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Abstract

The paper analyzes dynamic principal-agent models with short period lengths.
The two main contributions are: (i) an analytic characterization of the values of
optimal contracts in the limit as the period length goes to 0, and (ii) the construc-
tion of relatively simple (almost) optimal contracts for fixed period lengths. Our
setting is flexible and includes the pure hidden action or pure hidden information
models as special cases. We show how such details of the underlying information
structure affect the optimal provision of incentives and the value of the contracts.
The dependence is very tractable and we obtain sharp comparative statics results.
The results are derived with a novel method that uses a quadratic approximation
of the Pareto boundary of the equilibrium value set.

Keywords: Agency models, hidden action, hidden information, frequent actions,
Brownian motion

1 Introduction

While the problems of dynamic incentive provision are central to economics, existing
methods typically do not provide tractable analytic solutions. In the paper we will con-
sider dynamic contracting problems in which a risk neutral principal interacts repeatedly
with a risk averse agent under asymmetric information. These are benchmark models
in labor economics, corporate finance (CEO compensation and optimal capital struc-
ture), and the literatures on optimal dynamic insurance and taxation. We develop a
discrete-time method that allows us to solve such problems analytically for a range of
contracting environments. We thus also obtain sharp qualitative results about optimal
dynamic incentive provision and its dependence on the underlying information structure.
Our models feature frequent decisions and information arrival (“short period length”),

with public signals whose variance is large compared to the contribution of the agent’s
actions. We have in mind situations such as incentivizing the CEO of a company with
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shares traded on a stock market. The class of models is permissive regarding the precise
nature of information structure and distribution of revenue in each period. It embraces,
as extreme special cases, pure hidden action models, when the agent acts at an ex-ante
stage and has private information about his own action only, and pure hidden information
models, when the agent acts conditionally on the “noise” realization. Respective cases
in point are devoting effort to develop a risky project, and diverting funds from realized
cash-flow.
More precisely, for each fixed information structure, we look at a sequence of models

with shrinking period length. The period length affects the per-period payoffs as well as
the variance of the public signals (see Abreu, Milgrom, and Pearce [1991]). On one hand,
in a certain sense (explained below) all the sequences of models we consider converge to
the same limit. On the other hand, each sequence corresponds to a qualitatively different
information structure. First, information structures may differ in the distribution of
the public signal and how informative the signal is about the agent’s action. Moreover,
they may differ in the amount of private information that the agent receives, as in the
pure hidden information and pure hidden action models mentioned above. While the
differences are crucial for the design of incentives in the standard static models, it is not
a priori clear whether and how they should affect the design of incentives in the dynamic
model with short period lengths.
In the paper we develop what we call a quadratic approximation method to solve

those dynamic contracting problems in the following sense. First, for any type of infor-
mation structure, we characterize the limit of the Pareto frontier of value sets achievable
by incentive compatible contracts, as the period length shrinks. Second, we construct
relatively simple suboptimal contracts, whose values converge to the Pareto frontier as
the period length shrinks. Third, we show that the limit values and the contracts depend
on the precise nature of the underlying information structure. The dependence is very
tractable and preserves many qualitative features of the static models, which facilitates
comparative statics analysis.
In the model, a risk neutral principal and a risk averse agent sign a fully enforceable

contract at time zero. Once the contract is signed, in every period the timing is as
follows: 1) the agent observes a private signal and then chooses a costly action, 2) both
the principal and the agent observe the revenue realization that depends on the agent’s
action and noise, 3) the principal compensates the agent. The information structure is
fully specified by a joint distribution of the private signal and noise, rescaled to account
for the period length. For example, the pure hidden action model corresponds to the
case when the private signal is completely uninformative of the noise, whereas in the
pure hidden information case, the private signal is the same as the noise realization. The
contract specifies the agent’s consumption for each period contingent on the history of
past revenue realizations.
Following standard dynamic programming methods (see Abreu, Pearce, and Stac-

chetti [1986, 1990] and Spear and Srivastava [1987]), the contracts can be described with
the agent’s continuation value as a state variable. The continuation value promised last
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period fully determines the current period action, contingent on the private signal, as
well as consumption and new continuation value, contingent on revenue. In order to
provide incentives to exert costly effort, the consumption and continuation value must
respond to revenue and reward the agent for good outcomes, whereas on the other hand
such volatility is ineffi cient and imposes a “cost of incentives”, given the agent’s risk
aversion. Thus, the model features a tradeoff between dynamic insurance and incentives.
The optimal contract resolves this tradeoff and regulates how incentives are provided in
the course of the agent’s career.
Our method for solving the problem comprises two steps. The first step consists

in solving a family of static problems. Given a mean effort and mean cost of effort,
roughly, we look for an action scheme with those parameters and a scheme of continuation
value “transfers”with minimal variance, which provide local (first-order) incentives for
exerting effort. The problem is closely related to possibly the simplest instance of a
static principal-agent problem with incentives-insurance tradeoff, in which the agent has
mean-variance utility of consumption. For a short period length, it turns out that the per
period cost of incentives is proportional to this variance, for a given mean effort and cost
of effort. Also, the variance depends on the information structure: intuitively, it is low in
the case when the revenue is statistically informative of the agent’s action. For example,
in some extreme cases when each action gives rise to a different support of revenues, any
deviation can be statistically identified and the variance is zero.
The second step consists in solving a Hamilton-Jacobi-Bellman (HJB) differential

equation, with the variance of incentive transfers as a parameter. The function F solving
this equation provides the principal’s value F (w) for the optimal static contract that
delivers a given value w to the agent, absent information problems but with explicit cost
of incentives, proportional to the variance of incentive transfers. Except for the variance
of incentive transfers, the equation is familiar from the continuous-time dynamic pro-
gramming models (see Sannikov [2007, 2008]). For example, the function that gives the
principal’s value for the first best optimal contracts (absent any informational problems)
solves this equation with the cost of incentives zero.
In the paper we show that the differential equation describes the limit of the values of

the optimal contracts, while the policy functions of the two steps can be used to design
relatively simple and essentially optimal discrete time contracts.
All the models we consider, independently of the information structure, approximate

in distribution the same continuous-time model, in which the agent controls the drift of a
noisy revenue process that follows Brownian Diffusion. Nevertheless, the limit solutions
are sensitive to the information structure. The solutions depend on the variance of
incentive transfers, which in turn depends on the information structure, parametrized
by the distribution of signals. With the comparative statics of the contracts reduced
to the analysis of static incentive problems, we illustrate how the contracts and their
values respond to changes in the “noise”distribution or amount of private information
the agent receives. For example, restricting attention to the pure hidden action models
when the agent has no private information about the environment, the value of the

3



contracts depends on a single and readily computed parameter of the noise, the variance
of likelihood ratio. Or, fixing the distribution of revenues to be normal, the case when
the agent has no private information about the environment (pure hidden action) results
in the most ineffi cient contracts.
We may compare our results with the optimal contract and its value in the model

formulated directly in continuous time (Sannikov [2008], see also Williams [2009]). As
regards the value, it agrees with the limit of values for a particular class of information
structures, namely pure hidden action models with the variance of likelihood ratio as in
the normal distribution. In this sense, we provide a justification of the existing continuous
time model. However, the limit is different and new to the literature if we go beyond
the pure hidden action case and allow agent some private information about the noise,
or just change the variance of likelihood ratio.1 For example, for the same variance of
the revenue, a double-exponential noise results in strictly more effi cient contracts, while
for some finite support distributions the optimal contracts achieve the first best.
The relationship with the optimal continuous-time contract itself (as opposed to its

value) is even more delicate. In the case when the values converge to the value of the
optimal continuous-time contract, the optimal discrete time contracts converge weakly
(in distribution) to the optimal continuous time contract. Nevertheless, the discrete-time
contracts must be sensitive to the precise details of the noise distribution. For example,
a normal distribution requires contracts with continuation values responding linearly to
the revenue realizations (see for example Holmstrom and Milgrom [1987]), while for the
double-exponential distribution the continuation values take only two values, with the
cutoff at a certain revenue level. There is no single contract that would be approximately
optimal for both kinds of distributions.2 In this sense, the optimal continuous-time
contract does not contain enough information to construct approximate optimal discrete-
time contracts, no matter how short the period length.3

