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We introduce a variant of extensive games called board games. In the standard
extensive model (Kuhn model) a game is described by a rooted tree. The position of the
player determines the history. A board game is described by a rooted directed acyclic
graph. A position may have multiple histories. Any board game can be represented
by a stategically equivalent standard game (of imperfect information) such that on
each information set the future potential plays do not depend on the actual position in
that information set. This motivates the introduction of the class of extensive games
with effective perfect information. We study rectangularity of strategic game forms
associated to board game forms. We prove that any board game form is interactively
equivalent to some standard extensive game form of perfect information and - strangely
enough - it may fail to be strategically equivalent to that extensive game form.

1 Extensive game forms and board game forms

If $ : X ⇒ Y is a correspondence, then the inverse of $ is the correspndence $−1 :
Y ⇒ X defined by $−1(y) = {x ∈ X|y ∈ $(x)}. If $ : X ⇒ X we define $0 = idX
and $k+1(x) := $ ◦$k(x) := {$(y)| y ∈ $k(x)}

1.1 Board: definition

A board is a rooted acyclic directed graph. Precisely a board B is defined by a triple
(X,$, r), where X a finite set the elements of which are called nodes (or positions
or vertices), r ∈ X is a distinguished node called the root and $ : X ⇒ X is a
correspondence, called the predecessor correspondence, and that satisfies the following:
$(r) = ∅ and for any x ∈ X − {r}, $(x) 6= ∅ and there exists some k ≥ 1 such that
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$k(x) = {r}. We put ϕ(x) = {y ∈ X | x ∈ $(y)} or equivalently ϕ = $−1 Thus ϕ(x)
is the set of immediate successors of x.

A path is non-empty sequence of nodes (x0, · · · , xl) where l ∈ N with the following
property: if l ≥ 1 and k ∈ {0, · · · , l − 1}: xk ∈ $(xk+1). x0 is the initial node of
c, xl is the final node of c and is denoted e(c); the integer l is the length of c and is
denoted l(c). If c is a path of length l ≥ 1 we denote by d(c) the path obtained from c
by removing the final node e(c) (By convention for c = (x0), d(c) = ∅. We put e1 := e
and by induction (k ≥ 1) for ek+1 := ek ◦ d = e ◦ dk as long as the righthand member is
well defined. Let c = (x0, · · · , xk) and c′ = (y0, · · · , yl) be two paths such that xk = y0,
the concatenation of c, c′ written c+ c′ is the path (x0, · · · , xk−1, y0, · · · , yl)) . A node
x is terminal if ϕ(x) = ∅. A path c is a history if the initial node of c is the root r. A
history c is called a play if the final node of c is a terminal node. We denote by Z the
set of terminal nodes, P the set of plays and H the set of histories.

One important property of a board is the absence of cycles: there is no path
(x0, . . . , xl) with l ≥ 1 such that x0 = xl. Indeed if such a path existed then x0 ∈ $k(x0)
for an infinity of integers k, and that would contradict the main axiom defining the
board.

An alternative way to obtain a board is to define it as an directed acyclic graph
with a root (X,E, r). Precisely X is the set of vertices, E ⊂ X ×X is the set of edges,
and r ∈ X. We assume that they satisfy the following properties: (i) There is no x ∈ X
such (x, r) ∈ E (ii) for any y ∈ X − {r} there exists some x ∈ X such that (x, y) ∈ E
(iii) there is no sequence of nodes (x0, . . . , xl) where l ≥ 1 such that (xk, xk+1) ∈ E,
k = 0, . . . , l − 1, and x0 = xl. The relation between this definition and the original
one is clear: In order to go from the original definition to the second one, we have to
put E := {(x, y) ∈ X ×X | x ∈ $(y)}, and conversely in order to go from the second
definition to the original one, we put, for any y ∈ X: $(y) := {x ∈ X | (x, y) ∈ E}.
For any path c = (x0, · · · , xp), we denote by c̄ the set {x0, · · · , xp}. By a slight abuse
of notations we sometimes write x ∈ c for x ∈ c̄. There is a partial order on X denoted
≤ defined as follows: x ≤ y if either x = y or there exists some path c such that x is the
initial node and y is the final node of c. Reflexivity and transitivity are straightforward.
Antisymmetry results from the absence of cycles. We shall denote by < the strict part
of ≤. If x, y ∈ c̄, x ≤ y, c(x, y) will denote the sub-path of c starting at x and ending
at y.

