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Abstract

This paper considers a long-term relationship between two agents who undertake
costly actions or investments which produce a joint benefit. Agents have an oppor-
tunity to expropriate some of the joint benefit for their own use. The question asked is
how to structure the investments and division of the surplus over time so as to avoid
expropriation. It is shown that investments may be either above or below the efficient
level and that actions and the division of the surplus converges to a stationary solution
at which either both investment levels are efficient or both are below the efficient level.
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1. Introduction

It is often difficult to enforce contracts. This may be because the terms of the contracts
are difficult to specify precisely or because they are difficult to specify in a way verifiable
to a court. It may be that there is no legal authority to enforce a contact. When relation-
ships are repeated it is possible to include an element of self-enforcement in the contract
by designing terms so that any short-term incentive to renege is offset by a long-term
advantage to adhering to the contract.

We consider such a self-enforcing or relational contract in the case where two risk-
neutral agents make repeated relation-specific investments or actions ai that produce a
stochastic joint output y(a1, a2, s) to be shared at each date. We shall further assume
that both agents have limited liability so that the consumption of the agents is bounded
below. Contracts cannot be enforced and in the event of disagreement agent i receives
a gross breakdown payoff of φi(a1, a2, s).1 We shall assume that theses investments or
actions are complementary. In this case if agent 1’s investment is increased more must
be offered to agent 2 to prevent him reneging. Thus although the joint surplus may be
increased, agent 1 may have no incentive to increase her investment or action as there
may be no division of the surplus which simultaneously prevents agent 2 from reneging

1The breakdown payoffs are assumed to be feasible, φ1(a1, a2, s) + φ2(a1, a2, s) ≤ y(a1, a2, s). The exact details
of the model will be specified in Section 2.
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and compensates agent 1 for the increased investment. Thus agents will face a hold-up
problem and investment may be inefficiently low.

The question we therefore address is how the investments or actions of the agents
and the division of the joint output can be structured over time to avoid agents’ incentives
to deviate and ameliorate the efficiency loss caused by the hold-up problem. That is we
shall be interested in finding and characterizing the set of Pareto-efficient self-enforcing
contracts.

We establish three main results. Firstly we derive a backloading result (Theorem 3).
In general it is well known that an important property of optimum self-enforcing con-
tracts is the backloading principle (for a general argument see Ray 2002). If we consider a
case where agents are risk-neutral and one agent is able to commit to the contract, then
the backloading principle says that transfers to the agent who cannot commit should be
backloaded into the future. The intuition is the following. Suppose that of the two agents,
agent 1 can commit to the contract but agent 2 cannot. Further suppose that agent 2 is get-
ting a relatively low discounted utility from the contract. This may impose an efficiency
cost on the contract as the investment of agent 1 needs to be kept low to limit the gains
to agent 2 from expropriation. Since both agents are risk-neutral they are concerned only
with the discounted value of utility (transfers net of action costs) and not the actual timing
of utility received. Thus the best way to discourage agent 2 from reneging is to backload
transfers to agent 2 whilst keeping the discounted sum of transfers unchanged. This pro-
vides a carrot in the future which would be forgone if agent 2 reneged. Such a change
doesn’t worsen current incentives but improves future incentives by increasing agent 2’s
continuation utilities and hence allowing future increases in agent 1’s investment. In our
context where neither agent can commit, the operation of this principle is less clear. We
show however, that this principle remains partially valid and that we have backloading of
consumption for the agents whose self-enforcing constraints are most difficult to meet.

Furthermore Theorem 3 shows that as the backloading principle applies to utilities
and not simply consumption it might be optimal to increase investment beyond the ef-
ficient level. This allows more output to allocated to the other agent and thus more
backloading. Of course there is an efficiency loss in overinvesting so it will always be
desirable to backload transfers as much as possible before backloading utility by altering
actions. The result however, has the implication that the optimum self-enforcing contract
will typically involve overinvestment in the initial periods by one of the agents despite
the hold-up suggesting that there will be underinvestment. Nevertheless we shall show
that it will never be the case that both agents overinvest in any equilibrium. Equally we
are able to show that in the case where only one agent takes an action (as in much of the
existing literature) there is never overinvestment.
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Secondly, we establish that the contract converges to a stationary phase in finite time
with probability one (Theorem 5). We show that this stationary phase corresponds to
the self-enforcing contract which maximizes current net surplus. Although it is to be
expected that should we ever reach a stationary state the contract will maximize the cur-
rent joint surplus amongst all feasible self-enforcing contracts, convergence itself is more
surprising. In particular we show that convergence holds even when the default payoffs
and production technologies fluctuate through time or when the action choices are made
sequentially at alternative periods rather than simultaneously. Furthermore we show that
in the stationary phase for a given state either both agents are investing efficiently or both
are underinvesting. Likewise, unless the first best is attainable, in this stationary state we
show that both agents are simultaneously constrained in the sense that they are both at
the point of reneging on the contract and taking their default payoffs.

Thirdly we show that if the optimum contract is non-trivial with positive investment
at each date then it will exhibit a two-phase property (Theorem 6). In the first phase there
is backloading with zero consumption and overinvestment by one of the agents. This first
phase may not exit although we shall present an example where it does. In the second
phase (which occurs with probability one) there will be no overinvestment. In this second
phase, there can be a first one-period transition in which one of the agents is investing
efficiently and thereafter either both actions are efficient or both actions are inefficient and
both agents are indifferent to reneging on the contract. The subsequent part of this phase
is stationary and joint utility maximizing.

The model we present here covers or is related to many models of repeated bilat-
eral relationships in the literature. The models of Thomas and Worrall (1994) on foreign
direct investment, Sigouin (2003) on international financial flows and Albuquerque and
Hopenhayn (2004) on credit constrained firm growth might all be considered as special
cases where only one party to the contract undertakes an action. Although slightly more
general in allowing for multidimensional actions, the model of Ray (2002) also has in-
vestment by only one agent.2 The model we present is significantly more general as our
structure allows for actions to be taken alternately by each agent and allows for limited
commitment by both sides.

Although this paper significantly extends existing results it does so by adopting a
different approach. The literature just cited uses a dynamic programming approach to
characterize optimum self-enforcing contracts. In our context the dynamic programming
approach has the disadvantage that the resulting problem may be non-convex and, even
when it is convex, it is known (see e.g. Thomas and Worrall 1994) that the value function
may not be differentiable. Thus the use of first-order conditions is typically problemat-

2In Ray (2002) the agent not taking the action, the principal, is able to commit to the contract.
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ical.3 We avoid these issues by deriving results from variational methods and our main
results will not require that set of constrained efficient contracts be convex.4 This allows
us to derive our results in more generality than in some of the existing literature.

Our model is also related to two other relevant literatures. First there is a literature
on risk-sharing and two-sided limited commitment and no actions (see e.g. Kocherlakota
1996, Ligon et al. 2002, Thomas and Worrall 1988). This literature shows that the op-
timum risk-sharing contract exhibits two important properties. First transfers depend
both on the current income shocks and the past history of income shocks. Secondly the
contract evolves toward a stationary but typically non-degenerate distribution of future
expected utilities. However, the distribution of utilities, or the distribution of the implied
Pareto-weights, does not converge.5 This is in contrast to the results of the current paper.
Moreover, in the current case if efficiency cannot be sustained in the stationary phase then
both agents are constrained and this feature again makes the model qualitatively distinct
from the risk-sharing models with no actions where in any non-degenerate contract only
(at most) one agent’s constraint will bind at a time.

A second related literature which takes a slightly different approach is that of Levin
(2003) and others which builds upon the work of Macleod and Malcomson (1989). In
that work output accrues to individual agents with subsequent non-contractual transfers
being made. This is captured in our model by interpreting φi(a1, a2, s) as the individual
outputs and assuming that breakdown payoffs exhaust output. The model of Levin (2003)
has recently been generalized by Rayo (2007) who considers the multiple agent case and
by Doornik (2006) who allows for two-sided moral hazard. There are two key differences
between these works and our paper. Firstly, these recent papers assume that effort is un-
observed so that there is an asymmetry of information whereas we assume observability
(but non-verifiability) of actions. Secondly, they do not assume that agents have limited
liability. Hence stationary contracts are optimum (at least after an initial period). This is
in contrast to the current paper where we show how actions and transfers are structured
along the path to a stationary state.

Perhaps closest in terms of the model of our paper is the work of Garvey (1995) and
Halonen (2002). However, they consider the minimum discount factor that will allow the

3If both agents are investing, the value function will be differentiable but need not be concave. If only one
agent is investing the value function will not be differentiable in general even if it is concave. These points of
non-differentiability can also be an important part of the solution so that even with concavity a sub-differential
analysis must be used. This is in contrast to the dynamic moral hazard problem analyzed by Pavoni (2004) who
is able use a first-order approach despite points of non-differentiability by showing that such points are almost
never reached at the optimum.

4Although it would be possible to convexify the problem by allowing for random contracts, we prefer to
concentrate on pure strategy equilibria, partly because our results show that even in this case strong convergence
results can be established.

5The two-sided lack of commitment is crucial to this result. If there is only one-sided lack of commitment the
distribution of utilities will also converge to a degenerate distribution.
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efficient investments to be sustained under different assumptions about the breakdown
payoffs where the breakdown payoffs themselves may depend on whether there is joint or
single ownership of production. Thus they do not consider the inefficiency in investments
or the temporal structure of investment which of central importance here. Moreover these
models do not explicitly allow for uncertainty.

The paper proceeds as follows. The next section describes the model and optimum
self-enforcing contracts. Section 3 provides the main results of the paper. Section 4 consid-
ers the important special case where only one agent contributes to production. Section 5
concludes.

2. Model

We consider a dynamic model of joint production where agents repeatedly undertake
some action or investment that generates a joint output. Once produced agents have the
opportunity to unilaterally expropriate some of the joint output for their own benefit.
Agents have limited liability in the sense that their consumption cannot be reduced below
some lower bound. In this section we shall describe the economic environment, the joint
production and action sets, the part of joint output that can be expropriated and the set
of self-enforcing contracts. In addition we shall define a game played by the two agents
and identify self-enforcing contracts with the subgame perfect equilibria of that game.
Our interest will be in optimal self-enforcing contracts or equivalently the Pareto-efficient
subgame perfect equilibria.

2.1. Economic environment

Time is discrete and indexed by t = 0, 1, 2, . . . , ∞. The environment is uncertain
and at the start of each date a state of nature s is realized from a finite state space
S = {s1, s2, . . . , sn}. The state evolves according to a time homogeneous Markov pro-
cess with transition matrix [πsr] where ∑r∈S πsr = 1, and we assume some initial state
s0 has probability one. We shall assume that the Markov chain is irreducible so that ev-
ery state communicates with every other. It is important to emphasize that this is a very
general structure and encompasses the case with no uncertainty where n = 1 and the
possibility that some πrs = 0.6 We shall denote the state at date t by st and the history of
states will be denoted st = {s0, s1, s2, . . . , st}.7

There are two agents and at each date both agents choose an action or investment
ai from <+, i = 1, 2 (we shall use the notation <+ to denote the non-negative orthants

6A number of these assumptions are inessential and made for convenience and simplicity. The important
property is that the stochastic process is Markovian. Finiteness of the state space is also not essential and most
of the results would go through if the state space were continuous. Equally we could we specify a distribution
over the set of initial states rather than assuming there is some initial state s0. For many results it is possible
to assume that there is some finite time horizon T although we shall be interested in convergence properties of
optimum contract and these results will require an infinite time horizon.

7Where we write st we shall assume this is a positive probability event unless otherwise stated.

5



JONATHAN P. THOMAS AND TIM WORRALL

of the real numbers and <++ to denote its interior). States are perfectly observed and
actions are taken simultaneously and after the state is realized. Actions lead to an output
y(a1, a2, st) that may depend upon the current state. Output and actions are observed by
both agents. We make the following assumption about the production function.

Assumption 1: The function y(·, ·, st) : <2
+ → <+ satisfies the following conditions:(i) Out-

put at zero: y(0, 0; ·) = 0; (ii) Continuity: it is continuous in a on <2
+; (iii) Differentiability: it

is twice continuously differentiable in a on <2
++; (iv) Monotonicity: it is either constant in

ai on <+ or strictly increasing in ai on <+ for each i = 1, 2 and is strictly increasing for at
least one i = 1, 2 and some st ∈ S ; (v) Concavity: it is strictly concave in a on <2

++ with
∂2y/∂a2

i < 0 whenever ∂y/∂ai > 0; (vi) Boundedness: limα→∞ y(αa1, αa2, st)/α < a1 + a2

for all a ∈ <2
+; (vii) Complementarity: ∂2y/∂a1∂a2 ≥ 0 for all a ∈ <2

+.

With the exception of complementarity these are standard assumptions on the pro-
duction function. The assumption of strategic complements is made as we want to analyze
situations where there is mutual benefit from cooperation so that increasing the action of
one agent increases the marginal benefit of the other’s action. It is important to realize
that our assumptions will enable us to consider the case where only one action matters
for production. In this case although we allow both agents to choose an action this will be
the same in an efficient equilibrium as imposing the restriction that the action is zero. We
impose Assumption 1(vi) so that in conjunction with the other conditions the set of action
choices that yield non-negative surplus, Ã(st) = {(a1, a2) ∈ R2

+ | y(a1, a2, st) ≥ a1 + a2}
is compact. Since all assumptions apply state-wise we shall often be able to drop the
notational dependence on the state where this is convenient.

Remark: The production technology and stochastic structure is extremely general. Thus
we may have some states where only agent 1 takes an action and in other states only
agent 2 takes an action. Although in the model actions are chosen simultaneously by
agents each period, this allows us to cover the case say, where one agent takes an action in
even periods and the other agent takes an action in odd periods. To examine that situation
we could use a two state transition matrix

Π =

(
0, 1
1, 0

)

where there are two states but they alternate between even and odd periods. Similarly
we may have a situation where in some states neither agent takes an action and output is
zero. All these cases can be handled by the above specification.
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Since actions are chosen simultaneously and independently we define the conditionally
efficient actions a∗i (aj, st) such that

a∗i (aj, st) ∈ arg max
ai∈<+

y(a1, a2, st)− ai.