While we use our quadratic approximation method on a particular class of principal-
agent models, we are convinced that its range of applicability is much broader. In the
paper we discuss three extensions. First, the period length might affect the information
structure differently. This case includes environments where the information structure
is independent of period length, as in Folk Theorem analysis, when we recover the Folk
Theorem result as a special case. Second, we look at the case when the agent’s action
affects not only the mean of the revenue distribution, but also higher moments. Third,

1While Williams [2009] considers continuous time models with private information, the models do
not allow private information about the signals in the current period.

2There is no contradiction between the weak convergence and the fact that no single contract “works”
for different noise distributions: all it establishes is that the notion of weak convergence is very weak.

3While the results seem to have a flavor of lack of lower hemicontinuity, we would like to treat the
statement with a grain of salt. The interpretation is sensitive to which models we consider as being close,
i.e., the choice of a topology. The interpretation is correct if one treats weak topology over the models as
the right one. We would like to stress that our results are independent of those interpretational issues:
we provide full characterization of the limits of the optimal contracts and their values for a range of
underlying information structures, whether one interprets the models as convergent or not.
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we look at a different type of preferences, in which the cost of action to the agent is
expressed not in utility, but in monetary terms.
As mentioned above, our results rely on the parametrization of the dynamic contract

by the agent’s continuation value (Abreu, Pearce, and Stacchetti [1986, 1990], Spear and
Srivastava [1987]). This insight leads to a method for computing the optimal contracts
(Abreu, Pearce, and Stacchetti [1990]), or more generally Pareto effi cient Perfect Public
Equilibria, for models with a fixed period length based on the value iteration technique.
Phelan and Townsend [1991] show a related method to compute optimal contracts based
on the iteration of a linear programming problem. While those approaches are flexible
and applicable to a wide variety of problems, they are computationally intense and do
not yield analytical solutions. This hinders the comparative statics analysis of how the
information structure affects the solutions.
One way to restore analytical tractability is to focus on models with patient play-

ers (Radner [1985], Fudenberg, Holmstrom, and Milgrom [1990]). This is equivalent to
considering models with short period length, where the period length parametrizes the
stage game payoffs, but not the information structure. While this simplifies the analysis,
the models have the feature that in the limit, as the period length shrinks, the informa-
tional frictions disappear (“Folk Theorem”). Abreu, Milgrom, and Pearce [1991] suggest
a more realistic approach where increasing the frequency of actions also affects the in-
formation structure. In our benchmark model, short periods come with high variance of
public signal, which in particular exacerbates the informational problems and prevents
the first-best outcome from being achieved in the limit.
On a technical level, Matsushima [1989] established effi ciency results and Fudenberg,

Levine, and Maskin [1994] the Folk Theorem for patient players by decomposing con-
tinuation values on hyperplanes tangent to the (Pareto frontier of the) set of achievable
values. Our method bears a close resemblance to this approach, where we use quadratic
instead of the linear approximation of the frontier. The more precise approximation is
required by the richer class of processes of public signals we consider. Moreover, the
curvature of the boundary is proportional to the cost of incentives; when the process of
signals is such that the linear approximation is appropriate, we recover as the special case
the result of costless provision of incentives, i.e. Folk Theorem, in our restricted setting
of principal-agent problems (see Section 3.1).
Hellwig and Schmidt [2002] is among the first papers to provide an upper hemicon-

tinuity result linking the solutions of discrete-time and existing continuous-time models.
It presents a sequence of discrete-time models whose optimal policies converge to the
optimal policy of the continuous-time principal-agent model by Holmstrom and Milgrom
[1987], in which the agent has CARA utility function and is compensated only at the
end of the employment period. Biais, Mariotti, Plantin, and Rochet [2007] established
such an upper hemicontinuity result for the principal-agent model of diverting cash-flows
by Demarzo and Sannikov [2006], in which the agent is risk-neutral and the effi ciency
cost from diverting funds is linear, by looking at sequences of binomial revenue processes.
Sannikov and Skrzypacz [2007] considers a more general framework of games and limit
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processes that are an arbitrary mixture of Brownian Diffusion and Poisson processes,
and show convergence of the solutions for discrete time games with normal noise and
pure hidden action structure, in the case of arbitrarily patient players. Our upper hemi-
continuity results are rather general, making no appeal to CARA, infinite patience, risk
neutrality of the agent or linearity of costs.
In the opposite direction, Muller [2000] illustrates that, in the context of the model

by Holmstrom and Milgrom [1987], for a particular sequence of models the limit of the
solutions might disagree with the solution of the continuous-time limit model. For a
reputation game with one long-lived player, Fudenberg and Levine [2009] established an
analogous result, comparing sequences of models with different numbers of aggregated
signal realizations within each time period. The techniques used for the case with one
long-lived player, where the Pareto frontier is a point and the optimal policy is stationary,
seem to be particular to this setting. By contrast, we look at a broad class of information
structures well known from the static incentive literature, and obtain sharp and unified
characterizations based on the variance of incentive transfers. We also expect that our
method of deriving limit values and essentially optimal contracts (equilibria, or policy
functions) based on the quadratic approximation of the Pareto frontier is applicable in
general settings, and in particular when the frontier is multi-dimensional and optimal
contracts non-stationary.

2 Model

2.1 The Agency Problem

A risk neutral principal contracts with a risk-averse agent. The principal offers the agent
an infinite contract specifying a contingent payment for each period as a function of the
history of output (gross revenue) in past periods. If the agent accepts it, the contract
becomes legally binding and cannot be terminated by either party. In every period of
length ∆, the timing is as follows. The agent observes a private signal about the random
shock affecting output in the current period, and then chooses an action (effort). The
agent’s action and the random shock determine the output, which is realized at the
end of the period. The principal pays the agent after observing the output and the
agent consumes his compensation (the agent can’t save or borrow). Note that both the
agent’s signal and action are his private information, whereas output is publicly observed.
Though the agent’s actions are unobservable, the principal and the agent also implicitly
agree to a full contingent action plan for the agent. Finally, note that we do not allow
communication between the agent and the principal.
The agent’s per period utility is given by ∆[u(c) − h(a)], where a ∈ A and c ≥ 0

denotes his consumption. The agent’s action and consumption are stated in flow units.4

4While our interpretation that consumption, which in principle depends also on the current period’s
output, flows during the duration of the period seems inconsistent, it is an indirect corollary to our
results that consumption independent of current output is with no loss of generality when the period
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The consumption utility function u : R+ → R is twice continuously differentiable, strictly
increasing and strictly concave, with u(0) = 0 and limc→∞ u(c) = ū < ∞. The agent’s
action space is a closed interval A ⊂ R with 0 ∈ A and right endpoint A. We consider
two cases below, either A = [0, A] or A = (−∞, A]. The cost of effort function h : A → R
is continuous and its restriction to positive actions is strictly convex, strictly increasing
and twice continuously differentiable, while h(a) = 0 for all a ≤ 0. We also assume
that there exists γ > 0 such that h(a) ≥ γa for all a ≥ 0. In addition, we assume that
h′(0+) < u′(0), so absent asymmetric information it is effi cient to have the agent exert
positive effort.
The principal’s per period payoff is ∆[x+ a− c], where x is a random shock, a is the

agent’s action and c is the agent’s compensation, again in flow units. We will interpret
y = ∆[x+ a] as the output realization. Both the principal and the agent discount future
payoffs by the common discount factor e−r∆, where r > 0 is the discount rate.
Let zn denote the agent’s private signal realization in period n. We assume that

