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Abstract

We study bad reputation games from the perspective of self-referentiality. In self-

referential games players have the possibility of understanding opponents’ intentions, and

this can mitigate the problem of bad reputation. We characterize the probabilities of

the Stackelberg type required to overcome a bad reputation problem when there is a

possibility that intentions can be observed directly. The complementarity between direct

and indirect observation of opponents’ intentions is shown to be qualitatively different

from games where all agents are long-lived.
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1 Introduction

Most models of reputation establish that uncertainty about the long-run player’s type implies

a beneficial reputation effect as long as long-run player can exploit some commitment power.

By way of contrast, Ely and Välimäki (2003) propose a novel example where reputation may

be bad. With a bad commitment type, they find that in equilibrium the entire surplus is lost.

Along the same line, an example which captures all features of their model is mitral valve

surgeries. There are two types of surgeries, valve repair and valve replacement. Both surgical

procedures are equally successful when appropriately conducted. The right type of surgery is

known only by the surgeon. Think of the case where there are two broad categories: good and

bad physicians. The bad physician always does valve replacement but the good one performs

the necessary surgery. Since this example is analogous to theirs, the model predicts none of

physicians would perform a surgery. In reality, however, we still observe the coexistence of bad

and good physicians involve in long-run relationships with patients.1

Humans are rarely perfect liars. They reveal – even unintentionally – their states of mind

either through micro expressions (facial gestures, body posture, etc.) or tools such as pen-

drumming. In an evolutionary setting, Levine and Pesendorfer (2007) examine self-referential

strategies which have the ability to recognize each other in the context of two player symmetric

games. Intuitively, players have the chance of discerning whether opponents conform to a rule

of behavior. To generalize this idea, Block and Levine (2012) define self-referential games in

which players are able to understand opponents’ intentions about chosen strategies by receiving

informative signals. The self-referential nature of these games is characterized by the fact that

players choose how they will play the game depending on signals they observe, and the choice of

such strategies indeed determines the likelihood of those signals. (See also Kalai, Kalai, Lehrer,

and Samet (2010).2)

In this paper we analyze bad reputation games from the perspective of self-referentiality in

order to study the connection between the two ideas mentioned at the beginning. We show

how the possibility of observing opponents’ intentions restricts the bad reputation effect, and

we identify conditions under which such restriction applies for both weak and strong sources of

information about intentions.

In our model, myopic players play against a long-lived opponent whose life span is stochastic.

We show that the possibility of fathoming other players’ plan of strategies and the occasional

renewal of the long-run player mitigate the bad reputation effect. That is, it is generally bet-

ter to have myopic players with permanent uncertainty about types for the long-run player

because this weakens how informative public histories full of bad signals are. Moreover, we

are interested in showing how information about opponents’ intentions may complement re-

1In the US more than 40,000 mitral valve operations are performed every year.
2They study commitment devices which work very similarly to code-of-conduct in two-player games, however,

they consider very precise signals.
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newal. We characterize conditions on the self-referential game and on the relative likelihood of

commitment types to assure that the bad reputation effect will not arise.

Bad reputation games exhibit distinctive features from the bulk of the literature starting

with the classic works of Kreps and Wilson (1982) and Milgrom and Roberts (1982). We model

bad reputation games borrowing the set-up developed by Ely, Fudenberg, and Levine (2008)

who give the first characterization of the limit between good and bad reputation identifying

properties of this class of games. A long-lived opponent plays against a sequence of different

myopic players. Participation of short-run players takes place if friendly actions are likely to be

played. Since long-run player’s actions are imperfectly observed, friendly actions may generate

bad signals that can be interpreted as evidence of unfriendly actions. In addition, there exist

temptation actions which result in good signals more often but they may be unfriendly. A

numerous amount of bad signals points to an unfriendly type, hence a patient normal long-run

player eventually chooses temptation actions. In contrast to Ely et al. (2008) we focus on costly

temptation actions, that is, it is costly to play actions that are more likely to generate good

signals. While they find general conditions under which reputation is bad, their characterization

does not include all possible commitment type priors. In contrast, we identify the whole set of

priors where bad reputation is overcome.

Our main departure from their setting is that the long-run player might be replaced every

period. Short-run players remain ignorant about the long-lived player’s type since they can

observe neither the renewal nor the type. For instance, during a valve operation surgeons may

shift every other couple of hours but the patient only knows his primary care surgeon. The

possibility of switching types has been previously studied in reputation models but not in the

class of bad reputation games. Renewal has a dual effect. First, since the long-run player is

likely to be gone by tomorrow he has less incentives to play friendly and harvests the fruits

of reputation. Second short-run players are unaware whether a replacement has occurred, this

implies that a very unlucky history of bad signals weighs less frequently in the updating of prior

probabilities. The latter is prevalent in reputation games, as in Ekmekci, Gossner, and Wilson

(2012). In Mailath and Samuelson (2001), the long-run player does not lean on a favorable

history because players are uncertain whether he might have been replaced by a bad type. In

contrast, in our model, the possibility of being renewed partially “cleans up” a history plenty

of bad signals. The reason why renewal may restore the short-run players’ beliefs about the

long-run player’s type is similar to that in Liu and Skrzypacz (2009), consider short-run players

having bounded recall. (See also Liu (2011).) Most of the literature on switching types is

concerned about equilibrium dynamics (see for example, Holmström (1999), Phelan (2006) and

Wiseman (2008)).

