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Abstract

We study a Bayesian game of two-sided incomplete information in which an agent, who

owns a project of unknown quality, considers proposing it to an evaluator, who has the choice

of whether or not to accept it. There exist two distinct tiers of evaluation that di¤er in the

bene�ts they deliver to the agent upon acceptance of a project. The agent has to select the tier

to which the project is submitted for review. Making a proposal incurs a cost on the agent in

the form of a submission cost. We examine the e¤ect of changes in the payo¤ parameters at the

two tiers of evaluation on the e¢ ciency of the equilibrium outcome. We show that changes in

these parameters that are aimed at increasing the level of self-screening exerted by the agent do

not necessarily have bene�cial e¤ects either on the quality of projects submitted for review or

on the quality of projects that are implemented. From a methodological viewpoint, our paper

proposes a novel method of performing comparative statics in games whose equilibria are de�ned

by a system of equations with no closed-form solution.
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1 Introduction

On July 5, 2011 the jury reached its verdict in the case State of Florida vs. Casey Marie Anthony

and found the defendant not guilty in the death of her daughter. The verdict surprised the media

and the general public as strong circumstantial evidence implicated the defendant in the crime.

The outcome was deemed by some as a symptomatic failure of the judicial system, but many law

experts viewed it, instead, to be a consequence of prosecutorial overreach in that particular trial.

For instance, Scott Bonn, a professor of criminology at Drew University, argued in a New York

Daily News article that "the prosecutor employed an extremely high-risk strategy by charging her

with �rst-degree murder and, in addition, asking for capital punishment", and therefore that the

"strenuous burden of proof weighed heavily on the state throughout the trial".1 He concludes that

the prosecutors should have �lled a lesser charge that was more likely to be accepted by the jury.

Instead, because the "no double jeopardy" principle guarantees that a person cannot be prosecuted

a second time for the same crime once a jury returns a verdict, the defendant walked away free.

It was often argued in the aftermath of the jury decision in the Casey Anthony trial that the

apparent prosecutorial overreach may have been caused by the media hype surrounding the trial

which increased the stakes on the prosecution to obtain a maximum penalty so as to appease the

public opinion.2 At the same time, in other more routine trials, when a prosecutor makes his

decision, he may also account for the cost of �ling more severe charges (or of �ling any charges at

all), in terms of resources spent on collecting and organizing evidence and of time spent in court.3

These raise the questions of how payo¤s impact the decisions of parties involved in such situations,

and how these payo¤s should be adjusted, when feasible, so as to improve the e¢ ciency of the

equilibrium outcome. Addressing these questions is the main objective of our paper.

We model these situations as a Bayesian game of two-sided incomplete information where an

agent (the prosecutor), who owns a project (the case) of unknown quality (guilty or not guilty),

considers submitting it to an evaluator (the jury), who upon receiving a project for review, has

the choice of whether or not to accept it. The di¤erent charges that the prosecutor may �le are

1The article is available at http://www.nydailynews.com/opinion/casey-anthony-trial-case-overzealous-
prosecution-death-penalty-bar-high-article-1.160804. See also, for instance, a Los Angeles Times article by a
law attorney http://articles.latimes.com/2011/jul/09/opinion/la-oe-shapiro-caylee-anthony-20110709

2Time magazine called this case the "social media trial of the century"
http://www.time.com/time/nation/article/0,8599,2077969,00.html. As of 2013, a Google search for Casey
Anthony yields more results than the search for the U.S. Senate Majority Leader at the time.

3 In fact, avoiding some of these costs is also the reason behind prosecutors�willingness to settle in many trials.
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modelled as ranked tiers of evaluation to which the project can be submitted. In this paper we

analyze the simplest case of two tiers, which we refer to in the following as the upper and the lower

tier, respectively. The upper tier delivers higher bene�ts to the agent upon acceptance, and higher

losses to the evaluator upon acceptance of a low-quality project. For instance, in a trial like Casey

Anthony, �ling more severe charges leads to better rewards to the prosecutor following a favorable

ruling, but also increases the stakes on the jury, making it less likely to return a guilty verdict. In

our model, we abstract away from incorporating the actual trial proceedings, and instead assume

that prior to taking their actions, each player performs an assessment of the project that yields

a private signal of quality.4 The agent then has to choose whether or not to submit the project,

and in the relevant case, the tier to which to submit it. Upon receiving a project for review into a

certain tier, the evaluator observes his signal and then decides whether or not to accept it.

The scope of applications captured by the model of project screening with tiered evaluation that

we study in this paper extends beyond our particular motivating example. This framework can

describe, in general, situations where an agent contemplates making a costly5 proposal of a project

of unknown quality to an evaluator while facing a trade-o¤ between the risk of being rejected and

the higher bene�ts resulting from a better placement of the project. As an example, consider a

manufacturer of a newly invented product whose value to consumers takes time to perfectly assess.

In this case, when launching the product, the �rm has to decide on the claims to make regarding

its value to the users and on its price. Marketing the product as a high-value item generates larger

revenues if the product is adopted, but also makes it more likely to fail as consumers may be

reluctant to pay the higher price.6 Another example is the selling of an used car (or of any other

pre-owned item whose quality cannot be perfectly evaluated, such as a house), where the owner

can choose di¤erent degrees of disclosure of its mechanical issues. Disclosing no issues (submitting

to a higher tier) reduces the likelihood of a sale, as the buyer may identify them, in which case he

would distrust the seller and walk away, but if that does not happen, the selling price is higher. On

the other hand, being more honest (submitting to the lower tier) reduces the sale price, but as long

4The jury�s signal distribution, conditional on the guilt of the defendant, may be an (unmodelled) function of the
optimal persuasion strategies adopted by the prosecution and defense teams.

5The submission fee may be a payment toward the evaluator or a third entity, or it may take a non-monetary
form, such as a cost incurred by the agent in terms of time or resources spent on preparing the application or in
terms of time by which the evaluator�s decision is delayed.

6 In certain situations, an unsuccessful high-end high-price product can be reintroduced as a lower-end item; in
others, a competitor may �ll in the spot. For instance, the marketing of Apple personal computers as such expensive
high-end items in the 1980s allowed Microsoft OS based PCs to dominate the market for the next 25 years.
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as these mechanical issues are not too severe, results in a sale with higher probability.7 Because of

the variety of these situations, we will present our analysis in the framework of a generic Bayesian

game and then identify the relevant implications of its �ndings for applications of interest.

This paper contributes to the literature that investigates the role of payo¤s on the e¢ ciency of

project screening initiated by Leslie (2005), who argued in the context of the academic scholarship

review process that the optimal submission fees are strictly positive8 because they reduce the burden

on editors and referees by discouraging long-shot submissions.9 Departing from earlier papers in

this literature, in a framework with one tier of evaluation, Barbos (2013) considers the case of

two-sided incomplete information where not only the agent�s, but also the evaluator�s assessment of

the project is imperfect. Under this speci�cation, while a higher submission cost does increase the

quality of projects that the agent submits, it may not always be bene�cial, as it also induces the

evaluator to weaken his standards of acceptance, and under certain conditions, a higher submission

fee decreases the expected quality of projects that are implemented.

Our analysis unveils four main insights which we present next.

1. We �rst investigate the assortative matching between the agent�s signal of quality and the

rank of the tier to which he submits the project. We show that if the bene�t upon acceptance

at the upper tier is high enough, then negative assortative matching may emerge in equilibrium,

where projects with low signals of quality are submitted to the upper tier while projects of higher

quality are submitted to the lower tier. In certain applications, negative assortative matching

may be noticeable with a su¢ ciently large sample of outcomes, and thus likely to be averted in

the long run through an exogenous adjustment in payo¤s, but this �nding suggests that it may

still emerge in the short run following a sudden shift in payo¤ parameters. In other situations,

negative matching could persist even in the long run. For instance, if the potential pro�ts following

a successful product launch as a high-end item are su¢ ciently high, manufacturers of products that

have a relatively long shot at success may decide to pursue that avenue just in case the favorable

outcome realizes, while manufacturers of products that are more likely to succeed may choose to

7Selling the car as scrap or donating it would correspond to not submitting the project.
8The optimal fees are not unboudedly high because in these models, the evaluators need to accept a minimum

number of articles. In our paper, we discard this requirement on the evaluator so as to capture situations of project
screening beyond that of the academic articles evaluation examined in those papers.

9See also Azar (2007) and the references therein. Cotton (2013) distinguishes between monetary costs and time
delays and shows that when authors of academic articles are heterogenous, the optimal fee structure implies a
combination of these monetary and non-monetary fees. Boleslavsky and Cotton (2013) study a model in which an
evaluator has to select one of several competing proposals of unknown quality, and investigate the e¤ect of the limited
capacity of the evaluator to accept proposals on the incentives of the proposers to produce information.

4



follow a safer approach and have their product be adopted with almost certainty.10 The same

outcome may realize in the used car selling example if the payo¤ from deceiving is su¢ ciently high.

2. Focusing on equilibria with positive assortative matching, we next examine the e¤ect of payo¤

parameters on the quality of projects submitted for review. Previous literature, analyzing the case

of a single tier of evaluation, argued that an increase in the submission cost (or, equivalently, a

decrease in the agent�s bene�t upon acceptance) induces more self-screening on the part of the

agent, increasing the quality of projects that he submits. We show that this is no longer necessarily

the case with a tiered system of evaluation. In particular, a higher submission cost at the upper tier

actually decreases the quality of projects submitted between the two tiers. In our main motivating

application, this suggests that when prosecutors have less incentive to �le the more severe charges

(either because of an increase in the cost of collecting the additional evidence or because of a

decrease in the potential rewards), they will end up �ling the lesser charges in cases that otherwise

they would not have been pursued, increasing the burden on the judicial system.

On the other hand, a higher cost at the lower tier does discourage marginal submissions to

that tier, and therefore increases the quality of projects received between the two tiers, suggesting

a mechanism for reducing the number of projects submitted for evaluation. However, it has an

indeterminate e¤ect on the quality of projects submitted at either tier individually, and in particular

it may actually even lower the average quality of projects received by both tiers.

3. The third insight of the paper relates payo¤ parameters with the expected quality of projects

that are implemented, i.e. of projects that are submitted and accepted. We show that the e¤ect of

changes in payo¤s at the upper tier can be elicited solely from the evaluator�s information structure

in the neighborhood of his equilibrium strategy. In particular, for the same class of information

structures identi�ed by Barbos (2013) in the case of a system of evaluation with a single tier, a higher

submission cost at the upper tier increases the expected quality of projects that are implemented by

each of the two tiers. On the other hand, the e¤ect of changes in the payo¤ parameters at the lower

tier is a function of the underlying information structure and the direction of the e¤ects on the

quality of projects that are submitted. This illustrates again the di¤erential impact on equilibrium

e¢ ciency of the payo¤ parameters at the two tiers.