(xn, zn) are randomly distributed and {(xn, zn)} are i.i.d. We consider two settings: (i) the
absolutely continuous case where the conditional distribution of xn given zn has a density
g∆
X|Z(xn|zn) and zn has a distribution G∆

Z (zn); and (ii) zn = xn and the distribution of xn
has density g∆

X(xn). We assume that E∆[xn] = 0 and V∆[xn] = σ2/∆. The length of the
period ∆ parametrizes these densities because we assume that the quality of the signals
(the inverse of their variances) increases with ∆. Later we make precise assumptions on
how these distributions vary with ∆.
Case (i) includes the standard “hidden action”agency model in which zn is completely

uninformative about xn. Case (ii) corresponds to the “pure hidden information”model
where the agent knows exactly the output that will be produced as a function of his own
action. We will also investigate intermediate models where, for example, G∆(xn, zn) is a
bi-normal distribution with a positive correlation between xn and zn.

2.2 The Principal’s Problem and Important Curves

A contract is a process {cn} that for each period n specifies the agent’s compensation
cn as a function of the history of outputs (y0, . . . , yn). A plan for the agent is another
process {an} that specifies the agent’s action in each period n as a function of the history
(z0, y0, . . . , zn−1, yn−1, zn). Since the principal’s contract does not depend on the agent’s
private signals and signals across periods are independent, there is no loss of generality
in restricting action plans so that an is a function of (y0, . . . , yn−1, zn) only.
The principal’s expected discounted revenue for a contract-action plan pair ({cn}, {an})

is

Π({cn}, {an}) = r̃E∆

[ ∞∑
n=0

e−r∆n (yn −∆cn)

]
= r̃∆E∆

[ ∞∑
n=0

e−r∆n (an − cn)

]
,

length is small - see the next Section.
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while the agent’s expected discounted utility is

U({cn}, {an}) = r̃∆E∆

[ ∞∑
n=0

e−r∆n (u (cn)− h (an))

]
,

where the factor r̃ is such that r̃∆ = 1 − e−r∆, and normalizes the sums so that
r̃∆
∑
e−r∆n = 1.5 The action plan {an} is incentive compatible (IC) for the contract

{cn} if for any other plan {a′n}, any N and any realization (y0, . . . , yN−1, zN),

E∆

[ ∞∑
n=N

e−r∆n (u (cn)− h (an))
∣∣∣(y0, . . . , yN−1, zN)

]

≥ E∆

[ ∞∑
n=N

e−r∆n (u (cn)− h (a′n))
∣∣∣(y0, . . . , yN−1, zN)

]
.

For a given w, the principal’s problem consists of finding a contract-action plan
{cn}, {an} that maximizes his expected discounted revenue among all the incentive com-
patible plans that deliver an expected discounted utility w to the agent. For any
w ∈ [0, ū), let F∆(w) be the principal’s value from an optimal IC contract-action plan,

F∆(w) = sup {Π({cn}, {an}) | {an} is IC for {cn}, U({cn}, {an}) = w}.

A wage contract specifies for each period n a compensation that does not depend on
the current output yn. That is, {cn} is a wage contract if for each period n the agent’s
compensation cn only depends on the history of outputs (y0, . . . , yn−1). Let F∆,c : R+ →
R represent the principal’s value from an optimal IC wage contract-action plan. An
indirect implication of our main result (see Lemma 13) is that when ∆ is small, the loss
from only allowing wage contracts is small: F∆,c (w) ↑ F∆(w) as ∆ → 0, uniformly in
w ∈ [0, ū).
We also define F (w) as the principal’s value for an optimal feasible (“first best”)

contract-action plan (not necessarily IC). It is easy to see that such a plan is stationary,
and so F (w) is just equal to the value of an optimal feasible one period contract-action
pair:

F (w) = max
a,c
{a− c | a ∈ A, c ≥ 0, u (c)− h (a) = w}.

One can show that F satisfies the following ODE:

F (w) = max
a,c

{
(a− c) + F

′
(w) (w + h (a)− u (c))

}
. (1)

Finally, let F : [0, u)→ R be the retirement curve. That is,

F (w) = −u−1 (w) .

8



A

P

w sp

D
w sp

F

F
D

F
c ,D

F

Figure 1: Value functions.

Continuation values (w,F (w)) with w ∈ [0, ū) are attained by wage contracts that pay
the same cn = F (w) in every period (regardless of history), when the agent chooses action
an = 0 in every period. Since such wage contract-action plan is IC, F∆ ≥ F .
Notice that

F∆ (0) = F∆,c (0) = 0.

This follows from the limited liability constraint c ≥ 0 and u (0) = h (0) = 0: since the
agent can always deviate to exerting no effort, the only way for the agent to receive an
expected discounted utility of zero is for the contract to pay zero in every period.6 Also,
there exists wsp ∈ [0, ū) such that F (wsp) = F (wsp) and F (w) > F (w) for all w < wsp.
This is because if the agent must receive high expected utility, exerting any positive effort
by the agent is too costly for the principal (see Spear and Srivastava [1987], Sannikov
[2008]).7

Altogether, for any ∆ > 0 we have F ≤ F∆,c ≤ F∆ ≤ F (see Figure 1). In particular,
this implies that there exist a minimal agent’s value w∆

sp, 0 ≤ w∆
sp ≤ wsp, such that:

F∆(w∆
sp) = F (w∆

sp).

5Note that r̃ → r as ∆ ↓ 0.
6Assumption (A2) below guarantees that if agent gets a strictly positive expected continuation value

when taking a strictly positive effort (which compensates him for the cost of effort), then he would also
get a strictly positive expected continuation value from no effort.

7Formally, marginal cost of effort is bounded below by γ > 0 for positive actions while marginal
utility of consumption converges to zero as consumption increases. This excludes any interior solution
for F (w) for suffi ciently high w since such solution must satisfy h′(a) = u′(c), for c > u−1 (w) such that
u(c)− h(a) = w.
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2.3 Frequent Actions: Parameterization and Assumptions

We are interested in solving the principal’s problem when the period length ∆ is small.
We assume that while ∆ decreases, (Z,X) are normalized signals generated by a fixed
distribution (independent of ∆):

(A1) There exists a distribution function G(x, z) with E[x] = 0 and V[x] = σ2, such that
for each ∆ > 0,

G∆(x, z) = G(x
√

∆, z
√

∆).

