potential bidders (T = 10, 20, 50, 100).

Table 1 compares the distribution of outcomes of the immediate revelation and

22



Probability of Change in

T c p∗∗ p∗
Different

price
Different
pwinnerp

Expected
price

Expected
pwelfarep

10 .001 .8905 .9225 .0387 .0199 −0.16% −0.02%
20 .1729 .0918 −0.68% −0.10%
50 .4508 .2567 −1.93% −0.29%
100 .4992 .2920 −2.25% −0.33%

∞ .5000 .2929 −2.26% −0.33%

10 .005 .7551 .8268 .2106 .1120 −2.07% −0.31%
20 .4372 .2470 −4.46% −0.67%
50 .4998 .2927 −5.40% −0.79%
100 .5000 .2929 −5.41% −0.79%

∞ .5000 .2929 −5.41% −0.79%

10 .01 .6536 .7551 .3442 .1882 −5.14% −0.77%
20 .4895 .2835 −7.76% −1.15%
50 .5000 .2929 −8.08% −1.18%
100 .5000 .2929 −8.08% −1.18%

∞ .5000 .2929 −8.08% −1.18%

10 .02 .5101 .6536 .4565 .2584 −10.83% −1.61%
20 .4996 .2923 −12.40% −1.82%
50 .5000 .2929 −12.44% −1.82%
100 .5000 .2929 −12.44% −1.82%

∞ .5000 .2929 −12.44% −1.82%

Table 1: Effects of bidder collusion on outcomes (vi ∼ U [0, 1])

delayed revelation equilibrium for these parameter combinations.10 The probability

that the DR and IR equilibria result in different allocations increases in c and T ,

and so does the probability that the equilibria result in different final prices. The

probability that collusion affects the outcome is not negligible, and is in fact quite

substantial when the number of potential bidders is large.

The DR equilibrium reduces both seller surplus and social welfare, relative

to the IR equilibrium. However, the relative difference in these variables across

equilibria is less pronounced than what one might expect, given the probabilities

that allocations and prices differ. This is especially true for social welfare, which

10The reported numbers also approximate the difference between the IR and IB equilibria for
κ ≈ 0. Details regarding our computations are in Appendix B.
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in DR equilibrium is less than two percent below its value in IR equilibrium, in all

cases reported. The reason why the effect of collusion on welfare is low is three-

fold. First, one effect of collusion is that it transfers some surplus from the seller

to the buyers, as can be seen in the column comparing the expected price under

the two equilibria. This part of the effect is welfare neutral. Second, while the DR

equilibrium frequently allocates the object to the “wrong” winner, the difference

between the respective winners’ valuations may not be large. Third, the bidders

who do not enter in DR equilibrium but enter in IR equilibrium save their entry

costs.11 Thus, the main effect of collusion on surpluses is a transfer from the seller

to the buyers.

Figure 3 illustrates these three effects for uniform values and the same entry

costs used in Table 1 (i.e., c = .001, .005., .01, .02). Each panel in the figure plots

the expected difference in welfare W T , winner valuation wT , and price pT , between

the DR and the IR equilibrium, for a different entry cost and for time horizons

T = 2, . . . , 20. The difference in prices across the equilibria is the expected loss

to the seller from bidder collusion. The difference between in welfare across the

equilibria is the expected social loss from bidder collusion. The social loss is much

less than the seller’s loss, and the difference is the buyers’ gain in DR equilibrium,

relative to IR equilibrium. Figure 3 reveals that this gain comes from two sources:

A direct collusive effect that represents the effect of collusion on price, and an

indirect cost savings effect that represents the entry costs of those bidders who

enter in IR equilibrium but not in DR equilibrium. Both effects are approximately

equal in size and, taken together, make up for a significant share of the seller’s loss.

Thus, in this example, the societal effect of collusion is primarily a redistributive

transfer from the seller to the buyers; the efficiency loss is of a much smaller

magnitude.

8 Discussion

[To be added.]