Similarly to the other �ndings in this paper, the potential decrease in the quality of projects that

10A possible example of this type products are those that are not sold through the usual retail outlets, but through
teleshopping programs at arguably high prices given their value to users.
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are implemented, following an increase in the level of self-screening exerted by the agent, hinges on

the assumption of imprecise evaluation, which renders the evaluator a strategic player who adjusts

his acceptance policy in response to changes in the quality of projects submitted for review. From

a policy perspective, our �ndings suggest that in those situations where there is reason to believe

that the evaluator may infer information from the agent�s decision, such as if a prosecutor�s choice

of charges in a trial is likely to in�uence the jury�s beliefs, then when adjusting payo¤ parameters,

a policy designer has to account for that fact that an increase in the perceived quality of projects

submitted for review may come at the expense of the evaluator�s own judgment of the project.

4. The last result of the paper compares the equilibria of games with one and two tiers of

evaluation. Introducing a new upper tier in a system of evaluation where only one tier had existed

increases both the quality of projects submitted for review and the quality of projects implemented

between the two tiers. Introducing a new lower tier decreases the burden of evaluation at the upper

tier suggesting a mechanism for reducing the overall cost of evaluation when the cost of reviewing a

project in the upper tier is su¢ ciently higher than in the lower tier. These insights provide support

for a tiered system of evaluation as a more e¢ cient project-screening mechanism.

From a methodological viewpoint, our paper proposes a novel method of performing comparative

statics in games whose equilibria are de�ned by a system of equations with no closed-form solution.

Several other papers from the literature examined optimal submission strategies when facing

a tiered system of evaluation, in particular in a context where economic agents seek certi�cation

for their products from information intermediaries, such as ratings agencies. For instance, Farhi,

Lerner, and Tirole (2008) study how the market structure and in particular the evaluator�s rejection

disclosure policy a¤ect the choices of such agents, Lerner and Tirole (2006) investigate the role of

biased technology standard setting authorities as certi�ers, while Gill and Sgroi (2012) consider

the case where an agent who submits a project for certi�cation also has the ability to set the price

for that item, thus endogenizing the payo¤s from acceptance. On the other hand, in the academic

publishing context, Heintzelman and Nocetti (2009) con�rm the insight from Leslie (2005) in a

search theoretical model where an author facing multiple journals has to decide on the optimal

submission path. Our paper di¤ers from the papers in this literature in that we consider a set-up

with two-sided incomplete information where evaluation is imperfect and thus the agent has to

account for the fact that the evaluator learns from his decision.11 At a formal level, the paper

11Heintzelman and Nocetti (2009) also discuss the case of two-sided incomplete information, but in their framework
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closer to ours is Taylor and Yildirim (2011), who study a model of project proposals in which

an agent chooses the amount of e¤ort to exert in generating a project that is then submitted for

review. A blind review system, in which payo¤ relevant information about the proposer is hidden

from the reviewer, is compared with an informed regime in which the proposer�s type is public

information. While their results are driven by the moral hazard e¤ects of the potentially available

public information, we consider the e¤ort level as sunk, and the agent�s decision to be whether and

where to submit a project, as a function of the available public and private information.

The rest of the paper is organized as follows. Section 2 de�nes the model, while in section 3 we

characterize the equilibrium of the game. In section 4 we investigate the e¤ect of submission fees

on equilibrium strategies and on the e¢ ciency of the outcome. Section 5 concludes.

2 The model

There are two players, an agent (A) and an evaluator (E). A owns a project and considers proposing

it to E . The project is of either high (h) or low (l) quality. The common prior probability of state

h is �. There are two tiers of evaluation, A and B, and when A submits a project, he has to select

the tier to which to submit it. Upon receiving a project for review into a certain tier, E has the

choice of whether or not to accept it. Submitting the project to tier t 2 fA;Bg incurs a fee ct on

A. Irrespective of its ex-post observed quality, a project accepted in tier t, yields A a payo¤ bt. A

also has the option to not submit the project; the corresponding payo¤ is normalized to zero. E�s

payo¤ from accepting a high-quality project in either tier is 1, while the loss incurred by E from

accepting a low-quality project in tier t is Lt. E�s payo¤ from rejecting a project is normalized to

zero.12 A project that is rejected once cannot be resubmitted for review to either tier.13 We make

the following assumption on the payo¤ parameters of the model.

Assumption 1 (i) bA > bB; (ii) bA
cA
> bB

cB
; (iii) LA > LB.

the model becomes intractable under this assumption.
12The analysis does not change in a meaningful way if we allow the agent�s payo¤ to also depend on the quality of

the project by having him prefer that an accepted project is of high quality. See section 3 for the discussion. Also,
the analysis also does not change if we allow that the evaluator be also concerned with the quality of projects that he
rejects. Finally, since the submission fee may often take a non-monetary form, we do not include it in the evaluator�s
payo¤. This is without too much loss of generality for the ensuing results. These simplifying modelling speci�cations
are also adopted elsewhere in the literature (see for instance, Cotton (2013)).
13 In line with the motivating example from the introduction, we thus restrict attention to the analysis of those

situations when resubmission of a rejected project to a di¤erent tier is not possible.
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By (i) and (ii), tier A delivers a better absolute and relative reward to A from an accepted

project than tier B. We will refer to A and B as the upper and lower tier, respectively. Part (iii)

implies that E is aversely a¤ected more by the acceptance of a low-quality project in the upper tier.

Prior to making their decisions, A and E perform assessments of the project that result in

subjective evaluations of its quality. A�s assessment yields a private signal � 2 [0; 1]; E�s assessment

yields a private signal � 2 [0; 1]. For quality q 2 fh; lg, let Gq(�) and F q(�) denote the cumulative

distribution functions of the agent and the evaluators�signals, respectively. Also, let gq(�) > 0 and

f q(�) > 0 be the corresponding probability density functions.

Assumption 2 (i) f q and gq are bounded and twice continuously di¤erentiable for q 2 fh; lg; (ii)
d
d�

h
fh(�)
f l(�)

i
> 0, d

d�

h
gh(�)
gl(�)

i
> 0.

Part (ii) of the assumption is the usual monotone likelihood ratio, essentially implying that a

higher signal is more informative of a high-quality project.

3 The equilibrium

Consider some arbitrary strategies of A and E , respectively, Sag : [0; 1] ! fsA; sB; ng and Sev :

fA;Bg� [0; 1]! fa; rg, that map signals into actions, with the obvious interpretation of the action

labels. Upon observing a project submitted to tier t, and after acquiring the signal �, E accepts

the project if and only if

Pr(hjfstg; �) � 1 + [1� Pr(hjfstg; �)] (�Lt) � 0() Pr(hjfstg; �) �
Lt

1 + Lt
(1)

where the event fstg � f� 2 [0; 1] : Sag (�) = stg. Denoting the event fatg � f� 2 [0; 1] :

Sev (t; �) = ag, it follows that A submits a project with quality signal � to tier A if

bA Pr (faAgj�)� cA � max f0; bB Pr (faBgj�)� cBg (2)

to tier B if

bB Pr (faBgj�)� cB � max f0; bA Pr (faAgj�)� cAg (3)

and does not submit the project in the remaining case.
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In appendix A1 we show that in any Bayesian Nash Equilibrium, E adopts a cuto¤ strategy with

respect to his informative signal, according to which he accepts a project if and only if his signal is

higher than a threshold speci�c to each tier. Since E�s equilibrium strategy can be de�ned in terms

of the corresponding thresholds, for the rest of the paper, we will use (�As; �Bs) to denote a generic

cuto¤ strategy, with thresholds of acceptance for the two tiers �As and �Bs, respectively. We also

show in appendix A1 that the set of values of � for which A submits projects to a particular tier is

an interval (possibly empty), and that the set of values of � for which A does not submit a project

consists of either one (possibly empty) or two disjoint intervals.

The next lemma states that, under assumption 1, if E adopts a cuto¤ strategy (�As; �Bs), with

�Bs � �As, then A�s best response is to never submit to tier B. In other words, if E is more

stringent at the lower tier, then A never submits projects to that tier. Its proof from appendix A2

shows that if �Bs � �As, then whenever A has a higher expected payo¤ from submitting to tier B

than to A, then that payo¤ is in fact negative. In the following we thus examine the interesting

equilibria where the evaluator is more stringent at the upper tier, i.e., where �Bs < �As.

Lemma 3.1 If �Bs � �As, then A either submits the project to tier A or does not submit it at all.

In appendix A3, we examine the agent�s best response function and provide the necessary and

su¢ cient condition for positive assortative matching between the agent�s signal of quality and the

rank of the tier to whom he submits a project. More precisely, we identify the condition on �As,

�Bs, and the payo¤ parameters of the model under which for a given prior �, the set of signals

for which A submits to the upper tier A is above the set of signals for which he submits to B.14

The condition is not always satis�ed, and thus negative assortative matching may emerge, where

A submits projects with low signals to the upper tier, and projects with high signals to the lower

tier. The following remark presents the conditions under which this occurs. The precise formal

de�nitions of these conditions follow from the analysis presented in the appendix.

Remark 3.1 Negative assortative matching emerges when the following conditions are satis�ed:

(i) bA
cA
is high, (ii) �As is high, (iii) �Bs belongs to a subset of moderate values of [0; 1].

Moderate values of �Bs allow a high level of identi�cation of the quality of the project when

14This condition is reminiscent of the supermodularity condition, which since Becker (1973) is known to be necessary
and su¢ cient for positive assortative matching in the equilibrium allocation of many applications.
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submitting it to B because, under the monotone likelihood property, the di¤erence F l(�Bs) �

F h(�Bs) is in its highest range, implying that E will observe a signal � � �Bs with high probability,

conditional on h, and with a low probability, conditional on l. Thus, when the conditions (ii) and

(iii) of Remark 3.1 are satis�ed, if A has a project with a high signal, he prefers submitting it to

tier B, to have it identi�ed as of high quality and thus accepted, rather than submitting it to A,

where the probability of acceptance is small because of the stringent standards implied by the high

value of �As. When A�s signal is lower (but not too low), he will submit to A because the high

bene�t/cost ratio, as suggested by condition (i), will allow for a non-negative payo¤ in spite of the

low probability of acceptance. For the lowest signals, A will refrain from submitting the project.

On the other hand, given this strategy adopted by A, E�s best response is precisely to employ very

high standards of acceptance to the upper tier and moderate ones to the lower tier. Thus, negative

assortative matching may occur in equilibrium.