Note that E∆[x] = 0, and V∆[x] = σ2/∆. Consequently, the linear interpolation of
the process {Xk∆}k∈N where Xk∆ = ∆

σ

∑k
n=1 xn, with xn ∼ G∆

X , converges in distribution
to the Brownian Motion as ∆ → 0 (Invariance Principle, see e.g. Theorem 4.20 in
Karatzas and Shreve [1991]). This also implies that if yn = ∆[xn + a(zn)] and Bk∆ =
1
σ

∑k
n=1(yn−∆E∆[a(zn)]) = ∆

σ

∑k
n=1(xn + ξn), with a(z) ∈ [0, A], ξn = a(zn)−E∆[a(zn)]

and (xn, zn) ∼ G∆, then the linear interpolation of the process {Bk∆}k∈N converges in
distribution to the Brownian Motion as ∆→ 0 (see Whitt [1980])8. In other words, the
linear interpolations of revenue processes converge in distribution to the continuous time
process {Yt} satisfying

dYt = E∆[at]dt+ σdBt,

where {Bt} is a Brownian Motion.
We also assume that one of the following two assumptions is satisfied. The first

assumption corresponds to the case when the agent has some imprecise (possibly unin-
formative) signal about the noise, and the noise has absolute continuous distribution,
conditional on the private signal. The available actions are bounded below by zero.
The second assumption corresponds to the pure hidden information case when the agent
knows the noise realization before taking an action. In this case we assume that the
agent’s actions are unbounded from below. In a separate note we show that pure hidden
action model with compact action set results in the first best contracts as the period
length shrinks to zero.

(A2-AC) For any z, the distribution of X conditional on [Z = z] has density function
gX|Z (x|z), and there exist δ̄, M̄ > 0 such that for all z,∫

R

supδ∈[0,δ̄] g
′
X|Z (x− δ|z)2

gX|Z (x|z)
dx < M̄ and

∫
R

sup
δ∈[0,δ̄]

∣∣g′′X|Z (x− δ|z)
∣∣ dx < M̄.

Moreover, the set of available actions is A = [0, A] for some A ∈ R+.

(A2-PHI) X ≡ Z and X has a density function gX(x). Moreover, the set of available
actions is A = (−∞, A] for some A ∈ R+.

8Each process {Bk∆}k∈N is the sum of two continuous path processes, one converging weakly to the
Brownian Motion and the other to the process identically equal to zero.
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Throughout the paper we use the standard notation O(∆) and o(∆) to denote arbi-
trary functions α(∆) and β(∆), respectively, such that

lim
∆→0

∣∣∣∣α(∆)

∆

∣∣∣∣ <∞ and lim
∆→0

β(∆)

∆
= 0.

3 Results

3.1 Solution to the Principal’s Problem: Values

In this section we focus on determining the principal’s value for the optimal contract-
action plan, as the period length ∆ shrinks to 0. The explicit definition of the contract-
action plans that achieve those values is postponed until Section 3.3.
We will see that as∆→ 0, the solution of the principal’s problem can be approximated

by the following two step procedure. In the first step we solve a family of static problems.
For any “mean action” ā ≥ 0 and “mean cost” h̄ ≥ 0, define the variance of incentive
transfers

Θ(ā, h̄) = inf
a,v

E
[
v(x)2

]
(2)

s.t. ā = E[a(z)], h̄ = E[h(a(z))],

h′(a(z)) = −
∫
R
v(x)g′X|Z(x|z)dx ∀z (FOCΘ-AC)

h′(a(x)) = v′(x) ∀x (FOCΘ-PHI)

The infimum is taken over measurable functions in the absolutely continuous case. In the
pure hidden information case, the infimum is over piecewise continuously differentiable
functions a(·) and continuous functions v(·), and the (FOCΘ-PHI) condition is required
everywhere except for finitely many points of discontinuity of a(·).
To interpret the function Θ, consider the following static contracting problem. An

agent has a quasilinear utility v − h(a), and chooses an action a (z) that depends on
his privately observed signal z. The principal observes a noisy signal x + εa(z) and
makes transfer v to the agent. His objective is to minimize the variance of transfers that
provide first order incentives for an action scheme with mean action ā and mean cost
h̄.9 Θ(ā, h̄) is the value of the simplified version of this problem, when we substitute
ε = 0. In particular, the last two lines in the definition of Θ(ā, h̄) correspond to the local
incentive constraints: the (FOCΘ-AC) applies to the absolutely continuous case, while
(FOCΘ-PHI) to the pure hidden information case.

9Alternatively, the principal is minimizing expected transfers to an agent with mean-variance utility
of transfers, who has an ex ante outside option −h̄.
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The second step refers to the following optimal control problem:

F (w) = sup
{āt,h̄t,ct}

E
[∫ ∞

0

r[āt(Wt)− ct(Wt)]e
−rtdt

]
s.t. dWt = r

[
Wt − u(ct(Wt)) + h̄t(Wt)

]
dt+ r

√
Θ(āt(Wt), h̄t(Wt)) dBt, W0 = w.

This is a principal’s problem similar to that obtained by Sannikov [2008]. The state
variable Wt represents the continuation value for the agent. It’s drift is proportional to
the difference of the continuation value and the expected flow of utility to the agent,
who receives payment ct(Wt) and incurs mean cost h̄t(Wt). The diffusion coeffi cient is
determined by the variance of incentive transfers. F (w) represents the principal’s payoff
when the initial continuation value for the agent is w. The corresponding HJB equation
for this problem is

F (w) = sup
ā,h̄,c

{
(ā− c) + F ′(w)

(
w + h̄− u(c)

)
+

1

2
F ′′(w)rΘ(ā, h̄)

}
, (3)

which we solve with the boundary conditions:

F (0) = 0 (4)

and F ′(0) equal to the largest slope such that for some wsp > 0

F (wsp) = F (wsp) and F ′ (wsp) = F ′ (wsp) . (5)

The first two conditions are analogous to the conditions that must be satisfied by F∆

(see the end of Section 2.2). The last one is the smooth pasting condition.
Without any additional restrictions on the information structure, and thus on the

variance of incentive transfers function Θ(ā, h̄), there need not exist a unique solution to
the above HJB differential equation with boundary conditions (4) and (5). However, we
can get around this by analyzing a perturbed equation, which always has a unique solution
and that provides an arbitrarily good approximation to the solution of the principal’s
problem. For any ζ > 0 consider the following differential equation:

Fζ(w) = sup
ā,h̄,c

{
(ā− c) + F ′ζ(w)(w + h̄− u(c)) +

1

2
F ′′ζ (w)rΘζ(ā, h̄)

}
, (6)

where

Θζ(ā, h̄) = max {ζ,Θ(ā, h̄)},
with the same boundary conditions above.10 Let wsp,ζ be the point where Fζ satisfies (5).
The following is the first main result of the paper. The proof of Theorem 1 is in Section

4. For a function f : I → R, we define |f |I = supw∈I |f(w)| and |f |+I = |max {0, f (w)}|I .
10Formally, the lower bound ζ on Θζ guarantees that the differential equation is uniformly elliptic.
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Theorem 1 For any ζ > 0, equation (6) with the boundary conditions (4) and (5) has a
unique solution Fζ. The value wsp = limζ→0wsp,ζ and the function F = limζ→0 Fζ exist.
For any agent’s promised value w ∈ [0, wsp], F (w) is the limit of the principal’s value
from optimal contract as the period length ∆ shrinks to zero:

lim
∆→0

∣∣F − F∆
∣∣
[0,wsp]

= 0,

while for w > wsp, F (w) provides an upper bound:

F (w) ≥ lim
∆→0

F∆(w) for all w > wsp.

More precisely, for fixed ζ we have∣∣Fζ − F∆
∣∣+
[0,wsp,ζ ]

= O(ζ) +
o(∆))

∆
and

∣∣F∆ − Fζ
∣∣+
[0,ū]

= O(ζ) +
o(∆)

∆
.

Theorem 1 is proven with just minimal restriction on the information structure (as-
sumptions (A1) and (A2) above). The following proposition shows that with additional
assumptions there is no need to consider perturbed equations (while the uniqueness may
be lost).
Consider the following assumption:

(Cont) Θ
(
ā, h̄
)
≥ δ (ā) for a continuous δ with δ (ā) > 0 when ā > 0.