11If these cost savings were ignored, “welfare” in the DR equilibrium would be up to 6% lower
in DR equilibrium (in the cases examined in the Table 1).
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Figure 3: Effects of bidder collusion on buyer and seller surplus (vi ∼ U [0, 1])
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Appendix A: Proofs

Proof of Proposition 1

Part (iii) of the result was established in the text. Part (i) is straightforward: For

t ≥ 3, all pt−1 ∈ [0, v] can occur in equilibrium. In period 2, the second-price

auction format implies that bidder 2 observes first-period price p1 = 0 regardless

of actions taken by the previous bidder. Thus, for all t ≥ 2, the belief G(wt−1|pt−1)
is given by (2) and computed from the equilibrium strategies using Bayes’ Rule

for all feasible pt−1. To establish part (ii) of the result, we need to prove that p∗ is

the entry threshold not only for bidder T (which was already shown in the text),

but also for all bidders t < T . We split the argument into two steps.

Step 1. We show that pt−1 ≥ p∗ implies that bidder t does not enter. This

will be done by induction. Suppose pT−2 ≥ p∗; then pT−1 ≥ p∗ and bidder T

will not enter in period T . Knowing that bidder T will not enter, bidder T − 1

competes against the highest bidder in BT−2, whose valuation is distributed by

G(wT−2|pT−2). This is the problem examined in the main text in Section 4.2, and

we know that, since pT−2 ≥ p∗, it is optimal for bidder T − 1 not to enter in

period T − 1. Now suppose that pT−3 ≥ p∗. Then pT−1 ≥ pT−2 ≥ p∗, so that

bidders T and T − 1 will not enter. Bidder T − 2 therefore competes against the

highest valuation bidder in BT−3, whose valuation is distributed by G(wT−3|pT−3).
Because pT−3 ≥ p∗, it is optimal for bidder T − 2 not to enter. Continuing in

this fashion, we conclude that bidder t ∈ {1, . . . , T} does not enter in period t if

pt−1 ≥ p∗.

Step 2. We show that pt−1 < p∗ implies that bidder t enters. Let zt+1 be the

highest bids submitted by bidders who will enter after period t, and let Z(zt+1|pt)
be the distribution of zt+1 conditional on period-t price pt. Note that, if bidder t

enters in period t and bids vt, then pt = min{vt, wt−1}, where wt−1 is the highest

valuation of bidders j ∈ Bt−1. Under the bidding strategies (1), the continuation

payoff (not including the entry cost c) from entering at price pt−1 < p∗ to bidder t

is thus given by

Ut(p
t−1) =

∫ v

pt−1

∫ vt

pt−1

∫ vt

0

(vt −max{wt−1, zt+1})

dZ(zt+1|min{vt, wt−1}) dG(wt−1|pt−1) dF (vt).
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Define

A(vt) =

∫ p∗

pt−1

∫ vt

0

(vt −max{wt−1, zt+1})

dZ(zt+1|min{vt, wt−1}) dG(wt−1|pt−1),

B(vt) =

∫ vt

p∗

∫ vt

0

(vt −max{wt−1, zt+1})

dZ(zt+1|min{vt, wt−1}) dG(wt−1|pt−1),

and express bidder t’s payoff from entering as follows:

Ut(p
t−1) =

∫ v

pt−1

[A(vt) +B(vt)] dF (vt) >

∫ v

p∗
[A(vt) +B(vt)] dF (vt). (17)

Now consider two cases.

1. First, suppose vt ≥ p∗ and wt−1 ≥ p∗. Then the price at the end of period

t will be pt = min{vt, wt−1} ≥ p∗, and no entry will occur after period t

as shown in Step 1. Thus, conditional on vt ≥ p∗ and wt−1 ≥ p∗ we have

zt+1 = 0, which allows us to write

B(vt) =

∫ vt

p∗
(vt − wt−1)dG(wt−1|pt−1)

= (1−G(p∗|pt−1))
∫ vt

p∗
(vt − wt−1)dG(wt−1|p∗). (18)

2. Second, suppose vt ≥ p∗ and wt−1 ≤ p∗. If during some period s > t a

bidder enters with vs ≥ p∗, the price at the end of period s will be ps =

min{vt, vs} ≥ p∗, and no further entry will occur after period s, as shown

in Step 1. In this event, zt+1 = vs > p∗ with distribution G(zt+1|p∗). If no

bidder with vs ≥ p∗ enters during any period s > t, we have zt+1 < p∗. Since

bidder t’s payoff will be lower in the first event than in the second, we can

write

A(vt) >

∫ p∗

pt−1

∫ vt

p∗
(vt − zt+1)dG(zt+1|p∗)dG(wt−1|pt−1)

= G(p∗|pt−1)
∫ vt

p∗
(vt − zt+1)dG(zt+1|p∗). (19)

27



Combining (17)–(19), we have

Ut(p
t−1) >

∫ v

p∗

∫ vt

p∗
(vt − v)dG(v|p∗) = c

as shown in the main text in Section 4.2. Thus, when pt−1 < p∗, the expected

surplus for bidder t from entering the auction in period t exceeds the entry cost c,

so bidder t enters.