This is an interesting and surprising insight, as it suggests that when the project evaluation

relies insu¢ ciently on the agent�s self-screening mechanism at the upper tier (i.e., when bA
cA
is high),

thus requiring the evaluator to rely heavily on his own assessment of the project at that tier by

imposing very high acceptance standards, then negative assortative matching may emerge. In many

applications this type of matching may be noticeable in the long run once a su¢ ciently large sample

of outcomes is observed, and thus payo¤s may be exogenously adjusted so as to restore a natural

positive matching. However, Remark 3.1 suggests that following sudden changes in payo¤s, such as

when bA increases su¢ ciently so as to induce the upper tier to attract low quality projects, forcing

the evaluator to impose very strict standards of acceptance at the upper tier, then owners of high

quality projects may prefer to submit their projects at the lower tier where acceptance is almost

guaranteed. Such a sudden shift may occur, for instance, when a criminal trial draws the national

media attention and, becoming emotionally overcharged, increases the pressure on prosecutors to

seek a higher penalty. On the other hand, as argued in the Introduction, it is possible that in

other situations negative assortative matching may persist as a long run equilibrium behavior if

submitting to the upper tier continues to remain highly attractive.

We focus the rest of the analysis on the interesting case of interior equilibria with positive

assortative matching where both tiers receive submissions and where the set of values of � for which

the agent does not submit the project is an interval.15 More precisely, we investigate properties of

15A�s best response function may involve a corner solution. In particular, for a �xed value of �ts, if bt
ct
is small

enough for some t 2 fA;Bg, A never submits to tier t. Moreover, when bA
cA
is much higher than bB

cB
, tier B receives
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equilibria in whichA adopts a cuto¤strategy characterized by two thresholds (�As; �Bs), with �As 2

(0; 1), �Bs 2 (�As; 1), such that A submits to tier A for � 2 [�As; 1], to tier B for � 2 [�Bs; �As),

and does not submit the project for � 2 [0; �Bs). We will assume thus implicitly throughout the

rest of the paper that the parameters of the model are such that the corresponding equilibria satisfy

this regularity property, without explicitly mentioning this assumption each time.

The next two lemmas present the equations that de�ne implicitly the two players�best response

functions in these Bayesian Nash equilibria. Their proofs are in appendices A4 and A5.16

Lemma 3.2 Given E�s cuto¤ strategy, (�As; �Bs), with �As > �Bs, A�s best response is char-

acterized by two thresholds �A (�As; �Bs) and �B (�As; �Bs), with �A (�As; �Bs) > �B (�As; �Bs),

implicitly de�ned by the equations in �A and �B, respectively

�

1� �
gh(�A)

gl(�A)
=
bB
�
1� F l (�Bs)

�
� bA

�
1� F l (�As)

�
+ cA � cB

bA [1� F h (�As)]� bB [1� F h (�Bs)] + cB � cA
(4)

�

1� �
gh(�B)

gl(�B)
=
cB � bB

�
1� F l (�Bs)

�
bB [1� F h (�Bs)]� cB

(5)

such that A submits to tier A if � � �A (�; �), to tier B if � 2 [�B (�; �) ; �A (�; �)), and forgoes

submitting the project if � < �B (�; �).

Lemma 3.3 Given A�s cuto¤ strategy (�As; �Bs), E accepts a project submitted to tier A if and

only if � � �A (�As; �Bs), with �A (�As; �Bs) given implicitly by the equation in �A

�

1� �
fh(�A)

f l(�A)

1�Gh(�As)
1�Gl(�As)

= LA (6)

and accepts a project submitted to tier B if and only if � � �B (�As; �Bs), with �B (�As; �Bs) given

implicitly by the equation in �B

�

1� �
fh(�B)

f l(�B)

Gh(�As)�Gh(�Bs)
Gl(�As)�Gl(�Bs)

= LB (7)

no submissions. To focus our analysis on developing intuition rather than solving for corner solutions, we restrict
attention to the case of interior equilibria.
16We can model a situation in which A also prefers that an accepted project is of high quality, by having A receive an

additional bene�t �t under this contingency. In this case, equation (4) becomes [bA + �A Pr(hjfaAg; �)] Pr(faAgj�)�
cA � maxf[bB + �B Pr(hjfaBg; �)] Pr(faBgj�)�cB; 0g, which after some calculations can be rewritten as �

1��
gh(�A)

gl(�A)
=

bB[1�F l(�Bs)]�bA[1�F l(�As)]+cA�cB
(bA+�A)[1�Fh(�As)]�(bB+�B)[1�Fh(�Bs)]+cB�cA

. Equations (3) and (5) are altered in a similar way. The ensuing analysis

and results are qualitatively similar to the case when �A = �B = 0 .

11



The best-response functions, as elicited by equations (4), (5), (6) and (7), determine the equi-

librium strategies of the two players denoted by (��A; �
�
B) and (�

�
A; �

�
B). The next lemma, whose

proof is in appendix A6, presents the monotonicities of these best-response functions.

Lemma 3.4 (i) �A (�As; �Bs) is decreasing in �Bs and increasing in �As; (ii) �B (�As; �Bs) is

constant in �As and increasing in �Bs; (iii) �A (�As; �Bs) is decreasing in �As and constant in �Bs;

(iv) �B (�As; �Bs) is decreasing in �As and �Bs, when �As > �Bs.

For generic payo¤ parameters and information structures, the Bayesian Nash equilibrium of

the game is not necessarily unique. As in other models, multiple equilibria may emerge because

there exist di¤erent sets of self-ful�lling expectations for the same set of fundamentals of the model.

The next proposition identi�es a consistency requirement across di¤erent equilibria. Its corollary

provides a su¢ cient condition for equilibrium uniqueness.

Proposition 1 If � � (��A; ��B; ��A; ��B) and �0 � (��0A; ��0B ; ��0A; ��0B) are two Bayesian Nash equilibria

with ��0B > �
�
B, then it must be that �

�0
A > �

�
A, �

�0
B > �

�
B and �

�0
A < �

�
A.

Corollary 3.1 Consider a Bayesian Nash equilibrium � � (��A; �
�
B; �

�
A; �

�
B) and assume that for

�xed values of ��A and �
�
B, the two best-response functions �A(�

�
A; �Bs) and �B (�As; �

�
B), as de�ned

by (4) and (7), have the unique �xed point (��A; �
�
B). Then, if

@�A
@�Bs

(��A; �
�
B) �

@�B
@�As

(��A; �
�
B) < 1 (8)

the equilibrium � is unique.

Before presenting the proof of these two results, we introduce the three panels in Figure 1

on which we rely heavily in the rest of the analysis. In each panel, we depict the pairwise

best-response functions de�ned by (4)-(7), when the two variables not considered in the respec-

tive panel are kept �xed. A solid curve represents a best-response function when the remaining

variables are �xed at the values in �. A dashed curve depicts a best-response function when

the remaining variables are �xed at the values in �0. For instance, in panel (a), the solid curve

�oA (�As) represents the best-response function �A (�As; �
�
B), i.e., the implicit function de�ned by

�
1��

gh(�A)
gl(�A)

=
bB[1�F l(��B)]�bA[1�F l(�As)]+cA�cB
bA[1�Fh(�As)]�bB[1�Fh(��B)]+cB�cA

as an equation in �A. Similarly, the dashed curve

12



�zA (�As) represents the best-response function �A (�As; �
�0
B), i.e., the implicit function de�ned by

the same equation only that ��0B replaces ��B. When there is no dashed curve, the function is

the same in the two equilibria. For instance, in panel (a), �oA (�As) represents the best-response

functions �A (�As; �
�
B) and �A (�As; �

�0
B), which by lemma 3.4(iii) are the same (both functions are

de�ned implicitly by the equation �
1��

fh(�A)
f l(�A)

1�Gh(�As)
1�Gl(�As)

= LA, which is independent of ��B).
17

All curves from the three panels are generic and are depicted only so as to exhibit the salient

monotonicity property. In panel (c), since both curves are decreasing, they are presented as crossing

each other twice, so as to allow for either of them crossing from below. To save on notation, we de�ne

a partial order � on these curves by saying that for instance �zA (�Bs) � �oA (�Bs) or �
o
B (�As) �

�zB (�As) if, as is the case in panel (c), the �rst curve is above the second one in a panel with � on

the horizontal axis and � on the vertical axis.

Proof of Proposition 1 and Corollary 3.1. To prove proposition 1, �rst note in panel (a) that

��0B > ��B implies by lemma 3.4(i) that �oA (�As) � �zA (�As). Since �zA (�As) is the same as

�oA (�As), it follows immediately by inspecting panel (a) that �
�0
A > �

�
A and �

�0
A < �

�
A. Second, in

panel (b), ��0A < �
�
A implies by lemma 3.4(iv) that �

z
B (�Bs) � �oB (�Bs). Since �zB (�Bs) is the same

as �oB (�Bs), it must be that �
�0
B > �

�
B and �

�0
B > �

�
B. The second implication is consistent with the

initial assumption from the text of the proposition. Finally, in panel (c), ��0B > �
�
B implies by lemma

3.4(iv) that �oB (�As) � �zB (�As), while ��0A > ��A implies by lemma 3.4(i) that �zA (�Bs) � �oA (�Bs).

To show corollary 3.1, consider an equilibrium � = (��A; �
�
B; �

�
A; �

�
B) such that for �xed values

17Similarly, for instance, in panel (b), �oB (�Bs) represents the best response functions �B (�
�
A; �Bs) and �B (�

�0
A ; �Bs),

while �oB (�Bs) and �
z
B (�Bs) represent the best response functions �B (�

�
A; �Bs) and �B (�

�0
A ; �Bs), respectively.
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of ��A and �
�
B, the curves �

o
B (�As) and �

o
A (�Bs) satisfy a single-crossing property, with �

o
B (�As)

having a steeper downward slope at the intersection of the two curves. In panel (c), this is the case

of the point of intersection that is in the upper left corner. Assume by contradiction that there

exists another equilibrium of the game, �0 = (��0A; �
�0
B ; �

�0
A; �

�0
B), and without loss of generality, that

��0B > �
�
B. In this case, by proposition 1, �

�0
B > �

�
B implies �

�0
B > �

�
B and �

�0
A > �

�
A. In turn, these

imply �oB (�As) � �zB (�As) and �
z
A (�Bs) � �oA (�Bs). By inspecting panel (c) of Figure 1 (more

precisely, the intersection of the two curves in the upper left corner) it follows that it must be that

��0B < ��B and �
�0
A > �

�
A. This is inconsistent with the initial assumption that �

�0
B > �

�
B. Thus the

initial equilibrium is unique. Now, note that the slope of �oB (�As) at the equilibrium values equalsh
@�B
@�As

(��A; �
�
B)
i�1

. Thus �oB (�As) is steeper than �
o
A (�Bs) if and only if

@�A
@�Bs

(��A; �
�
B) >

�
@�B
@�As

(��A; �
�
B)

��1
which, since both sides are negative, can be rewritten as in (8). �

Proposition 1 shows that if E is more stringent in his acceptance policy for tier B in equilibrium

�0, (i.e., ��0B > �
�
B), then �rst, A is more reluctant to submit marginal projects to tier B, (��0B > ��B),

and second, A is more inclined to submit marginal projects to tier A, (��0A < ��A), since the

alternative is less appealing. Given these, E is also more stringent in his acceptance policy at

tier A, (��0A > �
�
A), to make up for the lower expected quality of projects submitted. While these

feed-forward e¤ects make the result intuitive, proposition 1 ensures that the feed-back e¤ects, such

as the e¤ect of the increase in ��A on �
�
A, or of the decrease in �

�
A on �

�
B, do not o¤set them.