Proposition 1 Let F be as in Theorem 1.
(i) Assume that Θ

(
ā, h̄
)
≥ θ > 0 for ā > 0. Then, F is the unique solution of (3) with

boundary conditions (4) and (5). Moreover, in (3) one may add the constraint ā > 0.
(ii) Assume (Cont) holds. Then F solves (3) with boundary conditions (4) and (5).

The proof is in the online Appendix B. Theorem 1 provides an explicit formula
for the value of the optimal contract-action plans as the period length converges to
zero. The value depends on the underlying information structure, described by the joint
distribution G(x, z), and the dependence is fully captured by the variance of incentive
transfers function Θ in the differential equation. This facilitates the comparative statics
analysis of how the information structure affects the values, as we illustrate in the next
section.
The following result is crucial for such analysis. Reducing the variance of incentive

transfers, intuitively, decreases the informational rent and the cost of incentives. The
proposition shows that this increases the value of the optimal contracts.
For an arbitrary function Θ : R2

+ → R+ ∪ {∞} define DΘ = {(ā, h̄) ∈ R2
+ | Θ(ā, h̄) <

∞} and DΘ
+ = {(ā, h̄) ∈ DΘ | ā > 0}.

Proposition 2 Consider Θ, Θ, and let FΘ and FΘ be as in Theorem 1.
(i) If Θ ≥ Θ then FΘ(w) ≤ FΘ(w) for all w ∈ [0, wΘ

sp].
(ii) Suppose (Cont) holds. If Θ >DΘ

+
Θ then FΘ(w) < FΘ(w) for all w ∈ (0, wΘ

sp).

13



The proof is in the online Appendix B. Recall that F is the value of an optimal feasible
(first best) one period contract-action pair. For w > 0, the function F solves (1), which
is the HJB equation (3) with Θ ≡ 0, while F does not satisfy the boundary condition
(4). The following proposition shows that when the variance of incentive transfers is
identically zero, the functions Fζ from Theorem 1 converge to F , and so as the period
length ∆ shrinks to zero the first best value F is achievable (see Figure 2; the proof is in
the online Appendix B).

Proposition 3 Suppose that Θ ≡ 0 and let F be as in Theorem 1. Then

F = F (w) for all w > 0.

More precisely, for every δ > 0 there is θ such that if Θ ≤ θ then

F ≥ F (w)− δ for all w ≥ δ.

A

P

∆

∆
F

F

F

Figure 2: Proposition 3.

3.2 Examples and Comparative Statics

The following example shows that the value of the optimal contract-action plan formu-
lated directly in continuous time (Sannikov [2008]) agrees with the limit of values of
discrete time optimal action-plans for a particular signal structure.

Example 1 Consider the pure hidden action case when X is normally distributed with
mean 0 and variance σ2. For any ā ∈ [0, A], since the signal z is uninformative, (FOCΘ-
AC) implies that a(z) ≡ ā. Hence, when h̄ = h(ā),

Θ(ā, h(ā)) = min
v

∫
v(x)2gX(x)dx, (7)

s.t. h′(ā) = −
∫
R
v(x)g′X(x)dx

14



The optimal solution of this problem is v(x) = h′(ā)x and Θ(ā, h(ā)) = [h′(ā)σ]2, when
ā > 0, and Θ(0, 0) = 0. Moreover, Θ(ā, h̄) =∞ for all h̄ 6= h(ā). Note that Θ(ā, h(ā)) is
discontinuous in ā: Θ(ā, h(ā)) ≥ [γσ]2 > 0 = Θ(0, 0) for all ā > 0. In this case, the HJB
equation (3) with the additional constraint ā > 0 (see Proposition 1) becomes

F (w) = sup
ā>0,c

{
(ā− c) + F ′(w)(w + h(ā)− u(c)) +

1

2
F ′′(w)rσ2h′(ā)2

}
,

which is exactly Sannikov’s equation (5).

The example shows that in the case of pure hidden action models with normal noise
the value of the optimal contract depends on the single parameter of the distribution of
noise, its variance. We generalize the example in the following way.

Lemma 1 Consider a pure hidden action model with density gX(x). Then Θ(ā, h̄) =∞
for all h̄ 6= h(ā), Θ(0, 0) = 0 and for ā > 0

Θ(ā, h(ā)) =
h′(ā)2

V LR(gX)
,

where

V LR(gX) =

∫ [
g′X(x)

gX(x)

]2

gX(x) dx =

∫
g′X(x)2

gX(x)
dx.

Proof. That Θ(0, 0) = 0 and Θ(ā, h̄) =∞ for all h̄ 6= h(ā) is clear. Just as in Example
1, the solution of problem (7) for ā > 0, as characterized by the necessary first order
conditions, is v(x) = C g′(x)

g(x)
, where incentive compatibility constraint implies that C =

− h′(ā)
V LR(gX)

. Consequently, Θ(ā, h(ā)) = h′(ā)2

V LR(gX)
, when ā > 0.

The variance of incentive transfers, and thus the value of optimal contract-action plans
(when ∆ shrinks) depends on the single parameter of the underlying noise distribution,
the variance of likelihood ratio V LR(gX). The variance of the likelihood ratio is the
measure of informativeness of the public signal about the action of the agent: its high
value diminishes the informational rent to the agent. Witness the following example.

Example 2 Consider pure hidden action models for three cases of noise distribution,
each with variance σ2: (i) normal distribution, (ii) double exponential distribution and
(iii) “linear”distribution, with corresponding densities:11

gnX(x) =
1

σ
√

2π
e−[ x2σ ]

2

, x ∈ R

g2e
X (x) =

λ

2
e−λ|x|, x ∈ R

glX(x) = c− c2|x|, |x| ≤ 1/c,

11Formally, the “linear”distribution does not satisfy our assumption (A2-AC) as it results in infinite
variance of likelihood ratio. But one may consider approximations with the density at the extremes
of the support changed to, say, quadratic functions, resulting in finite but arbitrarily large variance of
likelihood ratio.
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for λ =
√

2
σ
and c = 1

σ
√

6
. The corresponding variances of likelihood ratio are:

V LR(gnX) = 1/σ2, V LR(g2e
X ) = 2/σ2, and V LR(glX) =∞.

In particular, in the “linear” distribution case the incentives are costless and the first-
best is achievable (Proposition 3). Intuitively, with bounded support of the noise, agent’s
defection from the prescribed action plan gives rise to signals that would not occur oth-
erwise, and those signals have suffi ciently high probability (density has suffi cient mass at
the extremes).

Note that the pure hidden action model satisfies the assumption (Cont) with δ(ā) ≡
h′(0+)/V LR(gX). Thus, a direct consequence of Lemma 1 and part (ii) of Proposition 2
is the following:

Corollary 1 In the pure hidden action model with density gX(x), the limit value of
the optimal contract-action plans as ∆ shrinks to zero is increasing in the variance of
likelihood ratio V LR(gX).

Let us now study the settings in which the agent has some private information about
the environment.

Lemma 2 Consider a hidden information model where the range of the agent’s signal z
is a finite set of values {z1, . . . , zK}. Then the variance of incentives transfer function is

Θ(ā, h̄) = min
a1,...,ak

K∑
k=1

λkh
′(ak), s.t. ā =

K∑
k=1

gZ(zk)ak and h̄ =
K∑
k=1

gZ(zk)h
′(ak),

where λ = (λ1, . . . , λK)T solves the linear system of equations L·λ = (h′(a1), . . . , h′(aK))T

with matrix L = [Lk.`] given by

Lk,` =

∫
R

g′X|Z(x|zk)g′X|Z(x|zl)
gX(x)

dx k, ` = 1, . . . , K.

