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Abstract

This paper provides a model in which communication is necessary
in order to achieve cooperative outcomes in a long-term relationship.
The model is a dynamic prisoner’s dilemma with incomplete informa-
tion about payoffs. The payoffs are private information and stochas-
tically evolve over time. I study two situations. In one, players play
simultaneously in every stage, knowing their own types. In the other,
players exchange cheap talk messages after knowing their own types
but prior to play. I show that there exists a nearly efficient payoff vec-
tor that is achieved as an equilibrium outcome when communication
is possible and players are patient, but cannot be achieved without
communication no matter how patient the players are.

1 Introduction

According to the Bible, a united humanity started to build the Tower of
Babel ”whose top may reach unto heaven ...” This attempt to reach heaven
displeased God greatly He said: ”They are one people and have one language,
and nothing will be withheld from them which they purpose to do.” So
God thwarted humanity’s efforts by ”confound[ing] the language of all the
Earth”. By separating the languages, God disrupted communication among
the mortals preventing them from succeeding in their cooperative endeavor.

At a more earthly level, antitrust law deems certain kinds of communi-
cation between competing firms to be illegal, again based on the premise
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that communication facilitates collusion. God and policymakers share the
common and intuitive idea that communication is necessary in order to co-
operate/collude. The literature on repeated games, however, does not pro-
vide theoretical support for this idea. The folk theorem for repeated games
(Fudenberg and Maskin (1986)) shows that cooperation can be achieved with-
out any communication among the players. The same is true for repeated
games with imperfect public monitoring (Fudenberg, Levine and Maskin
(1994)). With private monitoring, Compte (1998) and Kandori and Mat-
sushima (1998) establish folk theorems in situations in which players can
communicate with each other. But recently, Sugaya (2011) has shown that
even in games with private monitoring, communication can be dispensed
with altogether. One lesson of these results is that communication is not
necessary for cooperation.

The results mentioned above concern games of complete information. But
even with incomplete information, there are folk theorems which do not make
use of any communication. Specifically, in games in which types are drawn
only once (and so are ”perfectly persistent”), Fudenberg and Yamamoto
(2010, 2011) and Yamamoto (2012) prove such a result under various as-
sumptions.1

In a Bertrand oligopoly game in which types are independently drawn in
every period (and so are not persistent), Athey and Bagwell (2001) informally
claim that communication improves equilibrium outcome. But they consider
only public perfect equilibrium (PPE) and Hörner and Jamison (2007) have
shown that once the restriction to PPE is removed, collusive outcomes can
be achieved without any communication. The overall message is again that
communication has little to do with cooperation.

This paper studies a model with evolving incomplete information in which
communication strictly improves equilibrium payoffs. Specifically, there are
(symmetric) equilibrium outcomes with communication which Pareto domi-
nate all (symmetric) equilibrium outcomes without communication. Players’
privately known types change over time. This class of models has a natural
application to oligopoly markets in which firms privately know their produc-
tion possibilities (as in the papers mentioned above), or repeated auctions
in which buyers’ values change across time (as in Skrzypacz and Hopenhayn
(2004)). In these contexts, whether communication helps or not has impor-
tant practical and legal implications.

The role of communication here is intuitive. Players are able to aggregate
private information through communication and thereby, to coordinate their

1These models study discounted games and so differ from the extensive literature on
undiscounted repeated games of incomplete information. See Aumann and Maschler (1995)
for a survey.

2



behavior. However, it does not directly follow that communication actually
helps, as players always have an incentive to lie about their private informa-
tion. Despite this, I show that there exists an equilibrium in which players
communicate honestly most of the time and hence improve the equilibrium
payoffs.

The stage game is a prisoner’s dilemma with incomplete information. The
payoff to a cooperating player when the other defects takes one of the two
values: high or low. The pair of actions that maximizes the sum of payoffs
thus depends on the payoff ”shocks”. If the negative payoff for one player
is low, then the sum of payoffs is maximized by that player cooperating and
the other defecting, rather than both players cooperating. I compare two
cases: one in which communication is possible and the other in which it is
not. In the case where communication is not possible, each individual decides
her action after observing her own private payoff realization. In the other
case, players strategically exchange (cheap talk) messages in each period after
the shocks are realized and before the stage game actions are chosen. The
messages are public and observed without any errors.