To understand corollary 3.1, consider two equilibria, � and �0, with corresponding strategies

as in the text of proposition 1. Note then that for a �xed value of ��B, a higher value of �
�
A,

(��0A > �
�
A), would induce �

�
A to increase; in other words, if E is more stringent at tier A, then A is

more reluctant to submit marginal projects to that tier. A higher ��A, together with a higher �
�
B,

(��0B > ��B), would increase the quality of projects received by tier B, and thus induce a decrease

in ��B. To instead have �
�
B increasing and �

�
A decreasing (since �

�0
B > ��B and �

�0
A < ��A in � and

�0), ��B and �
�
A should feed o¤ each other. This means that �

�
B should be higher because �

�
A is

lower, and ��A should be lower because �
�
B is higher. Thus, to have multiple equilibria, �

�
B has to

be very responsive to a decrease in ��A, while �
�
A has to be very responsive to an increase in �

�
B;

these would o¤set the e¤ects of the increases in ��B and �
�
A. In panel (c), this is the case precisely

when �oB (�As) and �
o
A (�Bs) intersect in the lower right corner where both have a steeper slope.
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Equation (8) is the mathematical representation of the same condition.

4 Results

The main objective of this paper is to investigate the impact of the agent�s preference parameters

on the equilibrium outcome. Upon inspecting (4) and (5), one can notice that the sign of the e¤ect

of an increase in the bene�t from having a project accepted into a given tier is the same with that

of a decrease in the corresponding submission cost.18 Since most papers from the related literature

examine the role of submission costs, we will focus our analysis on the same parameters, while

keeping in mind that its results are immediately interpretable in terms of changes in bene�ts from

acceptance in the relevant tier.

This section is organized as follows. In section 4.1, we present as a benchmark the main result

from Barbos (2013) for the model with one tier of evaluation. In section 4.2, we examine the e¤ect

of increases in the submission costs at the two tiers of evaluation on the equilibrium strategies, and

then in section 4.3, we employ these comparative statics results to investigate the e¤ect of changes

in payo¤s on the e¢ ciency of the equilibrium outcome. Finally, in section 4.4 we proceed in a

di¤erent direction and examine the e¢ ciency e¤ect of the introducing of a second tier in a system

of evaluation where initially only one tier had existed.

4.1 The model with one tier of evaluation

Consider a model as in section 2, only that with one tier of evaluation. In this case the agent has

to decide only on whether or not to submit the project for review. The next lemma states that in

the resulting game, an equilibrium exists, is unique, and must be in cuto¤ strategies.

Lemma 4.1 (Barbos (2013)) There exists a unique equilibrium of the game with one tier of

evaluation. This equilibrium is completely characterized by two values (��; ��) 2 [0; 1)� (0; 1) such

that A submits a project if and only if � � ��, and E accepts a project if and only if � � ��.

18For instance, both an increase in bA and a decrease in cA lead to a decrease in the numerator and an increase
in the denominator in the right hand side of (4), which are the only places where the two parameters appear in the
four equations (4)-(7) that de�ne the equilibrium of the game. Therefore, the sign of the e¤ect on the equilibrium
strategies of either of the two changes in bA and cA is the same.
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The expected quality of projects that are implemented in this equilibrium, hPr (hj� � ��; � � ��)+

lPr (lj� � ��; � � ��), is isomorphic to the probability Pr (hj� � ��; � � ��).19 The next proposi-

tion elicits the e¤ect of an increase in the submission cost, c, on this measure.

Proposition 2 (Barbos (2013)) d
dc Pr (hj� � �

�; � � ��) > 0 if and only if

d

d�
ln
fh(��)

f l(��)
>
d

d�
ln
1� F h(��)
1� F l(��) (9)

The term fh(��)
f l(��)

is the likelihood of the state h as inferred from E�s equilibrium minimum

acceptance standard ��. On the other hand, given E�s cuto¤ strategy, 1�F
h(��)

1�F l(��) is the likelihood

of state h as inferred from the fact that E accepted a project. Thus, in a model with one tier

of evaluation, a higher submission cost increases the quality of projects that are implemented if

and only if the elasticity of the likelihood of a high quality project that is inferred from the E�s

minimum standard is higher than the elasticity of the likelihood of a high quality project that is

inferred from the fact that E accepted a project. Since the intuition of this result resembles those

of the corresponding results from a model with multiple tiers, we defer presenting it to section 4.3.

4.2 The e¤ects of submission fees on equilibrium strategies

In the model with multiple tiers of evaluation, with generic signal distributions, it is not tractable to

obtain a closed-form solution for the equilibrium strategies amenable to direct comparative statics

analysis. Instead, we employ a novel strategy of performing a comparative statics analysis in the

following three steps. First, we identify all correlations between the signs of the changes in the

equilibrium strategies that are imposed by (4)-(7) under the assumed change in the underlying

parameter. Second, we identify the paths of the equilibrium strategies that are consistent with

these correlations. Finally, for each equilibrium path, we verify that the shifts in the best-response

functions that are imposed by the changes in the underlying parameter and in the equilibrium

strategies are consistent with the assumed changes in the equilibrium strategies. At this step, we

identify the equilibrium paths that may emerge only because of the multiplicity of equilibria.

19The expected quality of the projects that are implemented is l + (h� l) Pr (hj� � ��; � � ��).
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The case of a change in cA We start with the case of an increase in cA.20 Assuming that

cA increases by dcA > 0, by inspecting (4)-(7), one can infer the following necessary correlations

among the possible changes in the equilibrium strategies.

(a) From (4), if d��A > 0 and d�
�
B < 0, then d�

�
A > 0.

(b) From (5), if d��B > (<)0, then d�
�
B > (<)0.

(c) From (6), if d��A > (<)0, then d�
�
A < (>)0.

(d) From (7), if d��A > (<)0 and d�
�
B > (<) 0, then d�

�
B < (>)0.

The result in (a) reads as follows. If an increase in cA leads to an increase the equilibrium value

of ��A and to a decrease in �
�
B, then by (4), it must be that it also leads to an increase in �

�
A. On

the other hand, (b) means that if following the same increase in cA, the equilibrium value of ��B

increases then ��B must increase, while if �
�
B decreases then �

�
B must decrease. Using these results,

we have the following possible equilibrium paths following an increase in cA.

1. Assume d��A > 0. By (c), it follows that d�
�
A < 0. We have two cases to consider regarding

the sign of d��B. If d�
�
B > 0, then by (b) d�

�
B > 0. But by (d), if d�

�
A > 0 and d�

�
B > 0, then

it must be that d��B < 0. This contradicts the previous assumption. Therefore, it must be

that d��B < 0, and thus by (b) that d�
�
B < 0.

2. Assume d��A < 0. By (c), this implies that d�
�
A > 0. By (a), this implies that d�

�
B > 0. By

(b), this implies that d��B > 0.

The �rst of the two equilibrium paths is intuitive. Upon facing a higher cA, A is less inclined to

submit marginal products to tier A, and thus ��A increases. The increase in �
�
A leads to an increase

in the expected quality of projects received by tier A, which allows E to lower the corresponding

standards, and thus ��A decreases. The increase in �
�
A also leads to an increase in the expected

quality of projects submitted to tier B, which allows E to also lower ��B. This makes A more willing

to submit marginal projects to tier B, and thus ��B decreases. We depict these in Figure 2 below.

20As mentioned earlier, an increase in cA is qualitatively similar to a decrease in bA.
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The solid curves represent the pairwise best-response functions when the remaining variables are

�xed at the values from the initial equilibrium � � (��A; ��B; ��A; ��B), and the submission fee is cA.

The partially dashed curves �xA (�As) and �
x
A (�Bs) represent the best-response functions when the

fee is c0A � cA + dcA, but the values of the remaining variables are still �xed at (��A; ��B; ��A; ��B).21

For instance, from (4), it follows that for �xed values of ��B and �
�
B, to the same cuto¤ strategy

�As, A responds with a higher �A when cA increases to c0A. Thus, �xA (�As) � �oA (�As) in panel (a).

Similarly, �xA (�Bs) � �oA (�Bs) in panel (c). The dashed curves �
z
A (�As), �

z
B (�Bs), �

z
A (�Bs) and

�zB (�As) represent the best-response functions that correspond to c
0
A, and to values of strategies

from the new equilibrium �0 � (��0A; ��0B ; ��0A; ��0B). For instance, since d��B < 0, from lemma 3.4(i),

it follows that at c0A, A�s best-response �A is higher when E�s cuto¤ for tier B is �xed at ��0B than

at ��B. This implies that �
z
A (�As) � �xA (�As) in panel (a). Similarly, in panel (b), from lemma

3.4(iv) it follows that �oB (�Bs) � �zB (�Bs) because d��A > 0. Finally, in panel (c), d��B < 0 implies

�zB (�As) � �oB (�As), while d�
�
A < 0 implies �xA (�Bs) � �zA (�Bs). As seen in the �gure, the

equilibrium path is consistent with either type of initial equilibrium.

As we show next, the second equilibrium path can arise only when the initial equilibrium is not

unique. Essentially, this scenario emerges as a consequence of a coordination of expectations on

a di¤erent equilibrium in response to a change in the parameters of the model, rather than being

21Thus, for instance, �oA (�As) represents the best response function �A (�As; �
�
B), as de�ned by (4), when the

submission fee to tier A is cA, while �xA (�As) represents �A (�As; �
�
B) when the submission fee in (4) is c

0
A. On the

other hand, �zA (�As), which is de�ned below, represents �A (�As; �
�0
B ) when the submission fee to tier A is c

0
A. Finally,

�oA (�As) represents �A (�As; �
�
B) when the submission fee to tier A is cA or c0A, but also �A (�As; �

�0
B ) when the fee

to tier A is cA or c0A. Note also that, for instance in panel (c) the values �
�
A and �

�
B from the initial equilibrium � are

at the intersection of the curves �oA (�Bs) and �
o
B (�As), while the corresponding values from the equilibrium �0 are

at the intersection of the curves �zA (�Bs) and �
z
B (�As).
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driven by an adjustment of players�strategies within the same equilibrium. Note that in panel (c)

of Figure 3, dcA > 0 and d��B < 0 imply �
z
A (�Bs) � �xA (�Bs) � �oA (�Bs), while d��B > 0 implies

�oB (�As) � �zB (�As). Thus, the only ways to have d�
�
B > 0 and d��A < 0 are either if the initial

equilibrium is in the upper left corner and the two curves do not satisfy the single crossing condition,

or if the initial equilibrium is in the lower right corner where �oA (�Bs) crosses �
o
B (�As) from above.