We then have the following standard result.8

Lemma 1: Given Assumption 1 the conditionally efficient actions are continuous (single-
valued) non-decreasing functions of the other agent’s action. Moreover, these functions cross at
most once on <++.

We define an efficient action pair a∗(st) = (a∗1(st), a∗2(st)) to be

a∗(st) ∈ arg max
a∈<2

+

y(a1, a2, st)− a1 − a2.

The efficient action pair will correspond to a point where a∗i (st) = a∗i (a∗j (st), st) for i 6=
j = 1, 2. As we have not imposed a profitability condition that there exists a vector a such
that y(a1, a2, st) > a1 + a2 it may be that a∗(st) = (0, 0) is the efficient action pair in some
state or indeed in all states.9 The concavity conditions are however sufficient to rule out
the possibility that there are multiple non-zero efficient action pairs.

The joint output will be divided up between the two agents in a way which is de-
scribed in the next sub-section. For the moment we shall simply think of a consumption
and action plan for each agent that depends on the history st. Denote the consumption
of agent i in history st by ci(st) and the action by ai(st). Critically, we shall assume
that agents have limited liability so that consumption must be non-negative. There is no
storage, and therefore the feasible set of consumptions at time t in state s is

C(a, st) = {(c1(st), c2(st)) : ci(st) ≥ 0 for i = 1, 2

and
2

∑
i=1

ci(st) ≤ y(a1(st), a2(st), st)}.

Agents have preferences over consumption and action streams. We assume that agents
have time separable utility functions, are risk neutral and that action costs are linear:10

8All proofs are given in the Appendix.
9Our results will apply (trivially) in this case.

10As is fairly standard this linearity assumption is made for convenience and the analysis will carry through if
actions costs are convex. Thus suppose wi = ci − gi(ai) where gi is strictly increasing and convex and g(0) = 0.
Letting hi denote the inverse of gi we have ai = hi(gi) where hi is strictly increasing and concave. Hence agents
can be viewed as choosing gi and the reduced-form production function is f (g1, g2, st) = y(h1(g1), h2(g2), st)
which will satisfy Assumption 1 with gi replacing ai and f replacing y. In this case the net surplus is
f (g1, g2, st)− g1 − g2.
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agent i’s utility at t is given by

wi(st) = ci(st)− ai(st).

We assume that both agents discount the future by a common factor δ ∈ (0, 1) and that
agents are interested in maximizing expected discounted utility

E

[
∞

∑
t=0

δtwi(st) | s0

]
.

For a given pair of actions the current net surplus generated at history st is

y(a1(st), a2(st), st)− (a1(st) + a2(st))

and we define the feasible set of per-period utility payoffs as

W(a, st) ={(w1(st), w2(st)) : wi(st) ≥ −ai(st) for i = 1, 2

and
2

∑
i=1

wi(st) ≤ y(a1(st), a2(st), st)− (a1(st) + a2(st))}.
(1)

2.2. The breakdown game

In this section we specify how agents agree on the division of the surplus and what
happens in the event of disagreement. In each period agents must decide how to act and
how to divide up the subsequent surplus. We shall suppose that each period is split into
two stages with actions being determined at the first stage and the division of the surplus
taking place at the second stage after output is known (recall that uncertainty is resolved
before the action decision).11

The game played by the agents will involve them choosing actions each period con-
tingent upon the past play of the game. We have somewhat more latitude in specifying
the game at the division stage and we suppose that at the division stage the agents play a
Nash demand game.12 In this Nash demand game both agents simultaneously announce
utility claims (w1, w2). If these claims are feasible, viz, (w1, w2) ∈ W(a, st), then this de-
termines the split of the surplus. If they are not feasible, then agents receive a breakdown

11While it is useful to think of the actions being taken, and observed before the agents decide on their de-
mands, it is equivalent in terms of the subgame-perfect equilibria to a model in which actions and demands are
determined simultaneously.

12What we want to capture is that there is an agreement on how output should be split, and failure to abide
by it will lead to breakdown. The Nash demand game is a simple way of operationalising this idea.

8



DYNAMIC RELATIONAL CONTRACTS

payoff 13 given by
φi(a1, a2, st)− ai

for agent i in state st as a function of the actions taken.14 These breakdown payoffs
show how the payoff to agent i in breakdown depends on his own and the other agent’s
contribution. They may reflect the property rights of the two agents over output, for
example, specifying a fixed percentage split. Analogous to Assumption 1 we shall assume
that the breakdown payoffs satisfy:

Assumption 2: The function φi(·, ·, st) : <2
+ → <+ is non-decreasing, twice continu-

ously differentiable and strictly concave on <2
++. Where both actions play a role we as-

sume that ∂2φi(a1, a2)/∂a1∂a2 ≥ 0. In addition, the φi are feasible, i.e. (φ1(a, st), φ2(a, st)) ∈
C(a, st), ∂y(a1, a2, st)/∂ai > 0 implies ∂φj(a1, a2, st)/∂ai > 0, j 6= i and

(2)
∂φ1(a1, a2, st)

∂ai
+

∂φ2(a1, a2, st)
∂ai

≤ ∂y(a1, a2, st)
∂ai

∀ st and i = 1, 2.

It should be noted that equation (2) shows that the increase in the total breakdown
payoff cannot exceed the marginal product and given the assumption of y(0, 0, ·) = 0
implies that breakdown payoffs are in fact feasible, (φ1(a, st), φ2(a, st)) ∈ C(a, st) and
φ(0, 0, ·) = 0 for i = 1, 2.

Remark: We refer to the assumption that ∂y(a1, a2, st)/∂ai > 0 implies ∂φj(a1, a2, st)/∂ai >

0 as our hold-up assumption. It is made to avoid the case where i’s contribution to output
does not increase j’s claim on output. In such a case hold-up and underinvestment by
j cannot occur in any efficient equilibrium, and ruling it out allows us to simplify the
arguments below.

Assumption 2 places relatively few restrictions on the breakdown payoffs. They
are restricted to be feasible as shown by equation (2) but we do not require that these
payoffs exhaust available output. For example, disagreement may incur a cost, such
as lawyers’ fees, which produces some loss for one or both agents. There are many
special cases which satisfy Assumption 2. Here we mention just two. First, we may
have that each agent can extract a simple percentage (perhaps depending upon the state)
of output in the breakdown. In this case φi(a1, a2, st) = θi(st)y(a1, a2, st) and Assump-
tion 2 is satisfied provided θi(st) > 0 and ∑2

i=1 θi(st) ≤ 1. Secondly, suppose that out-

13The idea of going immediately to breakdown if the surplus is not split appropriately (rather than, say,
renegotiation) is in the spirit of repeated game analysis in which deviations from agreed courses of action are
punished with severe continuations. In general, of course, renegotiation proofness will not be satisfied here.

14An alternative formulation would be to assume that a deviation at the action stage can be punished in-
dependently of going to the breakdown position after output is realized. The idea would be that a deviation
is observed by the other agent who may be able to take measures that affect output or breakdown payoffs.
Such a formulation, by making a deviation at the action stage more easily punishable (leaving aside issues of
renegotiation proofness) may shift the emphasis towards the distribution stage of the game.
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put is an additive function of inputs such that y(a1, a2, st) = f1(a1, st) + f2(a2, st) and
φi(a1, a2, st) = θi1(st) f1(a1, st) + θi2(st) f2(a2, st). In this case agents make separate contri-
butions to joint output and can capture some of their own and some of the other agent’s
contribution in the breakdown. Then Assumption 2 is satisfied provided θij(st) ≥ 0 with
this being strict for i 6= j, and ∑2

i=1 θij(st) ≤ 1, j = 1, 2. This latter additive structure
includes the case which has been predominantly studied in the literature where only
the action of one agent is productive and the other can extract the entire output in the
breakdown; for example, f2 = 0 and θ21 = 1 and this case is considered in Section 4.

One might imagine some situations where the breakdown payoffs do not satisfy equa-
tion (2). For example both may be grab the entire output provided they are first to do so.
This is not the situation we consider here.

Remark: In this paper we treat the breakdown payoffs as exogenously given. However, a
number of papers in the relational contracting tradition assume that the breakdown pay-
offs are a consequence of the legal framework or ownership decision and study the effect
of different default structures. For example Halonen (2002) considers a model where the
breakdown payoffs allow either one agent to expropriate the entire output if there is sin-
gle ownership or both agents to expropriate half of the output if there is joint ownership.
Solving for efficient contracts, as we do here, is a necessary prior step. Extending our
analysis to endogenize the breakdown payoffs is an avenue for potential future research.

An important part of the analysis will be related to the best response in the break-
down game. Denote the best-reply functions (functions because of the strict concavity
assumptions)

aN
i (aj, st) = arg max

ã∈<+

{φi(ã, aj, st)− ã}.

Lemma 2: Given Assumption 2, aN
i (aj, st) is weakly increasing in aj. Moreover we have

aN
i (aj, st) ≤ a∗i (aj, st) for each aj and every state st with strict inequality whenever a∗i (aj, st) > 0.

The optimized breakdown payoffs (which result when the defaulting agent chooses
the best-response action in the breakdown game) can be written as follows:

φ1(aN
1 (a2, st), a2, st)− aN

1 (a2, st) and φ2(a1, aN
2 (a1, st), st)− aN

2 (a1, st).

A Nash equilibrium of the breakdown game occurs where the best-response functions
intersect. We denote a Nash equilibrium as a pair (aNE

1 (st), aNE
2 (st)). Although the Nash

equilibrium need not be unique, all Nash equilibria can be Pareto-ranked (by the non-
decreasing reaction functions) and we let (aNE

1 (st), aNE
2 (st)) denote the dominant Nash

equilibrium in this case.
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Remark: We can use the univalence approach of Gale-Nikaido to establish conditions for
the uniqueness of the Nash equilibrium of the best-response functions. Letting

J =

 ∂2φ1
∂a1∂a1

, ∂2φ1
∂a1∂a2

∂2φ2
∂a2∂a1

, ∂2φ2
∂a2∂a2


be the matrix of partial derivatives, then the Nash equilibrium is unique provided J is neg-
ative quasi-definite, that is J + JT is negative definite. This condition is satisfied in the case
where breakdown payoffs are proportionate to outputs φi(a1, a2, st) = θi(st)y(a1, a2, st)
given θi(st) > 0.

2.3. Equilibria

To specify what happens in the dynamic game played by the agents we shall assume
that there is reversion to the Nash equilibrium of the breakdown game after any devia-
tion and compute equilibria relative to these punishments. Suppose that a is the current
recommended action vector. If agent i is to deviate then it is clear that the best the agent
can do is to choose the best response action aN

i (aj, st). Then write Di(aj, st) to denote the
best non-cooperative discounted payoff that i can get starting from agent j’s action aj in
the history st, given that she will choose the current best-response and will be punished
thereafter by Nash reversion. During the Nash reversion phase both agents choose their
best responses and hence both will play the Nash equilibrium of the breakdown game.15

We refer to Di(aj, st) as the deviation payoff which can be defined recursively as

Di(aj, st) = φi(aN
i (aj, st), aj, st)− aN

i (aj, st) + δ ∑
st+1∈S

πstst+1 Di

(
aNE

j (st+1), st+1

)
.

Given our hold-up assumption it follows that the deviation payoff is strictly increasing
in the action of the other agent when the other agent’s action increases output. This and
other properties of the deviation payoff are stated in the following lemma.

Lemma 3: The deviation payoff Di(aj, st) is a continuous, differentiable, non-decreasing and
concave function of aj. Di(aj, st) ≥ 0. If ∂y(a1, a2)/∂aj > 0 then Di(aj, st) is strictly increasing
in aj.

Remark: For many of our results the deviation payoff could be taken as a primitive of the
model. Alternatively the deviation payoffs could be derived from different assumptions

15If there are multiple Nash equilibria, this could be any of them, and we are arbitrarily assuming that this is
to the Pareto-dominant one, although it is only sufficient to assume that the continuation equilibrium selected is
fixed in each state. In fact all results go through if one models the post default situation as involving termination
of the relationship and some state dependent outside options being taken which offer a utility no more than
repetition of the breakdown Nash. Likewise reversion to the worst subgame perfect continuation, which may
be more severe than what we are assuming, does not affect the results, although in the existing literature the
two coincide. Repeated Nash reversion is a subgame perfect equilibrium (each agent can just demand the whole
output each period) and one cannot be held below this in any equilibrium in which breakdowns do not occur.

11
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about the nature of the breakdown game. For example, if there are outside options which
can only be taken after the end of the current period (so agents are locked in for a period
after observing the current state), but it is never efficient to take them (i.e., it is not part of
an efficient equilibrium to terminate the relationship), then the characterization we give
will still apply. See Bond (2003) for a model of this type in a related context.

We consider pure-strategy subgame-perfect equilibria of the above game. Let the
putative outcome path of an equilibrium be represented by {a(st), w(st)}∞

t=0, where a(st)
and w(st) are the respective actions and actual payoff divisions (not demands) at time t
along the equilibrium path. This includes the possibility that breakdown has occurred in
any period, in which case w(st) = φ(a(st), st)− a(st). The outcome path {a(st), w(st)}∞

t=0

is feasible if w(st) ∈ W(a(st), st) for every history st where W(a(st), st) is defined in
equation (1).

As has been stated we assume that there is Nash reversion after any deviation and
compute equilibria relative to these deviation payoffs. It is clear that we need only con-
sider deviations at the choice of action stage since if an agent were to contemplate devia-
tion at the surplus division stage the breakdown payoff would be the same except that her
action would not be optimized to maximize the breakdown payoff. Thus the agent can
always do no worse than deviate at the action choice stage, choosing the action from the
best-reply action. Then necessary and sufficient conditions for this path to be equilibrium
relative to Nash-reversion is that it is feasible, and for i = 1, 2, for every st,

(3) Vi(st) ≡ wi(st) + E

[
∞

∑
τ=t+1

δτ−twi(sτ) | st

]
≥ Di(aj(st), st).