A board B = (X,$, r) is said to be a tree if $(x) is a singleton for any x ∈ X − {r}.

1.2 Board game forms

A board game form is defined by (N,B, (Xi)i∈N) where N = {1, · · · , n} is a set of
players, B is a board, and (Xi)i∈N is a partition of non terminal nodes (empty sets Xi
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are allowed). The game is played as follows: The play starts at x0 = r. Generally if
the play is at xp, two cases are possible: either the node xp is terminal and this is the
end of the play or the unique player i such that Xi 3 xp learns his position and takes
an action that is some successor xp+1 of xp, then the play evolves to xp+1. Since the
set of nodes is finite, the play reaches eventually a terminal node z. We shall consider
two versions : (1) Γ where the outcome is the play and (2) Γe where the outcome is the
terminal node of the play. Note that the position does not determine a unique history.

A board game form is said to be alternating if, whenever x = $(y), then x and y do
not belong to the same player. The canonical game form associated to B is the one
where N = X − Z and Xi = {i} for all i ∈ X − Z.
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Figure 1: On the left a board. On the right the derived decision structure
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Figure 2: On the left a board game form Γe. In the middle the derived extensive game
form Γ′e. On the right the perfect ingormation game form Λ′e associated to Γ′e.
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1.3 Extensive game forms

An extensive decision structure is defined by: ∆f = (T ,U , (Au, u ∈ U), ξ, A, f) where
T = (X,$, r) is a tree. Let Z denote the set of terminal nodes, H the set of histories,
Π the set of plays, ϕ = $−1. U is a partition of X − Z, the elements of which are
called information sets. To every u ∈ U is attached a set Au called the set of actions
available at u and a family of bijective maps ξx : Au → ϕ(x). Define ξ(x, a) = ξx(a)
(x ∈ u ∈ U , a ∈ Au). The map ξ is called the transition function. f : Z → A is the
oucome function, f(z) is the outcome of z. Put Z = Z/f , the quotient set of Z by f
and ḟ : Z → A the quotient map. There is a binary ≺ relation defined on U ∪ Z as
follows: u ≺ v if and only if: ∃x ∈ u, ∃y ∈ v : x < y. We define u � v if and only if
u = v or u ≺ v.

∆f is an effective perfect information (EPI in the sequel) decision structure if for any
u ∈ U , x, y ∈ U , a, b ∈ Au: ξ(x, a) and ξ(y, b) have the same information set or the
same outcome if and only if a = b.

∆f is a perfect information (PI in the sequel) decision structure if any u ∈ U in U is a
singleton

∆f is a free decision structure if f is injective.

An extensive game form is defined by Γf = [N,∆f , (Ui, i ∈ N)] where N is the set of
players, ∆ is an extensive decision structure, (Ui, i ∈ N) is a partition of U . Ui is the
set of information sets of player i. We put Xi = ∪u∈Uiu. (Xi, i ∈ N) is a partition of
X − Z. Note that neither perfect recall nor even linearity is assumed. f is a mapping
from Z to A. The game is played as follows: The play starts at x0 = r. If the play is
at xp and xp is a terminal node then xp is the end of the play , otherwise the unique
player i such that x ∈ Xi learns his information set u and takes an action ak ∈ Au;
then the play evolves to xk+1 = ξ(xk, ak). Since the set of nodes is finite, the play
reaches eventually a terminal node z, the outcome is f(z). Finally Γf is said to be free
if f is injective and of perfect information if every information set is a singleton.

In this model of extensive games, the position determines a unique history, namely the
unique path starting at the root and ending at that position. The player learns his
information set. In particular each terminal node determines a unique play.