These are precisely the conditions under which the equilibrium is not necessarily unique.

We collect these results in the following proposition.

Proposition 3 Consider an equilibrium � � (��A; ��B; ��A; ��B) and assume dcA > 0. If � is unique,

then d��A > 0, d�
�
B < 0, d�

�
A < 0 and d�

�
B < 0. If � is not unique, then it may also happen that

d��A < 0, d�
�
B > 0, d�

�
A > 0 and d�

�
B > 0.

Focusing on the case when the equilibrium is unique, note that while a higher cA does increase

the quality of projects submitted to tier A (as d��A > 0), it also decreases the quality of projects

submitted between the two tiers (as d��B < 0). Therefore, unlike the case of a system of evaluation

with one tier, in a system with multiple tiers, a higher submission cost is not unequivocally bene�cial

for the quality of projects submitted for review because higher submission costs at the upper tiers

decrease the quality of projects submitted to the lower tiers. This insight hinges on the underlying

assumption that evaluation is imprecise; if evaluation was precise, a higher cA has no e¤ect on the

agent�s decision at the margin on whether to submit a project to tier B or to forgo submitting it.

In addition to the interpretation of this �nding in the context of a trial that was mentioned

in the Introduction, proposition 3 has interesting implications in other situations captured by our
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model. For instance, in the case of a new product launch, it implies that a higher cost of launching

a product as a high-end item (or a decrease in the potential bene�t from successfully marketing a

product as such) leads the �rm to launch as low-end items some products that would have otherwise

been discarded. Intuitively, because buyers are more con�dent in products advertised as low-end

products (since they are aware that the �rm has less incentive to skim the better products to

launch them as high-end), the �rm is more willing to launch such products of marginal quality as

low-end products as the buyers are more likely to adopt them. On the other hand, in the car selling

example, it implies that when the bene�t from hiding a mechanical issue is higher, then fewer cars

are being put up for sale since buyers expect cars with disclosed issues to be of lower quality.

The case of a change in cB Similarly to the previous analysis, assuming dcB > 0 (or dbB < 0),

one can infer the following necessary correlations among equilibrium strategies.

(a) From (4), if d��B > 0 and d�
�
A < 0, then d�

�
A < 0.

(b) From (5), if d��B > 0, then d�
�
B > 0.

(c) From (6), if d��A > (<)0, then d�
�
A < (>)0.

(d) From (7), if d��A > (<)0 and d�
�
B > (<)0, then d�

�
B < (>)0.

Therefore, the equilibrium paths that can emerge when cB increases are the following.

1. Assume d��B > 0 and d�
�
B > 0. By (d), it follows that d�

�
A < 0, and then by (c) that d�

�
A > 0.

2. Assume d��B > 0 and d�
�
B < 0. If d�

�
A < 0, then by (c) d�

�
A > 0.

3. Assume d��B > 0 and d�
�
B < 0. If d�

�
A > 0, then by (c) d�

�
A < 0.

4. Assume d��B < 0. Then by (b), d�
�
B < 0. By (d) it follows that d�

�
A > 0, which then by (c)

implies that d��A < 0.

The third step of the analysis is along the lines of the case of an increase in cA and is omitted.

On the �rst three equilibrium paths, when dcB > 0, A is more reluctant to submit low-signal

marginal projects to tier B, and thus d��B > 0. On the �rst two of these paths, A also abstains

from submitting high-signal marginal projects to tier B, and thus d��A < 0. If the net e¤ect on
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the quality of projects submitted to tier B is negative, E becomes more stringent in his acceptance

policy at tier B, and so d��B > 0, as on the �rst equilibrium path. If the net e¤ect is positive, E is

less stringent, and so d��B < 0, as on the second equilibrium path. On both paths E becomes more

stringent at tier A since the expected quality of projects received at that tier is lower. The third

equilibrium path occurs when the quality of projects submitted to tier B increases signi�cantly

following the increase in ��B. In this case, �
�
B decreases su¢ ciently so as to induce an increase in

��A, and a consequent decrease in �
�
A. The last equilibrium path emerges again only when the initial

equilibrium is not necessarily unique.22 We collect these results in the next proposition.

Proposition 4 Consider an equilibrium � � (��A; ��B; ��A; ��B) and assume dcB > 0. If � is unique,

then d��B > 0, and one of the following three equilibrium paths occurs: (i) d��B > 0, d�
�
A < 0 and

d��A > 0; (ii) d�
�
B < 0, d�

�
A < 0 and d�

�
A > 0; (iii) d�

�
B < 0, d�

�
A > 0 and d�

�
A < 0. If � is not

unique, then it may also happen that d��B < 0, d�
�
A > 0, d�

�
A < 0, and d�

�
B < 0.

It deserves noting at this time that the equilibrium path selection is a local property, in that

for given values of the payo¤ parameters, it is determined exclusively from the local properties

of the signal structures in a neighborhood of the initial equilibrium. In particular, depending on

the amount of additional information extracted with an in�nitesimal change in the strategy of each

player, the equilibrium may follow at each starting point any of these paths. Further regularities on

the equilibrium paths can only be identi�ed under additional assumptions on the payo¤ parameters

of the model and the information structure beyond that imposed by assumptions 1 and 2.

Focusing again on the case of unique equilibria, the �rst insight of proposition 4 is that a higher

cost of submitting to the lower tier increases the quality of projects submitted between the two tiers

(as ��B increases). Therefore, in a situation with a tiered system of evaluation such as the one from

our motivating example of a prosecutor�s choice of charges in a criminal trial, a mechanism designer

interested in reducing the number of projects submitted for review can proceed by increasing the

cost of submission to the lower tier (or by reducing the corresponding bene�ts). This is in contrast

to an increase in the cost at the upper tier, which, as elicited in proposition 3, has the opposite

e¤ect. However, note that while the quality of projects received between the two tiers increases, the

average quality of projects received individually by both tiers may simultaneously decrease. This

22To see this, note the following in a (�As; �Bs) panel. First, from (4), dcB > 0 implies �oA (�Bs) � �xA (�Bs).
Second, also from lemma 3.4(i), d��A < 0 implies �

x
A (�Bs) � �zA (�Bs). Third, from lemma 3.4(iv ), d��B < 0 implies

�zB (�As) � �oB (�As). It is then straightforward to see that if �
o
B (�As) is steeper than �

o
A (�Bs) at the intersection

point, it must be that d��A < 0.
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is the case on path (i) where d��B > 0 and d��A > 0 imply that the evaluator needs to be more

stringent at both tiers since he receives projects of lower quality in each of them.23

Proposition 4 also suggests that in those situations where the sign of the e¤ect on one equilibrium

strategy is observed after a change in payo¤s at the lower tier, then it may be possible to infer the

signs of the e¤ects on the other strategies without observing them. For instance, if after an increase

in prosecutors�cost of �ling the lesser charges (dcB > 0), it is observed that prosecutors are less

inclined to �le not only the lesser charges (d��B > 0, which is expected), but also the more severe

charges (d��A > 0), then it can be inferred that juries require a lower burden of proof for both types

of charges (d��B < 0 and d�
�
A < 0). This is because d�

�
A > 0 identi�es path (iii) out of the three

possible paths elicited in proposition 4. Similarly, if after an increase in cB, juries are observed to

demand a higher burden of proof for the lesser charges (d��B > 0), it must be that juries are also

more demanding for the severe charges (d��A > 0), and that prosecutors are more inclined to �le

the severe charges (d��A < 0). Again, the decrease in �
�
A identi�es path (i). Finally, a decrease in

the burden of proof required for the severe charges identi�es path (iii).

4.3 The e¤ects of submission fees on the equilibrium expected quality of the

projects that are implemented

In this section, we examine the e¤ect of a change in the two submission costs on the e¢ ciency

of the equilibrium outcome.24 The measures of e¢ ciency that we employ here are the expected

qualities of projects implemented by the evaluator in the two tiers, which are isomorphic with

Pr (hj� � ��A; � � ��A), for tier A, and Pr (hj��A � � � ��B; � � ��B), for tier B. The next proposition

elicits the e¤ect of an increase in cA on these two values. We restrict attention again to the

interesting case where the initial equilibrium is unique, and thus the comparative statics are driven

by the fundamentals of the model rather than equilibrium selection.

Proposition 5 Assume that the equilibrium (��A; �
�
B; �

�
A; �

�
B) is unique. Then

23As an example, assume Pr(hj�) = �, and that � is distributed uniformly on f0:1; 0:2; 0:6; 0:7g. Also, assume that
initially ��B = 0:05 and ��A = 0:65, while after the increase in cB, ��0B = 0:15 and ��0A = 0:55. Then, in the initial
equilibrium, the average value of � for projects submitted to tier B is (0:1 + 0:2 + 0:6) =3 = 0:3, while for tier A is
0:7. After in increase in cB, in the new equilibrium, the former average is 0:2, while the latter is 0:65.
24Note that unlike some of the other papers from the literature, we do not calculate the optimal values of these

payo¤s parameters, but only elicit the e¤ect of a change in them on the expected quality of projects that are
implemented by the evaluator in the two tiers. In fact, in a variety of situations, these costs can be adjusted only at
the margin. For instance, while laws can be passed to make a prosecutor�s job of collecting evidence less costly, this
may be possible only up to a limited extent.
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(i) d
dcA

Pr (hj� � ��A; � � ��A) > 0 if and only if d
d� ln

fh(��A)
f l(��A)

> d
d� ln

1�Fh(��A)
1�F l(��A)

.

(ii) d
dcA

Pr (hj��A � � � ��B; � � ��B) > 0 if and only if d
d� ln

fh(��B)
f l(��B)

> d
d� ln

1�Fh(��B)
1�F l(��B)

.

Proof. By Bayes�Rule, we have

Pr (hj� � ��A; � � ��A) =
Pr (� � ��A; � � ��Ajh) Pr(h)

Pr
�
� � ��A; � � ��Ajh

�
Pr(h) + Pr

�
� � ��A; � � ��Ajl

�
Pr(l)

=
�

� + (1� �) Pr(���
�
A;����Ajl)

Pr(����A;����Ajh)

=
�

� + 1��
1�Gh(��A)
1�Gl(��A)

1�Fh(��A)
1�Fl(��A)

(10)

where for the third equality we used the conditional independence of the two players�signals. There-

fore, Pr (hj� � ��; � � ��) increases following an increase in cA if and only if the sum ln
1�Gh(��A)
1�Gl(��A)

+

ln
1�Fh(��A)
1�F l(��A)

increases. From (6), written in equilibrium, we have ln 1�G
h(��A)

1�Gl(��A)
= lnLA � ln �

1�� �

ln
fh(��A)
f l(��A)

, so Pr (hj� � ��A; � � ��A) increases if and only if ln
1�Fh(��A)
1�F l(��A)

� ln f
h(��A)
f l(��A)

increases. But

d

dcA

�
ln
1� F h(��A)
1� F l(��A)

� ln f
h(��A)

f l(��A)

�
=
d

d�

�
ln
1� F h(��A)
1� F l(��A)

� ln f
h(��A)

f l(��A)

��
d��A
dcA

�
(11)

Since by proposition 3, we have d��A
dcA

< 0 the proof of part (i) is complete. The proof of part (ii)

follows the same steps.25 �

To understand these results, consider the e¤ect of an increase in cA on Pr (hj� � ��A; � � ��A).