Proof of Lemma 2

Let p∗∗ be defined by (8) and let p∗ be defined by (5). To show that p∗∗ < p∗,

define

Lk(p) ≡
∫ v

p

[
F (v)− F (p)

1− F (p)

]k
(1− F (v))dv

and note that L1(p
∗) = L2(p

∗∗) = c and L1(p) < L2(p) ∀p < v. Therefore,

L2(p
∗) < c, and since L2 is strictly decreasing we conclude that p∗ > p∗∗. We now

prove that, under the assumptions of Lemma 2, p∗∗ is the entry threshold not only

for bidder T (which was already shown in Section 5.1), but also for all bidders

t < T . The argument is parallel to the one we made to prove Proposition 1 (ii),

and proceeds in the same two steps.

Step 1. We show that pt−1 ≥ p∗∗ implies that bidder t does not enter. Suppose

pT−2 ≥ p∗∗; then pT−1 ≥ p∗∗ and bidder T will not enter in period T . Knowing

that bidder T will not enter, bidder T − 1 competes against the highest valuation

among bidders in BT−2, wT−2. Furthermore, if i believes that exactly two bidders

in BT−2 have valuations above pT−2, wT−2 follows distribution H(wT−2|pT−2). The

same argument we made for bidder T in Section 5.1 then implies that it is optimal

for bidder T − 1 not to enter in period T − 1. Continuing inductively, we conclude

that bidder t ∈ {1, . . . , T} does not enter in period t if pt−1 ≥ p∗∗.

Step 2. We show that pt−1 < p∗∗ implies that bidder t enters. Define zt+1

and Z(zt+1|pt) as in the proof of Proposition 1. Since, by assumption, all bidders

j ∈ BT with vj > pT−1 will bid their valuations in period T , the continuation

payoff (not including the entry cost c) from entering at price pt−1 < p∗ to bidder t

is thus given by

Ut(p
t−1) =

∫ v

pt−1

∫ vt

pt−1

∫ vt

0

(vt −max{wt−1, zt+1})
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dZ(zt+1|min{vt, wt−1}) dH(wt−1|pt−1) dF (vt).

By setting

A(vt) =

∫ p∗∗

pt−1

∫ vt

0

(vt −max{wt−1, zt+1})

dZ(zt+1|min{vt, wt−1}) dH(wt−1|pt−1),

B(vt) =

∫ vt

p∗∗

∫ vt

0

(vt −max{wt−1, zt+1})

dZ(zt+1|min{vt, wt−1}) dH(wt−1|pt−1),

we can express bidder t’s payoff from entering as follows:

Ut(p
t−1) =

∫ v

pt−1

[A(vt) +B(vt)] dF (vt) >

∫ v

p∗∗
[A(vt) +B(vt)] dF (vt).

Mirroring our proof of Proposition 1 (ii), we consider two cases.

1. First, suppose vt ≥ p∗∗ and wt−1 ≥ p∗∗. Under the assumed bidding strate-

gies, the price at the end of period t will be pt = p∗∗ and no entry will occur

after period t (as shown in Step 1), so we can write

B(vt) =

∫ vt

p∗∗
(vt − wt−1)dG(wt−1|pt−1)

= (1−G(p∗∗|pt−1))
∫ vt

p∗∗
(vt − wt−1)dG(wt−1|p∗∗).

2. Second, suppose vt ≥ p∗∗ and wt−1 ≤ p∗∗. If during some period s > t a

bidder enters with vs ≥ p∗∗, under the assumed bidding strategies the price

at the end of period s will be ps = p∗∗ and no further entry will occur after

period s (as shown in Step 1). In this event, zt+1 = vs > p∗∗ with distribution

G(zt+1|p∗∗). If no bidder with vs ≥ p∗∗ enters during any period s > t, we

have zt+1 < p∗∗. Since bidder t’s payoff will be lower in the first event than

in the second, we can write

A(vt) >

∫ p∗∗

pt−1

∫ vt

p∗∗
(vt − zt+1)dG(zt+1|p∗∗)dG(wt−1|pt−1)

= G(p∗∗|pt−1)
∫ vt

p∗∗
(vt − zt+1)dG(zt+1|p∗∗).
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Combining the last three equations, we have

Ut(p
t−1) >

∫ v

p∗∗

∫ vt

p∗∗
(vt − v)dH(v|p∗) = c

as shown in Section 5.1. Thus, when pt−1 < p∗∗, the expected surplus for bidder t

from entering the auction in period t exceeds the entry cost c, so bidder t enters.

