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Abstract 

 

We analyze industrial espionage extending the Milgrom and Roberts (1982) (hereafter 

MR) model. More precisely, we consider the case where a monopoly (M) is engaged in 

R&D trying to reduce his cost of production and deter a potential entrant (E) from 

entering the market. The R&D project may be successful or not and its outcome is a 

private information of M. The entrant has an access to an IS of a certain precision that 

generates a noisy signal on the outcome of the R&D project, and she decides whether 

or not to enter the market based on two signals: the price charged by M and the signal 

sent by the IS. It is assumed that the precision of the IS is exogenous and common 

knowledge. 

We show that the separating equilibria of our model coincide with that of MR. The 

same result is obtained for pooling equilibria if the precision of the IS is sufficiently low 

to affect the decision of E of staying out. For the other extreme, if the IS is very 

accurate, then contrary to the MR model, pooling equilibrium does not exist. For 

intermediate values of the precision, the set of pooling equilibria is non-empty and E 

enters if the IS tells her the R&D project was not successful. Since in the MR model the 

entrant never enters in a pooling equilibrium, we show that the use of the IS by the 

potential entrant with high probability increases competition in pooling equilibrium. 
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1. Introduction. 

The cost structure of the incumbent firm is a very important information for a firm 

contemplating market entry. Since this information is usually available in statements 

for internal use, the entrant firm could obtain it spying on the incumbent firm.  

In this paper we deal with a monopoly, M, who is engaged in R&D activity with the 

aim to reduce his cost of production from the current cost ( )HC q  to ( )LC q , where q  

is the production level. The outcome of the R&D project is the private information of 

M. A potential entrant, E, assigns a certain probability, 0µ > , that M fails to reduce his 

cost and probability 1 0µ− >  that the project was successful. If the project fails and E 

enters, she obtains positive profit. Otherwise, if the project succeeds and E enters, she 

will not be able to cover her entry cost and she will end up with negative profit. 

The entrant has an access to an Intelligence System (IS) that allows her to collect (noisy) 

information about the cost structure of M. The IS sends one out of two signals. The 

signal h , which indicates that the investment was not successful (in which case we 

refer to M as having the type H), and the signal l , which indicates that the investment 

was successful (namely, M is of type L). The precision of the IS is α , 1 12 α≤ ≤ . That 

is, the signal sent by the IS is correct with probability α  (for simplicity, whether the 

cost function is ( )HC q  or ( )LC q ). The case where 1
2α =  is equivalent to the case 

where E does not use an IS. The case 1α =  is the one where E knows exactly the 

outcome of the project. 

It is assumed that the precision α  of the IS is exogenously given. This would be the 

case if the entrant firm has already a spying technology before she considers entering 

the market where the incumbent firm is operating (e.g. she has the ability to plant a 

Trojan Horse in the computer system of the incumbent firm).  
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The entrant decides whether or not to enter the market based on a pair of signals: the 

price, p , that M charges for his product and the signal s  ( h  or l ) sent by the IS. If E 

enters the market, she competes with M (whether it is a Cournot or Bertrand 

competition, or any other mode of competition). It is assumed that the above is 

commonly known (including the precision α  of the IS). 

The interaction between E and M is described as a three stage game, ( )G α . In the first 

stage, M who knows the outcome of the R&D project, sets a price p  and the IS sends a 

signal s ( h  or l ). Based on the signals ( ),p s , E in the second stage decides whether or 

not to enter the market. If she decides to enter, then E in the third stage is engaged in a 

certain mode of competition with M. 

The game ( )G α  is a game of incomplete information and, using Harsanyi’s approach, 

we analyze it as a three player game, where the players are the two types, H and L, of 

M and the entrant, E. We analyze the sequential equilibria of ( )G α . 

The case where 1
2α = , namely, where the IS has no value (and, therefore, can be 

ignored), is exactly the limit pricing model of Milgrom and Roberts (1982) (hereafter 

MR). Therefore, our model is an extension of the MR model where the entrant has an 

access to an intelligence system and it is only for 1 12 α< < . 

We distinguish two cases: the first one is the separating equilibrium where the two 

types of M charge different prices Hp  and Lp , H Lp p≠ ; the second one is the pooling 

equilibrium case where H Lp p= . 

We show that the separating equilibria of our model coincide with that of MR and the 

IS makes no difference for either E or M. This is not very surprising since in a 

separating equilibrium E identifies the type of M with or without the use of the IS. 

Even though the off equilibrium behavior of E is affected by the signal of the IS, it does 

not affect the separating equilibria. The same result is obtained for pooling equilibria if 

the precision α  of the IS is sufficiently low (close to 1
2 ) to affect the decision of E. For 

the other extreme, if α  is very accurate (close to 1), then contrary to the MR model, 
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pooling equilibrium does not exist. In this case, E identifies with high probability the 

type of M and she will enter the market if the signal is h  and she will stay out if the 

signal is l . The H type monopolist, who knows that his type is detected with high 

probability, has an incentive to deviate to his monopoly price, upsetting a pooling 

equilibrium. Let us next deal with the intermediate case, where α  is bounded away 

from 1
2  and 1. We show that the set of pooling equilibria is non-empty and the 

monopoly price of the L-type monopoly is the highest pooling equilibrium price. The 

decision of E is still entering if the signal is h  and staying out if the signal is l . To 

compare this result with the result obtained in the MR model, suppose first that prior 

to the completion of the R&D project, the expected payoff of E from entering the 

market is positive. Then, contrary to our model, no pooling equilibrium exists in the 

MR model. Otherwise, E in a pooling equilibrium enters the market expecting positive 

profit and, hence, both types of M are best off with their monopoly prices, upsetting a 

pooling equilibrium. In the game ( )G α  where α  is bounded away from 1, M of type 

H knows that with significant probability E will obtain the wrong signal l  and will 

stay out. Hence, H succeeds to fool E about his type with significant probability. 

However, the precision α  of the IS should not be too low. Otherwise, E will not trust 

the signal of the IS and she will enter the market whether the signal is h  or l . In this 

case, the two types of M are best off with their monopoly prices, upsetting a pooling 

equilibrium. 

Note that in the MR model the entrant never enters in a pooling equilibrium. Hence, 

the use of the IS with high probability increases competition in pooling equilibrium. 

The entrant enters the market for intermediate levels of α  if the signal is h . This is 

true even when pooling equilibrium does not exist in the MR model. From this point of 

view, spying on incumbent firms increases competition with high probability.  

This paper is related to Perea and Swinkels (1999) and Ho (2007, 2008) since they also 

consider espionage in the context of asymmetric information. However, in the present 

model the IS is not a decision maker who can act strategically as in Perea and Swinkels 

(1999) and Ho (2007, 2008). The paper is also related to Sakai (1985) since he considers 
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two firms and one objective of the information gathering activity is, like in our model, 

the cost structure of the opponent firm. However, unlike us, the paper considers that 

both firms know neither the costs of their opponent nor their own costs. 

Another related paper is Bagwell and Ramey (1988). They extend the MR model by 

allowing the incumbent to signal his costs with both price and advertisements. Hence, 

while in this paper both signals are sent by the incumbent, in our model he only signals 

his costs by the price, the other signal is generated by the IS operated by the entrant. 

Bagwell (2007) extends Bagwell and Ramey (1988) and considers a more general game 

in which the incumbent has two dimensions of private information, his costs and his 

level of patience1. 

The contribution of this paper is to extend the MR model to the case where the 

potential entrant has an access to an intelligence system to better detect the cost 

structure of the cost structure of the monopolist. Assuming that the precision α  of the 

IS is common knowledge, we show that spying on incumbent firms increases 

competition with high probability.    

The remainder of the paper is organized as follows. Section 2 sets out the model.  The 

strategy of E is presented in Section 3. Section 4 analyzes separating equilibria of the 

game. Pooling equilibria is analyzed in Section 5. Section 6 concludes the paper. Most 

proofs of the results are presented in the Appendix.             

 

2. The Model. 

We start with the benchmark case of the limit price model of MR. Their game, which is 

denoted MRG , consists of a monopoly M and a potential entrant E. The cost function of 

M is a private information and it can be of two types: L (low cost) and H (high cost). A 

potential entrant, E, assigns probability µ  that M is of type H. In the first period M 

chooses a price as a function of his type. The price serves as a signal for E, who then 

decides whether to enter the market or stay out. If E enters, she incurs an entry cost K . 

In the second period, if E enters, E and M compete in the market.  

                                                           
1 For other extensions of MR model see Albaek and Overgaard (1992a, 1992b), Bagwell (1992), 

Bagwell and Ramey (1990, 1991), Harrington (1986, 1987) and Linnemer (1998). 
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The form of competition (Cournot, Bertrand or other) is commonly known and once E 

enters, the outcome of the competition is assumed to be uniquely determined. By 

confining the analysis to sequential equilibria, the strategic interaction takes place only 

in the first period. 

The strategy of the t-type monopoly is a first period price tp  for { },t H L∈ . The 

strategy of E is assumed to be of the form 

( ) " ",

" ",E

Stay out p p
p

Enter p p
σ

≤
=  >

 

where the threshold p  is the choice of E.  