By proposition 3, a higher cA has a positive e¤ect on the expected quality of projects that are

implemented in tier A by increasing the quality of projects that are submitted (��A increases),

and a negative e¤ect by decreasing E�s standards of acceptance (��A decreases). On net, the cost

increase has a positive e¤ect if Pr (hj� � ��A; � � ��A) is more responsive to the induced increase

in ��A than to the decrease in ��A. Now, as seen in (10), Pr (hj� � ��A; � � ��A) is a monotone

transformation of the product of the likelihoods of state h inferred from the fact that A submitted

the project,
1�Gh(��A)
1�Gl(��A)

, and from the fact that E accepted it, 1�F
h(��A)

1�F l(��A)
. Therefore, the responsiveness

of Pr (hj� � ��A; � � ��A) with respect to ��A can be elicited from the elasticity of the likelihood
1�Gh(��A)
1�Gl(��A)

with respect to ��A, while the responsiveness of Pr (hj� � ��A; � � ��A) with respect to ��A

can be elicited from the elasticity of the likelihood
1�Fh(��A)
1�F l(��A)

with respect to ��A. In turn, the former

elasticity can be elicited in equilibrium from E�s decision problem, described by (6), as a function

25Note that Pr (��A � � � ��Bjq) = Gq(��A)�Gq(��B), and that one can use (7) to compute
Gh(��A)�G

h(��B)
Gl(��A)�Gl(�

�
B)
.
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of the elasticity of f
h(��A)
f l(��A)

with respect to ��A. It follows that the sign of
d
dcA

Pr (hj� � ��A; � � ��A)

can be elicited by comparing the two elasticities as in the text of the proposition.26

Propositions 2 and 5 reveal that the e¤ects of a higher submission cost to the upper tier of

a tiered system of evaluation on the expected qualities of projects implemented by both tiers are

qualitatively similar to the e¤ect of a higher submission cost in a model with one tier of evaluation.

More precisely, since a higher cA leads to unambiguous decreases in both ��A and �
�
B, the e¤ect

of a higher cA on the quality of projects implemented by the two tiers can be elicited solely by

investigating the elasticities of the two likelihoods at the equilibrium values of ��A and �
�
B.

The next proposition presents the e¤ect of an increase in cB. Its proof shares the same steps as

the proof of proposition 5 up to equation (11) and is thus omitted.

Proposition 6 Assume that the equilibrium (��A; �
�
B; �

�
A; �

�
B) is unique. Then

(i) d
dcB

Pr (hj� � ��A; � � ��A) > 0 if and only if
h
d
d� ln

1�Fh(��A)
1�F l(��A)

� d
d� ln

fh(��A)
f l(��A)

i
d��A
dcB

> 0

(ii) d
dcB

Pr (hj��A � � � ��B; � � ��B) > 0 if and only if
h
d
d� ln

1�Fh(��B)
1�F l(��B)

� d
d� ln

fh(��B)
f l(��B)

i
d��B
dcB

> 0.

Note that by proposition 4, the endogenous condition d��t
dcB

< 0 occurs when a higher cB increases

the quality of projects submitted to tier t 2 fA;Bg (due to A shifting some high-signal marginal

projects from B to A). Thus, the e¤ect of an increase in cB on the quality of projects implemented

by the two tiers depends on the elasticities of the two likelihoods in the neighborhoods of ��A and

��B, respectively, and on the sign of the change in the evaluator�s strategy (as determined by the

corresponding e¤ect on the quality of projects submitted for review at each tier).

As illustrated by counter-example in Barbos (2013), the condition on the two elasticities,

d
d� ln

fh(�)
f l(�)

> d
d� ln

1�Fh(�)
1�F l(�) , is not always satis�ed. Therefore, the two results of this section reaf-

�rm the main insight in Barbos (2013), and show that when evaluation is imperfect, an increase

in the level of self-screening exerted by the agent may be detrimental to the quality of projects

implemented in either tier because of the induced decrease in standards of acceptance. Therefore,

a policy maker interested in improving the e¢ ciency of the equilibrium outcome in a situation

where the evaluator learns from the agent�s decision, has to account for the fact that enhancing

the contribution of the agent in the screening of the projects comes at the cost of a diminishing

26See Barbos (2013) for an alternative interpretation of the conditions in proposition 5 in terms of the elasticities
of the conditional hazard rates.
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contribution of the evaluator, which may lead to a decrease in the quality of projects that are

implemented.

In the car transaction example, this means, for instance, that if new regulations lower the seller�s

potential bene�t from withholding negative information about his car (i.e., bA decreases), then the

average quality of cars transacted under both scenarios may actually decrease. Intuitively, since the

seller is less likely to be dishonest (��A increases), the buyer is more con�dent in cars advertised as in

perfect condition, and is thus less stringent when evaluating them (��A decreases). If the information

loss resulting from the buyer�s lower standards outweighs the information gain generated by the

seller�s higher standards, the quality of cars transacted as in perfect condition (tier A) decreases.

Moreover, since the lower temptation to be dishonest makes the seller less likely to present some

of the better cars as in perfect condition (��A increases), the buyer also has higher expectations

of the quality of cars presented as with some mechanical issues (tier B). Thus, the buyer is more

inclined to accept such cars (��B decreases), and so the seller is less inclined to sell a car for scrap

(��B increases). The lower standards adopted by both players at tier B do not necessarily imply a

decrease in the quality of cars transacted as with issues since cars of better quality are also sold with

disclosure of their issues (��A increases). However, this quality does decrease when the condition

identi�ed in proposition 5(b) is not satis�ed.

On the other hand, proposition 6 unveils the di¤erential impact of a change in payo¤parameters

at the lower tier. In particular, since a higher value of cB may increase the standards of acceptance

at either tier, when these standards do increase, one will observe a decrease in the quality of projects

implemented in that tier for the same information structure that would lead to an increase in this

quality under an increase in the value of cA.

4.4 Introducing a second tier of evaluation

We close by presenting a proposition that compares the equilibrium of a game with one tier of

evaluation with the equilibrium from the game with both tiers. More precisely, we analyze the

impact of introducing an additional upper or lower tier in a system of evaluation in which only one

tier had existed.27 The proof of the proposition is in appendix A7.

27The payo¤ characteristics of each tier are assumed identical accross games. Thus, for instance, bA, cA and LA
are the same in the game in which only tier A exists and in the game with two tiers of evaluation, A and B.
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Proposition 7 Let
�
�1�A ; �

1�
A

�
and

�
�1�B ; �

1�
B

�
be the equilibria of the games with only tier of eval-

uation A or B, respectively. Also, let
�
�2�A ; �

2�
B ; �

2�
A ; �

2�
B

�
be the equilibrium of the game with both

tiers. Then, �2�A > �1�A , �
2�
A < �1�A , �

2�
B > �1�B and �2�B > �1�B .

Thus, the introduction of a lower tier B in a system of evaluation in which only tier A had

existed induces A to be more selective in submitting to tier A, (�2�A > �1�A ), which allows E to be

less stringent in his standards of acceptance at that tier, (�2�A < �1�A ). On the other hand, the

introduction of an upper tier A in a system in which only tier B had existed lowers the expected

quality of projects received by tier B, inducing E to become more stringent, (�2�B > �1�B ). In turn,

this makes A more selective in submitting marginal projects to tier B, (�2�B > �1�B ).

These results have two policy implications. First, �2�A > �1�A suggests an additional intuitive

mechanism to induce more self-screening by the agent at tier A. Thus, by introducing a new

lower bene�t tier of evaluation, tier A receives for review projects of higher quality. The quality of

projects submitted between the two tiers does decrease in this case (�2�B < �1�A ), so this lowers the

overall burden on the evaluator if the cost of evaluation at the upper tier is su¢ ciently higher than

at the lower tier. On the other hand, �2�B > �1�B implies that by introducing a new upper tier, A will

refrain from submitting low-quality projects to the lower tier B, increasing the quality of projects

submitted between the two tiers. Moreover, since �2�B > �1�B it also follows that introducing tier A

increases the quality of projects implemented between the two tiers. These �ndings lend additional

support for a tiered system of evaluation as an e¢ cient mechanism of project screening.

5 Conclusion

In this paper we investigate the e¤ect of changes in payo¤ parameters on the e¢ ciency of the

equilibrium outcome in a game where the owner of a project of unknown quality faces a tiered system

of evaluation to which he can submit his project for review. We consider a setup where evaluation

is imperfect, and thus the evaluator is a strategic player who adjusts his strategy in response to

changes in the quality of projects that are submitted. When the agent�s payo¤ parameters at

the upper tier makes submitting to this tier highly appealing, we show that negative assortative

matching may emerge in equilibrium where projects of lower quality are submitted to the upper tier,

and those of higher quality to the lower tier. Unlike previous results from the literature, in a system

of evaluation with multiple tiers, a higher submission cost may decrease the quality of projects that
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are submitted. In particular, a higher submission cost at the upper tier decreases the quality of

projects submitted between the two tiers, while a higher cost at the lower tier may simultaneously

decrease the average quality of projects submitted at both tiers. We also investigate the e¤ect of

payo¤ parameters on the quality of projects that are implemented, and show that changes in these

payo¤s that induce the agent to exert a higher level of self-screening may not be bene�cial because

of the ensuing relaxation of the standards of acceptance. Finally, by comparing the equilibrium

outcomes from a tiered system of evaluation with the outcome from a system with only one tier, we

provide support for a tiered system of evaluation as a more e¢ cient project screening mechanism.

Appendix

Appendix A1.

First, for E�s beliefs, by Bayes�Rule we have

Pr(hjfstg; �) =
j(fstg; �jh) Pr(h)

j(fstg; �jh) Pr(h) + j(fstg; �jl) Pr(l)

where j(�j�) denotes the conditional probability density function of the relevant continuous ran-

dom variable. Since A�s action and the signal � are conditionally independent, it follows that

j(fstg; �jq) = Pr(fstgjq)f q(�), and thus that

Pr(hjfstg; �) =
Pr(fstgjh)fh(�)�

Pr(fstgjh)fh(�)� + Pr(fstgjl)f l(�) (1� �)

=
Pr(fstgjh)f

h(�)
f l(�)

�
1��

Pr(fstgjh)f
h(�)
f l(�)

�
1�� + Pr(fstgjl)

(12)

Since, the last term is increasing in fh(�)
f l(�)

, the fact that d
d�

h
fh(�)
f l(�)

i
> 0 implies d

d� Pr(hjfstg; �) > 0.