Proof of Proposition 3

Most of the result was shown already in the text in Section 5.2. What is left is to

establish the optimality of the equilibrium bidding strategy given the equilibrium

entry strategy (Step 1), and the optimality of the entry strategy following off-

equilibrium prices; that is, prices that exceed p∗∗ (Step 2).

Step 1. Clearly, in the final period a truthful bid bTi = vi is optimal for every

bidder i. Let us therefore consider bidding in periods t < T . We need to consider

three cases.

1. pt−1 = p∗∗. Suppose any participating bidder i deviates from the equilibrium

strategy in any period t when pt−1 = p∗∗. If this deviation does not change the

price in periods s ≥ t, the deviation has no effect on the final allocation and

price. If the deviation changes the price in some period s ≥ t from ps = p∗∗

to ps 6= p∗∗, then additional bidders will enter with positive probability,

reducing the payoff to bidder i.

2. pt−1 > p∗∗. Once the price has surpassed p∗∗ (an off-equilibrium contingency),

the entry and bidding strategies are identical to those in the immediate rev-

elation equilibrium; the bidding strategy is therefore optimal.

3. pt−1 < p∗∗. The bidding strategy calls for bidders with valuations vi ≥ p∗∗

to bid p∗∗, and for bidders with valuations vi ≤ p∗∗ to bid vi.

3a. vi ≥ p∗∗. This case is identical to the first case: If i deviates and bids

bti 6= p∗∗, and this deviation does not change the price in periods s ≥ t, it

has no effect on the final allocation and price. If the deviation changes

the price in some period s ≥ t from ps = p∗∗ to ps 6= p∗∗, then additional

bidders will enter with positive probability, reducing the payoff to i.
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3b. vi < p∗∗. If i deviates by bidding bti < vi in some period t, the deviation

will not affect the final allocation and prices. If i deviates by bidding

bti > vi in period t < T , at best this deviation reduces the number of

bidders who enter in periods s > t, namely if i submits a bid bti ≥ p∗∗ and

this bid results in an entry-deterring price p∗∗ earlier than what would

otherwise have been the case. However, this requires that some other

bidder j 6= i submits bid bsj ≥ p∗∗ in some period s. Under our bidding

strategy this only happens if vj ≥ p∗∗. If such a bidder participates, he

will outbid i in the final period, leaving the outcome for i unchanged.

If such a bidder does not participate, then i will have the highest final

bid and will win. In this case, i either pays the same price as before (if

i had won without the deviation), or pays price pT > vi (if i had lost

without the deviation).

We therefore conclude that no entering bidder has an incentive to deviate from the

equilibrium bidding strategies (9).

Step 2. Next, we consider the bidders’ entry decisions. For sequential equilib-

rium we need to find a sequence of strategy profiles, converging to the equilibrium

strategies, such that prices above p∗∗ are possible along the sequence and the equi-

librium entry strategies are sequentially rational under the limit of Bayesian beliefs

generated by the sequence of perturbed strategies.

To this end, let ε ∈ (0, 1) and consider the following perturbed strategy for

every player i:

ẽi: In period i, enter with probability (1−ε)ei(pi−1)+ε(1−ei(pi−1)), where ei(·)
is the equilibrium entry strategy.

b̃i: Conditional on having entered, bid as follows: With probability 1−ε play the

equilibrium bidding strategy (9); with probability ε bid bii = bi+1
i = . . . = vi.

Note that any weakly increasing sequence of prices can occur under this strategy

profile, as long as ε > 0. Furthermore, as ε → 0 the profile converges to the

equilibrium strategies.

Now suppose some potential bidder t observes out-of-equilibrium price pt−1 >

p∗∗. This can only happen if at least two participating bidders did not play

their equilibrium strategies, and submitted bids larger than p∗∗. Given the per-

turbed profile, these must be truthful bids. Thus, any observed pt−1 > p∗∗ will be
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the second-highest valuation of bidders in Bt−1, which means that the resulting

Bayesian posterior distribution of wt−1 is G(wt−1|pt−1) (where G is defined in (2)).