To any board B = (X, r,$) we associate two derived extensive decision structures B′ =
(T ′,U ′, (A′u), ξ′, A′) and B′e = (T ′,U ′, (A′u), ξ′, A′, e) that differ only by their outcome
function, as follows: T ′ = (X ′, r′, $′) is the derived tree where: X ′ := H the set of all
histories of B, r′ := (r) and if c ∈ H − {r′}, $′(c) = d(c). The set of terminal nodes
of T ′ is precisely the set of plays of B: Z ′ = Π. Recall that e : H → X. Let ė be the
quotient map. ė is a bijection of H/e onto X. Let U ′ := ė−1(X−Z), Z ′ = ė−1(Z). We
take U ′ as the set of information sets of B′. Define the action set by A′u = ϕ(ė(u)) and
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the transition function by ξ′c(a) := (c, a) (c ∈ u, a ∈ A′u). In B′ the outcome function
is the identity: f(c) = c while in B′e, the outcome function is defined by: f(c) := e(c)
(c ∈ Z ′ ≡ Π). Put Z ′ = Z ′/f ′.

Depending on the choice of the outcome set we associate to (N,B, (Xi)i∈N), two
game forms:

• Γ ≡ Γ(N,B, (Xi)i∈N) where the outcome is the play, and

• Γe ≡ Γe(N,B, (Xi)i∈N) where the outcome is the terminal node.

Moreover we associate to (N,B, (Xi)i∈N) the derived extensive game forms based on
the derived decision structures B′ and B′e as defined above:

• Γ′ := (N,B′, (U ′i)i∈N): the free extensive GF associated to (N,B, (Xi)i∈N) and

• Γ′e := (N,B′e, (U ′i)i∈N): the extensive GF associated to (N,B, (Xi)i∈N)

and the perfect information extensive game forms

• Λ′e, the perfect information extensive GF associated to Γ′e (i.e. obtained by taking
{c} as the information set containing c (c ∈ H) and Ac = Au (c ∈ u ∈ U ′)

• Λ′ the perfect information extensive GF associated to Γ′.

Proposition 1.1 An extensive decision structure ∆f = (T ,U , (Au, u ∈ U), ξ, A, f) is
of effective perfect information if and only if it is derived from some board.

Proof. The “only if” part if trivial. In order to prove the “if” part, we construct
a board B = (X, r,$) as follows: X = U ′ ∪ Z ′, r = {r′}, Z = Z ′, forall y ∈ X,
$(y) := {x ∈ X −Z|∃x′ ∈ x, a′ ∈ A′x : ξ′(x′, a′) ∈ y} or equivalently for all x ∈ X −Z,
ϕ(x) := {y ∈ X|∃x′ ∈ x, a′ ∈ A′x : ξ′(x′, a′) ∈ y}

2 Strategic game forms

A strategic game form G is defined by 〈(Si, i ∈ N), A, g〉, where N = {1, · · · , n} is the
set of players, Si is the strategy set of player i, (i ∈ N), A is the set of alternatives and
g :

∏
i∈N Si → A is the outcome function. We assume that A is finite and g is onto.

Let G(N,A) be the set of all game forms with N and A fixed.

Equivalent game forms. We define an equivalence relation on the set G(N,A). Let
G ∈ G(N,A), i ∈ N , xi ∈ Xi and yi ∈ Xi. We say that xi and yi are duplicates in G
if : g(xi, x−i) = g(yi, x−i),∀x−i ∈ X−i. Clearly being duplicates in G is an equivalence
relation on Xi that will be denoted ∼i. The reduced game form associated to G is the
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Figure 3: On the left, a two-player alternating board game form. On the right a board
that cannot support a two-player alternating game form.

game form Ḡ = (X̄1, · · · , X̄n, A, ḡ) where X̄i is the quotient of Xi by the equivalence
relation ∼i and ḡ defined as the quotient mapping of g that is : ḡ(x̄1, · · · , x̄n) =
g(x1, · · · , xn) if x1 ∈ x̄1, · · · , xn ∈ x̄n. One obtains the reduced game form of G by
eliminating all but one strategy in each equivalence class of ∼i. It is easy to see that
such an elimination does not depend on the order of elimination by which one proceeds.
Two game forms G and G′ in G(N,A) are said to be strategically equivalent if Ḡ and
Ḡ′ are equal up to relabeling respective strategy sets.