The main result is that there exists a nearly efficient payoff vector that
is achieved as an equilibrium outcome when communication is possible and
players are patient, but cannot be achieved without communication no matter
how patient the players are. The second part is a simple corollary of a
result that the feasible set without communication is a proper subset of the
feasible set with communication. The first part is shown by construction.
The equilibrium is described by a two-state automaton. There are two states:
regular and punishment. In the regular state, players report their payoffs
truthfully, and they choose the actions to maximize the sum of payoffs, given
the reports. Any deviation on actions results in the state shift. Reporting
that one gets high payoff shock also triggers the state change, with a small
but strictly positive probability. In the punishment state, players play the
stage game Nash equilibrium, i.e. mutual defections. The punishment state
is the unique absorbing state.

Following Athey and Bagwell (2001), there has been a growing body of
literature on discounted repeated games with incomplete information, mostly
in specific models of oligopolies. This includes Athey and Bagwell (2001,
2008), Athey, Bagwell and Sanchirico (2004), Hörner and Jamison (2007)
and Olszewski and Safronov (2012).

The paper is organized as follows. I set up the model in Section 2. The
main result is stated in Section 3. The result is proved in the next two
sections. Section 4 provide considers the case where communication is not
possible and establishes an upper bound to the set of attainable payoffs. This
bound is independent of the discount rate and is below the full information
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first-best payoff. Section 5 is devoted to the case where communication
is possible and shows that when players are patient, the full information
benchmark payoff can be approximated. Section 6 concludes.

2 Preliminaries

2.1 The Stage Game

In this paper, I consider the following prisoners’ dilemma with incomplete
information, denoted by G:

C D

C 1, 1 −θ1, 1 + g

D 1 + g,−θ2 0, 0

Figure 1: The payoff matrix

where θi is a payoff shock that is privately observed by player i only. Each
θi can take on two values: l and h.

It is assumed that g > 0, h > l > 0 and that

1 + g − h < 2 < 1 + g − l (1)

Notice that if the realized θ = (θ1, θ2) = (h, h), then the action pair (C,C)
maximizes the sum of payoffs. If the realized θ = (l, h) (resp. (h, l)), then
(C,D) (resp. (D,C)) maximizes the sum of payoffs. Finally, if the realized
θ = (l, l), then either (D,C) or (C,D) maximizes the sum.

I note that the game described above is one of private values—player i’s
payoff depends only on θi and not θ−i. (Throughout, the symbol −i denotes
player 3− i.)

Payoff shocks are drawn from a joint distribution q ∈ ∆ where ∆ denotes
the set of distributions over Θ = Θ1 × Θ2 = {l, h} × {l, h}. Notice that
correlation among types is allowed. I assume that the distribution q has full
support. Moreover, assume that for each i,

1 + g − [qi(h)h+ qi(l)l] < 2 (2)

and

l <
qi(h)

qi(l)
< qi(h)h+ qi(l)l (3)
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where qi(θi) denotes the marginal distribution that the payoff shock of player
i is θi ∈ {l, h}. I do not assume that q is commonly known.

Condition (2) implies that ex ante the game looks like a usual prisoner’s
dilemma, in the sense that (C,C) is more efficient than alternating between
(C,D) and (D,C). Condition (3) is satisfied whenever, given the other pa-
rameters, l is small and h is big enough.

Let Ai = {C,D} and A = A1 × A2. A pure strategy of player i in G is a
function

si : Θi → Ai

Let Si denote the set of pure strategies of player i and let S = S1 × S2.
Then ui[q] : S → R is the expected payoff for player i, computed using the
distribution q ∈ ∆.

Define the set of feasible payoffs F [q] ⊂ R2 by

F [q] = co{u[q](s) | s ∈ S} (4)

where u[q] = (u1[q], u2[q]) and co denotes the convex hull of a set.

2.2 Dynamic Game

Consider an infinite horizon dynamic game version G(δ) of the stage game in
which both players discount future payoffs using a discount factor δ ∈ (0, 1).
I consider a situation in which the distribution of player types may evolve
over time.

Assume the distribution of θ ∈ Θ at period t+ 1 is determined according
to the history of θ realizations up to period t. Formally, let qt+1(θt+1 | θt)
be the distribution at period t + 1 given the history θt = (θ1, θ2, ...θt) of
realizations up to period t.2

Assume that players are anonymous in the following sense.