The payoff Vi(st) is the discounted payoff to t that i anticipates from the equilibrium,
while the right hand side of (3) is the deviation payoff she would get from deviating from
the recommended action a(st) after the history st. We shall refer to the Vi(st) as the contin-
uation utilities. Whenever (3) holds with equality we say that agent i is constrained — any
reduction in her on-equilibrium path payoff would lead her to deviate at st; otherwise we
say that agent i is unconstrained. We refer to such paths that satisfy the inequalities in (3)
as self-enforcing and the inequalities themselves as the self-enforcing or incentive constraints.
Then along such a path, even though there is no legal enforcement, the payoffs and actions
are supported by the deviation payoffs so neither agent has an incentive to deviate.

A self-enforcing agreement or contract Γ, specifies history contingent actions and util-
ities a(st) and w(st) at each date in each state, Γ = {a(st), w(st)}∞

t=0 that is both feasible
and self-enforcing, i.e. satisfies both (1) and (3). A self-enforcing agreement then corre-
sponds to a pure strategy sub-game perfect equilibrium of the game. We shall denote the
restriction of the self-enforcing contract after the history st by Γ(st) where this corresponds
to an action-utility profile {a(sτ | st), w(sτ | st)}∞

τ=t that is feasible and self-enforcing

12
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for every date and history τ > t contingent on st. We define the set of self-enforcing
agreements as G. Because of our Markov assumption and because all the self-enforcing
constraints are forward looking and the time-horizon is infinite the set of self-enforcing
agreements depends only on the current state s at a particular date t and is independent
of the history st. We shall denote this set of self-enforcing agreements given current state
s by Gs. Associated with each Γ(st) ∈ Gst are the discounted payoffs to the two agents
(V1(st), V2(st)) given in equation (3). We shall let V denote the set of payoffs (V1, V2)
which correspond to self-enforcing agreements Γ, and Vst denote the set of equilibrium
payoffs (V1(st), V2(st)). Again where no confusion arises and the state s occurs at date t
we shall write these continuation utilities as (V1,s, V2,s).

The sets G and V are not necessarily convex because of the presence of a(st) on the
right hand side of equation (3). This potential non-convexity does not affect our main
characterization results and therefore we do not impose further restriction on the model
to guarantee convexity.16 We define the Pareto-frontier of the payoff set by the set

Λ(V) = {(V1, V2) ∈ V | 6 ∃(Ṽ1, Ṽ2) ∈ V with (Ṽ1, Ṽ2) ≥ (V1, V2) and Ṽi > Vi for i = 1 or 2}

with Λ(Vs) denoting the Pareto-frontier in state s. As our objective is to characterize
the set Pareto-efficient self-enforcing agreements (when looked at from the outset of the
game) we shall be interested in the set Λ(V). We shall say that agreements that correspond
to this Pareto-frontier are optimum or optimum contracts and refer to the corresponding
actions as optimum actions.

3. Results

This section provides the main results of the paper. The existence of a optimum
contracts is established in Section 3.1. Section 3.2 demonstrates when actions will be
inefficient and Section 3.3 proves the backloading principle. The long-run properties are
examined in Section 3.4 and Section 3.5 which show convergence to a stationary phase
which maximizes surplus amongst all self-enforcing contracts. Finally Section 3.6 will
consider an example with no uncertainty to illustrate our results. The case where only
one agent contributes to output is considered in Section 4.

3.1. Existence

We first establish that efficient self-enforcing contracts do exist. This follows from a
straightforward argument showing that the payoff set is compact.

Lemma 4: The set of pure-strategy subgame perfect equilibrium payoffs V is non-empty and
compact. Hence optimum contracts exist.

16There are special cases where the sets are convex. The additive production technology case is one such
example.
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We shall say that a self-enforcing contract is trivial if a(st) = 0 for all t. From Assump-
tion 1(i) on the production function, it follows that this corresponds to a point (0, 0) ∈ V .
Lemma 4 does not imply the existence of an optimum non-trivial contract so that it is pos-
sible that Λ(V) = (0, 0) and all our results will apply (trivially) in this case. Nevertheless
we shall establish in the next section that in any optimum self-enforcing contract the ac-
tions are never below the Nash reaction functions and never below the Nash equilibrium
actions so that if the Nash equilibrium actions are positive a non-trivial contract will exist.

3.2. Actions at a particular date

We shall consider the dynamic path of actions in sections 3.3 and 3.5 but in this
section we consider actions at a given date and how they relate to the Nash best-response
and conditionally efficient actions. Our method is to argue by contradiction, changing
an assumed optimal contract at a particular date after a particular history. If this change
satisfies the self-enforcing and feasibility constraints for both agents at that date, and a
Pareto-improvement has been generated, then all prior self-enforcing constraints also hold
as by construction the future utility entering these constraints has not been decreased.
Equally all future constraints must continue to hold. Hence this leads to a Pareto-superior
contract—contrary to the assumed optimality of the original contract.

As we are considering only a particular date we shall, in what follows, we can sup-
press the history st or state st without creating any ambiguity. We shall also use s for
the current state and r to index the state next period where necessary. We first show that
actions cannot be below the Nash best-response functions aN

i (aj). The intuition is that if
any agent’s action is below the Nash best-response action, the action can be increased and
surplus divided in such a way that neither agent has an incentive to move to the break-
down and this increase in action will increase output and utility. To see this suppose that
a2 is below the reaction function (but a1 is not). As agent 2’s action is increased, suppose
we give agent 1 the increase in her deviation payoff to stop her reneging. Since this will be
approximately the share she can appropriate of the extra output, giving the remainder to
agent 2 gives him what he would get from increasing his action in the breakdown game.
Since he is below his optimal breakdown action this will increase his utility too. hence
both agents can be made better off.

Theorem 1: In any optimum self-enforcing contract, after any positive probability history st,
ai ≥ aN

i (aj), and (a1, a2) ≥ aNE where aNE is the dominant Nash equilibrium of the breakdown
game.

We would also like to say how the optimum actions relate to the conditionally efficient
actions. This is less clear cut as we shall show that optimum actions can be above or below
the conditionally efficient actions. We can however, show that an agent’s action is only
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under-efficient if the other agent’s self-enforcing constraint binds and is only over-efficient
if they are at their subsistence consumption (of zero).

Theorem 2: In an optimum contract after some positive probability history (i) If agent i is
unconstrained, i.e. Vi > Di(aj), then aj ≥ a∗j (ai); (ii) If agent i has positive consumption ci > 0,
then ai ≤ a∗i (aj).

Remark: Theorem 2 relates the optimum actions to the conditionally efficient level. It
is therefore, unlike Theorem 1, completely independent of the default structure we have
specified.

The intuition behind the proof is simple. If the self-enforcing constraint is not bind-
ing then there is no cost to increasing the other agent’s action or investment up to the
conditionally efficient level. Equally if an action, say agent 1’s action, is above the con-
ditionally efficient level it will be profitable to reduce it. However this will reduce the
output and some consumption must be reassigned to the agent 2 if his utility is not to
fall. The only circumstances where this transfer cannot be made is if the agent 1 already
has zero consumption and his limited liability constraint is binding.

There are two straightforward implications of Theorem 2(ii). Firstly it is impossible
in an optimum non-trivial contract that both agents overinvest (they cannot both have
zero consumption). Secondly an agent cannot be permanently overinvesting (i.e., with
probability one) as this would imply that her consumption is always zero, which cannot
be self-enforcing.

3.3. Backloading

As discussed in the introduction there is a well known backloading principle that
applies when commitment by one agent is limited. This principle says that ceteris paribus
transfers to that agent should be backloaded into the future if the commitment constraint
is binding, to provide a carrot in the future that would be forgone if the agent reneged.
The operation of this principle in our environment where both agents undertake an action
or investment and neither can commit is more subtle because of the actions the other agent
may choose in the breakdown game. Nevertheless we shall show that backloading applies
to this case and has the additional implication that one agent may overinvest in the early
periods of a optimum contract.

We start by showing that allocating all of the current output to an agent guarantees,
under certain conditions, that this agent’s self-enforcing constraint is not violated. This is
proved in the next lemma and is true of any self-enforcing contract (whether optimum or
not). The intuition is straightforward: an agent can get no higher current period payoff
by defaulting no matter how big a share she can claim in breakdown, as she is already
getting 100%, and so has no short-run gain, although since in default the agent may be
able to choose a more advantageous action some care is needed to make this argument.
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Suppose agent 2 gets allocated all the current output. Consider starting from agent 2’s
best-response (in the breakdown game) to agent 1’s action, and hold the latter fixed; if 2’s
action is increased and he is being allocated all of output, then his utility will be rising
until his efficient response is reached, where his payoff is maximized. Provided a2 is
above or equal to his best-response, but not higher than the conditionally efficient action,
he is weakly better off at a2 getting all consumption than best responding—even if he can
claim all of the output—in the breakdown. Hence the self-enforcing constraint is satisfied,
even if deviating leads to no future losses. This property is important for our backloading
result as it will enable us to check that the self-enforcing constraint for an agent is satisfied
by checking that that agent is receiving all the available output. (Note it does not refer to
optimum contracts.)

Lemma 5: If c2 = y(a1, a2), aN
2 (a1) ≤ a2 ≤ a∗2(a1) and V2,r ≥ D2(aNE

1,r , r), all r ∈ S , then

(4) c2 − a2 + δ ∑
r∈S

πsrV2,r ≥ D2(a1);

moreover the inequality is strict if a2 > 0 and y(a1, a2) > 0. Likewise with the agent indices
swapped.

We now present our main backloading result. For notational convenience we will
now treat actions and consumptions at a particular date as random variables and write at

i
and ct

i for ai(st) and ci(st) etc.

Theorem 3: (i) If at t̃ in an optimum contract (after positive probability history st̃), agent 1,
say, is unconstrained and at̃

1 < a∗1(at̃
2), then at all previous dates t < t̃ on the same path,

ct
2 = 0; (ii) If at t̃ in an optimum contract (after positive probability history st̃), say agent 2 has

at̃
2 > a∗2(at̃

1), then at all previous dates t < t̃ on the same path, ct
2 = 0.

Theorem 3(i) shows that if in any optimum contract agent 1 is under-investing but
unconstrained then agent 2 will have been held to his subsistence consumption level in all
previous periods along the history to that point. The idea is that if today agent 1 is uncon-
strained and her action is inefficiently low, while agent 2 has positive consumption earlier,
agent 1’s action can be increased and at the same time consumption can be transferred
at the current date to agent 2 to stop him reneging; agent 1 can be compensated for her
increased effort by agent 2 transferring consumption at the earlier date. This backloading
of agent 2’s consumption allows his later constraint to be relaxed. Intuitively, keeping
agent 1’s action inefficiently low will help prevent agent 2 from reneging. However, this
is inefficient if the action is already below its conditionally efficient level. Since agents are
risk neutral they do not care about the timing of consumption flows (keeping the action
plans fixed) if the expected discounted value is the same. Thus it will be desirable to
backload consumption to the future to provide a carrot for sticking to the contract. It is
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important though that agent 1 is unconstrained for this result to hold and we will show
later that it may not apply if agent 1 is also constrained at the later date.

Theorem 3(ii) shows that the backloading principle extends to actions as well as con-
sumption. Backloading of actions implies that actions may be above the conditionally
efficient levels in the early periods of an efficient contract. This however involves an
efficiency loss not incurred by backloading consumption. So reducing consumption is
more efficient than increasing the action. Nevertheless it may be optimal on the margin
to increase the action as for a small increase the loss will be of second-order and it will
enable the action of the other agent to be increased without violating the self-enforcing
constraint. Theorem 3 therefore demonstrates that if ever agent 2 is overinvesting then
consumption has already been backloaded in all previous periods.

3.4. Surplus Maximization

In the next section we shall show that the optimum contract converges to the point
that maximizes joint utility. In this section we shall show that the maximization of joint
utility involves choosing the actions that maximizes current joint surplus subject to the
self-enforcing and feasibility constraints.

We begin by defining the actions which maximize current joint surplus and the joint
utility maximizing contract.

Definition 1: An action pair a in state st at date t is current joint surplus maximizing
if a ∈ arg maxa∈<2

+
{y(a1, a2, st)− a1 − a2: ∃ a self-enforcing contract Γ(st) ∈ Gst starting at

date t with at = a}.

Definition 2: A self-enforcing contract Γ(st) ∈ Gs at date t in state st is joint utility
maximizing if the sum of the corresponding continuation utilities is maximized across all
self-enforcing contracts: (V1, V2) ∈ arg max(V1,V2)∈Vst

(V1 + V2).

Note that a current joint surplus maximizing a is found by looking across all self-
enforcing contracts starting from s and picking one that maximizes the surplus in the first
period of the contract, irrespective of what happens later.

To show the connection between a joint utility maximizing and current joint sur-
plus maximizing self-enforcing contract, it will be useful to consider an intermediate case
where the action profile maximizes current joint surplus for a given set of continuation
utilities.

Definition 3: We say that the action vector a is myopic efficient at date t in state s
relative to continuation utilities (V1,r, V2,r)r∈S if there is an associated consumption vector
c such that (a, c) ∈ arg max(a,c)∈R4

+
(y(a1, a2, s) − a1 − a2) s.t. ci − ai + δ ∑r∈S πsrVi,r ≥

Di(aj, s), and c1 + c2 ≤ y(a1, a2) for i = 1, 2, j 6= i.

17



JONATHAN P. THOMAS AND TIM WORRALL

Myopic efficient actions are not necessarily optimum since they take the continuation
utilities as given and do not take into account the trade-off between actions today and
actions in the future. Neither are optimum actions necessarily myopic efficient since one
agent may be worse off if the myopic efficient actions were chosen. The current joint
surplus maximizing actions are, however, myopic efficient for the corresponding future
continuation utilities. In the next two lemmas we show that at the myopic efficient actions
it is always possible to find some division of the current surplus that satisfies the current
self-enforcing constraints for any continuation utilities.