2.1 Rectangular game forms

A game form G is said to be rectangular if for every a ∈ A the inverse image of a by g
is a direct product. Formally: G = (X1, · · · , Xn, A, g) is rectangular if for every a ∈ A
there exist Y1 ⊂ X1, · · · , Y1 ⊂ X1 such that : g−1(a) =

∏
i∈N Yi

Fact 2.1 Each of the following properties is equivalent to rectangularity :

(i) ∀S ∈ P (N), ∀xS ∈ XS, ∀yS ∈ XS, ∀xSc ∈ XSc , ∀ySc ∈ XSc:

g(yS, xSc) = g(xS, ySc) = a⇒ g(xS, xSc) = a,

(ii) ∀S ∈ P (N), ∀xS ∈ XS, ∀xSc ∈ XSc: g(xS, XSc) ∩ g(xSc , XS) = {g(xS, xSc)},

(iii) ∀S ∈ P (N), ∀YS ⊂ XS, ∀YSc ⊂ YSc: g(YS, XSc) ∩ g(YSc , XS) = g(YS, YSc),

(iv) For any partition (S1, · · · , Sp) of N and any YSk
⊂ XSk

, k = 1, · · · , p one has :

∩pk=1g(YSk
, X−Sk

) = g(YS1×, · · · ,×YSp).

Proof. Straightforward. �

To any board game form Γ, we associate the strategic game form N(Γ) := 〈(Si, i ∈
N), A, π〉 as follows: Si =

∏
x∈Xi

ϕ(x). Define π(s) as the unique play generated by s.
Similarly N(Γe) := 〈(Si, i ∈ N), A, g〉 and g = e ◦ π.
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To any extensive game form Γf , we associate the strategic game form N(Γf ) := 〈(Si, i ∈
N), A, g〉 as follows: Si =

∏
u∈Ui A(u). Define γ(s) as the unique terminal node reached

by s and g = f ◦ γ. We also put N(Γ) =:= 〈(Si, i ∈ N), Z, γ〉

Remark 2.2 Let Γ and Γe be the two versions of a game board and let Γ′ and Γ′e
be their respective derived extensive GF. Let N(Γ) ≡ 〈(Si, i ∈ N), A, π〉 and N(Γ′) ≡
〈(S ′i, i ∈ N), A′, γ′〉. One has the identification : N(Γ) = N(Γ′) and N(Γe) = N(Γ′e).
The map ė induces an identification of S ′i and Si. Using this identification, one has
π = γ′ and consequently g = e ◦ π = e ◦ γ′ = g′.

3 Rectangularity of Board game forms

Theorem 3.1 For any free extensive game form Γ the associated strategic form N(Γ)
is rectangular.

When an extensive form (of perfect information or not) is not free, then it normal
form may fail to be rectangular. In this section we shall characterize all Board game
forms that have a rectangular normal form.

Let B = (X,$, r) be a board. An edge (x, y) is said to be redundant if ϕ(x) = {y}
(that is y is the unique successor of x). A Board is said to be non redundant if it has
no redundant edge.

When the edge (x, y) is redundant we take x0 = x and Y = {x, y}. We write Ix,y the
operation that transforms the board B = (X,$, r) into a board B′ = (X ′, $′, r′) as
follows: X ′ = X/{x}, r′ = r anf for all (s′, t′) ∈ X ′ − {y} × X ′ − {y}, s′ ∈ $′(t′) if
and only if and s′ ∈ $(t′), $′(y) = $(x) ϕ′(y) = ϕ(y). Remark that if y is a terminal
node in B, then it is a terminal node in B′.
If we start by a board game Γ(B, (Xi)i∈N)), then the operation Ix,y transforms Γ into
Γ′ ≡ Γ(B′, (X ′i)i∈N) where X ′i = Xi ∩X ′. By successive application of such operations
on any board B we obtain a non redundant board, called the non redundant version of
B.

When writing the normal form N(Γ′), a player such that X ′i = ∅ has strategy set Xi

that is some singleton.

Proposition 3.2 A board game form and its non redundant version have the same
normal form.