We first consider perfect information about opponents’ intentions, and show that the pre-

commitment friendly action outcome can be induced by a self-referential Nash equilibrium.

The self-referential game might have distinctive features compared to the base game. This case

may look like rather extreme but it helps us understand how players behave when they have
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the chance of agreeing upon behavior without noise. In this setup, there is no role for reputa-

tion building in the self-referential game and it eliminates the incentives to regain opinion of

short-run players when the long-lived is likely to be tagged as a bad type. We should also stress

that the result is independent of either the level of patience and the probability of renewal of

the long-lived player. Basically, the long-lived player is locked in the stage game in terms of

incentives.

When this source of information is weak, the reputation might be perverse but under more

restrictive conditions. In this case, our main result is that self-referentiality strongly com-

plements the probability of renewal of the long-run player. We show that there exists a self-

referential equilibrium in which the long-run player obtains his pre-commitment friendly action.

The construction of the equilibrium in the self-referential game is more demanding and it re-

quires to balance players’ incentives to deviate that were not present in the base game. Having

imprecise signals makes the self-referential game share at least all characteristics of the base

game. Again, this illustrates that when dealing with self-referential games there exists a trade-

off between the agreement about players’ behavior and the cost of backing up this consensus.

2 Model

2.1 Basic Setup

A long-run player, player 1, faces a sequence of different short-run players, player 2. Starting at

period t = 1, each period players choose simultaneously actions from their finite action space,

and the stage-game is played repeatedly for finite T (<∞) periods. Let the action space of the

long-run player be A with element a and of short-lived player be B with element b.

The long-run player discounts future at the discount factor δ ∈ (0, 1). There are different

types θ for the long-run player that are described by the finite set Θ and are private information.

The set of types of the long-run player consists of type 0 ∈ Θ which is defined as normal type,

and a commitment type θ(a) that always plays action a ∈ A. In the repeated game, the normal

type maximizes the discounted sum of expected payoffs whereas commitment types have the

trivial strategy of repeating the stage action. In the stage-game, the payoff functions of the

short-run players and of the normal long-run player are denoted by ui : A × B → R for all

i = 1, 2. Let the common prior distribution over types at time 0 be the probability measure

µ0 ∈ ∆(Θ) with full support, thus, µ0(θ) > 0 for all θ ∈ Θ.

There exists the possibility of renewal of the long-run player, and it is exponentially dis-

tributed with exogenous probability λ ∈ (0, 1). Every period, the long-run player might be

replaced with probability λ by either a normal type or a commitment type. The new type θ is

drawn according to the probability measure µ0. Once the long-run player has been replaced,

he will never enter the game again. Both the renewal and the type of the upcoming long-run

player are unknown to short-run players. Our interpretation of renewal goes beyond examples
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like retirement, and we do not exclusively associate renewal with the mere fact of a physical

replacement.3 We define the effective discount factor δ̃ = (1− λ)δ.

Here we follow the setup developed by Ely et al. (2008) when characterizing bad reputation

games. At the end of the stage game players observe a public signal from finite space Y .

Given an action profile (a, b) in the stage game, the probability of the public signal y ∈ Y is

characterized by the probability distribution ρ(·|a, b) ∈ ∆(Y ). The history of realizations of

these public signals is observed by all players. We assume that short-run players are restricted

to observe public signals, and they are not able to observe neither the past play of the long-run

player nor of the other short-run players. Let H t = Y t be the set of all t-length public history

whose element ht = (y1, . . . , yt) is the public history through the end of period t, and by h0 = ∅
the null history. We write H =

⋃T
t=1 Y

t for the set of public histories. The private history

of the long-run player is represented by ht1 = (a1, . . . , at−1)4 which belongs to the set of his

t-length histories written as H t
1 = At, and let H1 =

⋃T
t=1 H

t
1 be the set of private histories for

the long-run player.

The behavior strategy of the long-run player is a sequence of maps from public history,

private history and type to the set of probability distributions on the set of actions A. That is,

player 1’s strategy is a mapping σ1 : H ×H1 × Θ→ A := ∆(A). A strategy for the short-run

player is a sequence of maps from public histories to probability distribution on the set B,

σ2(ht) ∈ ∆(B) := B. Then, a short-run action β ∈ B is a Nash response to action α ∈ A if

u2(α, β) ≥ u2(α, β̂) for all β̂ ∈ B. Let B be the best-response correspondence and let B(α) be

the set of short-run Nash responses to α.

We focus on bad reputation games that are a subclass of participation games. In partici-

pation games short-run players have the option not to participate in the game. If they do not

participate in the game, they choose exit actions defined as pure actions e ∈ E ⊆ B. Alterna-

tively, entry actions belong to B − E. Let Y E ⊆ Y be a set of public signals which are called

exit signals. For each exit action e ∈ E, the probability distribution over public signals satisfy

these two conditions: ρ(y|a, e) = ρ(y|e) for all a ∈ A, y ∈ Y , and ρ(Y E|e) = 1. That is, given

an exit action the distribution of public signals is independent of the long-run player’s actions,

moreover, only exit signals are possible. In addition, when entry actions are chosen none of the

exit signals can be observed. Formally if short-run player chooses any entry action b /∈ E, then

ρ(Y E|a, b) = 0 for all a ∈ A. Note that exit signals are very informative since these are driven

by exiting short-run players. A game is a participation game if the exit action set is non-empty