Assumption 1. For any θt,θ′t ∈ Θt that satisfy θti = θ′t−i and θt−i = θ′ti,

qt+1
i (· | θt) = qt+1

−i (· | θ′t)

and
qt+1
−i (· | θt) = qt+1

i (· | θ′t)

The specification permits (i) processes that are independent and identical
across periods (henceforth called i.i.d. processes) where for all t and histories
θt, qt+1(θt+1 | θt) = q; (ii) Markov processes where qt+1(θt+1 | θt) = q(θt+1 |

2Hereafter, subscripts indicate players, superscripts indicate periods, and bold letters
indicate histories.
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θt). But it also permits more general processes like AR-2 processes where
qt+1(θt+1 | θt) = q(θt+1 | θt, θt−1) as well as many others.

Let
Q = cl{q ∈ ∆(Θ) | ∃(t,θt) s.t. q(·) = qt+1(·|θt)}

where cl denotes the closure of a set. I make the following assumptions about
Q.

Assumption 2.
Q ⊂ Int∆

where Int denotes the interior of a set.

This assumption implies that any q ∈ Q has full support. Many stochastic
processes satisfy the assumption. The simplest example is an i.i.d. process.
Suppose that every period the shocks are drawn from a distribution q ∈ Int∆.
In this case, Q = {q} ⊂ Int∆. A globally stable Markov process whose initial
distribution has full support satisfies the assumption as well.3

A second assumption is the following.

Assumption 3. Any q ∈ Q satisfies (2) and (3).

Finally, I assume that the distribution is sufficiently close to an i.i.d.
process that is also independent across players (hereafter, referred as a doubly
i.i.d. process). Let ∆Ind ⊂ ∆ be the subset of distributions over Θ that
are independent, that is, every p ∈ ∆Ind can be written as a product of two
distributions over Θi. Analogously, let QInd ⊂ ∆Ind be the set of independent
distributions that are interior, satisfy (2) and (3) and anonymous.

To specify how close a stochastic process in Q is to a distribution in QInd,
I use the Euclidian norm on ∆ (since Θ has four elements, ∆ can be viewed
as the unit simplex in R4).

Definition 1. The set Q ⊂ ∆ is d-close to a doubly i.i.d. process if there
exists a p ∈ QInd such that for any q ∈ Q,

||q − p|| ≤ d

Notice that the definition has two requirements. Every element of Q
should be close to the same element of QInd. Since a single element of q ∈ ∆
generates a process that is i.i.d. over time—that is, for all t and θt, qt+1(θt+1 |
θt) = q—the first requirement is that Q is close to an i.i.d. process. The
condition that p ∈ QInd, then says that the i.i.d. process has the property
that payoff shocks are also independent across players.

Of course, any i.i.d. process generated by q ∈ QInd itself satisfies the
assumptions for any d. Other examples that satisfy these assumptions are
provided below.

3On the other hand, there exist irreducible processes that do not satisfy the assumption.
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Example 1. Let g = 2, h = 5/2 and l = 1/2. Let a distribution p be
pi(θi) = 1/2 for any i and θi. Notice p ∈ QInd.

Let d′ > 0 be a small number. Consider a Markov process that evolves
according to

q(θt+1|θt) =

{
1/4 + 3d′ if θt+1 = θt

1/4− d′ if θt+1 6= θt

with the initial distribution p. Then, Q = {p}
⋃
{∪θ∈Θq (·|θ)}. It is clear

that Q satisfies Assumption 1, 2 and 3.
Finally, notice

max
q∈Q
||q − p|| = 2

√
3d′

Hence, for any d ≥ 2
√

3d′, the process is d-close to p.

Example 2. Let g, h, l and p be the same as the above example. Let d′ > 0
be a small number. Consider an AR-2 process that evolves according to

q(θt+1|θt, θt−1) =


1/4 + 3d′ if θt+1 = θt = θt−1

1/4− d′ if θt+1 6= θt and θt = θt−1

1/4 if θt 6= θt−1

with the initial distributions at t = 1 and t = 2 being q(·|θ0, θ−1) = p (·) =
q(·|θ1, θ0).

For the same reasons as in the above example, the stochastic process
satisfies all assumptions for d ≥ 2

√
3d′.