Example 3.3 Let B be the board on the right of figure 1.3. Let Γ be the game form
obtained by letting player 1 act on nodes r and x and player 2 on node y; then N(Γ)
is rectangular. Let Γ′ be the game form obtained by letting player 1 act on nodes r
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and y and player 2 on node x; then N(Γ′) is not rectangular. If the board is played by
3 players then again the game form is not rectangular.

Theorem 3.4 Let B be a board and let B′ be its non redundant version. Then the
following statements are equivalent:

(i) B′ is a tree,

(ii) The canonical game form of B (i.e. the game where each non terminal node is a
distinct player) is rectangular,

(iii) All game forms (B, (Xi)i∈N) are rectangular,

(iv) All two-player game forms (B, X1, X2) are rectangular,

Proof. (i)⇒ (ii) follows from Theorem 3.1. (ii)⇒ (iii) and (iii)⇒ (iv). In order
to prove (iv)⇒ (i) we shall apply Lemma 3.6.

Theorem 3.5 An alternating game form with board B is rectangular if and only if the
non redundant version of B is a tree.

Proof. The if part follows from Theorem 3.1. The only if part is an application of
Lemma 3.6.

Lemma 3.6 Assume that the non redundant board B is not a tree then there exist:

(i) two plays c, d leading to the same terminal node z,

(ii) x∗ ∈ c ∩ d,

(iii) y∗ is a successor of x∗, y∗ ∈ c, y∗ /∈ d, y∗ belongs to a some path leading to some
terminal node z′ 6= z.

Proof. Assume that B is not a tree. This amounts to the existence of some terminal
node z such that C(z) contains two or more plays. Let J = ∪c∈C(z)c̄, I = ∩c∈C(z)c̄. I
is totally ordered by the ≤. I contains at least two elements, namely: r and z.

a) There exists a unique node x0 such that (1) x0 ∈ I, (2) x0 has at least two prede-
cessors and (3) there is a unique path v0 starting at x0 and ending at z all the nodes
of which are in I. Note that x0 may be equal to z.

b) There exists a unique node x1 such that (1′) x1 ∈ I, (2′) x1 < x0, (3′) there exists
no node x ∈ I such that x1 < x < x0. Note that x1 may be equal to r.

c) The set of paths starting at x1 and ending at x0, denoted C(x1, x0), contains at least
two elements. It follows that there is at least one element of C(x1, x0) with length ≥ 2.
Let w0 be an element of C(x1, x0) with maximal length, and let y0 = e2(w0). Clearly
y0 ∈ $(x0), y0 ∈ J − I. In particular y0 /∈ {x0, x1} and is not a terminal node.
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.

Claim. There exists y1 a successor of y0 such that y1 /∈ J
By assumption any non terminal node has at least two successors. Let y1 6= x0 be a
successor of y0. If y1 ∈ J then there would exist a path, say w1, starting at y1 and
ending at x0, thus with length ≥ 1. The path w = d(w0) + (y0, y1) + w1 would belong
C(x1, x0) and be strictly longer than w0; this contradicts the maximality of w0. We
conclude that y1 /∈ J .

Let c be a play such that c(x1, x0) = w0 let Y be the set of all nodes y ∈ c(x1, x0) −
{x0, x1} that have some successor in X − J . We have just proved that y0 ∈ Y . Let
y∗ be the node of Y that is the closest to x1. It follows that y∗ is not a terminal node
and that on c(x1, y

∗)− {x1, y
∗} (possibly empty) all nodes have all their successors in

J . Let x∗ be the predecessor of y∗ on c(x1, x0). Note that x∗ may be equal to x1.

Claim. There exists some successor, say y2, of x∗ such that y2 ∈ J and y2 6= y∗.

In the case x∗ = x1, this follows from the definition of x1. If x∗ 6= x1 then, by
construction, all successors of x∗ are in J and each node have at least two successors.

Claim. There exist a play d ∈ C(z) that coincide with c on c(r, x∗) and not containing
y∗.