Let ( )Q p  be the demand function and ( )tC q  be the cost function of the t-type 

monopoly. 

Let HD  and LD  be the duopoly profits of the H-type and the L-type monopolists, 

respectively. For short we denote by H and L the H-type and the L-type monopolists, 

respectively. Let ( )H pΠ  be the profit of H and let ( )L pΠ  be the profit of L when they 

set the price p  and when E does not enter. Denote by ( )ED H  and ( )ED L  the 

duopoly profits of E when she competes with H and L respectively. Denote by M
Hp  and 

M
Lp  the monopoly prices of H and L respectively (and by M

Hq  and M
Lq  the monopoly 

quantities). Finally, let p̂  and 0p  be s.t. 

( )ˆH Hp DΠ =  and ˆ M
Hp p<  

and 

( )0L Lp DΠ =  and 0
M
Lp p< . 

See Figures 1 and 2 below. 
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Figure 1 

 

Figure 2 

Assumptions 

1. ( ) ( ) 0E ED L K L− ≡ ∆ <  and ( ) ( ) 0E ED H K H− ≡ ∆ > . 

2. ( )t pΠ , { },t H L∈ , is increasing in p  whenever M
tp p≤  and is decreasing in 

p  whenever M
tp p≥ . 

3. ( ) ( )M M
L L L H H Hp D p D∏ − > ∏ − . Namely, L loses from entry more than H.  

4. The cost functions ( )tC x , { },t H L∈ , are differentiable , ( ) ( )H LC q C q′ ′>  and 

( ) ( )0 0H LC C≥ . 

5. ( )Q p  is differentiable and ( ) 0Q p′ <  for all 0p ≥ . 
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6. All the parameters of the model and the above five assumptions are commonly 

known. 

Lemma 1.  (i) ( ) ( )L Hp p∏ − ∏  decreases in p . 

 (ii) M M
H Lp p> . 

 (iii) 0p̂ p> . 

Proof: Appears in the Appendix. 

Let Hp  and Lp  be the equilibrium strategies of H an L respectively. In a separating 

equilibrium H Lp p≠ , and in a pooling equilibrium *
H Lp p p= = . 

Propositions 1 and 2 below are due to Milgrom and Roberts (1982) and they 

characterize the separating and pooling equilibrium respectively for the case where E 

does not operate an IS on M. 

Proposition 1 (Milgrom and Roberts (1982)). The set of sequential separating equilibria 

MRSSE  in MRG  is non-empty and 

( ) ( ){ }0 ˆ, , , , min ,M M
MR H L H H L L LSSE p p p p p p p p p p p= = = ≤ ≤  

Remark: By Lemma 1, 0p̂ p>  and MRSSE  is non-empty. 

Proposition 2 (Milgrom and Roberts (1982)). The set of all sequential pooling equilibria 

in MRG  , ( ), ,H Lp p pσ = , is characterized by 

(i) *
H Lp p p p= = =  

and 

(ii) *ˆ M
Lp p p≤ ≤  

Our goal is to extend the MR results to the case where E uses an Intelligence System 

(IS) to spy on M to better detect his type. Denote by ( )G α  the game that extends MRG  

to allow espionage activity and where the Intelligence System operated by E is of 

precision α , 1 12 α≤ ≤ . 

The game ( )G α  is a three-stage game. In the first stage M sets a price and the IS sends 

a signal, h  or l . In the second stage, E who observes both the price set by M and the 

signal sent by the IS, decides whether or not to enter the market. Finally, in the third 
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stage, if E enters, M and E compete in the market. As mentioned above, the third stage 

competition is assumed to generate a unique equilibrium outcome 

( ) ( )( ), , ,H L E ED D D H D L  if E enters and ( ) ( )( ),M M
H H L Lp pΠ Π  if E does not enter. 

It is assumed that Assumptions 1-6 hold and, in addition, α  is commonly known. 

 

3. The Strategy of E in ( )G α . 

Given α , for every pair of signals ( ),s p , { },s h l∈ , p +∈ℝ , let ( ),Prob H s p  and 

( ) ( ), 1 ,Prob L s p Prob H s p= −  be the off equilibrium probability that E assigns to the 

event that M is of type H and of type L, respectively. 

It is assumed that, conditional on the type of M, the signals are mutually independent. 

Namely, M chooses the price p  independently of the choice of the IS. Nevertheless, 

the signals p  and s  are correlated. If E observes a very high price, then it is more 

likely that she will observe the signal h . If however E observes a low price, it is more 

likely that she will observe the signal l .  

Hence, the off equilibrium probability that E assigns to the types of M is  

( ) ( ) ( )
( ) ( ) ( ) ( )

,
,

, ,

Prob h p H Prob H
Prob H h p

Prob h p H Prob H Prob h p L Prob L
=

+
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

Prob h H Prob p H Prob H

Prob h H Prob p H Prob H Prob h L Prob p L Prob L
=

+
 

Equivalently, 

( ) ( )
( ) ( )( ) ( ),

1 1

f p H
Prob H h p

f p H f p L

µα
µα µ α

=
+ − −

                                           (1) 

Similarly, 

( ) ( ) ( )
( ) ( ) ( ) ( )

1
,

1 1

f p H
Prob H l p

f p H f p L

µ α
µ α µ α

−
=

− + −
                                           (2) 

where ( )f p t  is the (density) probability that E assigns to the event that M of type t , 

{ },t H L∈  sends the signal p .  
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In a pure strategy equilibrium, if H assigns probability 1 to the event that Hp p= , then 

( ) 1Hf p H =  and ( ) 0f p H =  if Hp p≠ . In this case, ( )f p H  is identified with the 

probability that H selects p . Similarly, ( ) 1Lf p L =  and ( ) 0f p L = , Lp p∀ ≠ . Hence, 

for Hp p≠  and Lp p≠  (1) and (2) are not well defined for { },H Lp p p∉  since the 

numerators and denominators are zero. 

Using the notion of sequential equilibrium, we approach ( )f p t  by a sequence 

( )( )
1n n

f p t
∞

=
, such that ( ) 0nf p t >  and ( ) ( )lim n

n
f p t f p t

→∞
=  for all p +∈ℝ . Let  

                              ( ) ( )
( ) ( )( ) ( ),

1 1
n

n

n n

f p H
Prob H h p

f p H f p L

µα
µα µ α

≡
+ − −

                       (3) 

                               ( ) ( ) ( )
( ) ( ) ( ) ( )

1
,

1 1
n

n

n n

f p H
Prob H l p

f p H f p L

µ α
µ α µ α

−
≡

− + −
                      (4) 

Now ( ),nProb H h p  is well defined for all p +∈ℝ  and (1) can be modified to be 

( ) ( )
( ) ( )( ) ( ), lim

1 1
n

n
n n

f p H
Prob H h p

f p H f p L

µα
µα µ α→∞

≡
+ − −

 

We modify (2) in the same way. Note that different sequences of ( )( )
1n n

f p t
∞

=
 generate 

different conditional probabilities ( ),Prob t s p , { },t H L∈ , { },s h l∈ , p +∈ℝ . 

Let ( ),E s pΠ  be the expected payoff of E given her on and off equilibrium beliefs, 

namely 

                                 ( ) ( ) ( ) ( ) ( ), , ,E E Es p Prob H s p H Prob L s p LΠ ≡ ∆ + ∆                   (5) 

In a sequential equilibrium, if ( ), 0E s pΠ < , E will not enter the market and if 

( ), 0E s pΠ > , E will enter. To simplify the analysis we assume that E stays out also 

when ( ), 0E s pΠ = . Namely, E stays out if and only if she observes ( ),s p  such that 

( ) ( ) ( ) ( ) ( ), , , 0E E Es p Prob H s p H Prob L s p LΠ ≡ ∆ + ∆ ≤  

Assumption 7.  

(1) For each { },t H L∈  and each n , ( )nf p t  is differentiable in p  for all 0p ≥ .  
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(2) Let  

( ) ( )
( )

n
n

n

f p H
g p

f p L
=  

Then ( )ng p  is increasing in n  for each p , and is increasing in p  for each n . 

Furthermore, for every n , ( )
0

lim 0n
p

g p
→

=  and ( )lim n
p

g p
→∞

= ∞ .   

(3) Let ( ) ( )lim n
n

g p g p
→∞

= . Then, ( )g p  is continuous in p . 

Lemma 2. (i) For each { },s h l∈  and { },t H L∈ , ( ),Prob t s p  is continuous in p  and      

( ),Prob H s p  is non-decreasing in p , 0p ≥ . 

(ii) For every 0p ≥ , ( ) ( ), ,Prob H h p Prob H l p> . 

(iii) Let ( ){ }0 , 0s EJ p s p= ≥ Π ≤ . Then, sJ  and \ sJ+ℝ  are both non-empty 

sets.  