Lemma 6: If the action vector ã is myopic efficient for some (V1,r, V2,r)r∈S with Vi,r ≥
Di(aNE

j,r , r) all r ∈ S , i, j = 1, 2, j 6= i, then

(5) y(ã1, ã2, s)− ãi + δ ∑
r∈S

πsrDi(aNE
j,r , r) ≥ Di(ãj, s),

for i, j = 1, 2, j 6= i; i.e., giving all output to agent i implies that the current self-enforcing
constraint continues to hold for i even if the continuation utilities are replaced with the deviation
payoffs.

Lemma 7: Take any myopic efficient action a for some (V1,r, V2,r)r∈S ; then given any alter-
native continuation utilities (V̂1,r, V̂2,r)r∈S satisfying, for all r ∈ S , V̂1,r + V̂2,r ≥ V1,r + V2,r,
V̂i,r ≥ Di(aNE

j,r , r), there is a division of y(a1, a2) such that the self-enforcing constraints are
satisfied with the same action a.

The argument of Lemma 7 is true for any (V̂1,r, V̂2,r) satisfying V̂1,r + V̂2,r ≥ V1,r + V2,r,
V̂i,r ≥ Di(aNE

j,r , r). Thus in particular it holds for joint utility maximizing points since
a ≥ aNE and therefore Di(aj, r) ≥ Di(aNE

j,r , r). So we can establish that any joint utility
maximizing equilibrium involves current joint surplus maximization.

Theorem 4: Any joint utility maximizing self-enforcing contract starting at date t from st,
Γ(st), has with probability one current joint surplus maximizing actions at each date τ ≥ t.

The theorem is intuitive since changing actions away from the current joint surplus
maximizing ones will lower utility at that particular date and hence overall utility. What
the theorem shows is that there is no additional benefit of changing actions from relaxing
one of the self-enforcing constraints.

3.5. Convergence

In this section we show that any optimum contract converges to the joint utility maxi-
mizing self-enforcing contract. This is a surprising result given the generality of the model
and stochastic structure. We shall show first however, that if at any date t and state s the
self-enforcing constraints bind for both agents and there is no over-efficiency of actions,
then the contract always involves joint utility maximization from the next period onward.
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Hence from Theorem 4 this involves the surplus maximizing actions at every subsequent
date.

Lemma 8: If in an optimum contract st has positive probability, both self-enforcing con-
straints bind at t, and at

i ≤ a∗i (at
j), i, j = 1, 2, i 6= j, then the contract must specify joint utility

maximization from t + 1 (i.e., in every positive probability successor state).

The idea behind Lemma 8 is that if it were not true that every successor state max-
imized joint utility then it would be possible to replace (V1,r′ , V2,r′) by

(
V̂1,r′ , V̂2,r′

)
∈ Vr′

such that V̂1,r′ + V̂2,r′ > V1,r′ + V2,r′ and demonstrate a Pareto-improvement. To show this
it is necessary that both agents were previously constrained. If either agent were uncon-
strained and the inequality were strict then replacing Vi,r with V̂i,r might lower utility for
one agent.

We now present the convergence result that an optimum contract has actions which
converge almost surely to current joint surplus maximizing actions (and, a fortiori, joint
utility maximization). To show this, we first show that there exists a stopping time such
that both c1 > 0 and c2 > 0 at some point before this time, and it is finite almost surely.
The argument is intuitive: provided at least one agent has a strictly positive payoff, then
one agent, say agent 1, must take a positive action at some point. Thus agent 1 must
receive positive consumption at some point not too far after the action was taken, or
else her overall payoff would be negative, something which is inconsistent with the self-
enforcement and the deviation payoff (an agent can always guarantee herself at least zero
by taking a null action each period). Likewise, by the fact that agent 1 took a positive ac-
tion, the agent 2 can get a positive share of that output by the hold-up assumption on the
breakdown payoffs, and hence must have positive continuation utility at this point. Thus
agent 2 must also anticipate positive consumption. This situation must happen repeatedly
in an optimum contract, and thus positive consumption for both agents occurs with proba-
bility one (the proof is only complicated by the need to ensure that the number of periods
before positive consumption is received is bounded). Next, once both agents have had
positive consumption, our backloading results imply that there cannot be overinvestment,
and if either agent is unconstrained then actions are at the efficient level. Alternatively, if
both agents are constrained, we know that joint utility maximization occurs thereafter by
the previous lemma.

Theorem 5: For any optimum contract, there exists a random time T which is finite with
probability one such that for t ≥ T, at is current joint surplus maximizing.

We know from Theorem 3(ii) that if both agents have had positive consumption at
some date prior to t̂, then for t > t̂, at

i ≤ a∗i (at
j) for i = 1, 2. However, if agent i is

unconstrained at t, then it follows from Theorem 3(i) that at
i ≥ a∗i (at

j), otherwise the
consumption of agent j could not have been positive prior to t̂. Equally from Theorem 2(i),
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at
j ≥ a∗j (at

i) as there is no need to hold agent j’s investment below the efficient level if
agent i is unconstrained. Thus we can conclude that the only case of inefficiency occurs
when both agents are constrained. We thus have the following corollary.

Corollary 1: There exists a random time T, finite with probability one, such that for t ≥ T,
and for any state st ∈ S in which efficiency a∗ is not achievable for any division of the surplus,
then both self-enforcing constraints bind and there is underinvestment by both agents.

The next theorem considers the canonical two-sided action case in which both actions
are always positive. This allows us to present the sharpest results in terms of optimum
action levels relative to unconstrained efficient levels. It shows that for the case where
we are guaranteed to have positive actions each period, there will be two phases, one
(which may not exist) is a backloading phase with zero consumption and overinvestment
by one of the agents (the same agent throughout the phase), and the other phase (which
exists with probability one) will have no overinvestment, but consists of an initial transi-
tion period which is then followed by either efficient actions, if they can be sustained in
equilibrium in that state, or both constraints binding and positive consumption.

Theorem 6: Whenever the Nash actions aNE
i,s are positive, i = 1, 2, then with probability one

an optimum path has two phases, where i = 1 or 2:
Phase 1: ct

i = 0, ai > a∗i and aj ≤ a∗j , for 0 ≤ t < t̃, j 6= i, where ∞ > t̃ ≥ 0;
Phase 2: at

1 ≤ a∗1 and at
2 ≤ a∗2 for t ≥ t̃ and after the first period of phase 2, if a∗ is feasible in st

then at = a∗; otherwise a < a∗, both constraints bind, and c > 0.

The requirement of positive Nash actions is a simple way to ensure that optimum
actions at each date are positive by virtue of Theorem 1. We need to assume this to
prove Theorem 6 for two reasons. Firstly, even if both actions are productive, it may be
that overinvestment does not occur in the backloading phase. This might be the case if
ai = 0 and a∗i = 0 and the marginal product at zero is well below one. In this case the
optimum action may be at the corner solution where the marginal product below one
and the optimum action is zero. Secondly, underinvestment may not occur in the second
phase as it possible that the efficient action levels are zero.

If current surplus is not maximized after the first period of Phase 2, then a 6= a∗

but by Theorem 6 this implies both constraints bind, in which case current surplus is
maximized thereafter. Hence we have the following corollary.

Corollary 2: With probability one, current surplus is not maximized in at most two periods
of Phase 2.17

17In the case of additive production technology this can be strengthened to current surplus being maximized
in all but the first period of Phase 2.
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3.6. Example with No Uncertainty

We consider a simple example to illustrate our results. This will be the simplest pos-
sible example with an additive production technology and no uncertainty. The example is
very similar to the model of joint production presented by Garvey (1995).18 For simplicity
in our example both agents can grab all the other’s output but if they do so they lose their
own output and are unable to produce anything on their own.

We assume the production function function is

y(a1, a2) = f1(a1) + f2(a2) = 2b
√

a1 + 2
√

a2

for a parameter b ∈ (0, 1). The breakdown payoffs are of the form φi(a1, a2) = θi1 f1(a1) +
θi2 f2(a2) where the parameters are θ11 = θ22 = 0 and θ12 = θ21 = 1.

The efficient actions are a∗1 = b2 and a∗2 = 1 with a maximal efficient surplus of
f1(a∗1) + f2(a∗2)− a∗1 − a∗2 = 1 + b2. With θ12 = θ21 = 1, the breakdown payoffs are

φ1(a1, a2) = f2(a2) = 2
√

a2 and φ2(a1, a2) = f1(a1) = 2b
√

a1.

Given the additive technology the Nash best-response functions are dominant strategies
which is simply not to invest, aN

1 = aN
2 = 0.19 Hence the deviation payoffs are20

D1(a2) = (1− δ)2
√

a2 and D2(a1) = (1− δ)2b
√

a1.

We consider the special case of δ = 1/3 and b =
√

3/3.21 The solution can be found by
first finding the efficiency stationary solution and then working backwards in time given
the above results. The stationary solution can be found by solving the two equations

a1 = b2a2 and 2(1− δ)
√

a2 + 2b(1− δ)
√

a1 = 2b
√

a1 − a1 + 2
√

a2 − a2.

18Garvey (1995) has linearly additive outputs and quadratic cost functions but this is equivalent to our for-
mulation with square-root production functions and linear investment costs. His concern is with finding a legal
structure, joint ventures or integration, that is best suited (in terms of a minimum discount factor) to sustaining
the efficient investment levels. He does not therefore examine the temporal structure of investments.

19Strictly Theorem 6 does not apply since the Nash equilibrium actions are zero. However, the importance of
the assumption of positive Nash equilibrium actions was to rule out trivial contracts and non-trivial contracts
are not optimal for the parameter values chosen and hence the substance of the theorems does apply.

20For the purposes of calculating the example all per-period payoffs have been multiplied by (1− δ).
21In this example a non-trivial contract is sustainable for any δ > δ∗ = 0 and an efficient stationary solution is

sustainable if δ ≥ δ∗ = 1/2. The value δ = 1/3 is chosen below this critical value so that the efficient outcome is
not sustainable in the the stationary solution but large enough to generate simple but interesting dynamics for
the optimum contract. The value of b is simply chosen for convenience.
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For the given parameter values of b and δ the solution to this equation is a1 = 4b2δ2 =
4/27 and a2 = 4δ2 = 4/9.The net surplus generated is 2b

√
a1 − a1 + 2

√
a2 − a2 = 32/27

and this surplus is divided so that w1 = 4δ(1− δ) = 8/9 and w2 = 4bδ(1− δ) = 8/27.22

Having calculated the stationary solution, and given that we know the contract will
converge to the stationary solution, it is possible to work backwards and calculate all
other points on the frontier. For example for values of V1 close to the stationary value
the contract will move to the stationary solution next period, but still both self-enforcing
constraints will bind. Since the self-enforcing constraint for agent 1 binds

V1 = 2(1− δ)
√

a2

and a2 is determined once V1 is known. Equally w1 is found from the recursive equation

(1− δ)w1 + δV+
1 = V1

where V+
1 = 4δ(1− δ) is the continuation value for agent 1 and V+

2 = 4b2δ(1− δ) is the
continuation utility for agent 2. As w1, a2 are functions of V1, a1 as a function of V1 can
be found as the solution to

(1− δ)(2b
√

a1 − a1 + 2
√

a2 − a2 − w1) + δV+
2 = 2b(1− δ)

√
a1.

Using this value of a1 the Pareto-frontier can then be computed from the constraint
V2 = 2b(1 − δ)

√
a1. Since we have assumed that both self-enforcing constraints bind,

the endpoints of this part of the Pareto-frontier function are determined either by a non-
negativity condition on the action or at the point where the efficient level of investment
can just be sustained. At the left-hand endpoint for example we either have a1 = b2 or
a2 = 0. At the right-hand end of this interval a1 = 0 and the slope of the frontier is −∞ at
this point. Thus the right-hand end point is the full extent of the domain of the frontier.
However, the frontier is extended to the left and we can now check how the frontier ex-
tends. Proceeding as before but taking a2 = b2 we can again compute the Pareto-frontier.
The left-hand endpoint of this section of the frontier is determined where the zero con-
sumption starts to bind which is at the point given by (1 − δ)(4δ2 − b2) = 2/27. The
slope of the Pareto-frontier at this point is downward sloping (differentiating the Pareto-
frontier) and so the frontier extends further to the left, where the consumption of agent 1
is zero. To calculate this part of the frontier we need to use the information just calculated
to obtain the continuation values. Analytically this is more complex and involves solving
a cubic equation. Nevertheless, it is possible to obtain an analytic solution for that part of
the Pareto-frontier.

22The corresponding values for consumption are c1 = 4δ((1− δ) + δb2)) = 28/27 and c2 = 4δ(δ + b2(1− δ)) =
20/27.
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The solution is illustrated in Figure 1. The upper left part of the diagram draws the
Pareto-frontier. This function is differentiable and the left hand endpoint of the frontier
is determined at the point where this function has a zero slope.23 The upper-right part
of the diagram plots the net surplus showing that net surplus is maximized at the point
on the frontier which maximizes V1 + V2 (Theorem 4) where the slope of the frontier is
−1. The lower-right part of the diagram plots agent 2’s action level against V1 and shows
that she is always underinvesting (the efficient level is a∗2 = 1). The lower left part of the
diagram shows agent 1’s action. There is overinvesment for low values of V1. At this point
in the contract consumption c1 = 0 and the continuation value for V1 will be in the range
(2/27, 4

√
7/9

√
3). Thus next period the action a1 is chosen efficiently, a1 = 1/3. The next

continuation values are the utility maximizing ones at the stationary point. Thus in this
example and for the parameters we’ve used there is a most one period of Phase 1 where
there is overinvestment and after two periods the stationary solution where both agents
are underinvesting is reached.24
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Figure 1: Pareto-Frontier, Net Surplus and Actions

23Numerical calculation gives the left hand value for
¯
V1 = 0.0524532.