If x∗ = x1 this follows from the definition of x1. If x∗ 6= x1 then let d consists of the
concatenation of c(r, x∗) followed by the edge (x∗, y2) followed by an arbitrary path
starting at y2 and ending at z. If d were to contain y∗, then c(x1, x0) ≡ w0 would
not be the longest path in C(x1, x0) since the concatenation of c(x1, x

∗), d(x∗, y∗) and
c(y∗, x0), given that d(x∗, y∗) contains y1, would be strictly longer than c(x1, x0). We
conclude that d does not contain y∗ �

End of the proof of theorem 3.1. Let Γ be a two-player game on B such that x∗ ∈ X1,
y∗ ∈ X2. Let (s1, s2) ∈ S1 × S2 and (t1, t2) ∈ S1 × S2 such that γ(s1, s2) = c and
γ(t1, t2) = d. Note that y∗ is not on d. Therefore, by modifying if necessary t2 on node
y∗ one can assume that t2(y∗) ∈ X −J . It is then clear that γ(s1, t2) is not in J , hence
is different from z. �

Let Γf be an extensive game form with perfect information and outcome map f .
We shall define two elementary operations of reduction on Γf .

(a) Merger of terminal nodes z and z′. Here z and z′ are two distinct terminal nodes
with the same predecessor x and the same outcome that is $(z) = $(z′) = x and
f(z) = f(z′) = a. The merging consists in replacing z and z′ by one terminal node
with the same predecessor and the same outcome.
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(b) Removal of a redundant edge (x, y). This is the operation Ix,y. If y is a node
of player i, then it remains a node of the same player. If y is a terminal node with
outcome a, then it remains a terminal node with the same outcome.

(c) Removal of successive moves of the same player: If y is a successor of x and belongs
to the same player, then this operation is defined similarly to the merger of a redundant
edge (x, y) : Remove x. In the new game the set of outgoing edges of y is the union of
the set of old outgoing edges of x (less (x, y)) and the set of old edges outgoing from
y. The predecessor of y in the new game is the old predecessor of x. The player of y
remains the same.

A reduction of Γf is any sequence of elementary operations starting by Γf . A reduction
is complete if no further reduction is possible. If no reduction of Γf is possible then
we say that Γf is irreducible. The irreducible version of Γf is the extensive game form
with perfect information Γ̄f̄ obtained after some complete reduction. The order of
elementary operations in a complete reduction is not relevant.

Proposition 3.7 Let Γf be an extensive game form with perfect information and out-
come map f . Any of the operations described above keeps unchanged the equivalence
class of the associated normal game form.

Let Γf be any extensive game form with perfect information and outcome map f .
If its irreducible version is free than its normal form N(Γf ) is rectangular. Conversely
since N(Γf ) is tight, in view of theorem [], rectangularity of N(Γf ) implies the existence
of a free extensive form of perfect information Λ such that N(Λ) is equivalent to N(Γf ).
The following theorem tells us how we can find such a Λ.

Theorem 3.8 Let Γf be any extensive game form with perfect information and out-
come map f . The associated strategic form N(Γf ) is rectangular if and only if its
irreducible version is free.

Proof. If the irreducible version is free then by Theorem 3.1 and Proposition 3.7 N(Γf )
is rectangular. Conversely assume that N(Γf ) is rectangular. Let Γ′f be the irreducible
version of Γf . We associate to Γ′f the board game form ∆ obtained by identifying all
terminal nodes that have the same outcome: If Z(a) = f−1(a) then the incoming edges
of a is the union of all incoming edges to Z(a). Clearly N(∆) = N(Γ′f ) so that N(∆)
is rectangular. Moreover ∆ is non redundant and alternating. In view of Theorem 3.4
∆ is a tree. It follows that for any a ∈ A, Z(a) is a singleton. This is equivalent to say
that Γ′f is free. �
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4 The Interaction class of Board game forms

4.1 Interaction bundle

A strategic game is an array Γ = (X1, . . . , Xn;Q1, . . . , Qn), where for each i ∈ N =
{1, . . . , n}, Xi is a non-empty set of strategies of player i, and Qi is a quasi-order
(complete, transitive, reflexive binary relation) on XN =

∏
i∈N Xi. We denote by Q◦i

the strict binary relation induced by Qi For every coalition S ∈ P0(N), the product∏
i∈S Xi is denoted XS (by convention X∅ is the singleton {∅}). Let M ⊂ P0(N). A

strategy array xN ∈ XN is an M-equilibrium of the game Γ if there is no coalition
S ∈ S and yS ∈ XS such that (yS, xSc) Q◦i xN for all i ∈ S.