Proof:  

(i) By (3), 

( )
( )
( )

( )
( ) ( )( )

,

1 1

n

n

n
n

n

f p H

f p L
Prob H h p

f p H

f p L

µα

µα µ α
=

+ − −
 

Hence, 

                                      ( ) ( )
( ) ( )( ),

1 1

g p
Prob H h p

g p

µα
µα µ α

=
+ − −

                                      (6) 

and by Assumption 7, ( ),Prob H h p  is continuous in p . 

The proof that ( ),Prob H l p  is continuous is similarly derived by (4). 

Since ( ) ( ), 1 ,Prob L s p Prob H s p= − , then ( ),Prob L s p  is also continuous.   

Next note that ( )g p  is non-decreasing  in p  since ( )ng p  is increasing in p  for all n . 

It is easy to verify by (6) that ( ), 0Prob H h p
p

∂ ≥
∂

 iff ( ) 0g p′ ≥  and thus 
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( ),Prob H h p  is non-decreasing in p . The proof that ( ),Prob H l p  is non-decreasing 

is similar. 

(ii) Let 

( ) ( )
( )

,

,
n

n

n

Prob H h p
x p

Prob H l p
=  

By (3) and (4), 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

2

1 1
11 1

1 1

1 1 1
1

1 1

1 2 1

1 1 1

1 2 1

1 1 1

n n

n

n n

n n

n n

n

n n

n

f p H f p L
x p

f p H f p L

f p L f p L

f p H f p L

f p L

f p H f p L

g p

α µ α µ α
α
µα µ α

αµ µ α
α

µα µ α

µ α
α µα µ α

µ α
α µα µ α

 − + − −− = −
+ − −

− − − −
−=

+ − −

− −
=

 − + − − 

− −
=

− + − −  

 

Hence,  

( ) ( )( )
( ) ( ) ( ) ( )

1 2 1
lim 1 0

1 1 1n
n

x p
g p

µ α
α µα µ α→∞

− −
− = >   − + − −  

 

Hence ( )lim 1n
n

x p
→∞

>  and, consequently, for every 0p ≥ , 

                                                    ( ) ( ), ,Prob H h p Prob H l p>                                            (7) 

(iii) By (5), 

                         

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

, , ,

,
,

,

E E E

E E

s p Prob H s p H Prob L s p L

Prob H s p
Prob L s p H L

Prob L s p

Π = ∆ + ∆

 
= ∆ + ∆ 

  

                      (8) 

Let s h= . For every p , 

( )
( )

( )
( )( ) ( ) ( )( ) ( )

,
lim

1 1, 1 1
n

n
n

Prob H h p f p H
g p

Prob L h p f p L

µα µα
µ αµ α→∞

= =
− −− −
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We claim that ( ) 0g p →  as 0p → . This follows by Dini’s theorem, as ( )ng p  is 

increasing in n , ( )ng p  is continuous in p  and ( )g p  is also continuous. Hence, for 

every 0δ > , ( ) ( )lim n
n

g p g p
→∞

=  uniformly on [ ]0,δ . Since for every n , ( ) 0ng p →  as 

0p → , we have ( ) 0g p →  as 0p → . Consequently, 

                                                 
( )
( )

,
lim 0

,p

Prob H h p

Prob L h p
= , as 0p →                                           (9) 

Inequality (9) holds also when h  is replaced by l  (the proof is similar). 

Next, let us show that ( ), 0Prob L h p >  for small p . 

                           

( ) ( )( ) ( )
( ) ( ) ( ) ( )

( )
( )( )

1 1
,

1 1

1

1
1 1

n

n
n n

n

f p L
Prob L h p

f p H f p L

g p

µ α
µα µ α

µα
µ α

− −
=

+ − −

=
+

− −

                         (10) 

Again, since ( ) ( )ng p g p→  as n → ∞  uniformly in any interval [ ]0,δ , 0δ > , and 

since ( ) 0g p →  as 0p → , 

( ) ( ), lim , 1n
n

Prob L h p Prob L h p= → , as 0p →  

In particular, ( ), 0Prob L h p >  for p  sufficiently small. In a similar way, we can prove 

that ( ), 0Prob L l p >  for p  sufficiently small. 

Now, (8), (9) and the fact that ( ) 0E L∆ <  and ( ), 0Prob L s p >  for small p , imply that 

for sufficiently small p , ( ), 0E s pΠ <  and sJ ≠ ∅ . 

Let us show that for p sufficiently large, ( ), 0E s pΠ > . We use the following claim. 

Claim 1.  ( )lim , 0
p

Prob L s p =  as p → ∞ . 

Proof: Let 1n =  and s h= . By Assumption 7.2, 
( )
( )

1

1

lim
f p H

f p L
= ∞ . By (10), 

( )1 , 0Prob L h p →  as p → ∞  

Hence, for every 0ε > , there exists P  s.t. for all p P> , 
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( )1 ,Prob L h p ε<  

By (3), 

( )
( ) ( ) ( )

( )

,

1 1
n

n

n

Prob H h p
f p L

f p H

µα

µα µ α
=

+ − −
 

By Assumption 7.2, ( ),nProb H h p  is increasing in n  and, hence, ( ),nProb L h p  is 

decreasing in n  for every p . Thus, for all p P> , 

( ) ( )1, ,nProb L h p Prob L h p ε< <  

Hence, for every 0ε >  and for all p P> , 

( ) ( ), lim ,n
n

Prob L h p Prob L h p ε
→∞

= ≤  

implying that  

( )lim , 0
p

Prob L h p
→∞

=  

The proof that ( ), 0
p

Prob L l p = , as p → ∞  is similarly derived. 

� 

Claim 1 together with (5) imply that for p sufficiently large, ( ), 0E s pΠ > , and the 

proof of Lemma 2 is completed. 

� 

By part (i) of Lemma 2 and by (5), ( ),E s pΠ  is continuous and non-decreasing in p  

(this follows from the fact that ( ),Prob H s p  is continuous and non-decreasing in p , 

( ) 0E H∆ > , ( ) ( ), 1 ,Prob L s p Prob H s p= −  and ( ) 0E L∆ < ). 

By part (iii) of Lemma 2, ( ), 0E s pΠ <  for small p  and ( ), 0E s pΠ >  for sufficiently 

large p . Let 

( ){ }max 0 , 0h Ep p h p= ≥ Π ≤  

( ){ }max 0 , 0l Ep p l p= ≥ Π ≤  

By the continuity of ( ),E s pΠ  in p , 
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                                                       ( ) ( ), , 0E h E lh p l pΠ = Π =                                        (11) 

and E enters the market iff she observes either ( ),h p  s.t. hp p>  or ( ),l p  s.t. lp p> . 

By (7) it is easy to verify that  

                                                            ( ) ( ), ,E Eh p l pΠ > Π                                                 (12) 

By (11) and (12) 

( ) ( ) ( ), , ,E l E h E hl p h p l pΠ = Π > Π  

and since ( ),E s pΠ  is non-decreasing in p , we have l hp p> .  

We conclude that the decision rule of E when she observes the pair of signals ( ),s p  is 

given by Figure 3 below. 

 

Figure 3 

We summarize the above in the following lemma. 

Lemma 3. Suppose that Assumption 1 holds. Then, any beliefs of E which satisfy 

Assumption 7, uniquely determine hp  and lp , h lp p< , s.t. in every sequential 

equilibrium with these beliefs, E enters the market iff she observes the signal ( ),h p  

with hp p>  or the signal ( ),l p  with lp p> .  

Our next goal is to characterize the sequential equilibrium of ( )G α  given the above 

decision rule of E. We start with separating equilibria. 

 

4. Separating  Equilibria. 

In a separating equilibrium H Lp p≠  and E identifies with probability 1 the type of M. 

Hence, E enters the market when observing the price Hp  irrespective of the signal of 
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the IS, and E stays out when observing Lp , again irrespective of s . Therefore, H lp p>  

and L hp p≤ . 

Notation: Let ( )tp αɶ  be the (unique) solution in p  of the following equation, 

( ) ( ) ( )1M
t t t tp p Dα αΠ = Π + − , { },t H L∈  

(see Figure 4) 

 

Figure 4 

And let ( )tp α⌢  be the unique solution in p  of the following equation, 

( ) ( ) ( )1 M
t t t tp p Dα αΠ = − Π +  

(see Figure 5) 

 

Figure 5 

where ( ) ˆp t p=  if t H=  and ( ) 0p t p=  if t L= . 
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The following proposition characterizes the sequential separating equilibrium of 

( )G α . 

Proposition 3. Consider the game ( )G α  for 1 12 α< < , and let SSE  be the set of all 

sequential separating equilibrium points of ( )G α . Let tSSE  be the set of all 

equilibrium prices of the t-type monopolist in SSE . Then, 

(1) ( ){ }0 ˆmin ,M
L L L LSSE p p p p p= ≤ ≤  and { }M

H HSSE p= . 

(2) Let L Lp SSE∈ . If M
L Lp p< , then L hp p= . If M

L Lp p= , then M
L hp p≤ . 

(3) The set SSE  coincides with MRSSE , the set of all sequential separating 

equilibrium points of MRG . 

(4) Let L Lp SSE∈  and suppose that M
L Lp p< . Let hp  and p  be the equilibrium 

cutoff price for entry in ( )G α  and in MRG  respectively. Then, hp p= . 