24For different parameter values there may be more than one period of Phase 1 in which there is overinvest-
ment.
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4. One-Sided Investment

In this section we discuss the case where only one of the two agents makes an in-
vestment which has been the subject of most of the previous literature (see for example,
Albuquerque and Hopenhayn (2004) and Thomas and Worrall (1994)). We shall show
that in this case there is no overinvestment by the contributing agent.25 We’ll suppose
that this is agent 1 and assume that agent 2 never contributes towards output. We there-
fore write output as y(a1, a2, st) = f (a1, st) and the breakdown payoff for agent 1 as
φ1(a1, st) ≤ f (a1, st). In this case agent 1’s self-enforcing constraint reduces to a more
conventional nonnegative surplus constraint,

V1(st) ≥ D1(st) = φ1(aNE
1 (st), st)− aNE

1 (st) + δ ∑
st+1∈S

πstst+1 D1(st+1).

We show that agent 1 never overinvests in these circumstances. This is perhaps unsur-
prising in view of the idea that backloading of utility will only apply to agent 2, the agent
whose self-enforcing constraint can prevent efficient actions by agent 1. Overinvestment
(and hence c1 = 0) implies a negative current utility for agent 1, and as the future goes
against agent 1, this would lead to a negative overall utility, something which would
violate agent 1’s constraint.

Theorem 7: In the case of one-sided investment where, say, agent 1 is the only contributor
to output, then at any date t and state s, at

1 ≤ a∗1 ; overinvestment never occurs in an efficient
self-enforcing contract.

Example

We now consider a simple version, with no uncertainty, of the model of foreign direct
investment found in Thomas and Worrall (1994).26 In that model agent 1 is a transna-
tional corporation and agent 2 is a host country. Only the transnational corporation has
an action, namely how much to invest in the host country. The host country can though
expropriate any output produced by the transnational corporation within its territory. The
transnational corporation invests a1 the output is given by the production function f (a1).
The net surplus function is f (a1)− a1. The per-period breakdown payoffs are given by
φ1(a1) − a1 = −a1 and φ2(a1) = f (a1) as in the event of breakdown the transnational
corporation loses its investment and the host country expropriates all of output. Clearly
at the action stage, if the transnational corporation is going to default it will choose a1 = 0

25A differences arises in the one-sided and two-sided cases since when only one agent takes any action it is
not always possible to adjust actions to smoothly raise or lower the continuation utilities for both agents as is
the case with the two-sided case.

26In Thomas and Worrall (1994), investment is taken before the state is known. The current paper thus has
more similarities with Albuquerque and Hopenhayn (2004) where investment decisions are taken after the state
is revealed. This makes only minor differences in determining the optimum contract and in the absence of
uncertainty as in the present example makes no difference at all.
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and thus the deviation payoffs are D2(a1) = f (a1) as the host can expropriate all output
but only gets the output for the current period and D1 = 0 as the transnational corpora-
tion simply has the option to withdraw. The non-negativity constraints for consumption
reduce to w1 + a1 = c1 ≥ 0 and w2 = c2 ≥ 0, where the the former constraint can be
written equivalently as w2 = c2 ≤ f (a1) since w1 + w2 = f (a1)− a1.

At a stationary solution w1 and w2 are constant as is a1. So feasibility requires that
w2 ≥ (1− δ) f (a1) and w1 ≥ 0. Since w1 + w2 = f (a1)− a1, this reduces to δ f (a1) ≥ a1 or

(6)
f (a1)

a1
− 1 ≥ 1

δ
− 1 = r

where r is discount rate. Thus the constraint reduces to the condition that the return
on the investment is no less than the discount rate. As the average product f (a1)/a1 is
greater than the marginal product f ′(a1), the left hand side of (6) is decreasing in a1, so
either the efficient level where f ′(a1) = 1 is sustainable or a1 is increased until the the rate
of return is equalized to the discount rate.

Following our previous analysis it is easy to show that if the stationary solution is
not reached the period after next then the host country receives no payment from the
transnational corporation. Thus in the early periods there is effectively a tax holiday with
the transnational corporation taking all profits from the investment. However, investment
is low in the initial periods, f ′(a1) > 1, to prevent the host country from reneging. Letting
V+

2 be the continuation value for the transnational company, it is also easy to check that it
satisfies V+

2 = f (a1)/δ and since V+
2 > V2 investment is less than efficient but increasing

over time. Measuring the slope of the Pareto-frontier as −dV1/dV2, it is also possible to
show that the change in the slope of the frontier is given by ( f ′(a1)− 1)/ f ′(a1). A full
analysis can be found in Thomas and Worrall (1994).

5. Conclusion and Further Work

In this paper we have analyzed the dynamic properties of a relational or self-enforcing
contract between two risk-neutral agents both of whom undertake a costly investment or
action which yields joint benefits. We have shown that there is convergence to a stationary
state at which the net surplus is maximized. Provided the optimum contract is non-
trivial it exhibits a two-phase property. In the first phase (which may or may not occur)
there is backloading of the utility of one of the agents. In this phase that agent has zero
consumption and will overinvest while the other agent will underinvest. In the next
phase (which will occur with probability one) there is no overinvestment and after the
first period of the this phase there will be either efficient investment, if that is sustainable
in that state, or underivestment by both agents and with both agents constrained.
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The analysis presented in the paper is applicable to a wide variety of situations. It
will apply to situations of joint ventures where two partners expend individual effort
or investment to improve profits. It will apply to a labor market situation where both
employer and employee invest in improving the productivity of the job match and it could
apply to situations of international trade where trading partners undertake investments to
reduce the cost or improve the efficiency of trade. It can also apply with some re-working
to a public good model where agents have to decide upon their individual contributions
to a public good that benefits both agents.

The model can be extended in a number of directions. An obvious extension is to
allow for risk aversion. The limited liability assumption introduces some risk aversion
but allowing smoothly concave preferences will be an important extension as it will bring
together the strand of the literature on self-enforcing contracts which concentrates on
risk-sharing with the strand which emphasizes the actions undertaken by agents. It will
also broaden the range of applications to include, for example, household behavior and
investment decisions in village economies. Another extension is to treat the actions as real
investments with capital accumulation such as in a model of sovereign debt.

Appendix

Lemma 1: Given Assumption 1 the conditionally efficient actions are continuous (single-
valued) non-decreasing functions of the other agent’s action. Moreover, these functions cross at
most once on <++.

Proof of Lemma 1: The first part follows from Assumption 1(v). Given comple-
mentarity the conditionally efficient action functions are non-decreasing and the strict
concavity of the production function means that these functions cross just once on <++.

2

Lemma 2: Given Assumption 2, aN
i (aj, st) is weakly increasing in aj. Moreover we have

aN
i (aj, st) ≤ a∗i (aj, st) for each aj and every state st with strict inequality whenever a∗i (aj, st) > 0.

Proof of Lemma 2: We drop the notational dependence on st as it is inessential.
Uniqueness of the best responses follows from Assumption 2 as ∂2φi/∂a2

i < 0. The best-
response aN

i (aj, st) is weakly increasing in aj as we assume in addition that ∂2φi/∂ai∂aj ≥
0. To show that aN

i (aj, st) ≤ a∗i (aj, st) we observe that from the definition of efficiency
∂y(a∗i (aj), aj)/∂ai ≤ 1 with equality if a∗i (aj) > 0. Hence if a∗i (aj) > 0, then either aN

i (aj) =
0 and we’re done or

1 =
∂φi(aN

i (aj), aj)
∂ai

=
∂y(a∗i (aj), aj)

∂ai
>

∂φi(a∗i (aj), aj)
∂ai

where the final inequality follows from the marginal product condition in Assumption 2.
It follows from ∂2φi/∂a2

i < 0 that aN
i (aj) < a∗i (aj). If on the other hand a∗i (aj) = 0 and

aN
i (aj) > 0. Then

1 =
∂φi(aN

i (aj), aj)
∂ai

<
∂y(aN

i (aj), aj)
∂ai
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but

1 ≥
∂y(0, aj)

∂ai
>

∂y(aN
i (aj), aj)
∂ai

where the last inequality follows from Assumption 1(v) that the function y(ai, ·, zcdot) is
strictly concave when increasing. This later condition contradicts the supposed positivity
of aN

i (aj). Hence aN
i (aj) = 0 if a∗i (aj) = 0. 2

Lemma 3: The deviation payoff Di(aj, st) is a continuous, differentiable, non-decreasing and
concave function of aj. Di(aj, st) ≥ 0. If ∂y(a1, a2)/∂aj > 0 then Di(aj, st) is strictly increasing
in aj.

Proof of Lemma 3: That the deviation payoff Di(aj, st) is a continuous, differen-
tiable and non-decreasing function of aj follows from Assumption 2 and Lemma 2. Non-
negativity follows since the agents can guarantee themselves at least zero by choosing the
null action. Using the envelope theorem

∂D1(a2, st)
∂a2

=
∂φ1

(
aN

1 (a2, st), a2), st
)

∂a2

∂D2(a1, st)
∂a1

=
∂φ2

(
a1, aN

2 (a1, st), st
)

∂a1
.

(A.1)

Therefore if ∂y(a1, a2)/∂ai > 0, it follows from Assumption 2, that ∂φj(a1, a2)/∂ai > 0 for
j 6= i and hence ∂Dj(ai, st)/∂ai > 0 from the above equation. 2

Lemma 4: The set of pure-strategy subgame perfect equilibrium payoffs V is non-empty and
compact. Hence optimum contracts exist.

Proof of Lemma 4: Consider the strategy for each agent of always playing the
breakdown Nash equilibrium actions aNE

i (st), and demanding the entire output. By def-
inition these are short-run mutual best responses if the game ends up in breakdown;
this occurs unless output is zero. But in the latter case closedness follows from stan-
dard arguments: Briefly, the action-consumption profiles after any history st must be
bounded in equilibrium. To see this note that assumptions on the action sets and the
production function mean that actions can be restricted to some closed and bounded set
Ã(st) ⊆ <2

+ and hence the per-period utility payoffs also belong to a closed and bounded
subset W̃(st) ≡ {W(a, st) : a ∈ Ã(st)}. Thus we can restrict the action-consumption pairs
to a compact subset, say z(st) ⊂ R4. Hence the product space ∏st z(st) is sequentially
compact in the product topology as it is a countable product of compact spaces. Thus
any limiting sequence of equilibrium payoffs has a convergent sub-sequence of contracts
that converges pointwise to the limiting contract. Now consider the payoffs associated
with this sequence of contracts. By the dominated convergence theorem the limit must sat-
isfy the self-enforcing constraints (3) since payoffs are continuous functions of contracts
in this topology with δ < 1, and the constraints are weak inequalities. Thus the limit is
an equilibrium, and thus the limiting sequence of equilibrium payoffs has a limit point
which corresponds to an equilibrium. It follows the payoff set V is closed and bounded
and hence compact subset of R2. Since the Pareto-frontier Λ(V) is a part of the boundary
of this set, it follows that optimum contracts exist. 2
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Theorem 1: In any optimum self-enforcing contract, after any positive probability history st,
ai ≥ aN

i (aj), and (a1, a2) ≥ aNE where aNE is the dominant Nash equilibrium of the breakdown
game.

Proof of Theorem 1: The proof proceeds in two parts. The first is to show that
one cannot simultaneously have a2 < aN

2 (a1) and a1 > aN
1 (a2) or visa-versa. Thus the ac-

tions must be either above both reaction functions or below both reaction functions. The
next part shows that a < aNE is impossible, ruling out that both are below the reaction
functions since the reaction functions are non-decreasing from Lemma 2.
A. Suppose then that at some date t, a2 < aN

2 (a1) and a1 > aN
1 (a2). Consider a small in-

crease in a2 of ∆a2 > 0. The consequent increase in output is approximately (∂y(a1, a2)/∂a2) ∆a2
(which is positive by the fact that a2 < aN

2 (a1); from Assumptions 1 and 2 (∂y(a1, a2)/∂a2) =
0 would imply φ2(a1, a′2) = 0 for all a′2 ≥ a2 (and so a2 ≥ aN

2 (a1)). Change the contract by
giving agent 1 the increase in her deviation payoff, which is to a first order approximation
D′

1(a2)∆a2 =
(
∂φ1(aN

1 (a2), a2)/∂a2
)

∆a2 (by the envelope theorem). The remainder of the
extra output, approximately(

∂y(a1, a2)
∂a2

−
∂φ1(aN

1 (a2), a2)
∂a2

)
∆a2,

is given to agent 2. Keep the future unchanged. We now show that these changes meet the
constraints and lead to a Pareto-improvement, contrary to the assumed optimality of the
contract. First, agent 1 is no worse off (in fact better off) and by construction her constraint
is satisfied. For agent 2, the change in current utility to a first-order approximation is

(A.2) ∆w2 '
(

∂y(a1, a2)
∂a2

−
∂φ1(aN

1 (a2), a2)
∂a2

− 1

)
∆a2.

Since a2 < aN
2 (a1) and ∂2φ2/∂a2

2 < 0 on
(
a2, aN

2 (a1)
)

(by Assumption 2, given that
φ2(a1, aN

2 (a1)) > 0),

(A.3)
∂φ2(a1, a2)

∂a2
>

∂φ2(a1, aN
2 (a1))

∂a2
= 1

(where the last equality follows by virtue of aN
2 (a1) > 0 so there is an interior solution).

Since a1 > aN
1 (a2), and ∂2φ1/∂a1∂a2 ≥ 0, we have

(A.4)
∂φ1(aN

1 (a2), a2)
∂a2

≤ ∂φ1(a1, a2)
∂a2

.

Together (A.3), (A.4) and (2) imply the term in brackets in the right hand side of (A.2)
is positive, and thus for ∆a2 small enough, ∆w2 > 0. A symmetric argument applies if
a1 < aN

1 (a2) and a2 > aN
2 (a1).