The following is an example where there are multiple invariant distribu-
tions.

Example 3. Let g, h, l and p be the same as the above example. Let d′ > 0
be a small number. Consider the following process:

q(θt+1|θ1) =

{
1/4 + 3d′ if θt+1 = θ1

1/4− d′ if θt+1 6= θ1

with the initial distribution at t = 1, q(·|θ0) = p (·) .
For the same reasons as in the above example, the stochastic process

satisfies all assumptions for d ≥ 2
√

3d′.

Prior to choosing an action—C or D—in period t, player i observes the
realization of his private payoff shock θti in that period. I assume that all
past actions are observed by both players—there is perfect monitoring of
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actions—but that the payoff shocks remain private information. A pure
strategy σi for player i in G (δ) is a sequence of function σ1

i , σ
2
i , ... where

σ1
i : Θi → Ai

and for t > 1,
σti : At−1 ×Θt

i → {C,D}
whereAt−1 = ×t−1

τ=1A is the history of actions and Θt
i = ×t−1

τ=1Θi is the history
of i’s payoff shocks.

Define the sequence of actions at (σ) that result from a strategy pair σ =
(σ1, σ2) as follows: a1 (σ, θ) = (σ1

1 (θ1) , σ1
2 (θ2)) and in subsequent periods,

at
(
σ,θt

)
=
(
σt1
(
at−1,θt1

)
, σt2
(
at−1,θt2

))
. Throughout, I allow players to use

public randomization devices.
Given σ = (σ1, σ2), let Vi(σ) be the discounted average expected payoff

of player i evaluated at the initial period. Hence,

Vi(σ) = (1− δ)
∞∑
t=0

δtEθtUi(a
t
(
σ, θt

)
, θi)

where Ui(·, θi) is the ex post utility function given the payoff shock θi and the
expectation is taken over all histories θt. Let Σi be the set of pure strategies
of player i and Σ = Σ1 × Σ2.

Define F(δ) ⊂ R2 by

F(δ) = co{V (σ) | σ ∈ Σ} (5)

where V = (V1, V2). By anonymity, F(δ) is symmetric.

2.3 Dynamic Game with Communication

Next consider an infinite horizon dynamic game version G∗ (δ) of the stage
game in which players can communicate. Specifically, they can send messages
in a finite set Mi to each other in every period after learning their private
payoff shocks but prior to choosing their actions. Future payoffs are again
discounted using δ. Communication entails no cost so that it is ”cheap talk”.
All messages are observed publicly and without any error.

The sequence of actions in each stage is as follows. First, players privately
learn the realization of their payoff shocks θ1 and θ2. Then, they exchange
messages simultaneously. In what follows, the message space is Mi = {L,H}
for both players. After messages are exchanged, players observe an outcome
of a public randomization device.4 Then they choose actions simultaneously.

4Throughout, I assume that players can utilize public randomization devices. This is
an innocuous assumption because players can create public randomization devices through
communication using ”jointly controlled lotteries.” See Aumann and Maschler (1995).
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I again assume perfect monitoring of past actions and messages. In ad-
dition, each player observes his own current and past payoff shocks. A pure
strategy in G∗ (δ) is a pair (µ∗i , σ

∗
i ) where µ∗i = (µ∗1i , µ

∗2
i , ...) is a sequence of

message strategies and σ∗i = (σ∗1i , σ
∗2
i , ...) is a sequence of action strategies.

Formally,

µ∗1i : Θi →Mi

σ∗1i : Θi ×M → Ai

and for t > 1,

µ∗ti : At−1 ×M t−1 ×Θt
i →Mi

σ∗ti : At−1 ×M t ×Θt
i → Ai

where M = M1 ×M2.

3 The Main Result

The main result of this paper is the following.

Theorem 1. Suppose the stochastic process is almost doubly i.i.d. When
players are sufficiently patient, there exist symmetric equilibrium payoffs of
the game with communication, G∗ (δ) , which strictly Pareto dominate all
symmetric equilibrium payoffs of the game without communication, G (δ) .
These payoffs of G∗ (δ) cannot be approached by equilibrium payoffs of G (δ)
as δ → 1.

The result thus shows that to achieve certain “cooperative” payoffs, com-
munication is necessary. Without communication, these payoffs cannot even
be approached as δ → 1.