(5) Let L Lp SSE∈  and suppose that M
L Lp p< . Then the equilibrium strategy of E in 

( )G α  coincides with the equilibrium strategy of E in MRG  for all ( ],L h lp p p∉ . 

If ( ],L h lp p p∈ , then E in ( )G α  enters the market with positive probability 

(which is α  if M is of type H and 1 α−  if M is of type L) and stays out for sure 

in MRG . 

Proof: Appears in the Appendix. 

Part (5) of Proposition 3 asserts that in ( )G α  E is less inclined to enter the market. For 

all prices below hp p=  E stays out of the market in both games MRG  and ( )G α . For 

prices above lp , E enters for sure in both these games. But for prices p , h lp p p< ≤ , E 

in ( )G α  enters the market iff the signal sent by the IS is h . In contrast, E in this region 

enters the market for sure in the game MRG . The difference between ( )G α  and MRG  

with regard to sequential separating equilibrium is only in the behavior of E off the 

equilibrium path. 
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5. Pooling Equilibrium. 

By pooling equilibrium we refer to triples of the form ( ), ,E H Ls p pσ =  where Es  is the 

strategy of E and *
H Lp p p= ≡ .  

Given the signal l  of the IS, the expected payoff of E is 

( ) ( ) ( ) ( ) ( )E E El Prob H l H Prob L l LαΠ ≡ ∆ + ∆  

Equivalently, 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )1 1

1 1 1 1E E El H L
µ α µ α

α
µ α µ α µ α µ α

− −
Π = ∆ + ∆

− + − − + −
 

Hence, if the IS sends the signal l , E does not enter the market when observing the 

price *p  iff 

                                                              ( ) 0E l αΠ ≤                                                                (13) 

Let  

                                                 
( )

( ) ( ) ( )1
E

l
E E

H

H L

µ
α

µ µ
∆

=
∆ − − ∆

                                             (14) 

Note that (13) holds and E does not enter iff lα α≥ . 

Since ( ) 0E L∆ < , 0 1lα< <  and 1
2lα <  iff 

                                                     ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ <                                         (15) 

Thus, for 1 12 α< < , E does not enter iff (15) holds. 

Suppose next that the IS sends the signal h . Then the expected payoff of E is 

( ) ( ) ( ) ( ) ( )E E Eh Prob H h H Prob L h LαΠ ≡ ∆ + ∆  

Equivalently, 

( ) ( )( ) ( ) ( )( )
( )( ) ( )1 1

1 1 1 1E E Eh H L
µ αµαα

µα µ α µα µ α
− −

Π = ∆ + ∆
+ − − + − −

 

Hence, if the IS sends the signal h , E does not enter the market when observing the 

price *p  iff 

( ) 0E h αΠ ≤  

Let 
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( ) ( )

( ) ( ) ( )
1

1
E

h
E E

L

H L

µ
α

µ µ
− − ∆

=
∆ − − ∆

                                             (16) 

Note that ( ) 0E h αΠ ≤  iff hα α≤ . 

Since ( ) 0E L∆ < , 0 1hα< < . Note that 1
2hα >  iff (15) holds. 

Corollary 1. Suppose that 1 12 α< <  and  

( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ <  

Then E stays out iff she observes the signal l  or if hα α≤ . 

In other words, if (15) holds, the entrant enters the market if and only if the signal is h  

and hα α> . Let  

                                          
( )
( )

( ) ( )
( ) ( )

ˆ

ˆ

M M
H L H H L H

M M
H H H H H H

p D p p

p D p p
δ

Π − Π − Π
= =

Π − Π − Π
                                (17) 

Clearly 0 1δ< < . 

 

The following proposition characterizes the pooling equilibria of the game ( )G α . 

Proposition 4. Consider the game ( )G α , where 1 12 α< < . Let SPEP  be the set of all 

sequential pooling equilibrium prices and SPE  the set of all sequential pooling 

equilibria of ( )G α .  

(1) If ˆM
Lp p≤ , then SPE = ∅ , unless ˆM

Lp p=  and hα α≤ . In this case 

{ }M
LSPEP p= .  

(2) Suppose that ˆM
Lp p>  and ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < . Then, 

(i) For hα α≤ , in every equilibrium in SPE , E stays out irrespective of the 

signal s   and ˆ , M
LSPEP p p =   . The set SPEP  coincides with the set MRSPEP  of 

all sequential pooling equilibrium prices of the game MRG . 

(ii) If hα δ< , then for all α , hα α δ< ≤ , E enters iff s h= , SPE ≠ ∅  and 

( ) ( )( )max , , M
H L LSPEP p p pα α =  

⌢
ɶ . 
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(iii) For α δ> , SPE = ∅ . 

(3) Suppose that ˆM
Lp p>  and ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > . Then, 

(i) For lα α< , SPE = ∅ . 

(ii) If lα δ≤ , then for all α , lα α δ≤ ≤ , E enters iff s h= , SPE ≠ ∅  and 

( ) ( )( )max , , M
H L LSPEP p p pα α =  

⌢
ɶ . 

(iii) For α δ> , SPE = ∅ . 

(4) Suppose that ( )max ,l hδ α α< . Then SPE = ∅ 2. 

Proof: Appears in the Appendix.   

Proposition 4 asserts that sequential pooling equilibrium does not exist if either 

ˆM
Lp p<  or if α δ> . The first condition, ˆM

Lp p< , implies that the cost function of H is 

significantly higher than that of L. Even the duopoly price p̂ , when H competes with 

E, is above the monopoly price of L. In this case, it is too costly for H to mimick L and 

to fool E about his type. The other condition, α δ> , means that the IS is sufficiently 

accurate so that when E observes the signal h , she knows that the true type of M is H 

with high probability, and she is best off entering the market. In this case, H, who 

knows that his type is detected with high probability, has no reason to pool and he is 

best off charging the monopoly price M
Hp , upsetting the pooling equilibrium.   

For intermediate values of α  ( hα α δ< ≤  or lα α δ≤ ≤ ), the set of pooling equilibria 

is non-empty and the decision of E is to enter the market if and only if the signal sent 

by the IS is h . In this case, M of type H knows that α  is sufficiently low so with 

significant probability E will obtain the wrong signal l  and will stay out. However, we 

also need the precision α  to be not too low since, otherwise, E will not trust the signal 

and she will enter whether the signal is h  or l . But then, the two type monopolists are 

best off with their monopoly prices, upsetting a pooling equilibrium. 

Note that when α δ= , then ( ) ( )( ) ( )max , M
H L H Lp p p pα α α= =⌢
ɶ ɶ  and { }M

LSPEP p= . 

                                                           
2 It is easy to verify that if hδ α= , then SPE = ∅ . 
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Proposition 4 also asserts that if ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ >  (in which case h lα α< ) 

and if α  is relatively small ( lα α< ), then SPE = ∅ . Without the use of the IS, when 

the expected profit of the entrant is positive, pooling equilibrium does not exist since E 

will enter the market and both types of M are best off deviating to their monopoly 

price. Hence, the use of a relatively not accurate IS has no impact on this result.    

The relationship between δ  and hα  or lα  is not obvious and in general it is quite 

complex. But in light of part (3) of Proposition 4 it is important to shed a light on this 

relationship. We next analyze this relationship for the linear demand and linear cost 

functions case, assuming a Cournot competition if E enters the market. 

Suppose that p a Q= −  is the total demand function and suppose that the cost 

functions are given by 

( ) ( )L E LC q C q c q= =  

( )H HC q c q=  

where L Hc c< .  Proposition 5 summarizes the results of this linear model. 

Proposition 5. Consider the linear model and assume that, if entry occurs, E and M are 

engaged in a Cournot competition. (1) if ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , there exists K  

s.t. if 
5

2
L

H L

a c

c c

− >
−

 and if K K< , then hδ α>  and for every ( ],hα α δ∈  the set SPEP  is 

non-empty and contains M
Lp ; (2) if ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > , there exists Kɶ  s.t. if 

5

2
L

H L

a c

c c

− >
−

 and if K K≥ ɶ , then lδ α≥  and for every [ ],lα α δ∈  the set SPEP  is non-

empty and contains M
Lp .   

Remark: The nature of Proposition 5 essentially does not change if we replace Cournot 

competition by Bertrand competition. 

Proof: Appears in the Appendix.  

Proposition 5 asserts that in the linear model, if α  is not very accurate and the demand 

is not too small (it is sufficient that the demand intensity, a , exceeds 2.5 Hc ), then 
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( )max ,l hδ α α>  and M
Lp  is a sequential pooling equilibrium price. In particular 

SPEP ≠ ∅ .  

Finally, suppose that 
1 3 14

5
L

H L

a c

c c

− +≤
−

. Then it can be verified that, if 

( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , then SPEP = ∅  for all hα α> . Also if 

( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > , then SPEP = ∅  for all lα α≥ . 