E 6= ∅ and there exists some action α ∈ A with B(α) ∩ E 6= ∅.
We use β{E} to denote the probability assigned to the set of exit actions, E ⊆ B, by Nash

3For example, many German car companies have in their service centers the car remotely connected to

the headquarter. The device inside the car interchanges information with the mechanics/computer in the

headquarter. More importantly, as a result of this interaction mechanics find out where the problem is and

what kinds of repairs may be needed. Again, motorists do not know exactly about modifications in diagnostic

algorithms or mechanics in headquarters, though the brand does not change.
4Possibly it might also include the actions of the short-run players in previous interactions.
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response action β ∈ B(α). A non-empty finite set of pure actions F ⊆ A for long-run player is

friendly if there is a number γ > 0 such that, for all player 1’s actions α ∈ A if the short-run

player strategy is a Nash response β ∈ B(α) and β{E} < 1 then the long-run player assigns

positive probability α(f) ≥ γ for some friendly action f ∈ F . On the other hand, an unfriendly

set N corresponding to friendly action set F is any non-empty subset of A \F . This definition

says that Nash response of short-run players puts positive probability to non-exit actions when

friendly actions are played with high probability. Any pure non-friendly action makes short-run

players choose an exit action. Commitment types associated with friendly set F is denoted by

the subset Θ(F ) ⊆ Θ and are called friendly commitment types. Analogously, let the subset

Θ(N) ⊆ Θ be the unfriendly commitment types corresponding to actions in unfriendly set

N . Because of the definition of the sets F and N , we have that these two corresponding

commitment sets are disjoint Θ(N) ∩ Θ(F ) = ∅. Let a mixed action α ∈ A for the long-run

player be enforceable if for every other action α̃ ∈ A for all short-run player’s action β ∈ B
with β ∈ B(α) and β{E} < 1, such that u1(α̃, β) > u1(α, β) then ρ(·|α̃, β) 6= ρ(·|α, β).5

A set of signals Ȳ ⊆ Y is evidence for a set of actions N ⊆ A if N is non-empty and

ρ(ȳ|n, b) > ρ(ȳ|a, b) for all b /∈ E, ȳ ∈ Ȳ , n ∈ N and a /∈ N . In words, each action in the set

N gives rise to a higher probability for every signal in Ȳ than any action not in N . An action

a ∈ A is vulnerable to temptation relative to a set of signals Ȳ if there exist numbers ρ, ρ̃ > 0

and an action d ∈ A such that (i) If b /∈ E, ȳ ∈ Ȳ , then ρ(ȳ|d, b) ≥ ρ(ȳ|a, b) − ρ; (ii) If b /∈ E
and y /∈ Ȳ ∪Y E then ρ(y|d, b) ≥ (1 + ρ̃)ρ(y|a, b); and (iii) For all b ∈ E, u1(d, b) ≥ u1(a, b). The

action d is called a temptation whose temptation bounds are the largest possible ρ, ρ̃ satisfying

(i) and (ii) for action a. It says that by playing the temptation action d the long-run player

reduces the probability of bad signals by at least ρ and increases of all signals but in the set

Ȳ ∪ Y E by factor 1 + ρ̃.

We say an action d is a costly temptation if it is a temptation and u1(a, b) − u1(d, b) ≥ c

with c > 0 for all b ∈ B−E. When we examine self-referential games with imperfect detection,

we are interested in bad reputation games with costly temptation. A participation game has

exit minmax if
max
b∈E∩B

max
a∈A

u1(a, b) = min
β∈B

max
a∈A

u1(a, β)

A participation game is a bad reputation game if it has exit minmax, and there is a friendly

set F and corresponding non-empty unfriendly set N and a set of signals Ȳ that are evidence

for N , such that every enforceable friendly action f ∈ F is vulnerable to temptation relative to

the set of signals Ȳ . All the signals in Ȳ are called bad signals. A bad reputation game with

costly temptation is a bad reputation game where the set of temptations is costly.

Let the constant κ be interpreted as a measure of how revealing the evidence is, and defined

by κ = minn∈N,a/∈N,β{E}<1,ȳ∈Ȳ
ρ(ȳ|n,β)
ρ(ȳ|a,β)

. Note that k is finite with κ > 1. Let ϕ > 0 be the

minimum of the temptation bounds ρ and finally the signal lag given by η = − log(γϕ)\ log κ.

5The idea of identification of actions was proposed by Fudenberg, Levine, and Maskin (1994).
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2.2 Self-referential Game

We consider a generic base game Γ = {(Si, ui)i∈I , I} where there is a finite set of players

I = {1, . . . , N}. Each player i selects a strategy from a finite set Si with strategy profile

s ∈ S ≡
∏

i Si. We allow for mixed strategies, but finitely many of them (e.g. spinning the

roulette wheel). Let the payoff function be ui : S → R for each player i.

Next, we define the self-referential game. The set of players is the same as in the base game,

I. We assume that there is a finite set of private signals Zi 3 zi for each player i, the strategy

of player i is defined as code of conduct denoted ri which is an |I|×1 vector whose jth element

corresponds to the mapping from the set of player j’s private signals to player j’s strategies in

the base game, namely, rij : Zj → Sj. Given a profile of codes of conduct r ∈ R ≡
∏

iR0, the

joint probability distribution of private signals is given by π(z|r) with z ∈ Z ≡
∏

i Zi. The space

of codes of conduct takes the form R0 := {ri|rij : Zj → Sj for all players j and any player i}.
It requires each player to decide how he will play the base game after receiving private signals

and how all the other players will play conditional on their signals. This is the self-referential

nature of this class of games. We say a space of code-of-conduct R0 is complete if all profiles of

map rij : Zj → Sj is represented in R0–we use complete code-of-conduct throughout the paper.