Proof. v(x) = − 1
gX(x)

∑K
k=1 λkg

′
X|Z(x|zk) is the solution to the following auxiliary prob-

lem:

Θ̂(a1, . . . , aK) = inf
v

∫
R
v(x)2gX(x)dx

s.t. h′(ak) = −
∫
R
v(x)g′X|Z(x|zk)dx k = 1, . . . , K,

and λ is the vector of Lagrange multipliers for the constraints. Thus Θ̂(a1, . . . , aK) equal
to
∑K

k=1 λkh
′(ak) is the variance of incentive transfers for arbitrary actions a1, . . . , aK .

Minimizining over all actions with mean action ā and mean cost h̄ yields the result.
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Thus with finitely many actions solving for the cost of incentives reduces to solving
a finite dimensional unconstrained minimization problem. Associated to this hidden
information model, there is a natural pure hidden action model, where the agent does
not observe the signal z. For this pure hidden action model, the corresponding variance
of incentives transfer function is given by ΘPHA(ā, h(ā)) = Θ̂(ā, . . . , ā). Since ak = ā for
all k is always feasible when h̄ = h(ā), we obtain the following result.

Corollary 2 Let Θ be as in Lemma 2 and ΘPHA be the variance of incentive transfers
for the associated pure hidden information model. Then Θ ≤ ΘPHA and FΘPHA ≤ FΘ.

In other words, the case when agent has no private information about the environment
results in least effi cient contracts.

Example 3 An interesting special case of Lemma 2 is when for a given density g0(x)
with mean 0, gX|Z(x|zk) = g0(x − µk) for some µk, where

∑
k gZ(zk)µk = 0. For a

concrete example, assume that K = 2, gZ(z1) = gZ(z2) = 1/2,

g0(x) = C[1 + cos(x)] for x ∈ [−π, π], and − µ1 = µ2 = π/2,

where C = 1/[2π]. Then, gX|Z(x|z1) = C[1 − sin(x)] in [−3π/2, π/2], and gX|Z(x|z2) =
C[1+sin(x)] in [−π/2, 3π/2]. Hence, g′X|Z(x|z1) = −Ccos(x) and g′X|Z(x|z2) = Ccos(x),

L =
1

4

[
5 1
1 5

]
, λ1 =

1

6
[5h′(a1) + h′(a2)] and λ2 =

1

6
[h′(a1) + 5h′(a2)],

which yields Θ̂(a1, a2) = 1
6
[5h′(a1)2 + 2h′(a1)h′(a2) + 5h′(a2)2]. For generic h, ā and h̄,

the constraints ā = 1
2
[a1 +a2] and h̄ = 1

2
[h(a1) +h(a2)] uniquely determine (a1, a2) (when

the system is compatible) and Θ(ā, h̄) = Θ̂(a1, a2). Then, for a fixed ā,

min
h̄

Θ(ā, h̄) = min
1

6
[5h′(a1)2 + 2h′(a1)h′(a2) + 5h′(a2)2] s.t. ā =

1

2
[a1 + a2].

The optimal solution is a1 = a2 = ā when h′2 is a convex function, and a1 = 0 and
a2 = 2ā when h′2 is a concave function. For example, if h(a) = 4

5
a5/4 + γa, where γ > 0

implies that h′2 = [a1/4+γ]2 is concave. In this case, minh̄ Θ(ā, h̄) = Θ̂(0, 2ā) < Θ̂(ā, ā) =
ΘPHA(ā, h(ā)).

The example illustrates that in the hidden information model, in any period, for a
fixed mean effort ā there might arise a tradeoffbetween two sorts of implementation costs.
On one hand, given convex cost function, a “flat”effort scheme a (z) ≡ ā minimizes the
direct cost of effort E [h (a (z))] to be h (ā). On the other hand, the cost of incentives
Θ(ā, h̄) might be minimized for the effort schemes that is responsive to the environment
and does not satisfy a (z) ≡ ā, which implies h̄ > h (ā). How the tradeoff is resolved
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depends on the relative “prices”of each cost in the differential equation (3), given by F ′

and F ′′ respectively.
Consider now the pure hidden information case. The following result allows us to

rank the distributions of noise in terms of the cost of incentives that they impose. The
condition is a strong form of ranking of signal’s dispersion.12 ,13

Lemma 3 Consider two signal distributions G and Γ of noise for the pure hidden infor-
mation case, with corresponding strictly positive densities g and γ. Suppose that:

G (x) = Γ (x′) =⇒ g (x) ≥ γ (x′) , ∀x, x′

Then, for the corresponding variance of incentivizing transfer functions ΘG and ΘΓ,

ΘΓ ≥ ΘG.

Proof. Fix (ā, h̄) in the domain of ΘΓ, any ε > 0 and let (aΓ, vΓ) be an ε-suboptimal
policy for ΘΓ(ā, h̄). We may assume that EΓ [vΓ (x)] = 0. We will define a policy (aG, vG)
that is feasible for the problem ΘG(ā, h̄) and such that EG [v2

G (x)] ≤ ΘΓ(ā, h̄).
For any x let aG (x) = aΓ (x′) where x′ is such that G (x) = Γ (x′). Since both G and

Γ are strictly increasing between 0 and 1, aG is well defined. We have:∫
aG(x)g(x)dx =

∫
aG(G−1(Γ(x′)))γ(x′)dx′ =

∫
aΓ(x′)γ(x′)dx′,

where we have used the change of variables x = G−1(Γ(x′)), so dx
dx′ = γ(x′)

g(x)
. Similarly we

get that
∫
h(aG(x))g(x)dx =

∫
h(aΓ(x′))γ(x′)dx′.

The incentive transfer function vG is defined via the (FOCΘ-PHI) condition:

v′G(x) = h′(aG(x)),

except for the finitely many points of discontinuity of aG(x), where it is extended con-
tinuously, together with the condition EG[vG(x)] = 0. Choose any points x > x, x′ > x′

such that G(x) = Γ(x′) and G(x) = Γ(x′). We have:

vG(x)− vG(x) =

∫ x

x

h(aG(x))dx

=

∫ x′

x′
h(aΓ(x′))

γ(x′)

g(x)
dx′ ≤

∫ x′

x′
h(aΓ(x′))dx′ = vΓ(x′)− vΓ(x′).

12The condition implies lower variance, but is incomparable to SOSD: a SOS inferior distribution can
either dominate or be dominated in terms of our ranking.
13Essentially the same proof also shows the strict ranking of variances of incentive transfers, as long

as the “inf”in the definition of ΘΓ can be replaced by “min”. In the cases when the optimal policies for
ΘΓ do not exist, we conjecture that under some additional conditions on the distributions G and Γ the
proof can be strengthened to yield strict ranking.
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This means that the random variable vG (X) , X ∼ G, is less dispersed than vΓ (X) ,
X ∼ Γ. Since EΓ [vΓ (x)] = EG [vG (x)] = 0, this implies that for the concave function
φ (x) = x2 we have EG [v2

G (x)] ≤ EΓ [v2
Γ (x)] ≤ ΘΓ(ā, h̄)+ε (see Theorem 3.B.2 in Shaked

and Shanthikumar [2007], which is taken from Landsberger and Meilijson [1994]). Since
ε > 0 is arbitrary, this concludes the proof.

The following Lemma is related to Corollary 2.

Lemma 4 Fix σ2 > 0 and any signal distribution with variance of noise σ2. Let Θ be the
corresponding variance of incentive transfers, and let Θn correspond to the pure hidden
information model with normal noise. Then Θ ≤ Θn and FΘn ≤ FΘ.