Theorem 1 is established as follows. First, consider a a one-shot game Ĝ
in which the payoffs are the same as G but there is full information, that is,
both payoff shocks are commonly known. A pure strategy for player i in Ĝ is
of the form ŝi : Θ→ Ai and let Ŝi denote the set of pure strategies of player
i in Ĝ. Define Ŝ = Ŝi × Ŝi and let ûi : Ŝ → R be the expected stage game
payoff for player i evaluated by a distribution q ∈ ∆ and let û = (û1, û2).
Then define

F̂ [q] = co{û(ŝ) | ŝ ∈ Ŝ} (6)

Now, for a set F ⊂ R2, let

w(F ) = sup {v1 + v2 : (v1, v2) ∈ F}
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Then, w
(
F̂ [q]

)
is the ”first-best” benchmark payoff of Ĝ under a distribution

q ∈ ∆ since it is derived assuming that both players’ information is common.

Let v∗[q] = (v∗1[q], v∗2[q]) ∈ F̂ [q] satisfy w
(
F̂ [q]

)
= v∗1[q] + v∗2[q].

Consider the dynamic version of full information game Ĝ(δ) and let

W ∗(δ) = (1− δ)
∞∑
t=0

δtEθtw
(
F̂
[
qt
(
θt|θt−1

)])
where the expectation is taken over all histories θt.

(1, 1)

v∗[q]

1

1

v1

v2

F [q]

0

v∗[q′]

1

1

v1

v2

0

(1, 1)

F [q′]

The formal proof of the theorem then results from the following two
propositions, whose proofs appear in the next two sections. The first propo-
sition says that if there is no communication, the first-best benchmark cannot
be approached, as δ → 1.

Proposition 1. There exists an ε > 0 such that for any δ ∈ (0, 1),

w (F(δ)) ≤ W ∗(δ)− ε

where F(δ) is given by (5).

The second proposition says that if there is communication, then the
first-best benchmark can be approached, as the discount factor δ → 1 and
the distance to a doubly i.i.d. process d→ 0.

Proposition 2. For any ε > 0, there exists a d̄ > 0 and δ ∈ (0, 1) such that
for any δ ∈ (δ, 1) and d ∈ [0, d̄), for any game with communication, G∗ (δ) ,
with a stochastic process which is d-close to being doubly i.i.d., there exists
an equilibrium whose payoffs sum to greater than W ∗(δ)− ε.
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4 Without Communication

In this section, I prove Proposition 1. Towards this purpose, first I show that
for any distribution q ∈ Int∆,

w (F [q]) < w
(
F̂ [q]

)
(7)

where F [q] and F̂ [q] are given by (4) and (6) respectively.
To see this, notice that in Ĝ, if realized θ = (h, h), then the action

pair (C,C) maximizes the sum of payoffs while if realized θ = (h, l), then
(D,C) maximizes the sum of payoffs. However, in game G, a player’s pure
strategy depends only on his own payoff shock. Since for any set set F ⊂ R2,
w(F ) = w(coF ), and hence the maximum of payoffs that is feasible by pure
strategy in G coincides to w̄(F(q)). Thus, if both (h, h) and (h, l) occur with
positive probability, then (7) holds.

For each q ∈ ∆, define

η[q] = w
(
F̂ [q]

)
− w (F [q])

Notice, if q has full support, then η[q] > 0. Let η = minq∈Q η[q]. Since Q
is a compact subset of Int∆, η exists and is strictly positive. Now consider

a dynamic game Ǧ(δ) in which realizations are still private information but
the distribution in every period is commonly known, and let

W̌ (δ) = (1− δ)
∞∑
t=0

δtEθtw
(
F
[
qt
(
θt|θt−1

)])
Since every feasible strategy in G(δ) is also feasible in Ǧ(δ),

W̌ (δ) ≥ w (F(δ))

Now, notice that

W ∗(δ)− w (F(δ))

≥ W ∗(δ)− W̌ (δ)

= (1− δ)
∞∑
t=0

δtEθt

[
w
(
F̂
[
qt
(
θt|θt−1

)])
− w

(
F
[
qt
(
θt|θt−1

)])]
≥ (1− δ)

∞∑
t=0

δtη

= η

Let ε = η, and the claim is shown.
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5 With Communication

5.1 Equilibrium Strategies

In this section, I prove Proposition 2. The proof is by construction. First I
propose a candidate equilibrium whose sum of average payoffs are arbitrary
close to W ∗(δ). Then I show the candidate equilibrium actually constitutes
an equilibrium for sufficiently large δ and sufficiently small d.