This distribution does not depend on ε; the limit belief as ε→ 0 is therefore also

G(wt−1|pt−1). As shown in Section 4.2, it is then optimal for bidder t to enter

the auction as long as pt−1 < p∗, as prescribed by the equilibrium entry strategy

(11).

Proof of Proposition 4

We need to establish the optimality of the equilibrium bidding strategy given

the equilibrium entry strategy (Step 1), and the optimality of the entry strategy

following off-equilibrium prices (Step 2).

Step 1. This step is almost identical to that in the proof of Proposition 3.

By not following strategy (14) when all rivals follow (14), the best bidder i can

hope for is to retard the entry process in periods when there would otherwise be

entry. In parallel to our arguments above, this will entail i bidding above vi in

some period, and at least one other bidder j submitting the same bid in the same

period. Since j is still following the equilibrium strategy, his valuation vj will

exceed the collusive bid and therefore exceed vi. This means that j will outbid i in

period T , guaranteeing a loss for i. On the other hand, if no such bidder j exists,

then i will either lose, or win but pay a price above vi. In all cases, i is no better

off than he would be had he followed strategy (14).

Step 2. For all 2 ≤ t ≤ T , prices pt−1 above p∗∗ that are not κ-increments

over pt−2 cannot arise under the incremental bidding strategy. The equilibrium

prescribes entry in all periods t where this is the case, unless pt−1 ≥ p∗. To

show that, in this case, entry is sequentially rational under limit Bayesian beliefs,

consider the following perturbed strategy for every player i:

ẽi: In period i, enter with probability (1−ε)ei(pi−1)+ε(1−ei(pi−1)), where ei(·)
is the equilibrium entry strategy.

b̃i: Conditional on having entered, bid as follows: If vi ≤ p∗∗, play the equi-

librium strategy (14). If vi > p∗∗, then with probability 1 − ε play the

equilibrium bidding strategy (14). With probability ε, play a strategy that

is identical to (14) up to a randomly and uniformly selected period t∗ ≥ i. If

pt−1 < vi, then in every period t ≥ t∗ bid bti = vi.
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Note that any weakly increasing sequence of prices p1 ≤ p2 ≤ . . . can occur under

this strategy profile, as long as ε > 0. Furthermore, as ε→ 0 the profile converges

to the equilibrium strategies.

Now suppose some potential bidder t observes a price pt−1 > p∗∗ that is not

a κ-increment over pt−1. Given the perturbed strategies, this means that at least

one bidder submitted a truthful bid when he should not have done so in the

equilibrium. Furthermore, pt−1 will then be equal the second highest valuation

of bidders in Bt−1, and the resulting Bayesian posterior distribution of wt−1 is

G(wt−1|pt−1) (where G is defined in (2)). This distribution does not depend on ε;

the limit belief as ε→ 0 is therefore also G(wt−1|pt−1). As shown in Section 4.2, it

is then optimal for bidder t to enter the auction, as long as pt−1 < p∗, as prescribed

by the equilibrium entry strategy (13).

Proof of Proposition 5

Step 1. Let us first examine the probabilities that outcomes are different across

equilibria, as T →∞. Let s and t > s be the first two bidders for which vs, vt > p∗∗;

the probability that these bidders exist approaches one. In the DR equilibrium,

entry stops after period t. As far as the IR equilibrium is concerned, there are

three cases:

1. vs ≥ p∗ and vt ≥ p∗. In this case, entry stops after period t.

2. Either vs ≥ p∗ or vt ≥ p∗, but not both. In this case, entry continues until

one more bidder participates whose valuation exceeds p∗ (the probability that

this happens approaches one).

3. vs < p∗ and vt < p∗. In this case, entry continues until two bidders participate

whose valuations exceed p∗ (the probability that this happens approaches

one).

In case 1, the two equilibria result in the same final price. In case 2 and 3, the IR

equilibrium results in a higher final price. With uniform values, the probability of

case 1 is (
1− p∗

1− p∗∗

)2

=

( √
6c√
12c

)2

=
1

2
.