Thus, given (1), it follows that for any Sag, E responds with a cuto¤ strategy by accepting a project

submitted to tier t if and only if � � �t(Sag), with �t(Sag) 2 [0; 1]. Thus, in any equilibrium, the

evaluator uses a cuto¤ strategy.
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On the other hand, for A�s belief we have

Pr(fatgj�) = Pr(fatgj�; h) Pr(hj�) + Pr(fatgj�; l) Pr(lj�)

= Pr(fatgjh) Pr(hj�) + Pr(fatgjl) Pr(lj�)

= [Pr(fatgjh)� Pr(fatgjl)] Pr(hj�) + Pr(fatgjl) (13)

where for the second equality we used the fact that � is redundant for A�s inference about E�s

action when conditioning on the quality of the project. Since in any equilibrium, the evaluator

uses a cuto¤ strategy, we have fatg = f� : � � �tsg, and thus Pr(fatgjh) � Pr(fatgjl) = Pr(� �

�tsjh) � Pr(� � �Isjl) = F l(�ts) � F h(�ts). The monotone likelihood ratio property implies �rst

order stochastic dominance, and thus F l(�ts) � F h(�ts) > 0. On the other hand, by Bayes�Rule

we have

Pr(hj�) = gh(�)�

gh(�)� + gl(�) (1� �) =
gh(�)
gl(�)

�
1��

gh(�)
gl(�)

�
1�� + 1

(14)

which is increasing in gh(�)
gl(�)

, and thus increasing in � since d
d�

h
gh(�)
gl(�)

i
> 0. Thus, d

d� Pr(fatgj�) > 0.

Now, bA Pr (faAgj�) � cA � max f0; bB Pr (faBgj�)� cBg if and only if Pr (faAgj�) � cA
bA
and

bA Pr (faAgj�)�bB Pr (faBgj�) � cA�cB. Since in any equilibrium, fatg = f� : � � �tsg, it follows

that

@

@�
[bA Pr (faAgj�)� bB Pr (faBgj�)] =

=
@

@�
[bA Pr (� � �Asj�)� bB Pr (� � �Bsj�)]

=
@

@�

�
bA [Pr (� � �Asjh; �) Pr(hj�) + Pr (�A � �Asjl; �) Pr(lj�)]
�bB [Pr (� � �Bsjh; �) Pr(hj�) + Pr (� � �Bsjl; �) Pr(lj�)]

�
=
@

@�

�
bA [Pr (� � �Asjh) Pr(hj�) + Pr (�A � �Asjl) Pr(lj�)]
�bB [Pr (� � �Bsjh) Pr(hj�) + Pr (� � �Bsjl) Pr(lj�)]

�
=
@

@�

�
bA [fPr (� � �Asjh)� Pr (�A � �Asjl)gPr(hj�)] + Pr (�A � �Asjl)
�bB [fPr (� � �Bsjh)� Pr (�B � �Bsjl)gPr(hj�)] + Pr (�B � �Bsjl)

�
= fbA [Pr (� � �Asjh)� Pr (�A � �Asjl)]� bB [Pr (� � �Bsjh)� Pr (� � �Bsjl)]g

@

@�
[Pr(hj�)]

=
n
bA

h
F l(�As)� F h(�As)

i
� bB

h
F l(�Bs)� F h(�Bs)

io @

@�
[Pr(hj�)] (15)

where for the third equality we used again Pr(fatgj�; q) = Pr(fatgjq). Since @
@� [Pr(hj�)] > 0, it

follows that @
@� [bA Pr (faAgj�)� bB Pr (faBgj�)] has the same sign for all values of �, i.e., the sign

of bA
�
F l(�As)� F h(�As)

�
� bB

�
F l(�Bs)� F h(�Bs)

�
.
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Let �0 be the solution to bA Pr (faAgj�0) � bB Pr (faBgj�0) = cA � cB, �00 be the solution to

Pr (faAgj�00) = cA
bA
and �000 be the solution to Pr (faBgj�000) = cB

bB
, and assume for the time be-

ing that all these solutions are interior in [0; 1]. We have two cases to consider. (i) Assume

bA
�
F l(�As)� F h(�As)

�
� bB

�
F l(�Bs)� F h(�Bs)

�
> 0. Then, A will submit the project to tier A

for � 2 [�0; 1]\ [�00; 1], to tier B for � 2 � 2 [0; �0]\ [�000; 1], and will not submit the project for the

rest of the values of �. (ii) Assume bA
�
F l(�As)� F h(�As)

�
� bB

�
F l(�Bs)� F h(�Bs)

�
< 0. Then,

A will submit the project to tier B for � 2 [�0; 1]\ [�000; 1], to tier A for � 2 [0; �0]\ [�00; 1], and will

not submit the project for the rest of the values of �. In either case, the set of values of � for which

A submits the project to each evaluator is connected. The analysis for the cases when the solutions

to the equations that de�ne �0, �00 and �000 are not interior is similar and leads to the same salient

conclusions. For instance, if bA Pr (faAgj�0)� bB Pr (faBgj�0) > cA � cB for all � 2 [0; 1], but �00 is

interior, then A will submit the project to tier A for � 2 [�00; 1] and will not submit the project for

the rest of the values of �. �

Appendix A2. Proof of Lemma 3.1

We show that if �Bs � �As, then condition (3) is never satis�ed, i.e., that bB Pr (� � �Bsj�) �

cB < max f0; bA Pr (� � �Asj�)� cAg. To this end, since �Bs � �As implies Pr (� � �Asj�) �

Pr (� � �Bsj�), it is enough to show that

bB Pr (� � �Asj�)� cB < max f0; bA Pr (� � �Asj�)� cAg

To this aim, we will argue that whenever bB Pr (� � �Asj�)�cB � bA Pr (� � �Asj�)�cA, it must be

that bB Pr (� � �Asj�)� cB < 0, which will complete the argument. Since bA > bB, by assumption

1(i), this is equivalent to showing that

Pr (� � �Asj�) �
cA � cB
bA � bB

implies Pr (� � �Asj�) <
cB
bB

To show this implication, it is enough to show that cA�cBbA�bB <
cB
bB
. Rearranging this last condition,

we conclude that it is satis�ed whenever assumption 1(ii) is satis�ed, so the proof of the lemma is

complete. �
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Appendix A3.

From (2) and (3), it follows that A�s best response function will exhibit positive assortative match-

ing, i.e., A will submit to tier A for higher values of �, if and only if

@

@�
[bA Pr (� � �Asj�)� bB Pr (� � �Bsj�)] > 0

Lemma 5.1 provides conditions under which this is satis�ed.

Lemma 5.1 Let e�1 be the solution to f l(e�1)
fh(e�1) = 1, and let e�2 be the solution to bA

bB
= F l(e�1)�Fh(e�1)

F l(e�2)�Fh(e�2)
on [e�1; 1]. (i) If �As � e�2, then @

@� [bA Pr (� � �Asj�)� bB Pr (� � �Bsj�)] > 0 for any �Bs < �As.

(ii) If �As > e�2, then there exists a neighborhood N�As of e�1, such that when �Bs 2 N�As, we have
@
@� [bA Pr (� � �Asj�)� bB Pr (� � �Bsj�)] < 0.

Proof. From (15), we have that when evaluators employ cuto¤ strategies �As and �Bs,

@

@�
[bA Pr (� � �Asj�)� bB Pr (� � �Bsj�)] =

=
n
bA

h
F l(�As)� F h(�As)

i
� bB

h
F l(�Bs)� F h(�Bs)

io @

@�
[Pr(hj�)]

with @
@� [Pr(hj�)] > 0.

Note that d
d�

�
F l(�)� F h(�)

�
= 0() f l(�)� fh(�) = 0() � = e�1. Moreover, we have

d

d�

h
F l(�)� F h(�)

i
> 0() f l(�)

fh(�)
> 1

Therefore, since f l(e�1)
fh(e�1) = 1 (by the de�nition of e�1) and d

d�

h
f l(�)
fh(�)

i
< 0 (from assumption 2(ii)),

we have that
d

d�

h
F l(�)� F h(�)

i
> 0() � < e�1 (16)

Now, if �As < e�2, where, by its de�nition, e�2 is the solution to bA
bB
= F l(e�1)�Fh(e�1)

F l(e�2)�Fh(e�2) , then
bA
�
F l(�As)� F h(�As)

�
� bB

�
F l(�Bs)� F h(�Bs)

�
> 0 for any �Bs < �As. To see this, assume �rst

that �As > e�1. Then, since e�2 > �As > e�1, by (16) F l(�As) � F h(�As) � F l(e�2) � F h(e�2) =
bB
bA

�
F l(e�1)� F h(e�1)�. Thus, bA �F l(�As)� F h(�As)�� bB �F l(e�1)� F h(e�1)� > 0. Since F l(�Bs)�

F h(�Bs) � F l(e�1)�F h(e�1) by the de�nition of e�1, it follows that indeed bA �F l(�As)� F h(�As)��
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bB
�
F l(�Bs)� F h(�Bs)

�
> 0 for any �Bs. On the other hand, if �As < e�1 then F l(�As)�F h(�As) >

F l(�Bs) � F h(�Bs) by (16) and the fact that �As > �Bs. Since bA > bB, it follows again that

bA
�
F l(�As)� F h(�As)

�
� bB

�
F l(�Bs)� F h(�Bs)

�
> 0 for any �Bs < �As.

On the other hand, if �As > e�2 and �Bs is su¢ ciently close to e�1, then bA �F l(�As)� F h(�As)��
bB
�
F l(�Bs)� F h(�Bs)

�
< 0. �

To understand the lemma, note �rst that e�1 is the point at which the di¤erence F l(�) � F h(�)
is maximized, whereas when �As is su¢ ciently high, the di¤erence F l(�As) � F h(�As) is small.

Therefore, when �As is high and �Bs is close to e�1, the probability that a high-quality project is
identi�ed as such from the evaluator�s signal is higher when submitting it to tier B (meaning that

E will observe a signal � � �Bs with high probability, conditional on h, and with a low probability,

conditional on l). The likelihood of a high-quality project is increasing in the signal �. Thus, given

the low probability of acceptance at tier A, when A has a higher signal, he is more likely to submit

the project to tier B in order to have it identi�ed as being of high quality and accepted. On the

other hand, if bAcA is high enough, the expected payo¤ from submitting the project to tier A may

be positive even when � is small and �As is high. Therefore, when A has a low signal he prefers

submitting the project to tier A rather than not submitting it at all. On the other hand, A�s

strategy of submitting to tier B for high signals and to tier A for lower signals, E�s best response is

precisely to adopt a high �As and a moderate �Bs. Therefore, negative assortative matching may

occur in equilibrium.