The idea of construction is closely related to “price war” equilibrium
of Athey, Bagwell and Sanchirico (2004). The equilibrium strategies are
described by two-state automata. One state is referred as regular and the
other as punishment. The strategies in each state and the transition between
states are described in the following.

The Regular State

In this state, message of each player only depends on his payoff shock, and ac-
tions depend on current messages and the outcome of a public randomization
device. In the messaging stage, both players are truthful, that is, µ∗i (h) = H
and µ∗i (l) = L and so each reports his own payoff shock truthfully.

After messages are exchanged, players jointly observe a uniformly dis-
tributed random variable ω ∈ [0, 1]. Players follow the action rule α∗, de-
scribed as follows:

α∗(m,ω) =



(C,C) if m = (H,H) and ω > γ

(D,D) if m = (H,H) and ω ≤ γ

(C,D) if m = (L,H) or

if m = (L,L) and ω > 1/2

(D,C) if m = (H,L) or

if m = (L,L) and ω ≤ 1/2

where γ > 0 will be specified later. Notice the sum of the stage game payoffs
is close to the first-best benchmark when γ is small enough.

The Punishment State

In the punishment state, neither of payoff shocks nor messages affect actions.
Players just play the unique static Nash equilibrium, which is, (D,D).

Transitions

In the initial period, the state is regular. The state remain unchanged until
one of the following event happens. (1) A deviation of stage game is observed.
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R P
a 6= α∗ or ω ≤ p

∀a
a = α∗ and ω > p

Figure 2: Transition when reports are (H,H)

R P
a 6= α∗

∀a
a = α∗

Figure 3: Transition when reports are not (H,H)

(2) If the pair of messages is (H,H) and ω ≤ γ. If either (1) or (2) occurs,
the state shifts to the punishment state.

The transition is illustrated in the following two figures. Here, a ∈ A is
an action pair that is actually played.

Lifetime Utility

I show that as γ goes to zero, the sum of payoffs of the candidate equilibrium
converges to the first-best benchmark payoff W ∗(δ). To see this, just notice
that the probability that the state stays in the regular state at period t is
at least (1− γq̄(h, h)2)t where q̄ ∈ Q is the distribution whose probability of
being (θ1, θ2) = (h, h) is the highest among Q. Clearly,

lim
γ→0

(1− γq̄(h, h)2)t = 0

Let W (γ, δ) be the sum of the expected payoffs when both players follow
the candidate equilibrium. Then,

W ∗(δ)−W (γ, δ) ≤ (1− δ)
∞∑
t=0

δt[1− (1− γq̄(h, h)2)t](1 + g − l)→ 0

as γ → 0.

5.2 Optimality of Stage Game Actions

Here, I show that the prescribed strategies constitute an equilibrium for large
enough δ, small enough d and small enough γ. In the punishment state,
clearly there is no profitable deviation. In the regular state, there are two
kinds of deviations: one concerns actions and the other messages. First, I
assume that both send truthful messages and the other player follows the
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action rule α∗, and show that for appropriately chosen (δ, γ), there is no
profitable deviation from the action rule α∗.

Lemma 1. Suppose both players are truthful and that player −i follows α∗.
Then, there exists a (d̄, γ, δ) ∈ (0,∞)×(0, 1]×[0, 1) such that for any (d, γ, δ)
that satisfies d < d̄, γ < γ and δ > δ, following α∗ is optimal for player i.

Proof. Let the lifetime utility when both players follow the rule α∗ denoted
by V ∗ (for notational ease, I am suppressing the dependence of the lifetime
utility payoff on t and θt−1). Notice that in each stage game, a player can get
at most 1 + g while at least −h. Then, the payoff of a deviation is at most
(1− δ)(1 + g), while the payoff of not deviating is at least (1− δ)(−h) + δV ∗.