 

6. Conclusion. 

In this paper we analyzed industrial espionage when a potential entrant, E, does not 

observe the outcome of the R&D project carried out by an incumbent monopolist with 

the aim to reduce his cost of production and deter E from entering the market. E 

develops an Intelligence System (IS) of precision α  that allows her to collect noisy 

information about the cost structure of M. Based on this information and the price that 

M charges for his product, E decides whether or not to enter the market. We assumed 

that α  is exogenously given and commonly known by both firms. 

We showed that the separating equilibria of our model are not affected by the spying 

activity of E. This is not very surprising since in a separating equilibrium E identifies 

the type of M with or without the use of the IS. The same result is obtained for pooling 

equilibria if the precision α  of the IS is sufficiently low to affect E’s decision of staying 

out. If α  is very accurate, then pooling equilibrium does not exist. For intermediate 

values of α  we find that pooling equilibrium exists and E enters the market if the IS 

tells her the cost of M is high. Hence, the use of the IS with high probability increases 

competition in pooling equilibrium. And, from this point of view, spying on incumbent 

firms increases competition with high probability.  

An interesting suggestion for further research might be to analyze the more realistic 

scenario where α  is the private information of E.  
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Appendix 

Proof of Lemma 1. 

(i) 

( ) ( ) ( )( ) ( )( )L H H Lp p C Q p C Q p∏ − ∏ = −  

( ) ( ) ( ) ( )( ) ( )( )L H H Lp p Q p C Q p C Q p
p

∂
 ′ ′ ′∏ − ∏ = −    ∂

 

By Assumptions 4 and 5 the right side is negative. 

(ii) 

( ) ( )
( ) ( )

M M M M M M
L L L L H H L H

M M M M M M
H H H H L L H L

p q C q p q C q

p q C q p q C q

− ≥ −

− ≥ −
 

Adding the two inequalities we have 

( ) ( ) ( ) ( )M M M M
H L L L H H L HC q C q C q C q− ≥ −  

By Assumption 4 we have that M M
L Hq q≥  and hence M M

L Hp p≤ . 

Let us show that M M
L Hp p< . If not, then M M

L Hp p= . Since the First Orden Condition 

(FOC) for M of type t is 

( )( ) ( )( ) ( )
( )0t

t

Q p
Q p C Q p p

p Q p

∂ ∏ ′= ↔ = +
′∂

 

the solution does not depend on t, namely ( )( ) ( )( )M M
L L H LC Q p C Q p′ ′= . But this 

contradicts Assumption 4. 

(iii) 

By Assumption 3, 

( ) ( )M M
L L L H H Hp D p D∏ − > ∏ −  

Note that ( )L L oD p= ∏  and ( )ˆH HD p= ∏ . Hence this inequality can be written as 

( ) ( ) ( ) ( )0 ˆM M
L L L H H Hp p p p∏ − ∏ > ∏ − ∏  

Thus, 

( ) ( ) ( ) ( ) ( ) ( )0

0

ˆM M M M
L L H L H L H H L Hp p p p p p

<

∏ − ∏ + ∏ − ∏ > ∏ − ∏
���������

 

Hence, 
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                                             ( ) ( ) ( ) ( )0 ˆM M
L L H L L Hp p p p∏ − ∏ > ∏ − ∏                              (A1) 

Since 0
M
Lp p≤ , we have by section (i) of Lemma 1 

( ) ( ) ( ) ( )0 0
M M

L H L L H Lp p p p∏ − ∏ > ∏ − ∏  

This together with (A1) imply that 

( ) ( )0ˆH Hp p∏ > ∏  

But 0
M
Hp p<  and ˆ M

Hp p<  and by Assumption 2 0 ˆp p< . 

� 

Proof of Proposition 3. 

The H-type monopoly, knowing that entry will occur is best off choosing the price M
Hp . 

Thus { }M
H HSSE p=  and E enters for sure when she observes the price M

Hp . In 

particular, M
H lp p> . 

 

Figure 6 

Next let us show that ( ){ }0 ˆmin ,M
L L L LSSE p p p p p= ≤ ≤  for all α , 1 12 α< < . We 

consider two cases. 

Case 1: Suppose first that ˆM
Lp p≤ . We show that M

L Lp p=  can be supported as a 

separating equilibrium price. Let hp  and lp  be s.t. 

                                          ( )ˆM M
L L h l H Hp p p p p p pα= ≤ ≤ < ≤ <ɶ                                      (A2) 

To make sure that H has no incentive to deviate to either hp  or lp , the following two 

inequalities should hold 

                                          ( ) ( ) ( )M M
H H H H h H Hp D p pΠ + ≥ Π + Π                                       (A3) 

and 

                                 ( ) ( ) ( ) ( )1M M
H H H H l H H Hp D p D pα αΠ + ≥ Π + + − Π                        (A4) 
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These two are equivalent to 

( ) ( )ˆH H H hp D pΠ = ≥ Π  

and 

( ) ( ) ( ) ( )( )1M
H l H H H H Hp p D pα α αΠ ≤ Π + − = Π ɶ  

(see Figure 4). Thus ˆhp p≤  and ( )l Hp p α≤ ɶ . 

By (A2) the two incentive compatibility constraints of H are satisfied and hence 

M
L Lp SSE∈  

Next let Lp  be s.t. 0
M

L Lp p p≤ < . Let us show that we can support Lp  as a separtaing 

equilirium price. Let hp  and lp  be s.t. 

                                           ( )ˆM M
L h l L H Hp p p p p p pα= < < ≤ < <ɶ                                     (A5) 

Similarly to the previous case (A3) and (A4) must hold and thus ˆhp p≤  and 

( )l Hp p α≤ ɶ . 

Since ( )ˆM
L Hp p p α≤ < ɶ , by (A5) the two incentive compatibility constraints of H hold.  

Next, since M
L lp p> , there are two relevant incentive compatibility constraints for L 

                                              ( ) ( ) ( )M M
L L L L L L Lp p p DΠ + Π ≥ Π +                                      (A6) 

and 

                                ( ) ( ) ( ) ( ) ( )1M M
L L L L L l L L Lp p p p Dα αΠ + Π ≥ Π + Π + −                    (A7) 

(A6) and (A7) are equivalent to  

                                                        ( ) ( )0L L L Lp D pΠ ≥ = Π                                                (A8) 

and                                               

                                           ( ) ( ) ( ) ( )1 M
L L L l L L Lp p p Dα  Π ≥ Π − − Π −                            (A9) 

Since 0h Lp p p= ≥ , (A8) holds. As for (A9), it holds for every 1α < , provided that hp  

is sufficiently close to lp . Hence (A5) guarantees that, for all 1 12 α< < , L Lp SSE∈  

provided that L hp p= , lp  is sufficiently close to hp  and M
l Lp p< . 
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Case 2: Suppose next that ˆ M
Lp p<  and let Lp  be s.t. 0 ˆLp p p≤ ≤ . We will show that for 

all α , 1 12 α< < , L Lp SSE∈ . Let hp  and lp  be s.t. 

                                        ( )( )ˆ min ,M M
L h l L H Hp p p p p p pα= ≤ < < <ɶ                              (A10) 

As in (A3) and (A4), the incentive compatibility constraints of H are equivalent to 

ˆhp p≤  and ( )l Hp p α≤ ɶ . By (A10) the two incentive compatibility constraints of H are 

satisfied. 

Next, since M
L lp p> , in order for L not to deviate (A8) and (A9) must hold. Since 

0h Lp p p= ≥ , (A8) holds. Similar to Case 1, for every 1α < , (A9) holds if lp  is 

sufficiently close to hp . Hence (A10) guarantees that, for all 1 12 α< < , L Lp SSE∈  

provided that l hp p−  is sufficiently small and ( )( )min ,M
l L Hp p p α< ɶ . 

 

Cases 1 and 2 prove that any price L Lp SSE∈  if ( )0 ˆmin ,M
L Lp p p p≤ ≤ . Finally, we 

need to show that if ( )0 ˆ,min ,M
L Lp p p p ∉   , then L Lp SSE∉ . 

Let ( )0 ˆ,min ,M
LQ p p p =   . 

Case A: ˆM
Lp p≤ . 

Subcase A.1. Suppose that ˆM
L hp p p≤ < . There is no separating equilibrium in this case 

since by (A3) ˆhp p≤ , a contradiction. 

Subcase A.2. Suppose that ˆM
L hp p p≤ ≤ . Then by Assumption 2 L is best off choosing 

M
L Lp p=  and M

Lp Q∈ . 

Subcase A.3. Suppose that M
h L lp p p< ≤ . Since M

L h Lp p p≤ < , by Assumption 2 L is 

best off choosing M
L h Lp p p= < .  

From the incentive compatibility constraint of L we have 

                             ( ) ( ) ( ) ( ) ( )1M M M
L h L L L L L L Lp p p p Dα αΠ + Π ≥ Π + Π + −                   (A11) 

or 

 ( ) ( ) ( ) ( )( )1M
L h L L L L Lp p D pα α αΠ ≥ Π + − = Π ɶ  
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(see Figure 4). Thus ( )h Lp p α≥ ɶ . Consequently,  

( )0
M

L L h Lp p p p pα< ≤ = <ɶ  

and hence Lp Q∈ . 