B. Suppose that (a1, a2) ≤ (aNE
1 , aNE

2 ) with strict inequality for at least one agent, say 2,
and consider replacing the actions with the Nash equilibrium actions aNE

i so that output
rises from y(a1, a2) to y(aNE

1 , aNE
2 ). We give φ1(aNE

1 , aNE
2 ) − φ1(a1, a2) of this increase to
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agent 1 and the rest, to agent 2. Hence

(A.5) ∆w1 = φ1(aNE
1 , aNE

2 )− φ1(a1, a2)− (aNE
1 − a1)

and

∆w2 = y(aNE)− y(a)−
(

φ1(aNE)− φ1(a)
)
− (aNE

2 − a2)

≥ φ2(aNE)− φ2(a)− (aNE
2 − a2),

where the inequality follows from integrating equation (2). By definition of (aNE
1 , aNE

2 ),

Di(aNE
j ) = φi(aNE

1 , aNE
2 )− aNE

i + δ ∑
r∈S

πsrDi(aNE
j,r , r).

Hence for agent 1

D1(aNE
2 )− D1(a2) = φ1(aNE

1 , aNE
2 )− φ1(aN

1 (a2), a2))− (aNE
1 − aN

1 (a2))

with a similar expression for agent 2. Agent 1’s constraint is not violated as

∆w1 −
(

D1(aNE
2 )− D1(a2)

)
= φ1(aN

1 (a2), a2))− φ1(a1, a2)− (aN
1 (a2)− a1) ≥ 0,

where the inequality follows from the definition of aN
1 (a2):

(A.6) φ1(aN
1 (a2), a2)− aN

1 (a2) ≥ φ1(a1, a2)− a1,

all a1 ≥ 0. Likewise for agent 2. It remains to show that ∆w1, ∆w2 ≥ 0, with at least one
strict inequality. We have that

φ1(aNE
1 , aNE

2 )− aNE
1 ≥ φ1(aN

1 (a2), aNE
2 )− aN

1 (a2)(A.7)

≥ φ1(aN
1 (a2), a2)− aN

1 (a2)(A.8)

where the first inequality follows since by definition aNE
1 maximizes φ1(a1, aNE

2 )− a1, and
the second from the fact that φ1 is nondecreasing in a2. If aNE

1 > aN
1 (a2), then (A.7) is strict

(by the uniqueness of the best response). On the other hand consider aNE
1 = aN

1 (a2). We
have y(aNE) > y

(
aNE

1 , a2
)
, as if y(aNE) = y

(
aNE

1 , a2
)

then from equation (2), φ2(aNE) =
φ2
(
aNE

1 , a2
)

so aNE
2 > a2 could not be a best response to aNE

1 (a2 is cheaper and generates
the same breakdown payoff). Then from Assumption 2, φ1(aNE) > φ1

(
aNE

1 , a2
)
, and so

(A.8) is strict. Hence

(A.9) φ1(aNE
1 , aNE

2 )− aNE
1 > φ1(aN

1 (a2), a2)− aN
1 (a2).

Hence substituting (A.9) and (A.6) into (A.5), the increase in utility for agent 1 is ∆w1 > 0.
By symmetry similar conditions to (A.7) and (A.8) hold for agent 2 and hence ∆w1 ≥ 0.

2

Theorem 2: In an optimum contract after some positive probability history (i) If agent i is
unconstrained, i.e. Vi > Di(aj), then aj ≥ a∗j (ai); (ii) If agent i has positive consumption ci > 0,
then ai ≤ a∗i (aj).
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Proof of Theorem 2: (i) If aj < a∗j (ai) then raising aj by ∆aj sufficiently small
will not violate the self-enforcing constraint as Di(·) is continuous, and will produce
more output. Giving this extra output to agent j, the change in his utility is ∆wj '((

∂y(a1, a2)/∂aj
)
− 1
)

∆aj. Since aj < a∗j (ai),
(
∂y(a1, a2)/∂aj

)
> 1 and hence utility is

improved without violating any constraint. This contradicts the assumed optimality of
the initial contract.
(ii) Suppose say a1 > a∗1(a2) and c1 > 0. Consider cutting a1 and c1 by the same amount,
that is ∆c1 = ∆a1 < 0. The ∆w1 = ∆c1 − ∆a1 = 0. Transfer this cut in consumption to
agent 2 and reduce his consumption by the reduction in output. That is ∆c2 = −∆c1 +
(∂y(a1, a2)/∂a1) ∆a1 = − (1− (∂y(a1, a2)/∂a1)) ∆a1. As ∂y(a1, a2)/∂a1 < 1, the change in
agent 2’s utility is ∆w2 = ∆c2 > 0 showing that a Pareto-improvement can be found. 2

Lemma 5: If c2 = y(a1, a2), aN
2 (a1) ≤ a2 ≤ a∗2(a1) and V2,r ≥ D2(aNE

1,r , r), all r ∈ S , then

(A.10) c2 − a2 + δ ∑
r∈S

πsrV2,r ≥ D2(a1);

moreover the inequality is strict if a2 > 0 and y(a1, a2) > 0. Likewise with the agent indices
swapped.

Proof of Lemma 5: As a∗2(a1) = arg maxa′2
{y(a1, a′2)− a′2} and ∂2y(a1, a2)/(∂a2)2 ≤

0, we have that y(a1, a′2)− a′2 is weakly increasing in a′2 for aN
2 (a1) ≤ a′2 ≤ a∗2(a1). In par-

ticular, since aN
2 (a1) ≤ a2 ≤ a∗2 (a1),

(A.11) y(a1, a2)− a2 ≥ y(a1, aN
2 (a1))− aN

2 (a1).

Since in breakdown agent 2 may not receive all output,

D2(a1) ≡ φ2(a1, aN
2 (a1))− aN

2 (a1)+δ ∑
r

πsrD2(aNE
1,r , r)

≤ y(a1, aN
2 (a1))− aN

2 (a1)+δ ∑
r

πsrD2(aNE
1,r , r)(A.12)

≤ y(a1, a2)− a2 + δ ∑
r

πsrD2(aNE
1,r , r),

where the second inequality follows from (A.11), and since V2,r ≥ D2(aNE
1,r , r), all r ∈ S ,

this implies (A.10) is satisfied. Next suppose a2 > 0 and y(a1, a2) > 0. If aN
2 (a1) = 0,

then it follows from a∗2 (a1) ≥ a2 > 0 that a∗2 (a1) > aN
2 (a1) and hence from Assumption 1

∂y(a1, a2)/∂a2 > 0 and thus ∂2y(a1, a2)/(∂a2)2 < 0 on (0, a∗2 (a1)). Thus (A.11) holds
strictly. If aN

2 (a1) > 0 then y(a1, aN
2 (a1)) > 0 and (A.12) is strict by Assumption 2 which

implies that φ2(a1, aN
2 (a1)) < y(a1, aN

2 (a1)); so in either case (A.10) holds strictly. 2

Theorem 3: (i) If at t̃ in an optimum contract (after positive probability history st̃), agent 1,
say, is unconstrained and at̃

1 < a∗1(at̃
2), then at all previous dates t < t̃ on the same path,

ct
2 = 0; (ii) If at t̃ in an optimum contract (after positive probability history st̃), say agent 2 has

at̃
2 > a∗2(at̃

1), then at all previous dates t < t̃ on the same path, ct
2 = 0.

Proof of Theorem 3: (i) Assume by contradiction that agent 1 is unconstrained
and at̃

1 < a∗1(at̃
2), but that ct

2 > 0 after st for some t < t̃ (where st is composed of the first t
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components of st̃). Assume w.l.o.g. that ct′
2 = 0 for t < t′ < t̃ (i.e., choose t so that this is

satisfied on st̃). We shall change the contract at dates t and t̃ (only), and demonstrate an
improvement. Consider a small increase in at̃

1, ∆at̃
1 > 0, and let ∆̃ (w D′

2(at̃
1)∆at̃

1) be the
resulting increase in agent 2’s deviation payoff. There are two cases to consider depend-
ing on whether ct̃

1 > 0 or ct̃
1 = 0.

Case (a): ct̃
1 > 0. To preserve agent 2’s self-enforcing constraint, transfer ∆̃ from agent 1 at

date t̃, so that ∆ct̃
2 = ∆̃, but allocate the extra output to agent 1, ∆ct̃

1 ' (∂y(at̃
1, at̃

2)/∂a1)∆at̃
1−

∆̃. Agent 1’s self-enforcing constraint holds as it was slack initially. Thus both self-
enforcing constraints hold at t̃. Since ct

2 > 0, the increase in 1’s effort can be compensated
at t, and the increase in surplus must imply a Pareto-improvement at t. Specifically: cut
agent 2’s consumption at date t so that ∆ct

2 = −δt̃−tπ̃∆̃ < 0 where π̃ > 0 is the probability
of reaching st̃ from st. This consumption is given to agent 1 so ∆ct

1 = −∆ct
2 > 0. Thus the

change in discounted utility for the two agents at date t is

∆V1(st) = δt̃−tπ̃∆̃ + δt̃−tπ̃(∆ct̃
1 − ∆at̃

1)

' δt̃−tπ̃∆̃ + δt̃−tπ̃

((
∂y(at̃

1, at̃
2)

∂a1
− 1

)
∆at̃

1 − ∆̃

)

which is positive since ∂y(at̃
1, at̃

2)/∂a1 > 1 (at̃
1 is under-efficient by assumption); ∆V2(st) =

−δt̃−tπ̃∆̃ + δt̃−tπ̃∆̃ = 0. Thus the period t constraints hold as actions are unchanged,
and there is a Pareto-improvement. It remains to check the constraints at periods t′ for
t < t′ < t̃: agent 2’s future utility (at t̃) has increased so his constraints still hold. However
agent 1’s utility at t̃ may have fallen, decreasing her payoff at t′. Nevertheless, agent 1
gets all consumption so ct′

1 > 0 and hence by Theorem 2(ii) at′
1 ≤ a∗1(at′

2 ), unless y(at′) = 0,
in which case at′

1 = 0, so again at′
1 ≤ a∗1(at′

2 ). Also by Theorem 1 at′
1 ≥ aN

1 (at′
2 ). Likewise

by Theorem 1 at̃
2 ≥ aNE

2 , and we have shown that agent 1’s constraint holds at t̃, so
Ṽ1(st̃) ≥ D1(at̃

2) ≥ D1(aNE
2 ) as D1(·) nondecreasing, where Ṽ1(st̃) ≡ V1(st̃) − ∆ct̃

2 is
agent 1’s new utility. In the other (unreached) states at t̃, the corresponding inequality
holds by equilibrium, so continuation utilities after t′ = t̃ − 1 satisfy V1,r ≥ D1(aNE

2,r , r),
for all r ∈ S . Lemma 5 can thus be applied to ensure her constraints hold at t̃ − 1.
Working backwards, the same holds for all t′ > t. As all the constraints are met a Pareto-
improvement has been found.
Case (b): ct̃

1 = 0. Continue to allocate all output to agent 2 as a1 is increased. We can
apply Lemma 5 at t̃: From ct̃

1 = 0 we have ct̃
2 > 0 and hence at̃

2 ≤ a∗2(at̃
1), unless y(at̃) = 0,

in which case at̃
2 = 0, so then again at̃

2 ≤ a∗2(at̃
1). Since a∗2(·) is weakly increasing, and a2

is held constant at at̃
2, at̃

2 ≤ a∗2(at̃
1 + ∆at̃

1). However, it is possible that at̃
2 < aN

2 (at̃
1 + ∆at̃

1),
but in this case also increase at̃

2 to aN
2 (at̃

1 + ∆at̃
1) and allocate all additional output to

agent 2. Thus aN
2 (at̃

1 + ∆at̃
1) ≤ a2 ≤ aN

2 (at̃
1 + ∆at̃

1). Likewise at t̃ + 1, V1,r ≥ D1(aNE
2,r , r),

for all r ∈ S , by the original equilibrium being optimum (as argued in (a)). Thus from
Lemma 5 agent 2’s constraint holds at t̃. Agent 1’s self-enforcing constraint holds as it
was slack initially. Since net surplus has risen by the increase in action(s), agent 1 is more
than compensated at t, while keeping agent 2 no worse off (and the constraints at t′ for
t < t′ < t̃ continue to hold), following the logic of case (a).
(ii) We now prove the second part of the theorem. Assume by contradiction that at̃

2 >
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a∗2(at̃
1) but that ct

2 > 0 after st for some t < t̃. Assume w.l.o.g. that ct′
2 = 0 for t < t′ < t̃

(we can choose t so that this is satisfied on st̃). We shall change the contract at dates t
and t̃ (only), and demonstrate a Pareto-improvement. By Theorem 2(ii) as at̃

2 > a∗2(at̃
1) we

must have ct̃
2 = 0 and so ct̃

1 = y(at̃
1, at̃

2). Now consider a small change in at̃
2 of ∆at̃

2 < 0,
but continue allocating all output to agent 1. If at̃

1 > 0 then since ct̃
1 = y(at̃

1, at̃
2) > 0

and thus at̃
1 ≤ a∗1(at̃

2) by Theorem 2(ii), agent 1 is unconstrained by Lemma 5 and a
small cut in the consumption of agent 1 will not violate his constraint. If on the other
hand at̃

1 = 0, then after the change we have at̃
1 ≤ a∗1(at̃

2 + ∆at̃
2), while aN

1 (at̃
2 + ∆at̃

2) ≤
aN

1 (at̃
2) ≤ at̃

1(= 0) as aN
1 (·) non-increasing. So Lemma 5 applies and again agent 1’s

constraint must hold. For agent 2 since at̃
1 is unchanged and wt̃

2 is increased (the cut in
effort implies ∆wt̃

2 = −∆at̃
2 > 0), his self-enforcing constraint is satisfied at t̃. Thus both

self-enforcing constraints hold at t̃. Agent 1 is getting all consumption and so satisfies the
self-enforcing constraint at all intervening dates t′, t < t′ < t̃, repeating the argument of
the first part of the proof, while agent 2 is better off due to the improvement at t̃, so his
constraints are not violated. The increase in surplus at t̃ allows for a Pareto-improvement
at t: To compensate agent 1 at date t for any decreased consumption at date t̃, ∆ct̃

1 < 0, let
∆ct

1 = −δ(t̃−t)π̃∆ct̃
2 > 0, where we denote by π̃ > 0 the probability of reaching st̃ at date t̃

starting from t on the same path. We take this increase from agent 2, so ∆ct
2 = δ(t̃−t)π̃∆ct̃

1

and since ∆ct̃
1 '

(
∂y(at̃

1, at̃
2)/∂a2

)
∆at̃

2 we have that the change in discounted utility for
agent 2 is

∆V2(st) ' δ(t̃−t)π̃
((

∂y(at̃
1, at̃

2)/∂a2

)
− 1
)

∆at̃
2 > 0

since ∂y(at̃
1, at̃

2)/∂a2 < 1 (as at̃
2 > a∗2(at̃

1)) and ∆at̃
2 < 0. This Pareto-improvement at date t

implies that both self-enforcing constraints hold at t, and moreover the original contract
was not optimum. 2

Lemma 6: If the action vector ã is myopic efficient for some (V1,r, V2,r)r∈S with Vi,r ≥
Di(aNE

j,r , r) all r ∈ S , i, j = 1, 2, j 6= i, then

(A.13) y(ã1, ã2, s)− ãi + δ ∑
r∈S

πsrDi(aNE
j,r , r) ≥ Di(ãj, s),

for i, j = 1, 2, j 6= i; i.e., giving all output to agent i implies that the current self-enforcing
constraint continues to hold for i even if the continuation utilities are replaced with the deviation
payoffs.