Let G = (X1, . . . , Xn, A, g) be game form. For each preference profile RN ∈ L(AN),
the game form G induces a game (X1, . . . , Xn;Q1, . . . , Qn) with the same strategy
spaces as in G and with the Qi defined by: xN Qi yN if and only if g(xN)Ri g(yN) for
xN , yN ∈ XN . We denote this game by (G,RN).

We say that a ∈ A is an M-equilibrium outcome of (G,RN) if there is an M-
equilibrium of (G,RN) xN ∈ XN with g(xN) = a. The game form G is said to be
solvable inM-equilibrium orM-solvable, if for each preference profile RN ∈ Q(A)N , the
game (G,RN) has anM-equilibrium. In particular, when S = N = {{1}, . . . , {n}}, an
M-equilibrium is a Nash equilibrium. Similarly, when M = P0(N), an S-equilibrium
is a strong Nash equilibrium.

If yN ∈ XN , the notation g(ySc , XS) stands for {g(ySc , xS) | xS ∈ XS} if S 6= N
and for g(XN) if S = N .

Given the game form G = (X1, . . . , Xn, A, g) the β-interaction form (over (N,A))
associated with G is the interaction bundle EGβ defined as follows: For a ∈ A:

EG,Mβ [a] =

{ψ ∈ Φ(N,A) | ∀yN ∈g−1(a), ∃S ∈M,∃xS∈XS : g(xS , ySc)∈ψ(S)} (1)

EG,Mα [a] =

{ϕ ∈ Φ(N,A) | ∃yN ∈g−1(a), ∀S ∈M,∀xS∈XS : g(xS , ySc)∈ϕ(S)} (2)

If M = P0(N) then we drop the superscript M from the notation of EG,Mα [a] and
EG,Mβ [a]

Proposition 4.1 a is an M-equilibrium outcome of (G,RN) if and only if S →
P c(a, S,RN) ∈ EG,Mα [a]
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For ϕ ∈ Φ(N,A) define ϕ∗ by ϕ∗(S) = (ϕ(S))c (S ∈ P0(N)). One has:

ϕ ∈ EG,Mα [a]⇔ ϕ∗ /∈ EG,Mβ [a]

EG,Mβ [a] = {ϕ ∈ Φ(N,A)|∃ϕ′ ∈ EGβ [a], ϕ′(S) = ∅ (S /∈M), ϕ′(T ) = ϕ(T ) (T ∈M)}

It follows that EGβ (or EGα ) contains all the information relevant to the determination
of all the M- equilibria correspondences of the game form G. Two game forms G and
G′ in G(N,A) are said to be Interactively equivalent if EGα = EG′

α

Proposition 4.2 Let G = (X1, . . . , Xn, A, g) and G′ = (X ′1, . . . , X
′
n, A, g) be two game

forms with the same set of players and the same set of alternatives. G and G′ are
interactively equivalent if and only if:

(a) For any x ∈ X there exists x′ ∈ X ′ such that g′(x′) = g(x) and for all T ∈ P0(N)
g′(x′T c , X ′T ) ⊂ g(xT c , XT )

(b) For any x′ ∈ X ′ there exists x ∈ X such that g(x) = g′(x′) and for all T ∈ P0(N)
g(xT

c, XT ) ⊂ g(x′T c , X ′T )

Proposition 4.3 If G and G′ are interactively equivalent and if f : A → A′, then
f ◦G and f ◦G′ are interactively equivalent

Let (B, (Xi)i∈N) be a board game form. In what follows we use the notations
introduced... We already know that N(Γ) = N(Γ′) and N(Γe) = N(Γ′e). On the other
hand, it is clear that N(Γe) and N(Λ′e) may fail to be strategically non equivalent.
Nevertheless we have the following:

Theorem 4.4 Let (B, (Xi)i∈N) be a board game form. N(Γe) and N(Λ′e) are interac-
tively equivalent.

Lemma 4.5 Let Γ be an any EPI game form and let Λ be its associated PI game form.
Then Γ and Λ are interactively equivalent.