Subcase A.4. Suppose that M
l Lp p< . Similarly to the previous case, L is best off 

choosing M
L h Lp p p= < .  

In order for L not to deviate, (A8) must hold. Equivalently, 0hp p≥ . Hence  

0
M

L h Lp p p p≤ = <  

and Lp Q∈ . 

Case B: ˆ M
Lp p< . 

Subcase B.1. Suppose that M
L hp p≤ . There is no separating equilibrium in this case 

since by (A3) ˆhp p≤ , a contradiction. 

Subcase B.2. Suppose that M
h L lp p p< ≤ . Then, L is best off choosing L hp p= .  

By (A3), in order for H not to deviate, ˆhp p≤  must hold. By (A11), L has no incentive 

to deviate if ( )h Lp p α≥ ɶ . Consequently, 

( )0 ˆL L hp p p p pα< ≤ = ≤ɶ  

and Lp Q∈ . 

Subcase B.3. Suppose that M
l Lp p< . Again, L is best off choosing L hp p=  and ˆhp p≤  

must hold. To guarantee that L has no incentive to deviate, 0hp p≥  must hold (see 

(A8)). Hence 

0 ˆL hp p p p≤ = ≤  

and Lp Q∈ . 

� 

Proof of Proposition 4. 

Let ( ){ }0l EA lα α= Π ≤  and ( ){ }0h EA hα α= Π ≤ . 
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Case 1. ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < . 

In this case 1 12l hα α< < < . Hence, lα α>  and by Corollary 1, lAα ∈  α∀ , 

1 12 α< < . Namely, if the IS sends the signal l , E does not enter the market when 

observing the price *p  irrespective the precision α  of the IS.  

Subcase 1.1. 1
2 hα α< ≤ . 

In this case l hA Aα ∈ ∩ . Namely, E does not enter the market when observing the price 

*p  irrespective of the signal sent by the IS. 

Let us characterize the pooling equilibria in this case. We start with a lemma. 

Lemma 4. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ <  and 1
2 hα α< ≤ . Then in every 

pooling equilibrium 

(i) M
H hp p>  

(ii) *
lp p≤  

Proof: (i) Suppose to the contrary that M
H hp p≤ . Then also M

L hp p<  and E stays out 

whether she observes M
Lp  or M

Hp . Hence, both types of M will set their (different) 

monopoly prices, a contradiction. 

(ii) Suppose to the contrary that *
lp p> . Then at least one type of M has an 

incentive to deviate. Indeed if M
L lp p>  and * M

Lp p= , the H-type monopoly is better off 

deviating to M
Hp  or  lp  depending on α  and the parameters of the model. Similarly, if 

M
L lp p>  and * M

Hp p=  the L-type monopoly is better off deviating to M
Lp  or  lp  

depending on α  and the parameters of the model. Finally, if M
L lp p≤ , at least one type 

of M has an incentive to deviate to his monopoly price, a contradiction.  

� 
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Lemma 5. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1
2 hα α< ≤  and ˆM

Lp p< . Then 

SPE = ∅ . 

Proof: Suppose to the contrary that *p SPEP∈  and suppose that hp  and lp  are the 

equilibrium thresholds of E. We consider six cases. 

Case 1. Suppose that M
L hp p≤ . First note that in this case * M

Lp p= . Next observe that 

the incentive compatibility constraint of H  

                                             ( ) ( ) ( )M M M
H L H H H H Hp p p DΠ + Π ≥ Π +                                 (A12) 

requiring that H has no incentive to deviate to M
Hp , is equivalent to 

( ) ( )ˆM
H L H Hp D pΠ ≥ = Π  

and hence ˆM
Lp p≥  (see Figure 4), a contradiction.  

 

Case 2. Suppose that M M
h L H lp p p p< < ≤ .  

In this case *
hp p≤  (otherwise, by Lemma 4, ( ]* ,h lp p p∈  and at least one type of M  

has an incentive to deviate to his monopoly price). Therefore *
hp p=  must hold. 

The incentive compatibility constraint of H is, 

                             ( ) ( ) ( ) ( ) ( )1M M M
H h H H H H H H Hp p p D pα αΠ + Π ≥ Π + + − Π               (A13) 

Equivalently, 

( ) ( ) ( ) ( )( )1 M
H h H H H H Hp D p pα α αΠ ≥ + − Π = Π ⌢

 

or ( ) M
H h Hp p pα ≤ <⌢

 (see Figure 5). But ( )ˆM
L Hp p p α< < ⌢  and in particular M

L hp p< , a 

contradiction. 

Case 3. Suppose that * M M
h L l Hp p p p p≤ < ≤ < . 

In this case again *
hp p= . The incentive compatibility constraint of H is 

                                               ( ) ( ) ( )M M
H h H H H H Hp p p DΠ + Π ≥ Π +                                 (A14) 

Equivalently, 

( ) ( )ˆH h H Hp D pΠ ≥ = Π  



 

 

32 

 

or ˆ hp p≤  (see Figure 4). But we deal with the case where ˆM
h Lp p p< < , a 

contradiction. 

Case 4. Suppose that M M
h L l Hp p p p< ≤ <  and ( ]* ,h lp p p∈ . 

In this case * M
Lp p= . In order for H not to deviate from M

Lp  to M
Hp , the inequality 

                              ( ) ( ) ( ) ( )1M M M
H L H H H H H Hp D p p Dα αΠ + + − Π ≥ Π +                    (A15) 

should hold. Equivalently, 

( )
( )

( ) ( )
( ) ( )

ˆ
0

ˆ

M M
H L H H L H

M M
H H H H H H

p D p p

p D p p
α δ

Π − Π − Π
≤ = ≡ <

Π − Π − Π
 

a contradiction. 

Case 5. Suppose that * M M
h l L Hp p p p p≤ < < < . 

In this case *
hp p=  and (A14) guarantees that H has no incentive to deviate from *p  

to M
Hp . By (A14), ˆ M

h Lp p p≤ < , a contradiction. 

Case 6. Suppose that M M
h l L Hp p p p< < <  and ( ]* ,h lp p p∈ . 

Clearly in this case *
lp p=  and E follows the signal sent by the IS. 

In order for H not to deviate from lp  to M
Hp , the inequality 

                                ( ) ( ) ( ) ( )1 M M
H l H H H H H Hp D p p Dα αΠ + + − Π ≥ Π +                       (A16) 

must hold. Equivalently, 

( ) ( ) ( ) ( )( )1M
H l H H H H Hp p D pα α αΠ ≥ Π + − = Π ɶ  

and ( ) M
H l Hp p pα ≤ <ɶ . But ( )ˆM

L Hp p p α< < ɶ , a contradiction. We conclude that if 

ˆM
Lp p< , then SPE = ∅ . 

� 

We next deal with the case where ˆ M
Lp p< . We need to show that 

{ }* *ˆ M
LSPEP p p p p= ≤ ≤  for all α , 1 12 α< < .  

First we prove the following lemma. 
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Lemma 6. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1
2 hα α< ≤  and ˆ M

Lp p< . Then 

{ }* *ˆ M
Lp p p p SPEP≤ ≤ ⊆  

Proof: We start by showing that M
Lp SPEP∈ . 

Let hp  and lp  be s.t. 

                                                         * M M
h L l Hp p p p p= = < <                                             (A17) 

Clearly L is best off with M
Lp  and has no incentive to deviate. 

The two incentive compatibility constraints of H in this case are: 

(i) H has no incentive to deviate from M
Lp  to lp . Namely, 

                          ( ) ( ) ( ) ( ) ( )1M M M
H L H H H l H H Hp p p D pα αΠ + Π ≥ Π + + − Π                   (A18) 

Equivalently, 

( ) ( ) ( )M M
H l H L H H Hp p p Dα  Π − Π ≤ Π −   

(ii) H has no incentive to deviate from M
Lp  to M

Hp  if (A12) holds. 

Since ˆ M
Lp p< , (A12) holds. As for (A18), it holds for every 1 12 α< < , provided that 

lp  is sufficiently close to M
Lp . Hence (A17) for lp  sufficiently close to M

Lp , guarantees 

that, for all 1 12 α< < , M
Lp SPEP∈ . 

Next let hp  and lp  be s.t. 

                                                  *ˆ M M
h l L Hp p p p p p≤ = < < <                                             (A19) 

The incentive compatibility constraints of L in this case are two: 

(i) L has no incentive to deviate from hp  to lp . 

                              ( ) ( ) ( ) ( ) ( )1M M
L h L L L l L L Lp p p p Dα αΠ + Π ≥ Π + Π + −                    (A20) 

Equivalently, 

( ) ( ) ( ) ( )1 M
L l L h L L Lp p p Dα  Π − Π ≤ − Π −   

(ii) L has no incentive to deviate from hp  to M
Lp . 

                                             ( ) ( ) ( )M M
L h L L L L Lp p p DΠ + Π ≥ Π +                                     (A21) 

Equivalently, 
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( ) ( )0L h L Lp D pΠ ≥ = Π  

or 0 hp p≤  (see Figure 4). 