Now, to show that the deviation is not profitable, it is sufficient to show

−(1− δ)(1 + g − h) + δV ∗ > 0

This inequality is satisfied if δ is sufficiently large and V ∗ > 0. To see that
V ∗ > 0, let the lifetime utility when stochastic process follows a doubly i.i.d.
process p be V ∗[p] and show that V ∗[p] > 0 for sufficiently large δ. It is clear
that

lim
d→0

V ∗ = V ∗[p] (8)

and the claim follows if I show V ∗[p] > 0. Now notice

V ∗[p] = (1− δ)(v∗[p]− γp2
h) + δ[p2

l + 2phpl + (1− γ)p2
h]V

∗[p]

= (1− δ)(v∗[p]− γp2
h) + δ[1− γp2

h]V
∗[p]

where v∗[p] is the best symmetric payoff given distribution p. Notice v∗[p] >
0. Thus

V ∗[p] =
1− δ

1− δ(1− γp2
h)

(v∗[p]− γp2
h) > 0 (9)

for sufficiently small p.

5.3 Optimality of Messages

Here I show that for appropriately large δ and small d, for any γ > 0, it is
optimal for player i to tell the truth if his opponent is also doing so and both
players play according to α∗.

Let V ∗(mi, θi) be the interim lifetime utility of player i when player i
gets a payoff shock θi and sends a message mi (again I am suppressing the
dependence of the interim payoff on t and θt−1). Then, I have

V ∗(H, θi) = (1− γ)q−i(h)(1− δ + δEV ∗) + q−i(l)[(1− δ)(1 + g) + δEV ∗]
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V ∗(L, θi) = q−i(h)[(1− δ)(−θi)+ δEV ∗]+ q−i(l)

(
(1− δ)1 + g − θi

2
+ δEV ∗

)
where EV ∗ denotes the expected value of future payoffs and the expectation
is taken over all future realizations of the payoff shocks. Then, truth-telling
is optimal if

V ∗(L, l) > V ∗(L, h)

and
V ∗(H, h) > V ∗(L, h)

hold.
The claim is established by the following two steps. First, I show that

truth-telling is optimal if the stochastic process is the doubly i.i.d. process
{p}. Then, in the second step, I show that if Q is close to p, the payoff for
these processes are also close for any strategies. Combining these, it is shown
that truth-telling is optimal for the original process Q.

Lemma 2. Suppose the stochastic process is given by a doubly i.i.d. process p.
Suppose both players follow the action rule α∗ and that player −i is truthful.
Then, for any γ ∈ (0, 1), there exists a δ ∈ [0, 1) such that for any δ > δ,
truth-telling is optimal for player i.

The idea of the proof is self-selection. In terms of stage game payoffs,
sending message H dominates L, regardless of realizations. Hence, to assure
truth-telling, there must be a punishment for sending message H. The pun-
ishment must be strong enough to prevent L type to send message H, but
at the same time, weak enough for H type to send message H. By choosing
γ and δ appropriately, I can find the punishment.

Proof. For a doubly i.i.d. process p, let V ∗i [p](mi, θi) be the interim payoff of
player i who gets a payoff shock θi ∈ {l, h} and sends a message mi ∈ {L,H}.
Then,

V ∗i [p](H, θi) = (1− γ)ph[1− δ + δV ∗[p]] + pl[(1− δ)(1 + g) + δV ∗[p]] (10)

V ∗i [p](L, θi) = ph[(1− δ)(−θi) + δV ∗[p]] + pl

[
(1− δ)1 + g − θi

2
+ δV ∗[p]

]
(11)

where ph = p−i(h), pl = p−i(l) and V ∗[p] is given by (9). By anonymity,
ph = pi(h) and pl = pi(l). Now, truth-telling is optimal if

V ∗i [p](L, h) < V ∗i [p](H, h) = V ∗i [p](H, l) < V ∗i [p](L, l)

is satisfied. From (10) and (11),

V ∗i [p](H, θi)− V ∗i [p](L, θi) = (1− δ) (y(θi)− γph)− δγphV ∗[p] (12)
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where

y(θi) = 1 + plg + phθi − pl
1 + g − θi

2

Combining these, truth-telling is optimal if

(1− δ)[y(l) + γph] < δγphV
∗[p] < (1− δ)[y(h) + γph] (13)

holds.
To see (13) actually holds, first let us show that

0 < y(l) < y(h)