The profile of codes of conduct r̂ is a Nash equilibrium of the self-referential game if for all

i ∈ I, we have that

r̂i ∈ argmax
r̃i

∑
z∈Z

ui(r
1
1(z1), . . . , rNN (zN))π(z|r)

The timing of the self-referential game is as follows: before observing any signal and playing

the base game, all players simultaneously choose codes of conduct. Given this choice, a profile

of private signals is drawn from the probability distribution π(z|r). After observing private

signals players execute codes of conduct.

3 Bad Reputation and Detection

3.1 Perfect Identification

We start by examining bad reputation games when players have perfectly revealing signals

about deviations from codes of conduct in the self-referential version of the game. We show

that we can sustain “good” equilibria regardless of the long-run player’s patience and how

frequently he leaves the game.

Let us define more precisely the notion of perfect detection. We say a self-referential game

permits detection if for each player i ∈ I there exists some player j ∈ I \ {i} with non-empty

subset of private signals Z̄j ⊂ Zj such that for every profile of codes of conduct r ∈ R and

any code-of-conduct r̃i ∈ R0 with r̃i 6= ri, we have πj(Z̄j|r̃i, r−i) = 1 and πj(Z̄j|r) = 0. This

definition says that if any player deviates from the code, there always exists some other player

would point at this deviation. Given that our base game is of bad reputation kind we assume
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that all short-run players obtain the same private signals about the long-lived player’s intentions

in turn.6 Let f ∗ ∈ F be the precommitment friendly action of the long-lived player.

Theorem 1 Given any finite bad reputation game with probability of renewal λ. If the self-

referential game permits detection, there exists a code-of-conduct profile r ∈ R such that in the

self-referential Nash equilibrium the normal long-run player gets a normalized discounted payoff

of u1(f ∗, β), where short-run players participate in the game, i.e. β ∈ B(f ∗), β /∈ E.

All proofs are relegated to the Appendix. This result illustrates that the self-referential

game with perfect detection may have different features compared with the base game, and to

prove it we use ideas from Levine and Pesendorfer (2007).

Observe that in this environment there is no room for reputation building. In bad reputation

games short-run players care about whether his opponent will play a friendly or unfriendly

action, had he entered the game. Thus they use public histories to make inference about long-

lived player’s forthcoming actions. Here, however, histories are irrelevant to short-run players’

behavior because self-referential private signals provide precise information about what players

would do in the current stage game. Consequently, the short-run player chooses his action

conditional on what the long-run player will be doing irrespective of the history. The short-run

player trusts the long-run player because he knows wether the long-lived opponent adheres to

the code-of-conduct or not.

In this case, the long-run player would not need to regain the short-run players’ faith after

a history of bad signals but he might find profitable not to play a friendly action. The long-run

player will not pursue this action since any deviation from the code-of-conduct will be punished

immediately and thereafter.

3.2 Identification with Noise

We turn to the analysis of the situation in which players cannot perfectly identify deviations

from the code-of-conduct. As we saw, when players detect deviations with certainty long-lived

player lacks of reputation concerns in the self-referential game. Then, we ask to what extent

even in the case of imperfect identification a small probability of detecting deviations from the

code of conduct would still mitigate the bad reputation effect.

In this section, we consider the case where the private signals induced by the self-referential

game are very noisy. The notion of detection we use says that evidence of deviation is modelled

by the likelihood of observing a subset of private signals. Formally, we say a self-referential

game E,D permits detection with constants satisfying 0 ≤ E,D ≤ 1 and E + D ≤ 1 if for

every player i ∈ I there exists some player j ∈ I \ {i} and a nonempty subset of private

signals Z̄j ⊂ Zj, such that for any profile of codes of conduct r ∈ R, any signal z̄j ∈ Z̄j

6This keeps results clear since players do not infer anything about other short-run players’ signals, moreover,

it turns out there are no qualitative changes.
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and any code-of-conduct r̃i ∈ R0 where r̃i 6= ri we have πj(z̄j|r̃i, r−i) − πj(z̄j|r) ≥ D and

πj(z̄j|r) ≤ E.7 In words, D measures the probability of detection if any player i deviates, and

E can be interpreted as the probability of accusing someone who is being honest. Observe that

E,D permits detection implies that the same signal may have different interpretations but its

likelihood depends on the choice of codes of conduct.

It is necessary to impose uniformity to avoid the possibility of a relatively too high prior

probability of unfriendly types. We say a bad reputation game with friendly set F and un-

friendly set N has uniformly friendly commitment size ψ, χ with χ > 0 if the prior probability

of friendly and unfriendly types µ0[Θ(N)], µ0[Θ(F )] satisfy

µ0[Θ(N)] ≤ ψ(1− µ0[Θ(F )] + µ0[Θ(F )]
1+η
η )− χ

The constant ψ reflects the uniformity of friendly types µ0[Θ(F )] relative to unfriendly types

µ0[Θ(N)]. Players use their private signals to update their prior probabilities about commit-

ment types to a limited extent, therefore a relatively high likelihood of friendly commitment

types is necessary to guarantee participation.