With the remaining probability 1/2, the final price is different in the two equilibria.
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Furthermore, in the first case the two equilibria also result in the same final

allocation. In the second case, the IR equilibrium results in the same final allo-

cation if and only if vu ∈ [p∗,max{vs, vt}], where u = min{t′ > t : vt′ ≥ p∗} is

the next bidder to arrive after t with valuation above p∗. Conditional on being in

case 2, and assuming uniform values, this has probability 1/2. Case 2 itself has

probability

2

(
1− p∗

1− p∗∗

)(
p∗ − p∗∗

1− p∗∗

)
= 2

(√
12c−

√
6c√

12c

)( √
6c√
12c

)
=
√

2− 1.

In the third case, the two equilibria must result in different allocations. Thus,

the overall probability of the IR and DR equilibrium resulting in the same final

allocation is
1

2
+
(√

2− 1
)
· 1

2
=
√

1/2.

With the remaining probability 1 −
√

1/2, the final allocation is different in the

two equilibria.

Step 2. Next, we examine the relative changes in final price and welfare across

equilibria, as T → ∞. In the IR equilibrium, entry stops once two bidders have

entered with valuations above p∗; the probability that this happens approaches one.

Given that all bidders reveal their valuations truthfully, the winner’s valuation is

the higher of two values conditionally distributed on [p∗, v], and the price is the

lower of two values conditionally distributed on [p∗, v]. Under the uniform value

assumption, this boils down to

lim
T→∞

E[wT
IR] = 2

3
v + 1

3
p∗ = 2

3
+ 1

3

(
1−
√

6c
)

= 1− 1
3

√
6c,

lim
T→∞

E[pTIR] = 1
3
v + 2

3
p∗ = 1

3
+ 2

3

(
1−
√

6c
)

= 1− 2
3

√
6c.

In the DR equilibrium, entry stops once two bidders have entered with valua-

tions above p∗∗. As T → ∞, the probability that this happens approaches one.

Given that all bidders bid truthfully in the final period, the winner’s valuation is

the higher of two values conditionally distributed on [p∗∗, v], and the price is the

lower of two values conditionally distributed on [p∗∗, v]. Under the uniform value

assumption, this boils down to

lim
T→∞

E[wT
DR] = 2

3
v + 1

3
p∗ = 2

3
+ 1

3

(
1−
√

12c
)

= 1− 1
3

√
12c,
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lim
T→∞

E[pTDR] = 1
3
v + 2

3
p∗ = 1

3
+ 2

3

(
1−
√

12c
)

= 1− 2
3

√
12c.

The expression in the result for the relative difference in seller surplus across

equilibria follows immediately from the above. To examine welfare, we also need

to compute the expected number of entries in both equilibria. Consider the IR

equilibrium first. The expected arrival time of the first bidder with valuation

above p∗ is

(1− p∗) · 1 + p∗
(

(1− p∗) · 2 + p∗
(

(1− p∗) · 3 + p∗
(
. . .
)))

= (1− p∗)

[
1

1− p∗
+ p∗

1

1− p∗
+ . . .

]
=

1

1− p∗
.

The expected duration from the first arrival of a bidder with valuation above p∗

to the next such arrival is the same. Thus, the expected number of bidders in the

IR equilibrium is 2/(1− p∗) = 1/
√

6c, and expected welfare is

1− 1

3

√
6c− 2√

6c
· c = 1−

√
(8/3)c as T →∞.

For the DR equilibrium, the expected number of bidders is similarly given by

2/(1− p∗∗) = 2/
√

12c, and expected welfare is

1− 1

3

√
12c− 2√

12c
· c = 1−

√
3c as T →∞.

The expression in the result for the relative difference in expected welfare across

equilibria now follows.

Appendix B: Computations

In Section 7 we quantitatively compare the immediate revelation (IR) equilibrium

and the delayed revelation (DR) equilibrium for the case of uniformly distributed

values on the unit interval. In the following, we describe how the statistics reported

in Table 1 are computed.
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B.1 Probabilities of different outcomes

The outcome in the DR equilibrium will be different from the outcome in the IR

equilibrium if two conditions hold: First, two bidders must arrive before the final

period T whose valuations are above p∗∗ (otherwise, entry will not be deterred in

either equilibrium). Second, at least on of these two bidders must have valuation

below p∗ (otherwise, entry will be deterred in the same period in both equilibria).

This gives us two cases:

1. The second colluding bidder arrives in period t and both colluding bidders

have valuations between p∗∗ and p∗. The probability of this event is

Ct = (t− 1)F (p∗∗)t−2((F (p∗)− F (p∗∗))2.