The two incentive compatibility constraints of H are the one given by (A14) and 

                           ( ) ( ) ( ) ( ) ( )1M M
H h H H H l H H Hp p p D pα αΠ + Π ≥ Π + + − Π                   (A22) 

Equivalently, 

( ) ( ) ( )M
H l H h H H Hp p p Dα  Π − Π ≤ Π −   

(A14) and (A21) imply ˆ hp p≤  and 0 hp p≤  respectively. By Lemma 1, 0p̂ p> . Hence, 

ˆ hp p≤ , which is consistent with (A19).  (A20) and (A22) hold for every 1 12 α< <  

provided that hp  is sufficiently close to lp . Hence (A19) for 0 l hp p< −  sufficiently 

small, guarantees that, for all 1 12 α< < , *p SPEP∈ , and the proof of Lemma 6 is 

complete.  

� 

Lemma 7. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ <  and 1
2 hα α< ≤ . Then, 

ˆ , M
LSPEP p p ⊆   . 

Proof: Let *p SPEP∈ . By Lemma 4, *
lp p≤  and M

H hp p> .  

Let ˆ , M
LR p p =   . 

The relevant cases are  

Case 1. Suppose that M
L hp p≤ . Then * M

Lp p R= ∈ . 

Case 2. Suppose that ˆ M M
h L H lp p p p p< < < ≤ . 

Similarly to case 2 of Lemma 5, *
hp p= . By the incentive compatibility constraint of H 

given by (A13), ( ) *ˆ M
H h Lp p p p pα< ≤ = <⌢

. Hence *p R∈ . 

Case 3. Suppose that ˆ M M
h L H lp p p p p≤ < < ≤ . 

Similar to the previous case ( ) *
H hp p pα ≤ =⌢

. Hence, no pooling equilibrium exists in 

this case since ( )ˆh Hp p p α≤ < ⌢ . 

Case 4. Suppose that *ˆ M M
h L l Hp p p p p p≤ ≤ < ≤ < . Then clearly *p R∈ . 
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Case 5. Suppose that * ˆ M M
h L l Hp p p p p p≤ < < ≤ < . 

Similarly to the previous case *
hp p= , and by (A14) ˆ hp p≤ , a contradiction. Hence, 

there exists no pooling equilibrium in this case. 

Case 6. Suppose that M M
h L l Hp p p p< ≤ <  and ( ]* ,h lp p p∈ . 

Clearly in this case * M
Lp p=  and M

Lp SPEP∈ . 

Case 7. Suppose that *ˆ M M
h l L Hp p p p p p≤ ≤ < < < . Then *p R∈ . 

Case 8. Suppose that * ˆ M M
h l L Hp p p p p p≤ < < < < . 

Similarly to case 5 above, there is no pooling equilibrium in this case. 

Case 9. Suppose that ˆ M M
h l L Hp p p p p< < < <  and ( ]* ,h lp p p∈ . 

Clearly in this case *
lp p= . From the incentive compatibility constraint of H given by 

(A16), ( ) *ˆ M
H l Lp p p p pα< ≤ = <ɶ . Hence *p R∈ . 

Case 10. Suppose that ˆ M M
h l L Hp p p p p< ≤ < <  and ( ]* ,h lp p p∈ . 

Similarly to the previous case ( ) *
H lp p pα ≤ =ɶ . Hence, no pooling equilibrium exists 

in this case since ( )ˆl Hp p p α≤ < ɶ . 

The above 10 cases prove that if *p SPEP∈ , then *p R∈ , as claimed.  

� 

Finally, let us show that if ˆM
Lp p= , then { }M

LSPEP p=  for all 1 12 α< < . 

Lemma 8. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1
2 hα α< ≤  and ˆM

Lp p= . Then 

M
Lp SPEP∈ . 

Proof: Let hp  and lp  be s.t. (A17) holds. The incentive compatibility constraints of H 

are given by (A12) and (A18). Clearly (A12) holds since ˆM
Lp p= . But also (A18) holds 

for every 1 12 α< < , provided that lp  is sufficiently close to M
Lp . Hence, M

Lp SPEP∈  

for all 1 12 α< <  is guaranteed by (A17) with lp  sufficiently close to M
Lp . 

� 
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Lemma 9. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1
2 hα α< ≤ , ˆM

Lp p=  and 

*p SPEP∈ . Then * M
Lp p= . 

Proof: We consider the same six cases as in proof of Lemma 5. 

Case 1. Suppose that M
L hp p≤ . Then * M

Lp p= , as claimed. 

Case 2. Suppose that M M
h L H lp p p p< < ≤ .  

Similarly to case 2 of Lemma 5, *
hp p= . By (A13), ( )ˆ M

H h Hp p p pα< ≤ <⌢
 must hold. 

But ˆM
h Lp p p< = , a contradiction. Hence, there is no pooling equilibrium in this case. 

Case 3. Suppose that * M M
h L l Hp p p p p≤ < ≤ < . 

In this case again *
hp p= . The incentive compatibility constraint of H is given by (A14) 

and implies ˆ hp p≤ . But in this case ˆM
h Lp p p< = . Consequently, no pooling 

equilibrium exists in this case. 

Case 4. Suppose that M M
h L l Hp p p p< ≤ <  and ( ]* ,h lp p p∈ . 

In this case * M
Lp p SPEP= ∈ , as claimed. 

Case 5. Suppose that * M M
h l L Hp p p p p≤ < < < . 

In this case *
hp p=  and H has no incentive to deviate from *p  to M

Hp  if (A14) holds, or 

equivalently, ˆ M
h Lp p p≤ < , a contradiction. Hence, there is no pooling equilibrium in 

this case either. 

Case 6. Suppose that M M
h l L Hp p p p< < <  and ( ]* ,h lp p p∈ . 

Clearly in this case *
lp p= . From the incentive compatibility constraint of H given by 

(A16), ( )H lp pα ≤ɶ  must hold. But ( )ˆM
L Hp p p α= < ɶ . Consequently, no pooling 

equilibrium exists in this case. 

� 

Lemmas 8 and 9 establish the second part of part (1) of the proposition. 
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Subcase 1.2. 1hα α< < . 

In this case \l hA Aα ∈ . Namely, E enters the market when observing the price *p  if 

the IS sends the signal h  and does not enter if the IS sends the signal l . Hence, 

accordingly to the strategy of E defined in Lemma 3, *
h lp p p< ≤ . 

Let us find pooling equilibria in this case. 

Lemma 10.  Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ <  and 1hα α< < . Then, in every 

pooling equilibrium M
L hp p>  and M

H lp p> . 

Proof: Suppose to the contrary that M
L hp p≤  or M

H lp p≤ . Then, at least one type of M 

has an incentive to deviate to his monopoly price.  

� 

Lemma 11. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1hα α< <  and ˆM
Lp p≤ . Then 

SPE = ∅ . 

Proof: Suppose to the contrary that *p SPEP∈ . We consider two cases. 

Case 1. Suppose that M M
h L l Hp p p p< ≤ < . Note that in this case * M

l Lp p p= = . 

In order for H not to deviate from M
Lp  to M

Hp , (A15) should hold. Equivalently 

0α δ≤ ≤ , a contradiction. 

Case 2. Suppose that M M
h l L Hp p p p< < < . Note that in this case *

lp p= . 

H has no incentive to deviate from lp  to M
Hp if (A16) holds. Equivalently, ( )l Hp p α≥ ɶ  

(see Figure 4). Since M
l Lp p< , ( )M

L Hp p α> ɶ  must hold. Equivalently, 0α δ< ≤ , a 

contradiction.  

� 

Note that Lemmas 5 and 11 establish the first part of part (1) of the proposition. 

Lemma 12. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1hα α< <  and ˆ M
Lp p< . Then 

( ) ( )( ){ }* *max , M
H L LSPEP p p p p pα α= ≤ ≤⌢
ɶ  

and this set is non-empty if hδ α>  and for all α , hα α δ< ≤ . 

Proof: We start by showing that M
Lp SPEP∈ . 

Let hp  and lp  be s.t. 
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                                                          * M M
h L l Hp p p p p< = = <                                           (A23) 

In order for H not to deviate from M
Lp  to M

Hp , (A15) should hold. Equivalently α δ≤ , 

where 0 1δ< <  since ˆM
Lp p> . 

H has no incentive to deviate from M
Lp  to hp , if 

                       ( ) ( ) ( ) ( ) ( )1M M M
H L H H H H h H Hp D p p pα αΠ + + − Π ≥ Π + Π                (A24) 

holds. Equivalently,  

( ) ( ) ( )( )M M
H L H h H H Hp p p DαΠ − Π ≥ Π −  

The incentive compatibility constraint of L is given by 

                             ( ) ( ) ( ) ( ) ( )1M M M
L L L L L L h L Lp p D p pα αΠ + Π + − ≥ Π + Π                  (A25) 

Equivalently, 

( ) ( ) ( ) ( )( )1M M
L L L h L L Lp p p DαΠ − Π ≥ − Π −  

Note that (A24) and (A25) hold for hp  sufficiently small. Hence (A23) hp  sufficiently 

small and for hδ α> , guarantees that, for all hα α δ< ≤ , M
Lp SPEP∈ .                                  