Proof. Let N(Γ) = (S1, . . . , Sn, A, g) and let N(Λ) = (S̃1, . . . , S̃n, A, g̃). We recall that
for any x ∈ u ∈ U , one has Ax = Au. Si =

∏
u∈Ui

Au and S̃i =
∏

x∈Xi
Ax. g = e ◦ π

and g̃ = e ◦ π̃. If in Γ all information sets are singletons, then Γ = Λ, therefore the
result is obvious. If some information set u of some player, say player 1, is such that
u = {x1, . . . , xp} with p ≥ 2, we shall consider the extensive game form Γ′ obtained
from Γ by removing u and replacing it by the p information sets {x1}, . . . , {xp}. While
N(Γ) and N(Γ′) may not be strategically equivalent, we are going to prove that they
are interactively equivalent. W.l.o.g we shall assume that for any i ∈ N , Xi is a
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singleton, that is, any information set can be identified to some player. Thus we have
S ′1 = Su1 (the set of maps τ : u→ S1 ) (or Ax1 × · · · × Axp) and for i 6= 1, S ′i = Si.

The maps ξ and τ : Let D := {t−1 ∈ S−1|∃a ∈ S1 : π(a, t−1) ∩ u 6= ∅}. Since Γ is
linear (that is, no path intersects twice any information set), one can define ξ : D → u
by ξ(t−1) as the unique node in π(a, t−1) ∩ u, and extend ξ arbitrarily on S−1 − D.
Remark that ξ depends only on the structure of the game. We also define τ : S1 → S ′1
by τ(t1)(x) = t1 for all x ∈ u.

In order to prove EN(Γ)
α ≤ EN(Γ′)

α , we are going to associate to any s′ ∈ S ′, s′ =
(s′1, s

′
−1) ∈ S ′1×S ′−1, the strategy s ∈ S ofN(Γ) where si = s′i (i 6= 1) and s1 = s′1◦ξ(s−1)

if s−1 ∈ D and s1 = s̄1, where s̄1 is a fixed element of S1. With these notations we
have the:

Claim 1. Let T ∈ P0(N) :

π(s) = π′(s′) (3)

π(ST , sT c) = π′(S ′T , s
′
T c) (T 3 1) (4)

g(ST , sT c) ⊂ g′(S ′T , s
′
T c) (T c 3 1) (5)

Proof of the claim. First remark that by definition of σ we have: π(s′1 ◦ ξ(s−1), s−1) =
π′(s′1, s−1) This proves (3). Let T 3 1, for all t′1 ∈ S ′1 and all t−1 ∈ S−1: π(t′1 ◦
ξ(t−1), t−1) = π′(t′1, t−1) so that π′(S ′T , sT c) ⊂ π(ST , sT c). Conversely for any t1 ∈ S1,
t−1 ∈ S−1: π(t1, t−1) = π′(τ(t1), t−1). so that we have π(ST , sT c) ⊂ π′(S ′T , sT c). This
proves (4). In order to prove (5), let tT ∈ ST . Let I be the set of players in T that
precede some node in u and let J = T − I. We distinguish two cases:

Case 1: The strategy s hits u or equivalently s−1 ∈ D. If the strategy (tT , sT c) does
not hit u, we put t′T = tT . Clearly π′(t′T , s

′
1, sT c−{1}) = π(tT , s1, sT c−{1}). If the strategy

(tT , sT c) hits u we define t′T by setting t′i = si for all i ∈ I and t′i = ti for all i ∈ J .
Since the action of player 1 on u is s1 = s′1 ◦ ξ(s−1), it follows that in both strategies,
on all information sets, players take the same actions. Given the game is of effective
perfect information we have: g′(t′T , s

′
1, sT c−{1}) = g(tT , s1, sT c−{1}).

Case 2. The strategy s does not hit u or equivalently s−1 /∈ D. We define t′T = tT .
Note that we have s1 = s̄1. Clearly π′(t′T , s

′
1, sT c−{1}) = π(tT , s1, sT c−{1}).

In fact the relation � on U ∪ Z is transitive and antisymmetric. We just take u as
some minimal element for � in the set {v ∈ U| |u| ≥ 2}.
End of the proof. Repeat the operation untill all information sets become singletons.
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