In the next result we show that reputation would have a negative effect in arbitrarily long

discounted finitely repeated games when the long-run player’s probability of renewal is big

enough and his discount factor tends to 1, and the self-referential version of the game provides

certain detection technology. We formally state the main result of this section:

Theorem 2 Suppose a finite bad reputation game with uniformly friendly commitment size

1 − γ, χ for some χ > 0 and with costly temptation. If the self-referential game E,D permits

detection with sufficiently high D > 0, for precommitment friendly action f ∗ ∈ F and discount

factor δ → 1 we can find a threshold λ̃ such that for all probabilities of renewal λ ∈ (λ̃, 1)

there exists a profile of codes of conduct r ∈ R such that in the self-referential Nash equilibrium

the normal long-run player gets approximately a discounted average payoff of u1(f ∗, β) with

β ∈ B(f ∗) and β is not an exit action.

Short-run players cannot only rely on the code-of-conduct in order to know whether friendly

actions are likely to be played. This implies that short-lived agents combine public information

with private self-referential signals to update their beliefs about long-run player’s type. When

updating beliefs they take into account both the public history and the chance of facing a new

long-lived opponent jointly with the information about intentions. Because with this detection

technology histories are relevant in the self-referential game, reputation can be potentially

perverse.

7Block and Levine (2012) use a stronger version of E,D permits detection because in that setting there

exists the issue of mutual accusation – an ambiguity that arises, for instance, with many long-run players. The

idea is that if two players point at each other we do not know who is guilty unless we strengthen the notion of

permit detection. We have a long-run player facing a sequence of short-run players so this stronger definition is

not needed.
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Since we are interested in arbitrary long horizon T , we may find a probability of renewal such

that for any t-length history of just bad public signals short-run players participate in the game

as long as they perceive intentions of playing a friendly action from the long-lived opponent.

This suffices to make the long-lived opponent elude the play of a temptation action. Notice

that information about long-lived agent’s intentions is relatively scarce to public histories.

While the games evolves, short-run players put large weight on public signals history. Thus,

the chance of facing a new long-lived opponent casts doubts on this history. Simultaneously,

the likelihood of renewed friendly types must be sufficiently high so that posterior beliefs on

unfriendly types stay below the threshold that induces exit of short-lived players. The salient

fact is that information about intentions strongly complements the probability of renewal which

means that the required probability is relatively small.

Given that the long-lived opponent is very patient, δ → 1, his long-run incentives are mainly

determined by the probability of renewal. However, since the required probability of renewal

comes from the posterior beliefs of short-run agents we find a detection technology that works at

the stage-game level to avoid its dependence on renewal. We assumed that temptation actions

are costly so there might be other actions which are profitable and not necessarily unfriendly.

Then a high enough probability of detecting deviations from the code-of-conduct would inhibit

the long-lived player to play these types of actions. Basically, once temptation actions are not

longer a problem we do have the issue of profitable actions which was not an issue in the bad

reputation game.

3.3 Ely-Välimäki Example

The bad reputation game in Ely and Välimäki (2003) consists of a long run player, a mechanic

and a sequence of short-run players, the customers. There are two equally likely i.i.d. states of

the world ω ∈ {E , T } that are observed only by the mechanic. These two states are what type of

repair the car needs: engine replacement E , or tune-up T . The action space of the mechanic is

A = {ee, et, te, tt} where te reads for tune-up in state E and engine replacement in state T . The

customer’s action space is B = {In,Out} with In stands for hire the mechanic and Out stands

for not hire the mechanic. The public outcomes are Y = {e, t, Out} with distribution ρ described

by ρ(Out|(·, Out)) = 1, and the corresponding announcements ρ(e|(et, In)) = ρ(e|(te, In)) = 1
2
,

ρ(e|(ee, In)) = 1 and ρ(e|(tt, In)) = 0.

If the mechanic performs the correct repair in each state and the costumer plays In, both

receive a payoff of u. Otherwise, given participation, both get −w with w > u > 0. Alter-

natively, if the customer plays Out both players get utility 0. We consider the finite horizon

version of this game.

We briefly state elements of this bad reputation game. The set of friendly and unfriendly

actions are F = {et} and N = {ee}, respectively. Where e is evidence for the set {ee}. The

enforceable friendly action et is vulnerable relative to e and the costly temptation is tt.
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They point out that there exists a Nash equilibrium in which the long-run player chooses

the correct repair and the costumer hires the mechanic (this also holds for the finite version).

However, if we introduce a bad type of the long-run player that always plays the action ee, then

with a patient enough mechanic the bound of his payoff converges to zero. Even though the

stage game is played infinitely often we can show that if we take a sufficiently long but finite

horizon the bad reputation effect results. When a bad type exists, short-run players update their

posterior probability on this type with every realization of the bad signal e. Ely and Välimäki

(2003) do not consider renewal. It may seem possible that with sufficiently high renewal the

bad reputation effect is eliminated. Roughly, even when the discount factor tends to one the

mechanic would not play the temptation action tt because he cares about short-run payoffs and

customers would hire him given that public histories have low impact on posteriors. Adding

self-referentiality has a multiplicative effect on renewal – there exists strong complementarity.

Next, we examine this example with self-referential games. The set of signals for the me-

chanic is {c, nc} and for the customer is {m, g}, so the space of codes of conduct R0 is the set

of all mappings from {c, nc} × {m, g}T to {ee, et, te, tt} × {In, Out}T . Denote m the T × 1

vector with all entries filled by m.