Next let hp  and lp  be s.t. 

                                  ( ) ( )( ) *max , M M
h H L l L Hp p p p p p pα α< ≤ = < <⌢

ɶ                       (A26) 

H has no incentive to deviate from lp  to M
Hp if (A16) holds. Equivalently, ( )l Hp p α≥ ɶ  

(see Figure 4). Since M
l Lp p< , ( )M

L Hp p α> ɶ  must hold. Equivalently, α δ< . Note that 

0 1δ< <  since ˆM
Lp p> . 

In order for H not to deviate from lp  to hp ,  

                             ( ) ( ) ( ) ( ) ( )1 M M
H l H H H H h H Hp D p p pα αΠ + + − Π ≥ Π + Π                 (A27) 

should hold. Equivalently,  

( ) ( ) ( )( )M
H l H h H H Hp p p DαΠ − Π ≥ Π −  

Next, let us consider the two incentive compatibility constraints of L. 

(i) In order for L not to deviate from lp  to M
Lp , 

                                  ( ) ( ) ( ) ( )1M M
L l L L L L L Lp p D p Dα αΠ + Π + − ≥ Π +                      (A28) 
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should hold. Equivalently, ( )l Lp p α≥ ⌢  (see Figure 5).  

(ii) In order for L not to deviate from lp  to hp , 

                             ( ) ( ) ( ) ( ) ( )1M M
L l L L L L h L Lp p D p pα αΠ + Π + − ≥ Π + Π                  (A29) 

should hold. Equivalently,  

( ) ( ) ( ) ( )( )1 M
L l L h L L Lp p p DαΠ − Π ≥ − Π −  

(A16) and (A28) imply that ( ) ( )( ) *max , M
H L l Lp p p p pα α ≤ = <⌢
ɶ , which is consistent 

with (A26), but it needs hδ α>  and hα α δ< < . Note that (A27) and (A29) hold for hp  

sufficiently small. Hence, (A26) for  hp  sufficiently small and hδ α> , guarantees that, 

for all hα α δ< < , *p SPEP∈ . 

� 

Case 2. ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > . 

Note that in this case 1 12h lα α< < < . Hence hα α>  and hAα ∉ , α∀ , 1 12 α< < . 

Namely, if the IS sends the signal h , E enters the market when observing the price *p  

irrespective the precision α  of the IS.  

Subcase 2.1. 1
2 lα α< < . 

In this case l hA Aα ∉ ∪ . Namely, E enters the market when observing the price *p  

irrespective of the signal sent by the IS and, therefore, both H and L should select the 

prices M
Hp  and M

Lp , respectively. Since M M
L Hp p< , no pooling equilibrium exists in this 

case. 

Subcase 2.2. 1lα α≤ < . 

In this case \l hA Aα ∈ . Namely, E enters the market when observing the price *p  if 

the IS sends the signal h  and does not enter if the IS sends the signal l . Hence, 

similarly to Subcase 1.2, if ˆM
Lp p≤ , then SPE = ∅ . In particular, this together with 

Lemmas 5 and 11 establish the first part of part (1) of the proposition. If ˆ M
Lp p< , then 

( ) ( )( ){ }* *max , M
H L LSPEP p p p p pα α= ≤ ≤⌢
ɶ  
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and this set is non-empty if lδ α≥  and for all α , lα α δ≤ ≤ . 

� 

Proof of Proposition 5. 

In this linear model, 

2
M L
L

a c
p

+= , 
2

M H
H

a c
p

+=  

( )
2

2
M L

L L

a c
p

− Π =  
 

, ( )
2

2
M H

H H

a c
p

− Π =  
 

 

2

3
L

L

a c
D

− =  
 

, ( )
2

3
L

E

a c
D L

− =  
 

 

2
2

3
H L

H

a c c
D

− + =  
 

, ( )
2

2

3
L H

E

a c c
D H

− + =  
 

 

Note that  

                                                                
2

L
L H

a c
c c a

+< ≤ <                                            (A30) 

must hold and it is easy to verify that ˆM
Lp p> .  

( )
2

3
L

E

a c
L K

− ∆ = − 
 

 

( )
2

2

3
L H

E

a c c
H K

− + ∆ = − 
 

 

Since ( ) 0E L∆ <  and ( ) 0E H∆ > ,  

                                             

2 2
2

3 3
L L Ha c a c c

K
− − +   < <   

   
                                 (A31) 

must hold. 

(1) Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < . Then, 

                                         ( )
2 2

1 2 12
1

3 3

a c c a c
K µ µ− + −   > + −   

   
                                 (A32) 

(A31) together with (A32) imply that 
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                            ( )
2 2 2

1 2 1 1 22 2
1

3 3 3

a c c a c a c c
Kµ µ− + − − +     + − < <     

     
                (A33) 

We conclude that (A30) and (A33) must hold. 

For the existence of a pooling equilibrium we need to have hδ α>  for every 

( ],hα α δ∈ . This holds iff 

                                                            
1 3 14

5
L

H L

a c

c c

− +>
−

                                                   (A34) 

and 

                                  ( )
2 2

2
1

3 3
L H La c c a c

K Kµ µ− + −   + − < <   
   

                         (A35) 

where K  is the solution to hδ α=  (see (16) and (17)). 

It can be shown that when (A34) holds, 

( )
2 2 2

2 2
1

3 3 3
L H L L Ha c c a c a c c

Kµ µ− + − − +     + − < <     
     

 

and thus, the set of all K ’s s.t. (A35) holds, is non-empty. 

(2) Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > . Hence, 

                                       ( )
2 2

2
1

3 3
L H La c c a c

K µ µ− + −   < + −   
   

                                 (A36) 

(A36) together with (A31) imply 

                               ( )
2 2 2

2
1

3 3 3
L L H La c a c c a c

K µ µ− − + −     < < + −     
     

                    (A37) 

Hence, we conclude that (A30) and (A37) must hold. 

For the existence of a pooling equilibrium we need that lδ α≥  for every [ ],lα α δ∈ . 

This holds iff (A34) holds and 

                                   ( )
2 2

2
1

3 3
L H La c c a c

K K µ µ− + −   ≤ < + −   
   

ɶ                        (A38) 

where Kɶ  is the solution to lδ α=  (see (14) and (17)). 

It can be shown that when (A34) holds, 
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( )
2 2 2

2
1

3 3 3
L L H La c a c c a c

K µ µ− − + −     < < + −     
     

ɶ  

and the set of all K ’s s.t. (A38) holds, is non-empty. 

� 

If we replace Cournot competition by Bertrand competition, we have 

2
M L
L

a c
p

+= , 
2

M H
H

a c
p

+=  

( )
2

2
M L

L L

a c
p

− Π =  
 

, ( )
2

2
M H

H H

a c
p

− Π =  
 

 

0LD = , ( ) 0ED L =  

0HD = , ( ) ( ) ( )E H L HD H c c a c= − −  

Note that L Hc c a< <  must hold and ˆM
Lp p>  iff 

2
L

H

a c
c

+< . Hence  

                                                               
2

L
L H

a c
c c a

+< < <                                               (A39) 

must hold.  

( ) 0E L K∆ = −  

( ) ( ) ( )E H L HH c c a c K∆ = − − −  

Since ( ) 0E L∆ <  and ( ) 0E H∆ > ,  

                                                         ( ) ( )0 H L HK c c a c< < − −                                           (A40) 

must hold. 

(1) Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < . Then, 

                                                         ( ) ( )H L HK c c a cµ> − −                                         (A41) 

(A40) together with (A41) imply that 

                                       ( ) ( ) ( ) ( )H L H H L Hc c a c K c c a cµ − − < < − −                             (A42) 

We conclude that (A39) and (A42) must hold. 

For the existence of a pooling equilibrium we need to have hδ α>  for every 

( ],hα α δ∈ . This holds iff 
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                                                            2H

H L

a c

c c

− >
−

                                                   (A43) 

and 

                                              ( ) ( ) 1H L Hc c a c K Kµ − − < <                                         (A44) 

where 1K  is the solution to hδ α=  (see (16) and (17)). 

It can be shown that when (A43) holds, 

( ) ( ) ( ) ( )1H L H H L Hc c a c K c c a cµ − − < < − −  

and thus, the set of all K ’s s.t. (A44) holds, is non-empty. 

(2) Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > . Hence, 

                                                     ( )( )H L HK c c a cµ< − −                                                 (A45) 

(A45) together with (A40) imply 

                                            ( )( )0 H L HK c c a cµ< < − −                                         (A46) 

Hence, we conclude that (A39) and (A46) must hold. 

For the existence of a pooling equilibrium we need that lδ α≥  for every [ ],lα α δ∈ . 

This holds iff (A43) holds and 

                                                     ( )( )1 H L HK K c c a cµ≤ < − −ɶ                                      (A47) 

where 1Kɶ  is the solution to lδ α=  (see (14) and (17)). 

It can be shown that when (A43) holds, 

( )( )10 H L HK c c a cµ< < − −ɶ  

and the set of all K ’s s.t. (A47) holds, is non-empty. 

� 

 

 

 

 

 

 

 