Appendix A4. Proof of Lemma 3.2

Employing (14) in (13), it follows that

Pr(fatgj�) =
gh(�)
gl(�)

�
1��

gh(�)
gl(�)

�
1�� + 1

h
1� F h (�ts)

i
+

1
gh(�)
gl(�)

�
1�� + 1

h
1� F l (�ts)

i
(17)
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From (2), under the equilibrium regularity that we assume throughout, we have then that given

�As and �Bs, A submits a project to tier A if and only if

bA Pr (faAgj�)� cA � bB Pr (faBgj�)� cB ()

bA

�
gh(�)

gl(�)

�

1� �

h
1� F h (�As)

i
+
h
1� F l (�As)

i�
�bB

�
gh(�)

gl(�)

�

1� �

h
1� F h (�Bs)

i
+
h
1� F l (�Bs)

i�
�

� (cA � cB)
�
gh(�)

gl(�)

�

1� � + 1
�
()

gh(�)

gl(�)

�

1� �

n
bA

h
1� F h (�As)

i
� bB

h
1� F h (�Bs)

i
+ cB � cA

o
�

� bB
h
1� F l (�Bs)

i
� bA

h
1� F l (�As)

i
+ cA � cB

The last inequality implies thatA employs a cuto¤�As de�ned by (4) provided that bA
�
1� F h (�As)

�
�

bB
�
1� F h (�Bs)

�
+ cB � cA > 0 and bB

�
1� F l (�Bs)

�
� bA

�
1� F l (�As)

�
+ cA � cB. These con-

ditions are not satis�ed generically, but they are necessary conditions for the regular equilibrium

under consideration. To see this, note �rst that from the argument in appendix A1, a neces-

sary and su¢ cient condition for positive assortative matching is that bA
�
F l(�As)� F h(�As)

�
�

bB
�
F l(�Bs)� F h(�Bs)

�
> 0, which implies by direct computation that

bA

h
1� F h (�As)

i
� bB

h
1� F h (�Bs)

i
> bA

h
1� F l (�As)

i
� bB

h
1� F l (�Bs)

i
(18)

Now, we have three cases to consider. (i) If cA � cB < bA
�
1� F l (�As)

�
� bB

�
1� F l (�Bs)

�
,

then it immediately follows that bB
�
1� F l (�Bs)

�
� bA

�
1� F l (�As)

�
+ cA � cB < 0, but also

that bA
�
1� F h (�As)

�
� bB

�
1� F h (�Bs)

�
+ cB � cA > 0 by using (18). So A will never submit

a project to tier B, which is something that we precluded by the regularity assumption. (ii) If

cA�cB > bA
�
1� F h (�As)

�
�bB

�
1� F h (�Bs)

�
, then it immediately follows that bA

�
1� F h (�As)

�
�

bB
�
1� F h (�Bs)

�
+cB�cA < 0, but also that bB

�
1� F l (�Bs)

�
�bA

�
1� F l (�As)

�
+cA�cB > 0 by

using (18). So A will never submit a project to tier A, which is again something that is precluded

by the regularity assumption. (iii) Finally, the case when bA
�
1� F h (�As)

�
� bB

�
1� F h (�Bs)

�
>

cA � cB > bA
�
1� F l (�As)

�
� bB

�
1� F l (�Bs)

�
corresponds to the case where A submits a project

to tier A if and only if (4) is satis�ed.

When (4) is not satis�ed, A submits a project to tier B if and only if bB Pr (faBgj�)� cB, which

by straightforward computations using (17), implies A employs a cuto¤ �Bs de�ned by (5). �
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Appendix A5. Proof of Lemma 3.3

For the evaluator, from (1) and (12) it follows that E will accept a project submitted to tier t if

and only if

Pr(fstgjh)f
h(�)
f l(�)

�
1��

Pr(fstgjh)f
h(�)
f l(�)

�
1�� + Pr(fstgjl)

� Lt
1 + Lt

() fh(�)

f l(�)

�

1� �
Pr(fstgjh)
Pr(fstgjl)

� Lt

Thus, given the cuto¤s �As and �Bs employed by A, E will accept a project submitted to tier A

with quality signal � if and only if

fh(�)

f l(�)

�

1� �
1�Gh(�As)
1�Gl(�As)

� LA

and E will accept a project submitted to tier B with quality signal � if and only if

fh(�)

f l(�)

�

1� �
Gh(�As)�Gh(�Bs)
Gl(�As)�Gl(�Bs)

� LB

Therefore, indeed, the two evaluators employ cuto¤ strategies with cuto¤s de�ned by (6) and (7).

This completes the proof of the lemma. �

Appendix A6. Proof of Lemma 3.4

Parts (i) and (ii) are immediate. The proof of part (iii) is identical to the corresponding proof from

the case of a unique evaluator presented in Barbos (2012). For part (iv), since fh(�)
f l(�)

is increasing

in �, from (7) it follows that �B (�) is decreasing in �As if and only if

d

d�As

�
Gl(�As)�Gl(�Bs)
Gh(�As)�Gh(�Bs)

�
< 0() gh(�As)

gl(�As)
>
Gh(�As)�Gh(�Bs)
Gl(�As)�Gl(�Bs)

(19)

where we used the fact that �As > �Bs. Similarly, �B (�) is decreasing in �Bs if and only if

d

d�Bs

�
Gl(�As)�Gl(�Bs)
Gh(�As)�Gh(�Bs)

�
< 0() Gh(�As)�Gh(�Bs)

Gl(�As)�Gl(�Bs)
>
gh(�Bs)

gl(�Bs)
(20)

We will show that (19) and (20) are satis�ed under assumption 2(ii). Since gh(u)
gl(u)

is increas-

ing in u, it follows that for u 2 [�Bs; �As), we have
gh(�As)
gl(�As)

> gh(u)
gl(u)

, and thus gh (�As) g
l (u) >
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gl (�As) g
h (u). Integrating this last inequality with respect to u between �Bs and �As, we obtain

gh (�As)
h
Gl (�As)�Gl (�Bs)

i
> gl (�As)

h
Gh (�As)�Gh (�Bs)

i
which immediately then implies (19). On the other hand, g

h(�Bs)
gl(�Bs)

< gh(u)
gl(u)

for u 2 (�Bs; �As], implies

gh (�Bs) g
l (u) < gl (�Bs) g

h (u), which integrated with respect to u between �Bs and �As, implies

gh(�Bs)
h
Gl(�As)�Gl(�Bs)

i
< gl(�Bs)

h
Gh(�As)�Gh(�Bs)

i
which implies (20). This completes the proof of the lemma. �

Appendix A7. Proof of Proposition 7

From Barbos (2013), with only one tier of evaluation, the equilibrium is given by

�

1� �
gh(�1�t )

gl(�1�t )
=

ct � bt
�
1� F l

�
�1�t
��

bt
�
1� F h

�
�1�t
��
� ct

(21)

�

1� �
fh(�1�t )

f l(�1�t )

1�Gh(�1�t )
1�Gl(�1�t )

= Lt (22)

where
�
�1�t ; �

1�
t

�
denotes the equilibrium strategies of the game in which E only o¤ers tier t 2 fA;Bg.

Consider �rst the case when the initial tier is A, and then tier B is introduced. Assume by

contradiction that �2�A � �1�A . Then

�

1� �
fh(�1�A )

f l(�1�A )
= LA

1�Gl(�1�A )
1�Gh(�1�A )

� LA
1�Gl(�2�A )
1�Gh(�2�A )

=
�

1� �
fh(�2�A )

f l(�2�A )

where the �rst equality follows from (22) with t = A, the second equality follows from (6), and the

inequality from �2�A � �1�A and the fact that d
d�

h
1�Gh(�)
1�Gl(�)

i
> 0. To see this last fact, let �As = 1 in

equation (20). Thus, f
h(�1�A )

f l(�1�A )
� fh(�2�A )

f l(�2�A )
, so by assumption 2(ii), we have that �2�A � �1�A . Therefore,

from (21), �
1��

gh(�1�A )

gl(�1�A )
=

cA�bA[1�F l(�1�A )]
bA[1�Fh(�1�A )]�cA

� cA�bA[1�F l(�2�A )]
bA[1�Fh(�2�A )]�cA

. On the other hand, from (4), we have

�
1��

gh(�2�A )

gl(�2�A )
=

bB[1�F l(�2�B )]�bA[1�F l(�2�A )]+cA�cB
bA[1�Fh(�2�A )]�bB[1�Fh(�2�B )]+cB�cA

. We show next that �
1��

gh(�2�A )

gl(�2�A )
>

cA�bA[1�F l(�2�A )]
bA[1�Fh(�2�A )]�cA

,

which would then imply that gh(�2�A )

gl(�2�A )
>

gh(�1�A )

gl(�1�A )
, and thus that �2�A > �1�A contradicting the initial
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assumption. Thus, note that

bB
�
1� F l

�
�2�B
��
� bA

�
1� F l

�
�2�A
��
+ cA � cB

bA
�
1� F h

�
�2�A
��
� bB

�
1� F h

�
�2�B
��
+ cB � cA

>
cA � bA

�
1� F l

�
�2�A
��

bA
�
1� F h

�
�2�A
��
� cA

()

bB
�
1� F l

�
�2�B
��
� cB

cB � bB
�
1� F h

�
�2�B
�� >

cA � bA
�
1� F l

�
�2�A
��

bA
�
1� F h

�
�2�A
��
� cA

But this last inequality follows from the fact that �2�A > �2�B implies from (4) and (5) that

bB
�
1� F l

�
�2�B
��
� bA

�
1� F l

�
�2�A
��
+ cA � cB

bA
�
1� F h

�
�2�A
��
� bB

�
1� F h

�
�2�B
��
+ cB � cA

>
cB � bB

�
1� F l

�
�2�B
��

bB
�
1� F h

�
�2�B
��
� cB

Therefore, indeed �2�A > �1�A , which then from (22) and (6) immediately also implies that �
2�
A < �1�A .

For the second part of the proof, consider the case when the initial tier is B and then tier

A is introduced, and assume by contradiction that �2�B � �1�B . From (21) and (5), this implies

that �2�B � �1�B . Therefore, from (22) it follows that �
1��

fh(�1�B )

f l(�1�B )
= LB

1�Gl(�1�B )
1�Gh(�1�B )

� LB
1�Gl(�2�B )
1�Gh(�2�B )

.

Therefore, to complete the contradiction argument, it would be enough to show that �
1��

fh(�2�B )

f l(�2�B )
>

LB
1�Gl(�2�B )
1�Gh(�2�B )

, because this would immediately imply �2�B > �1�B . But from (7) we have �
1��

fh(�2�B )

f l(�2�B )
=

LB
Gl(�2�A )�Gl(�2�B )
Gh(�2�A )�Gh(�2�B )

, so it su¢ ces to show that Gl(�2�A )�Gl(�2�B )
Gh(�2�A )�Gh(�2�B )

>
1�Gl(�2�B )
1�Gh(�2�B )

. This is true from (19).

Therefore, indeed �2�B > �1�B , which from (21) and (5) also implies that �2�B > �1�B . �
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