Suppose first the perfect information case in which the probability distribution is given by

π((nc,m)|r̃i, r−i) = 1 and π((nc,m)|r) = 0 for all players i ∈ I. The following result states that

if we have perfect information we can recover the good equilibrium in Ely-Välimäki’s example

with bad type.

Proposition 1 Suppose there are normal and unfriendly commitment types for the mechanic.

In the self-referential Nash equilibrium, the mechanic gets a normalized discounted payoff of u.

This result is an immediate consequence of Theorem 1, and its intuition is as follows. The

code-of-conduct requires the mechanic to “do the right thing,” that is, to play the friendly

action et whenever he observes c. For short-run players, the code requires them to hire the

mechanic if g is observed, do not hire otherwise. This code is a self-referential Nash equilibrium.

In the imperfect information case, we do not state the analogous result to Proposition 1.

Instead, we discuss some features of the one-shot version of this example. To simplify the

analysis we assume that π((nc,m)|r) = p and π((nc,m)|r̃i, r−i) = q with q ≥ p for all players

i. This type of signal structure could be interpreted as the situation in which the profile of

signals (c,g) is more likely to be observed if all players adhere to the same code-of-conduct. We

restrict attention to three types: normal, unfriendly and friendly (Stackelberg). Stackelberg

type plays et. Let µ∗ be the prior probability of unfriendly type that induces entry of short-run

player when there are only Stackelberg and unfriendly types.

Proposition 2 Assume that there are three types of mechanic in the one-shot version of the

game. Given the above self-referential characterization, there exists a code of conduct r such

that µ∗ ≤ µ∗(r) and the mechanic is hired.

11
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Figure 1: Space of prior distributions.

While the requirement on the prior of the bad type is reduced, the code cannot be a self-

referential Nash equilibrium in the repeated version of the game. As long as the detection is

imperfect, the updating of the likelihood of the bad type increases with the realization of bad

signals – engine replacements. Hence, with sufficiently long horizon short-run players will not

participate.

Now we illustrate the main result in Ely et al. (2008), and discuss how it is related to

ours. Figure 1 represents the set of possible prior probabilities on normal, bad and Stackelberg

types. The upper triangle region (region B) depicts the cases where short-run players enter

irrespective of the behavior of the normal type long-run player. In this case reputation is

always good. On the other hand, region A represents the cases when the probability of the bad

type is so high that none of short-run players participate. Ely et al. (2008) show that in the

region below the dashed curve (region C) bad reputation effect also arises. Moreover, the curve

asymptotically reaches the lower left vertex. This implies that for any arbitrary perturbation

of the complete information case, the bad reputation effect occurs. With self-referentiality

and renewal, we can preclude reputation from being bad for any epsilon neighborhood of the

complete information case. Note that from their result we cannot predict what would happen

in the area between region B and region C. The completeness of our characterization comes

from the fact we delimit the regions where reputation is bad or good for the entire space of

prior probability distributions. In addition, we show that the cases where bad reputation effect

occurs with self-referentiality (Region D) is a subset of their region A. We should stress that

the higher the precision of the probability of detecting deviation from the code-of-conduct, the

easier is to overcome the bad reputation effect in the self-referential game.

3.4 Bad Reputation Games without Renewal

In this section we discuss our assumption of renewing the long-run player. If detecting deviation

from the code of conduct is imperfect and there is no renewal, we show that the bad reputation
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effect persists for arbitrary long horizon.

At the beginning of each period t, short-run player makes inference about the likelihood

of friendly actions by combining the public history and information about long-lived agent’s

intentions of play. For arbitrary long horizon T , an unlucky history plenty of bad signals would

make short-run players exit the game because this type of histories are very informative. The

reason is that self-referential private signals modify posterior beliefs of short-lived players just

a little bit.

We restrict attention to short-run players’ updating beliefs since here the assumption of

replacement is crucial. For a code-of-conduct to be a Nash equilibrium we require short-run

players to participate in the game if the posterior probability of unfriendly types incorporating

the self-referential information is sufficiently low.

Proposition 3 Assume a finite bad reputation game with costly temptation and uniformly

friendly commitment size 1 − γ with constant χ > 0, and that for some constants E,D the

self-referential game E,D permits detection with D > 0. Consider the code-of-conduct profile

used in Theorem 2. If ht is a positive probability history in the self-referential Nash equilibrium

with k signals in Ȳ then

(a) For all private signals lie in Z2 \ Z̄2, we have µ(ht, z2)[Θ(N)] < µ(ht)[Θ(N)];

(b) Given all private signals z̄2 ∈ Z̄2, µ(ht, z̄2)[Θ(N)] > µ(ht)[Θ(N)];

(c) For arbitrary long horizon T , there exists a number k∗ of bad signals such that short-run

players do not participate in the self-referential game.

Note that no matter how accurate the signals might be, the self-referential posterior proba-

bility weighs a bad signal as evidence of an unfriendly commitment type. That is, the code-of-

conduct does not allow us to completely undermine the posterior when a bad signal is observed,

but it certainly reduces the weigh on unfriendly commitment types if that realization is comple-

mented with good private signal. In essence with a history of signals lying in Ȳ , observation of

Zj \ Z̄j allows higher number of bad signals to “convince” short-run players to exit. Conversely,

private signals in Z̄j jointly with bad signals imply a greater posterior probability.