Proof of Lemma 6: By adapting the proof of Theorem 1 it is easy to check
that ãi ≥ aN

i (ãj) for i, j = 1, 2, j 6= i. Next, suppose ãi > a∗i (ãj). We shall establish a
contradiction. If ci > 0 then lowering both ai and ci by an equal small amount is feasible
and raises the net surplus (give this extra to agent j 6= i), contrary to assumption. Thus
ãi > a∗i (ãj) and ci > 0 is impossible. If ci = 0 and hence cj = y(ã1, ã2) then lowering ai will
lower the consumption of agent j and hence might violate j’s self-enforcing constraint. But
ãi > a∗i (ãj) implies y(ã1, ã2) > 0 so cj > 0 and thus ãj ≤ a∗j (ãi) by the above argument.
Suppose that ai is reduced to a∗i (ãj) with agent j still receiving all the output. Clearly
surplus has increased, and i’s utility has risen while Di(ãj) is unchanged, so i’s self-
enforcing constraint is still satisfied.
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(i) If ãj ≤ a∗j (a∗i (ãj)) then leave aj unchanged at ãj. Thus, as aN
j can only fall with the cut in

ai, aN
j (a∗i (ãj)) ≤ ãj ≤ a∗j (a∗i (ãj)). All the conditions of Lemma 5 are satisfied at (a∗i (ãj), ãj),

so the current self-enforcing constraint for j holds:

y(a∗i (ãj), ãj)− ãj + δ ∑
r∈S

πsrVj,r ≥ Dj
(
a∗i (ãj)

)
.

(ii) As ai is reduced a∗j (ai) may have fallen below ãj however. If this is the case, cut
aj to a∗j (a∗i (ãj)). Repeating the argument just given, j’s constraint will be satisfied at
(a∗i (ãj), a∗j (a∗i (ãj))), while the cut in aj cannot lead to a violation in i’s constraint. So again
the changed contract satisfies the self-enforcing constraints.
In both cases (i) and (ii) the reduction in overinvestment leads to an increase in current
surplus, contrary to the assumption that ã was myopic efficient. We conclude that ãi >
a∗i (ãj) is impossible. Thus a∗i (ãj) ≥ ãi ≥ aN

i (ãj). Thus Lemma 5 can again be appealed to,
at ã with continuation utilities set equal to Di(aNE

j,r , r), establishing (A.13). 2

Lemma 7: Take any myopic efficient action a for some (V1,r, V2,r)r∈S ; then given any alter-
native continuation utilities

(
V̂1,r, V̂2,r

)
r∈S satisfying, for all r ∈ S , V̂1,r + V̂2,r ≥ V1,r + V2,r,

V̂i,r ≥ Di(aNE
j,r , r), there is a division of y(a1, a2) such that the self-enforcing constraints are

satisfied with the same action a.

Proof of Lemma 7: We need to show that both self-enforcing constraints can still
hold with some output division (ĉ1, ĉ2), where ĉ1 + ĉ2 = y(a1, a2), i.e.,

(A.14) ĉi − ai + δ ∑
r

πsrV̂i,r ≥ Di(aj)

for i, j = 1, 2, j 6= i. By assumption they hold in the equilibrium supporting a:

(A.15) ci − ai + δ ∑
r

πsrVi,r ≥ Di(aj)

for i, j = 1, 2; j 6= i. Let i = 1. If (A.14) holds at ĉ1 = 0, then setting ĉ2 = y(a1, a2)
guarantees that (A.14) holds also for agent 2 by Lemma 6 (because V̂i,r ≥ Di(aNE

j,r , r)).
Otherwise choose ĉ1 such that (A.14) holds with equality for i = 1; by continuity this is
possible as (A.14) holds at ĉ1 = y(a1, a2) using Lemma 6 again. Suppose that (A.14) is
violated for i = 2. Summing the left hand side of (A.14) over i thus implies

(A.16) y(a1, a2)−∑
i

ai + δ ∑
r

πsr ∑
i

V̂i,r < ∑
i

Di(aj).

But summing (A.15) over i implies that

y(a1, a2)−∑
i

ai + δ ∑
r

πsr ∑
i

Vi,r ≥ ∑
i

Di(aj),

and since the left hand side is smaller than the left hand side of (A.16) by V̂1,r + V̂2,r ≥
V1,r + V2,r, there is a contradiction. Hence we conclude that there is a division of y(a1, a2)
such that (A.14) holds for both agents. 2
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Theorem 4: Any joint utility maximizing self-enforcing contract starting at date t from st,
Γ(st), has with probability one current joint surplus maximizing actions at each date τ ≥ t.

Proof of Theorem 4: Consider the following putative equilibrium. At t, in state
st, set a to a current joint surplus maximizing action compatible with equilibrium in this
state. As the set of possible actions can be restricted to a compact set Ã(st) the maximizing
actions exist. Let (V1,r, V2,r)r∈S be the corresponding continuation utilities from t + 1. At
time t + 1, in any state r and regardless of previous history, follow the (or an) equilibrium
that maximizes the joint utility from that point onwards, yielding utilities we denote by(
V̂1,r, V̂2,r

)
r∈S . Clearly a is myopic efficient relative to (V1,r, V2,r)r∈S , so by Lemma 7 there

is a split of y(a1, a2) which sustains this as an equilibrium from t on when (V1,r, V2,r)r∈S
is replaced by

(
V̂1,r, V̂2,r

)
r∈S since the latter have a maximal sum in each state. Note that

this must provide maximal joint utility since the current joint surplus is maximized at t,
and joint utilities are maximal from t + 1. Consequently starting from any state st, a joint
utility maximizing equilibrium must involve a current joint surplus maximizing action
compatible with equilibrium in state st, for if it did not, replacing it by the equilibrium
just constructed would lead to a higher utility sum. At t + 1, since the utility sum is
maximal in each state r, repeating the above argument again confirms that current joint
surplus is maximal for state r. So a joint utility maximizing equilibrium must involve a
current joint surplus maximizing action compatible with equilibrium in every state and
date. 2

Lemma 8: If in an optimum contract st has positive probability, both self-enforcing con-
straints bind at t, and at

i ≤ a∗i (at
j), i, j = 1, 2, i 6= j, then the contract must specify joint utility

maximization from t + 1 (i.e., in every positive probability successor state).

Proof of Lemma 8: By assumption that both constraints bind we have

ci − ai + δ ∑
r

πsrVi,r = Di(aj)

for i, j = 1, 2, i 6= 2. Suppose, to the contrary of the claim, that the pair
(
V1,r′ , V2,r′

)
does

not maximize joint utility in at least one successor state r′. We can change the contract as
follows. Replace (V1,r′ , V2,r′) by

(
V̂1,r′ , V̂2,r′

)
∈ Vr′ such that V̂1,r′ + V̂2,r′ > V1,r′ + V2,r′ (and

recall that we must have V̂i,r′ ≥ Di(aNE
j,r′ , r′), i, j = 1, 2, j 6= i), and choose a division ĉ of the

current output y(a1, a2) (i.e., holding a constant) such that

(A.17) ĉi − ai + δ ∑
r 6=r′

πsrVi,r + δπsr′ V̂i,r′ ≥ Di(aj)

for i, j = 1, 2, j 6= i, with a strict inequality for at least one i. This is possible by the fact
that if ĉi = y(a1, a2) then, as ai ≥ aN

i
(
ãj
)

by Theorem 1, ai ≤ a∗i (aj) by hypothesis, and
Vi,r ≥ Di(aNE

j,r , r), r 6= r′, V̂i,r′ ≥ Di(aNE
j,r′ , r′), the self-enforcing constraint for agent i must

be satisfied (Lemma 5). The argument then follows the proof of Lemma 7; however the
increase in aggregate utility implies the constraint (A.17) is strict for one agent. This is a
Pareto-improvement, so the original contract could not have been optimal. 2

Theorem 5: For any optimum contract, there exists a random time T which is finite with
probability one such that for t ≥ T, at is current joint surplus maximizing.
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Proof of Theorem 5: First suppose that Λ(V) 6= (0, 0); otherwise the proposition
is trivial.
(i) Suppose first there exists (V1, V2) ∈ V with V1, V2 > 0. Thus in any optimum, with
payoffs (Ṽ1, Ṽ2), either Ṽ1 ≥ V1, or Ṽ2 ≥ V2. We deal first with the former case. In this
equilibrium, choosing t′ > 0 so that δt′ w̄/ (1− δ) < V1/2, where w̄ is an upper bound on
equilibrium per-period payoffs (this follows from Assumption 1(vi) on the boundedness
of y(·)) must be that ct

1 ≥ µ1 ≡ V1/2t′ for some history st which occurs with positive
probability with t < t′, otherwise V1 cannot be accumulated. However, ct

1 ≥ µ1 implies
that y(at

1, at
2, st) ≥ µ1. For convenience, let st = r. If lima1→∞ y(a1, 0, r) < µ1 then define

¯
a2 > 0 to be such that lima1→∞ y(a1,

¯
a2, r) = µ1 (this exists by y nondecreasing and by

continuity); clearly at
2 ≥

¯
a2, and agent 2’s discounted consumption at st must at least

equal
¯
a2 in order for continuation utility to be nonnegative. If lima1→∞ y(a1, 0, r) < µ1

define ã1 so that y(ã1, 0, r) = µ1. By Assumption 2, φ2(ã1, 0, r) > 0. Consequently
D2(ã1, r) ≥ φ2(ã1, 0, r) > 0. By continuity there exists (

¯
a1,

¯
a2) such that y(

¯
a1,

¯
a2, r) = µ1,

with D2 (
¯
a1, r) ≥ D2 (ã1, r) /2 and

¯
a2 > 0 (note that

¯
a1 = ã1 and

¯
a2 is arbitrary if a2 does not

contribute to output). For the case where lima1→∞ y(a1, 0, r) = µ1 a slight modification
of this argument yields the same conclusion. Thus we conclude that y(at

1, at
2, st) ≥ µ1

implies either at
1 ≥

¯
a1 > 0 or at

2 ≥
¯
a2 > 0. In the former case (at

1 ≥
¯
a1), since

D2 (a1, r) ≥ D2 (
¯
a1, r) > 0, positive consumption now or in the future must generate a

positive current utility to maintain agent 2’s self-enforcing constraint. In the latter case
(at

2 ≥ ¯
a2), since D2 (a1, r) ≥ 0, the negative utility from a2 > 0 must be compensated by

positive consumption now or in the future. Thus taking these two cases together, agent 2’s
discounted expected consumption at st must at least equal min {D2 (

¯
a1, r) /2,

¯
a2} > 0,

which depends only on V1 (fixed in the proof). So, in the same way we showed that
ct

1 ≥ µ1 for some t < t′, we can show there exists t′′ ≥ t′ such that ct
2 ≥ µ2 for some t < t′′

with positive probability. Next, if Ṽ2 ≥ V2, we can repeat the argument in a symmetric
fashion. Although µ1 and µ2 depend on state r, we can take their minima over all r ∈ S ,
and over the two cases Ṽ1 ≥ V1 and Ṽ2 ≥ V2, and we denote these minima by

¯
µ1 and

¯
µ2

henceforth. Putting this together, for both agents, ct
i ≥ min

{
¯
µ1,

¯
µ2

}
> 0, for some t < t′′

(not necessarily at the same date t for each agent) with positive probability at least equal
to the minimum probability (this is positive by S finite)

¯
π, say, of any t′′-period positive

probability history emanating from s0 (where min
{

¯
µ1,

¯
µ2

}
, t′′, and

¯
π are all independent

of the particular equilibrium).
(ii) If no (V1, V2) ∈ Λ(Vs) exists with V1, V2 > 0, then there exists either a unique optimum
(V1 > 0, V2 = 0), or a unique optimum (V1 = 0, V2 > 0), or both points exist as optima. In
either case the argument above can be repeated mutatis mutandis.
Let t̂ (random) denote the earliest date such that both consumptions have been positive,
i.e., the first period for which ct̃

1 > 0 and ct′
2 > 0 for t̃, t′ ≤ t̂. We first show that t̂ is

finite almost surely. Note that by optimality, whenever s0 occurs on a positive probability
history, utilities must belong to Λ. From the above argument and given that all states
communicate then after any positive probability st, as s0 can be reached with positive
probability in at most n − 1 periods, there is a probability of at least π̂,

¯
π ≥ π̂ > 0, such

that c1 > 0 and c2 > 0 within the next t′′ + n− 1 periods. Consequently Prob[ct
1 = 0, ∀ t

or ct
1 = 0 ∀ t] = 0. We conclude that such t̂ exists for almost all sample paths.