To prove the first inequality, see

y(l) = 1− pl
2

+
pl
2
g +

(
1− pl

2

)
l

> 1− pl
2

+
pl
2

(1 + l) +
(

1− pl
2

)
l

= 1 + l

> 0

where the first inequality follows from (2). The second inequality follows
from

y(h)− y(l) =
(
ph +

pl
2

)
(h− l) > 0

Substituting (9) into (13) gives us

y(l) < γph +
δγp2

h

1− δ(1− γp2
h)

(v∗[p]− γp2
h) < y(h)

Then, by doing some algebra, it is shown that (13) is equivalent to

y(l)− γph
(1− γp2

h)y(l)− γph + γphv∗[p]
< δ <

y(h)− γph
(1− γp2

h)y(h)− γph + γphv∗[p]
(14)

Now, suppose

y(l)− γph
(1− γp2

h)y(l)− γph + γphv∗[p]
< 1 <

y(h)− γph
(1− γp2

h)y(h)− γph + γphv∗[p]
(15)

holds. Then, let

δ =
y(l)− γph

(1− γp2
h)y(l)− γph + γphv∗[p]

and for any δ ∈ (δ, 1), (14) holds. This shows that truth-telling is an optimal
response.
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To complete the proof, I show that assumptions (2) and (3) imply (13).
The first inequality is shown as follows. Notice

y(l)− (1− γp2
h)y(l)− γphv∗[p] = γph(phy(l)− v∗[p])

Now since γ > 0, the (15) holds if v∗[p]−phy(l) > 0. This is shown as follows:

v∗ − phy(l)

= (1 + g − l)phpl + p2
l

1 + g − l
2

− phpl(1 + g)− p2
hl + phpl

1 + g − l
2

= −phl + pl
1 + g − l

2
> −phl + pl

> 0

where the second inequality follows from (3). The second inequality results
from

y(h)− (1− γp2
h)y(h)− γphv∗[p] = γph(phy(h)− v∗[p])

and

v∗[p]− phy(h)

= ph (phh+ pll)− pl
1 + g − phh− pll

2
> ph (phh+ pll)− pl
> 0

where the first and second inequality above are the result of (2) and (3)
respectively.

The second step is to show that the payoff when the process evolves
according to a process q that is sufficiently close to the i.i.d. process p is
sufficiently close to the payoff when the process evolves according to the
i.i.d. process. Then, I have the following lemma.

Lemma 3. For any δ and γ,

lim
d→0

V ∗(mi, θi) = V ∗[p](mi, θi)

Proof. Notice that

V ∗(H, θi)− V ∗[p](H, θi)
= (1− γ)q−i(h)[1− δ + δEV ∗] + q−i(l)[(1− δ)(1 + g) + δEV ∗]

−(1− γ)ph[1− δ + δV ∗[p]]− pl[(1− δ)(1 + g) + δV ∗[p]]

= (1− δ) [(1− γ)(q−i(h)− ph) + (q−i(l)− pl)(1 + g)]

+δ [(1− γ)(q−i(h)EV ∗ − phV ∗[p]) + pl[EV ∗ − V ∗[p]]
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The first term vanishes since

lim
d→0

q−i(h) = ph

The second term vanishes because of (8). The second equality is shown
similarly.

Combining these two lemmas, I have the following result.

Lemma 4. Suppose both players follow the action rule α∗ and that player
−i is truthful. Then there exists a triple of (d, δ, γ) ∈ (0,∞)× (0, 1)× (0, 1)
such that for any (δ, d, γ) that satisfies d < d, δ > δ, and γ < γ, truth-telling
is optimal for player i.

This lemma, combined with Lemma 2 establishes Proposition 2.

6 Conclusion

This paper provides a simple model in which communication is essential
to achieving better outcomes. There are a few possible extensions. First,
the assumptions on parameter values made in (2) and (3) might be relaxed,
perhaps by employing some other kinds of strategies. Review strategies (see
Hörner and Jamison [11] and Escobar and Toikka [6]) and chip strategies (see
Olszenski and Safronov [13]) are natural candidates. Second, I wish to study
the extent to which communication helps, and under what conditions. For
example, how does the extent of correlation among player types affect the
value of communication? Finally, the role of communication has important
policy implications in the context of oligopolies. I hope to study the role on
communication in such contexts as well.
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