As a corollary, the value of contracts computed directly in continuous time (see Ex-
ample 1) is the lower bound on the limits of values, for all information structures that
approximate the same continuous time limit (in the sense described above).

Proof. The optimal policy function for Θ (ā, h (ā)) with ā > 0 in the pure hidden
action case with normal distribution has a linear incentivizing transfer function v(x) =
h′(ā)x, and Θ (ā, h (ā)) = h′ (ā)2 σ2 (Example 1). This incentivizing transfer function
provides not only “ex-ante”, but also “ex-post” incentives, thus incentivizing the agent
to a constant effort scheme a (z) = ā under any distribution of signals. As long as the
variance of noise X is σ2, the variance of incentivizing transfers is h′ (ā)2 σ2. The Lemma
thus follows from Proposition 2, part (i).

3.3 Solution to the Principal’s Problem: Contract-Action Plans

In this section we show how to construct contract-action plans that are approximately
optimal as the period length is short. For this purpose, we first define the Bellman
operator associated with the principal’s problem, i.e. stage-game maximization problem
parametrized by agent’s continuation value. We then define policies for the Bellman
operator, based on the policies for the variance of incentive transfers function (2) and
the policies for the perturbed HJB equation (6). The contract-action plans we construct
are defined through a recursive application of those policies, as explained below.
For any interval I ⊂ R and any function f : I → R, define the new function T∆

I f :
R+ → R by

T∆
I f(w) = sup

a,c,W
Φ∆(a, c,W ; f) (8)

s.t. a(z) ∈ A ∀z, c(y) ≥ 0 and W (y) ∈ I ∀y
w = E∆

[
r̃∆[u(c(∆[x+ a(z)]))− h(a(z))] + e−r∆W (∆[x+ a(z)])

]
(PK)

a(z) ∈ arg max
â∈A

E∆
[
r̃∆[u(c(∆[x+ â]))− h(â)] + e−r∆W (∆[x+ â]) | z

]
(IC-AC)

a(x) ∈ arg max
â∈A

r̃∆
[
u(c(∆[x+ â]))− h(â)

]
+ e−r∆W (∆[x+ â]) (IC-PHI)
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where the supremum is taken over measurable functions and

Φ∆(a, c,W ; f) = E∆
[
r̃∆[a(z)− c(∆[x+ a(z)])] + e−r∆f(W (∆[x+ a(z)])

]
. (9)

In the problem, (PK) is the promise-keeping constraint and (IC) is the incentive
constraint. Here (and similarly below) we write problem T∆

I f(w) with two alternative
constraints: (IC-AC) and (IC-PHI), for the absolutely continuous and the pure hidden
information cases. The interval I in the problem represents an additional constraint that
restricts the range of the continuation values. This constraint ensures that continuation
values are in the domain of f .
For I = [w,w] and ∆ > 0 (small), let I∆ =

[
w + ∆1/3, w −∆1/3

]
.

Definition 1 For any ζ ≥ 0 and Fζ solving (6) on an interval I, period length ∆ > 0,
agent’s promised value w ∈ I and an approximation error ε > 0, define a simple policy
(a, c,W ) as follows. Let (ā, h̄, c) be an ε-suboptimal policy of (6) at w, and for the
corresponding (ā, h̄), let (a, v) be an ε-suboptimal policy of (2).
If w ∈ I∆ let (see Figure 3)

c(y) = c (10)

W (y) = C +
√

∆r̃er∆ × v(y/
√

∆)1|v(y/
√

∆)|≤Mε
(AC)

W (y) = C +
√

∆r̃er∆ ×


v(−Mε) if y/

√
∆ < −Mε

v(y/
√

∆) if |y/
√

∆)| ≤Mε

v(Mε) if y/
√

∆ > Mε

(PHI)

a(z) is an action that satisfies the (IC) constraint in (8),

where Mε is a (large) constant (see Definition 4 in Appendix A) and C is chosen so that
the promise keeping (PK) is satisfied.
If w /∈ I∆ let

c(y) = u−1 (w) , (11)

W (y) = w,

a(z) = 0.

Lemma 11 in Section 4 shows that in the definition of the action scheme a above, the
global incentive constraint (IC) is essentially equivalent to the local incentive constraint.
Note that a simple policy depends on Fζ , ε, ∆ and w. A simple policy is feasible

for (8): it satisfies the (PK) and (IC) constraints by construction, and W (y) ∈ I for all
y, if the period length ∆ is small enough. Finally, note that even for fixed parameters
Fζ , ε, ∆ and w there are many simple policies, each corresponding to some ε-suboptimal
policies in the problems (2) and (6).14

For any initial agent’s promised value w ∈ [0, ū), a set of simple policy functions for
all promised values in [0, ū) generates a full (wage) contract-action plan.

14Without additional assumptions, optimal policies for the two problems need not exist.
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Figure 3: Continuation values for the AC and PHI cases in Definition 1, where k = r̃er∆.

Definition 2 For any ζ ≥ 0 and Fζ solving (6) on an interval I, ∆ > 0, w ∈ [0, ū)
and ε > 0 let a simple contract-action plan be that defined recursively by a set of simple
policies for all w ∈ [0, ū). That is, if (a, c,W ) is a simple policy for w, the plan specifies
(a0, c0) = (a, c). Then, for each signal y, if ŵ = W (y) and (â, ĉ, Ŵ ) is a corresponding
simple policy for ŵ, the plan specifies (a1, c1) = (â, ĉ) for the second period. And so on.

Given a continuation value w for the agent - as a state variable - the algorithm for
deriving a simple contract-action plan is as follows. An ε-suboptimal policy (ā, h̄, c) of
the HJB equation (6) at w determines the wage payment and the approximate mean
effort and mean cost of effort in the current period. Given (ā, h̄), an ε-suboptimal policy
(a, v) in the problem of minimizing the variance of transfers (2) is used to construct the
scheme of incentivizing continuation values. The continuation value scheme, as a function
of the public signal, is equal to function v, which must be linearly rescaled accordingly
to the period length and the promised continuation value, as well as truncated at a high
absolute value. The action scheme is approximately the same as a; the difference is due
to the fact that the truncation of v affects the incentives to a small degree (see Section
4.3).

Remark 1 In the pure hidden information case, the v in the definition of a simple policy
at w is continuous and piecewise twice continuously differentiable (see the definition of
Θ). From now on we assume that for any ε > 0, there is a common finite set Dε such
that the set of functions v′′ for all w ∈ [0, ū) are equicontinuous outside of Dε, which is
without loss of generality15.

15The proof is immediate from the fact that
(
F ′ζ (w) , F ′′ζ (w)

)
is continuous on I, and so for a fixed

policy (ā, h̄, c) the right-hand side of equation (6) is contionuous in w. Since I is compact, this shows
that for any ε > 0 the set of ε-soboptimal policies (ā, h̄, c) can be assumed to be finite, which yields the
proof.
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By construction, any simple contract-action plan is incentive compatible. Therefore,
its value to the principal is bounded above by F∆. The following Theorem, which is the
second main result of the paper, shows that any simple contract-action plan is close to
optimal (proof is in Section 4).

Theorem 2 For ζ ≥ 0 and Fζ solving (6) with the boundary conditions (4) and (5)
on an interval I = [0, wsp,ζ ], period length ∆, agent’s promised value w ∈ [0, ū) and an
approximation error ε > 0 a simple contract-action plan is [O(ζ) + O (ε) + O(∆1/3)]-
suboptimal.

In the case of pure hidden action, we follow up on Lemma 1 and Example 2 from the
previous section but now in the context of contract-action plans.