After t̂, both c1 and c2 have been positive at some point in the past. From Theorem 3(ii)
we know that for t > t̂, at

i ≤ a∗i (at
j). And if i is unconstrained at t, from Theorem 3(i),
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at
i ≥ a∗i (at

j), j 6= i, while from Theorem 2(i), at
j ≥ a∗j (at

i), hence at = a∗. So inefficiency can
only occur if both agents are constrained. But from Lemma 8 net output is maximized
thereafter. We conclude then on any path after t̂ either actions are always efficient, or
there is at most one date at which actions are not efficient, but this is then followed by the
myopic efficient net output maximizing actions thereafter. 2

Theorem 6: Whenever the Nash actions aNE
i,s are positive, i = 1, 2, then with probability one

an optimum path has two phases, where i = 1 or 2:
Phase 1: ct

i = 0, ai > a∗i and aj ≤ a∗j , for 0 ≤ t < t̃, j 6= i, where ∞ > t̃ ≥ 0;
Phase 2: at

1 ≤ a∗1 and at
2 ≤ a∗2 for t ≥ t̃ and after the first period of phase 2, if a∗ is feasible in st

then at = a∗; otherwise a < a∗, both constraints bind, and c > 0.

Proof of Theorem 6: A. We show first that if at t ≥ 0, ct
1 = 0, we have at

1 ≥ a∗1 and
at

2 ≤ a∗2 . Moreover, if t ≥ 1 and either inequality is strict, then if ct−1
1 = 0, at−1

1 > a∗1 . (And
likewise if the indices are swapped.) To see the first part of the claim (suppressing the t
superscripts), note that by ai ≥ aNE

i,s > 0, i = 1, 2, y > 0 and so c2 > 0; thus a2 ≤ a∗2 from
Theorem 2(ii). Moreover, by Lemma 5, agent 2 is unconstrained (as a2 > 0); hence a1 ≥ a∗1 .
For the second part of the claim, we shall consider increasing agent 1’s utility at t a small
amount by decreasing a1 and at the same time increasing a2 so that agent 1’s constraint is
unaffected (so if it initially binds, it remains satisfied but binding), while holding c1 = 0,
and the future contract fixed. Let Vt

i denote current (to t) discounted equilibrium utility
and Vt+1

i,r the same at t + 1 in state r. Then consider the equations

V1 + a1 = δ ∑
r∈S

πstrVt+1
1,r ,

V2 − y(a1, a2) + a2 = δ ∑
r∈S

πstrVt+1
2,r ,

V1 − D1(a2) = Vt
1 − D1

(
at

2
)

.

(A.18)

These are satisfied at
(
Vt

1 , Vt
2 , at

1, at
2
)

(noting that the equality c2 = y(a1, a2) has been
used to substitute out for c2 in the second line). As the functions y(a1, a2), D1(a2) and
D2(a1) are continuous and differentiable, and ∂D1(at

2)/∂a2 6= 0 (as ∂D1(at
2)/∂a2 > 0 from

Lemma 3), observing that 0 < at
2 ≤ a∗2 implies ∂y(at

1at
2)/∂a2 > 0), the implicit function

theorem asserts the existence of continuously differentiable functions a1(V1), a2(V1) and
Ṽ2(V1) in an open interval around Vt

1 such that a1(Vt
1) = at

1 etc. which satisfy (A.18), and
such that

(A.19) Ṽ′
2(Vt

1) = −
∂y(at

1, at
2)

∂a1
−

(
1− ∂y(at

1,at
2)

∂a2

)
∂D1(at

2)
∂a2

.

Agent 2 is unconstrained so remains unconstrained for small changes in V1 away from Vo
1 ,

the value at the optimum, while the third line of (A.18) ensures that agent 1’s constraint
holds, so the contracts defined as V1 is varied are self-enforcing. Now suppose that either
inequality is strict, i.e., at

1 > a∗1 or at
2 < a∗2 . Then Ṽ′

2(Vt
1) > −1. At t − 1, suppose that

at−1
1 ≤ a∗1 . A small increase in at−1

1 of ∆ > 0 holding ct−1
1 = 0, leads to an increase in

agent 2’s payoff of at least, to a first-order approximation, ∆ (since ∂y/∂a1 ≥ 1) while
agent 1 can be compensated at t by a value of V1 satisfying (Vo

1 −V1)/δπst−1st = ∆, so that
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agent 2’s utility changes by approximately ∆ + δπst−1st

(
Ṽ′

2(V1)(Vo
1 −V1)/δπst−1st

)
> 0.

Agent 1’s constraint at t − 1 holds as her deviation payoff is unchanged (at−1
2 is un-

changed), and agent 1’s constraint must hold by Lemma 5 (recall ct−1
1 = 0 by hypothesis).

By construction of Ṽ2(V1) the constraints hold from t. Thus a Pareto-improvement has
been found for ∆ small enough, contrary to the assumed optimality. Hence at−1

1 > a∗1 .

B. Suppose on a path that at′
1 > a∗1 for some t′ ≥ 0. Then we have ct

1 = 0 for all
t ≤ t′ (by Theorem 2(ii) and Theorem 3(ii)). However, at′

1 > a∗1 then implies by repeated
application of part A that at

1 > a∗1 for all t < t′. Moreover as ct
2 > 0 for all t ≤ t′, at

2 ≤ a∗2
for all t ≤ t′. Hence Phase 1 conditions are satisfied for all t ≤ t′ and for i = 1. By the
same logic, if at any point t′ Phase 2 conditions hold (i.e., at′ ≤ a∗), they must hold at all
subsequent dates, since a violation (i.e., at

i > a∗i for t > t′ and some i) would imply that
at′

i > a∗i also. Thus any positive probability st′ must satisfy the two-phase property up to
t′. The fact that t̃ in the statement of the theorem is a.s. finite follows from the argument
in the proof of convergence that the date at which both consumptions have been positive
is itself a.s. finite (as both consumptions positive implies at ≤ a∗ by Theorem 3(ii)).

C. Suppose that at t̃ + 1 in some state r with πst̃r > 0 at least one constraint does not
bind. Suppose w.l.o.g. that agent 2 is unconstrained and we can repeat the argument of
Part A, with c1 again being held constant, but now at a possibly positive level. Again we
have a locally differentiable relationship between utilities arising from self-enforcing con-
tracts at t̃ + 1, with slope Ṽ′

2(V t̃+1
1 ) given by (A.19). As agent 2 is unconstrained at̃+1

1 ≥ a∗1 ,
and by Phase 2, at̃+1

1 ≤ a∗1 , so at̃+1
1 = a∗1 . Consequently if at̃+1

2 < a∗2 , then Ṽ′
2(V t̃+1

1 ) > −1,
and repeating the argument at the end of Part A, at̃

1 > a∗1 , which contradicts the definition
of t̃. Thus it must be that at̃+1 = a∗. Thus if at̃+1 6= a∗, both agents are constrained, and
it cannot be that ct̃+1

i = 0 for either i = 1 or 2 as that would imply agent j 6= i is uncon-
strained by Lemma 5 (as at̃+1

j > 0). Hence the only alternative is that both are constrained,

and ct̃+1 > 0.

D. Moreover if this latter is the case, it cannot be that at̃+1
i = a∗i for either i = 1 or 2.

Suppose to the contrary and that w.l.o.g. at̃+1
1 = a∗1 . Then consider the equations

V1 − c1 + a1 = δ ∑
r∈S

πsrV t̃+2
1,r ,

V2 − y(a1, a2) + c1 + a2 = δ ∑
r∈S

πsrV t̃+2
2,r ,

V1 − D1(a2) = 0,

V2 − D2(a1) = 0,

(A.20)

where V t̃+2
i,r is continuation utility for i on the equilibrium path from t̃ + 2 in state r. These

are satisfied at
(

V t̃+1
1 , V t̃+1

2 , ct̃+1
1 , at̃+1

1 , at̃+1
2

)
. As the functions y(a1, a2), D1(a2) and D2(a1)

are continuous and differentiable, the implicit function theorem asserts, provided that

(A.21)
∂D1(at̃+1

2 )
∂a2

(
1 +

∂D2(at̃+1
1 )

∂a1
−

∂y(at̃+1
1 , at̃+1

2 )
∂a1

)
6= 0,
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the existence of continuously differentiable functions c1(V1), a1(V1), a2(V1) and Ṽ2(V1) in
an open interval around V t̃+1

1 such that c1(V t̃+1
1 ) = ct̃+1

1 etc. which satisfy equation (A.20).
As at̃+1

1 = a∗1 , ∂y(at̃+1
1 , at̃+1

2 )/∂a1 = 1, and also ∂D1(at̃+1
2 )/∂a2, ∂D2(at̃+1

1 )/∂a1 > 0 (from
Lemma 3), since ∂y/∂ai > 0 as at̃+1

i ≤ a∗i in Phase 2), so (A.21) holds. Since ct̃+1
1 >

0 and ct̃+1
2 > 0, nonnegativity constraints on consumption will also hold in an open

interval and the self-enforcing constraints hold. Hence holding the future contract fixed,
but varying V1 varies the current contract according to c1(V1), a1(V1), a2(V1), and traces
out a series of self-enforcing contracts, such that 2’s discounted utility is Ṽ2(V1), with

Ṽ′
2(V t̃+1

1 ) = −

∂D2(at̃+1
1 )

∂a1

(
1 + ∂D1(at̃+1

2 )
∂a2

− ∂y(at̃+1
1 ,at̃+1

2 )
∂a2

)
∂D1(at̃+1

2 )
∂a2

(
1 + ∂D2(at̃+1

1 )
∂a1

− ∂y(at̃+1
1 ,at̃+1

2 )
∂a1

) .

As at̃+1
2 < a∗2 , ∂y(at̃+1

1 , at̃+1
2 )/∂a2 > 1, so given ∂y(a1, a2)/∂a1 = 1 it follows that Ṽ′

2(V t̃+1
1 ) >

−1, which we have shown is impossible as again it would imply at̃
1 > a∗1 . Hence a contra-

diction, and therefore it is concluded that at̃+1 < a∗. 2

Theorem 7: In the case of one-sided investment where, say, agent 1 is the only contributor
to output, then at any date t and state s, at

1 ≤ a∗1 ; overinvestment never occurs in an efficient
self-enforcing contract.

Proof of Theorem 7: Suppose to the contrary that at
1 > a∗1 for some st. From

Theorem 2(ii), ct
1 = 0. Agent 1’s optimal current payoff from defaulting is just the Nash

breakdown payoff = φ1(aNE
1 , st) − aNE

1 . We thus have equilibrium current utility, wt
1, is

less than this breakdown payoff, as aNE
1 ≤ a∗1 < at

1 and ct
1 = 0 ≤ φ1(aNE

1 , st). Denote this
negative surplus by χt ≡ wt

1 − (φ1(aNE
1 , st) − aNE

1 ) < 0. Agent 1’s discounted utility is
V1(st) = wt

1 + δ ∑st+1∈S πstst+1 V1(st+1), so defining the discounted surplus as VS1(st) ≡
V1(st)− D1(st) we have

(A.22) VS1(st) = χ(st) + δ ∑
st+1∈S

πstst+1 VS1(st+1) ≥ 0.

From equation (A.22) it follows that for at least one state at date t + 1 with πstst+1 > 0
such that VS1(st+1) ≥ −χ(st)/δ > 0. Suppose that either at+1

1 = 0 or at+1
1 > a∗1 . In

the former case, f (at+1
1 , st+1) = 0, so wt+1

1 = 0. In the latter case, from Theorem 2(ii),
ct+1

1 = 0, so wt+1
1 < 0. Consequently, there must, by repeating the earlier logic, be

another successor state at date t + 2 with πst+1st+2 > 0 such that continuation surplus
VS1(st+2) ≥ −χ(st)/δ2. We can repeat this argument if again either at+2

1 = 0 or at=2
1 > a∗1 .

Since continuation surplus must be bounded, this can only happen a fixed number of
times. Thus we must have (along such a path) in finite time t′(> t), 0 < at′

1 ≤ a∗1(st′)
and VS1(st′) > 0 for the first time. Suppose first this happens at t′ = t + 1. Thus in this
state at t + 1, agent 1 is unconstrained. Consider frontloading 1’s utility by increasing
her action at t + 1 in state st+1 by ∆ > 0 and reducing it at t by δπstst+1 ∆ to compensate
(holding consumption constant). Agent 2’s utility changes (to a first-order approximation)

by −
(
∂ f (at

1, st)/∂a1
)

δπstst+1 ∆ + δπstst+1

(
∂ f (at+1

1 , st+1)/∂a1

)
∆ which is positive by virtue
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of at
1 > a∗1 (so ∂ f (at

1, st)/∂a1 < 1) and 0 < at+1
1 ≤ a∗1(st+1) (so ∂ f (at+1

1 , st+1)/∂a1 ≥ 1).
No constraints are violated by this: agent 1 is unconstrained at t + 1 (VS1(st+1) > 0)
so for ∆ small her constraint is maintained; agent 2 receives the extra output at t + 1
and by Assumption 2 his breakdown payoff increases by at most this amount, so his
constraint holds. At t there is a Pareto-improvement and agent 2’s breakdown payoff
has not increased (and 1’s is constant) so again the constraints hold. Thus we have a
contradiction. The remaining possibility is that t′ > t + 1. A similar construction will lead
to a Pareto-improvement at t, but now we have additionally to worry about constraints
for periods t̂ between t and t + 1. By construction VS1(st̂) > 0 along the entire path, so for
∆ small enough 1’s continuation surplus remains positive. Agent 2’s utility is backloaded,
so his constraints are relaxed. Again we have a contradiction. 2
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