Conditional on this event, the highest and second-highest valuations among

the two colluding bidders are distributed as follows:

M1(v) =

(
F (v)− F (p∗∗)

F (p∗)− F (p∗∗)

)2

, M2(v) = 1−
(
F (p∗)− F (v)

F (p∗)− F (p∗∗)

)2

.

2. The second colluding bidder arrives in period t and exactly one colluding

bidder has valuation between p∗∗ and p∗ (and the other has valuation between

p∗ and v). The probability of this event is

C̃t = 2(t− 1)F (p∗∗)t−2(F (p∗)− F (p∗∗))(1− F (p∗)).

Conditional on this event, the highest and second-highest valuations among

the two colluding bidders are distributed as follows:

M̃1(v) =
F (v)− F (p∗)

1− F (p∗)
, M̃2(v) =

F (v)− F (p∗∗)

F (p∗)− F (p∗∗)
.

The following probabilities can now be evaluated numerically.

B.1.1 Allocations

In case 1, a different bidder will win in IR equilibrium if at least one bidder is

deterred in DR equilibrium whose valuation exceeds the higher of the two colluding

bidders’ valuations. If v denotes the higher of the colluding bidders’ valuations,
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this has conditional probability 1−F (v)T−t. In case 2, a different bidder will win in

IR equilibrium if the valuation of the first bidder in t+1, t+2, . . . , T with valuation

above p∗ exceeds the higher of the colluding bidders’ valuations. If v denotes the

higher of the colluding bidders’ valuations, this has conditional probability

(1− F (v))
[
1 + F (p∗) + F (p∗)2 + . . . + F (p∗)T−t−1

]
=

1− F (p∗)T−t

1− F (p∗)
(1− F (v)).

Thus, the probability that the winner in the DR equilibrium is not the same as

the winner in the IR equilibrium is

T−1∑
t=2

(
Ct

∫ p∗

p∗∗
1− F (v)T−tdM1(v) + C̃t

∫ v

p∗
(1− F (v))

1− F (p∗)T−t

1− F (p∗)
dM̃1(v)

)
.

For vi ∼ U [0, 1], this probability can be expressed as

2
T−1∑
t=2

(t− 1)(p∗∗)t−2

([
v2

2
− p∗∗v − vT−t+2

T − t+ 2
+ p∗∗

vT−t+1

T − t+ 1

]v=p∗

v=p∗∗

+ (p∗ − p∗∗)1− (p∗)T−t

1− p∗

[
v − v2

2

]v=1

v=p∗

)
,

where p∗ = 1−
√

6c and p∗∗ = 1−
√

12c.

B.1.2 Prices

The final price will be different in IR equilibrium if at least one bidder is deterred

in DR equilibrium whose valuation exceeds the lower of the two colluding bidders’

valuations. If v denotes the higher of the colluding bidders’ valuations, this has

conditional probability 1 − F (v)T−t. Thus, the probability that the final price in

the DR equilibrium is not the same as the final price in the IR equilibrium is

T−1∑
t=2

(
Ct

∫ p∗

p∗∗
1− F (v)T−tdM2(v) + C̃t

∫ p∗

p∗∗
1− F (v)T−tdM̃2(v)

)
.

For vi ∼ U [0, 1], this probability can be expressed as

2
T−1∑
t=2

(t− 1)(p∗∗)t−2
[
v − v2

2
− vT−t+1

T − t+ 1
+

vT−t+2

T − t+ 2

]v=p∗

v=p∗∗
,
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where p∗ = 1−
√

6c and p∗∗ = 1−
√

12c.

B.2 Expected seller surplus and welfare

Seller surplus and welfare will depend on the following variables: The highest

valuation among the bidders in BT (wT ), the second-highest valuation among the

bidders in BT (pT , given truthful bidding in the last period), and the entry costs

paid by participating bidders, c|BT |. Suppose the IR equilibrium is played, and

consider the following three cases:

1. No potential bidder has valuation above p∗, and T potential bidders have

valuations below p∗. In this case, all T bidders participate, so that |BT | = T .

This event has probability

C0 = F (p∗)T ,

and wT and pT are conditionally distributed by

M0
1 (v) =

(
F (v)

F (p∗)

)T
, M0

2 (v) =

(
F (v)

F (p∗)

)T
+ T

F (p∗)− F (v)

F (p∗)

(
F (v)

F (p∗)

)T−1
.