Statement (c) points out a potential problem on pursing to sustain friendly actions by

using the code of conduct in the proof of Proposition 2. Since short-run players increase the

posterior probability of unfriendly commitment types every time a bad signal is observed,

eventually µ(h, z)[Θ(N)] > 1− γ. This proposition shows one limitation of the applicability of

self-referential games to bad reputation games.

4 Conclusion

We have analyzed self-referential games in the context of bad reputation games. Our results say

that self-referentiality with renewal allows us to mollify the perverse effect of reputation in this
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class of games. We have also identified conditions on the relatively likelihood of unfriendly and

friendly commitment types for such results to hold considering all possible distributions over

types. In that sense our characterization is more complete than previous research. We assume

that there exists the possibility of renewing the long-lived player. As we mentioned, we do

not observe shut-down of markets where bad reputation effect is strong. We think one reason

is that we have impermanent types of the long-run player. Yet how often this replacements

occur do not seem to be frequent. We view plausible the idea that the probability of detecting

deviation from code-of-conduct requires then a lower frequency of renewal. Both ideas are used

to reconcile predictions from bad reputation models and the existence of markets with those

characteristics. It is also important that our results hold for arbitrarily long finite horizon

games.

A Appendix

Proof of Theorem 1 Let us define the minmax payoff u2 for short-run player 2 given by

u2 = minα∈Amaxb∈B u2(α, b), and let α2 be the long-lived player’s strategy that minimizes the

short-run player in the stage-game. Pick the profile of code-of-conduct r ∈ R such that for all

players i = 1, 2, ri ∈ R0 prescribes:

ri1(z1) :=

{
f ∗ for all z1 ∈ Z1 \ Z̄1,

α2 otherwise,
and ri2(z2) :=

{
β ∈ B(f ∗) for all z2 ∈ Z2 \ Z̄2,

e ∈ E otherwise.

With some abuse of notation, we denote by f ∗ the strategy for long-run player which prescribes

the play of friendly action f ∗ every period, similarly, for strategy α2. It remains to show that

this profile of codes of conduct r ∈ R constitutes a Nash equilibrium in the self-referential

game. Note that the long-run player gets an expected payoff of u1(f ∗, β) which is the most he

can get by playing his Stackelberg friendly action, any other action will cause the short-run

player to exit game so he does not have incentives to deviate from this code. Similarly for

short-run player, by adhering to this code he expects a friendly action to be played and avoids

being minmaxed by the long-lived player.

Proof of Theorem 2 For any positive probability public history ht ∈ H t, let µ(ht)[Θ0] be the

posterior beliefs over types Θ0 ⊆ Θ. For any player i ∈ I and any private signal zi ∈ Zi, let

µ(ht, zi)[Θ(N)] be the posterior beliefs on unfriendly types after incorporating the information

of the self-referential game using Bayes’ rule, and let µ0(zi)[Θ0] be the posterior beliefs for the

null history h0. We write µ̃(ht, zi)[Θ(N)] for the posterior beliefs at the beginning of period

t+ 1 taking into account private signals and the probability of renewal of the long-lived player,

and its formal expression can be found below. We next construct the profile of code-of-conduct
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r ∈ R with ri ∈ R0 for all players i such that for the long-run player

ri1(z1) :=

{
f ∈ F for all z1 ∈ Z1 \ Z̄1,

a /∈ F otherwise.

Same disclaimer about notation as in the previous proof applies here. For short-run players we

have

ri2(z2) :=

{
β ∈ B(f ∗) if µ̃(ht, z2)[Θ(N)] < 1− γ for all z2 ∈ Z2 \ Z̄2,

e ∈ E otherwise.

Suppose that all players i adhere to the proposed code-of-conduct ri ∈ R0. Consider any

positive probability history ht ∈ H t, and assume z2 ∈ Z2 \ Z̄2. Then the posterior beliefs

of short-run player on the unfriendly commitment types at the beginning of period t can be

written as

µ̃(ht, z2)[Θ(N)] = λµ0(z2)[Θ(N)] + (1− λ)µ(ht, z2)[Θ(N)]

The posterior beliefs is a linear combination of two components. The first component takes

into account the possibility of renewal of the long-run player. The second component combines

the information in the public history up to period t and the information in the private signal.

We define the constant Λ = (1 − E)/(1 − (E + D)) for natational convenience, and note that

Λ > 1 as D > 0. By Bayes’ rule we obtain

µ̃(ht, z2)[Θ(N)] =
λ(1− π2(z̄2|r̃1, r−1))µ0[Θ(N)]

(1− π2(z̄2|r̃1, r−1))µ0[Θ(N)] + (1− π2(z̄2|r))(1− µ0[Θ(N)])

+
(1− λ)(1− π2(z̄2|r̃1, r−1))µ(ht)[Θ(N)]

(1− π2(z̄2|r̃1, r−1))µ(ht)[Θ(N)] + (1− π2(z̄2|r))(1− µ(ht)[Θ(N)])

Observe that all unfriendly commitment types would be violating the code of conduct r. Pick

the history ĥT ∈ H where all signals yt ∈ ĥT belong to the set of bad signals Ȳ . Since the

self-referential game has uniformly friendly commitment size 1− γ, χ for some constant χ > 0,

and probability of replacement is λ the posterior beliefs then can be bounded by

µ̃(ĥT , z2)[Θ(N)] ≤ λ[1− (γ + χ)]

1− (γ + χ)(1− Λ)
+

(1− λ)[1− λ(γ + χ)]

1− λ(γ + χ)(1− Λ)

By adhering to the code r, short-run players do not exit the game as long as the posterior

beliefs satisfy µ̃(ĥT , z2)[Θ(N)] < 1− γ. Using the last expression, this is equivalent to

−λ2(γ + χ)Λ + λ(γ + χ)b− γ(1− (γ + χ)(1− Λ)) > 0

where the constant b is given by b ≡ (γ + χ)[Λ− (γ + χ)(1−Λ)(Λ(1− γ) + γ) + γ + Λ(1− γ)].