2. One potential bidder has valuation above p∗, and T − 1 potential bidders

have valuations below p∗. In this case, all T bidders participate, so that

|BT | = T . This event has probability

C1 = T (1− F (p∗))F (p∗)T−1,

and wT and pT are conditionally distributed by

M1
1 (v) =

F (v)− F (p∗)

1− F (p∗)
, M1

2 (v) =

(
F (v)

F (p∗)

)T−1

.

3. At least two potential bidders have valuations above p∗, the second of these

bidders arrives in period t (2 ≤ t ≤ T ), and all other bidders who arrive

before period t have valuations below p∗. In this case, the first t bidders

participate, so that |BT | = t. This event has probability

C2,t = (t− 1)(1− F (p∗))2F (p∗)t−2,
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and wT and pT are conditionally distributed by

M2
1 (v) =

(
F (v)− F (p∗)

1− F (p∗)

)2

, M2
2 (v) = 1−

(
1− F (v)

1− F (p∗)

)2

.

In the DR equilibrium, we have three analogous cases, with p∗∗ replacing p∗, and

we use C̃ and M̃ to denote the corresponding probabilities and distributions. The

following expectations can now be evaluated numerically:

B.2.1 Seller surplus

Seller surplus is the final price, which is the second-highest valuation among bidders

in BT . In IR equilibrium, this is

E[pTIR] = C0

∫ p∗

v

vdM0
2 (v) + C1

∫ p∗

v

vdM1
2 (v) +

T∑
t=2

C2,t

∫ v

p∗
vdM2

2 (v).

For vi ∼ U [0, 1], this can be expressed as

T − 1

T + 1
(p∗)T+1 + (T − 1)(1− p∗)(p∗)T

+
1

3
(1− 2p∗)

(
1− T (p∗)T−1 + (T − 1)(p∗)T

)
,

where p∗ = 1−
√

6c. Similarly, in DR equilibrium, we have

E[pTDR] = C̃0

∫ p∗∗

v

vdM̃0
2 (v) + C̃1

∫ p∗∗

v

vdM̃1
2 (v) +

T∑
t=2

C̃2,t

∫ v

p∗∗
vdM̃2

2 (v),

and for vi ∼ U [0, 1], this can be expressed as

T − 1

T + 1
(p∗∗)T+1 + (T − 1)(1− p∗∗)(p∗∗)T

+
1

3
(1− 2p∗∗)

(
1− T (p∗∗)T−1 + (T − 1)(p∗∗)T

)
,

where p∗∗ = 1−
√

12c.
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B.2.2 Welfare

Welfare is the highest valuation among the bidders in BT , wT , minus the entry

costs paid by these bidders, c|BT |. In IR equilibrium, this is

E[wT
IR] = C0

(∫ p∗

v

vdM0
1 (v)− Tc

)
+ C1

(∫ v

p∗
vdM1

1 (v)− Tc
)

+
T∑
t=2

C2,t

(∫ v

p∗
vdM2

1 (v)− tc
)
.

For vi ∼ U [0, 1], this can be expressed as

T

T + 1
(p∗)T+1 +

T

2

(
(p∗)T−1−(p∗)T+1

)
+

1

3
(2+p∗)

(
1−T (p∗)T−1+(T−1)(p∗)T

)
− c

[
2

1− (p∗)T−1

1− p∗
− (T − 2)(p∗)T−1

]
,

where p∗ = 1−
√

6c. Similarly, in DR equilibrium, we have

E[wT
DR] = C̃0

(∫ p∗∗

v

vdM̃0
1 (v)− Tc

)
+ C̃1

(∫ v

p∗∗
vdM̃1

1 (v)− Tc
)

+
T∑
t=2

C̃2,t

(∫ v

p∗∗
vdM̃2

1 (v)− tc
)
.

For vi ∼ U [0, 1], this can be expressed as

T

T + 1
(p∗∗)T+1 +

T

2

(
(p∗∗)T−1 − (p∗∗)T+1

)
+

1

3
(2 + p∗∗)

(
1− T (p∗∗)T−1

+ (T − 1)(p∗∗)T
)
− c

[
2

1− (p∗∗)T−1

1− p∗∗
− (T − 2)(p∗∗)T−1

]
,

where p∗ = 1−
√

12c.
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