Thus, from the second-order polynomial we obtain

λ̃ =
−b−

√
b2 − 4Λγ(1− (γ + χ)(1− Λ))

−2(γ + χ)Λ
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For all probabilities of renewal λ with λ ≥ λ̃ we have µ̃(ht, z2)[Θ(N)] < 1 − γ for any history

ht ∈ H that guarantees short-run player would participate in the game. Observe that since

all short-run players draw the same signal about long-lived player’s intentions, his incentives

to follow the code are driven at a stage-game level. Suppose that all short-run player adhere

to the proposed code-of-conduct. Let M = maxi∈I ui and m = mini∈I ui be the highest and

lowest payoffs in the stage-game. If the normal long-run player adheres to the code-of-conduct

r he obtains at least

u1(f ∗, β)− (1− (1− E)2)(u1(a, β)− u1(f ∗, β) +M −m)− π2(z̄2|r)(u1(f ∗, β)− u1(f ∗, e))

On the other hand, if he optimally deviates and chooses the code-of-conduct r̃1 in which he

plays some action ã ∈ A he gets at most

u1(ã, β)− (1− (1− E)2)(u1(a, β)− u1(ã, β) +M −m)

− (π2(z̄2|r) +D)(u1(f ∗, β)− u1(f ∗, e) + u1(a, β)− u1(ã, β))

Then the gain to deviation can be bounded above by

u1(ã, β)− u1(f ∗, β)− (1− (1− E)2)(2u1(a, β)− u1(f ∗, β)− u1(ã, β) + 2(M −m))

− (π2(z̄2|r) +D)(u1(ã, β)− u1(a, β))−D(u1(f ∗, β)− u1(f ∗, e))

≤ u1(ã, β)− u1(f ∗, β) + 2E(2u1(a, β)− u1(f ∗, β)− u1(ã, β) + 2(M −m))−DC1

where C1 = (u1(ã, β)− u1(a, β) + u1(f ∗, β)− u1(f ∗, e)). Adherence to the code-of-conduct r by

the normal long-run player requires

D >
u1(ã, β)− u1(f ∗, β) + 2EC2

C1

we have defined constant C2 = (2u1(a, β)− u1(f ∗, β)− u1(ã, β) + 2(M −m)). This shows that

the code-of-conduct r is a self-referential Nash equilibrium.

Proof of Proposition 2 If there are only Stackelberg and bad types in Ely-Välimäki example

the prior probability of bad type is bounded above by µ∗ ≤ 2u/w + u. For the case with three

types the code-of-conduct profile r states that the long-run player plays et for any signal in

{c, nc}, and the short-run player participates if he receives the signal g and stays out if b is

realized. The prior probability of bad type required for having short-run player participating

is given by µ∗(r̂) ≤ (1 − p)2u/(w + u − q(w − u) − p2u). It is immediate that µ∗(r̂) ≥ µ∗ as

q ≥ p.

Proof of Proposition 3 We begin with part (a) of the Proposition. Suppose that the short-

run players observe only signals z2 ∈ Z2 \ Z̄2. Recall that

µ(ht, z2)[Θ(N)] =
(1− π2(z̄2|r̃1, r−1))µ(ht)[Θ(N)]

(1− π2(z̄2|r̃1, r−1))µ(ht)[Θ(N)] + (1− π2(z̄2|r))(1− µ(ht)[Θ(N)])

≥ 1

µ(ht)[Θ(N)] + Λ(1− µ(ht)[Θ(N)])
µ(ht)[Θ(N)]
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Observe that µ(ht, z2)[Θ(N)] < µ(ht)[Θ(N)] as Λ > 1. Suppose that for some ε > 0, µ(ht)[Θ(N)] =

1− γ + ε and µ(ht−1)[Θ(N)] < 1− γ. Thus

µ(ht, z2)[Θ(N)] ≥ 1

1− γ + Λγ − ε(Λ− 1)
µ(ht)[Θ(N)]

Next, we borrow from Lemma 2 in Ely et al. (2008) the following lower bound on the posterior

probability of unfriendly commitment types8

µ(ht)[Θ(N)] ≥
(

1

1− γ + γ
κ

)k
µ0[Θ(N)]

This shows that the lower bound for µ(ht, z2)[Θ(N)] is below the lower bound found in the last

expression (without self-referentiality) which implies that signals in Z2 \ Z̄2 allow for a greater

number of bad signals Ȳ given the same history.

Suppose short-lived players’ private signals z2 ∈ Z̄2. By similar arguments, it must be

the case that µ(ht, z̄2)[Θ(N)] > µ(ht)[Θ(N)]. That is, for a given number of bad signals,

observation of private signals in Z̄2 pushes the posterior probability upward relatively more to

the case without code-of-conduct.

Finally, note that the updating beliefs formula with self-referential signals is characterized

by the factor Υ ≡ 1/µ[Θ(N)] + Λ(1− µ([Θ(N)]), from which we stress Υ→ 1 as µ→ 1.
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