Lemma 5 Consider a pure hidden action model with density gX(x). Then a simple
contract-action plan is based on a process of continuation values that is truncated linear
in the likelihood ratio. More precisely, it is based on simple policies (a, c,W ) such that for
any w ∈ [0, wsp,ζ ]

∆ the process of continuation values driven by the public signal (revenue)
is given by:

W (y) = C −
√

∆r̃er∆λ(y)× 1|λ(y)|≤Mε where λ(y) =
h′(ā)

V LR(gX)
× g′X(y/

√
∆)

gX(y/
√

∆)

and ā and C are as in Definition (1).

Example 4 Consider again pure hidden action models for normal, double exponential
and “linear” distribution, all with variance σ2. Then the simple contract-action plans
from Lemma 5 have continuation values processes given by

W n (y) = C1 + C2 × y × 1|y|≤C3 ,

W 2e (y) =

{
C, when y ≥ 0
C, when y < 0

,

W l
X (y) = C1 + C2 ×

sgn (y)

(1− |y|) × 1(1−|y|)−1≤C3
,

for appropriate constants, as in Lemma 5.

Holmstrom and Milgrom [1987] show that in the continuous time model it is optimal
to use transfers linear in the public signal. The Lemma above generalizes this result,
with the standard interpretation of continuation values as “transfers in utility”: In the
pure hidden action discrete time models and arbitrary noise structure, it is essentially
optimal to use transfers linear in the likelihood ratio. (For the normal noise, likelihood
ratio is equal to the public signal.) For example, when noise is double exponential the
continuation values in every period take only two values, with the threshold signal of
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zero. We note that while such threshold schemes are often optimal in cases when agent
has only two actions available, in our model the agent has continuum of available actions.

In the following we ask the question whether, as period length shrinks, the details of
the signal structure matter for the design of approximately optimal contracts. Recall that
in the case of values (Theorem 1) the dependence was fully captured by the variance of
incentivizing transfers function Θ. However, note that the simple contract-action plans
in Lemma 5 and Example 4 look very different for different noise distributions, even if
they correspond to the same Θ: witness the case of the normal distribution with variance
1 and a double-exponential distribution with variance 2 (Theorem 1 and Example 4).
It is not diffi cult to establish that, in the pure hidden action model, the contract-action
plans must be based on continuation value processes that are close to linear in likelihood
ratio, as in Lemma 5. Thus, for example, while the continuation values linear in revenue
will work for the normal noise, they will be very suboptimal when the noise is double-
exponential. One would like to conclude from this that there is no single contract that
will work for two different noise structures.
The following Proposition establishes that the conclusion is in fact correct. We note

that the conclusion requires a more elaborate argument than the discussion above sug-
gests, as the continuation value process is defined endogenously, relative to the noise
structure (the same contract gives rise to different processes, for different noise struc-
tures).
Consider two noise distributions with densities gX and γX that have the same variance

of likelihood ratio but linearly independent likelihood ratios:

V LR (gX) = V LR (γX) , inf
C
Eg,γ

[
g′X (xg)

gX (xg)
− Cγ

′
X (xγ)

γX (xγ)

]2

> 0. (12)

Proposition 4 For any ∆ > 0 consider two pure hidden action models with noise den-
sities gX and fX that satisfy (12). For every wg, wf ∈ (0, wsp) there exists δ > 0, such
that for suffi ciently small ∆ there is no contract {cn} that is δ-suboptimal for the two
distributions and delivers values wg and wf .

The proof is in the online Appendix C. The Proposition compares the contracts for
the special case of signal structures with pure hidden action and the same values of the
optimal contracts (as period length shrinks). While this is the most relevant case, as this
is exactly when one would suspect the same contract to work, we also comment in the
Appendix how to extend the proof to the case of arbitrary two signal structures.
A different way to interpret the result is to say that knowing the optimal continuous-

time contract only would provide little guidance as to how the (close to) optimal discrete
time contracts look like, no matter how short the period length. Such contracts must
depend on the distribution of noise in the discrete-time models, as in Theorem 2.

On the other hand, in the context of pure hidden action models with the same variance
of likelihood ratio, the simple contract-action plans determine the unique continuous-time

23



contract. For any continuous time Brownian Motion process {Bt} and V LR (gX) > 0,
w ∈ [0, ū) consider a continuous time process {Wt} that starts at w and satisfies the
stochastic differential equation:

dWt = r (Wt − u (c (Wt)) + h (a (Wt))) dt+ r
h′ (a (Wt))√
V LR (gX)

dBt, (13)

where c (Wt) and a (Wt) are the minimizers16 in the solution of (3) with the boundary
conditions (4) and (5), together with:

Wt = Wτ , for t ≥ τ ,

where τ is a random time when Wt hits 0 or wsp. The process determines a pair of
continuous time processes ({ct}, {at}) such that:

at =

{
a (Wt), for t < τ
0, for t ≥ τ

, ct =

{
c (Wt), for t < τ
−F (Wτ ), for t ≥ τ

. (14)

In the case when V LR (gX) = 1, for any promised value to the agent w ∈ [0, ū), the
pair ({ct}, {at}) is the optimal continuous-time contract derived in Sannikov [2008].17
The proof follows from the Invariance Principle (see e.g. Theorem 4.20 in Karatzas and
Shreve [1991]).

Lemma 6 Consider a pure hidden action model with noise density gX . For any ε,∆ > 0
and w ∈ [0, ū) let ({c∆,ε

n }, {a∆,ε
n }) be a simple contract-action plan for Fε solving (6) with

the boundary conditions (4) and (5). Then

lim
ε→0

lim
∆→0

({c∆,ε
t }, {a∆,ε

t }) = ({ct}, {at}),

where ({ct}, {at}) is the process defined by (13) and (14) for w, ({c∆,ε
t }, {a∆,ε

t }) is the
linear interpolation of ({c∆,ε

n }, {a∆,ε
n }), and the convergence is in the weak∗ topology.

4 Proof of Theorems 1 and 2

4.1 Bellman Operators

Recall the Bellman operator T∆
I associated with the principal’s problem, i.e. the stage-

game maximization problem parametrized by the agent’s continuation value, defined in
(8). In particular, T∆

[0,ū) is the Bellman operator associated with the principal’s optimiza-
tion problem. The following Proposition is a direct consequence of self-generation.

16The sets [0, A] and
[
0, u−1 (wsp)

]
are compact, while the right hand side of (3), for the case when

h = h (a) is continuous in a and c, except possibly at a = 0. Since however in this case the policies
satisfy a > 0 (see Proposition 1), then the right hand side has the same value and policy as the problem
for which Θ (0, 0) := lima→0 Θ (a, h (a)).
17We identify two processes that agree in distribution;
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Proposition 5 F∆ is the largest fixed point f of T∆
[0,ū) such that f ≤ F .

More generally, for any interval I ⊂ R, let F∆
I be the largest fixed point f of T∆

I such
that f ≤ F .

Proposition 6 Let I ⊂ R be any interval. Then for any two bounded functions f1, f2 :
I → R, |T∆

I f1 − T∆
I f2|+I ≤ e−r∆|f1 − f2|+I .

Proof. The proof is analogous to that of the Blackwell’s theorem (Blackwell [1965]).

In order to establish our results, it will be useful to also consider other related Bell-
man operators with a modified objective function and/or constraints. If we restrict the
consumption schedule c (y) to be constant, we obtain the operator T∆,c

I . This is the
appropriate operator when the principal is restricted to offer wage contracts only. In the
pure hidden information case, let us also analogously define T∆,d

I f(w) as T∆,c
I f(w) with

the additional constraints that a(·) is piecewise continuously differentiable and W (·) is
continuous. In the absolutely continuous case, we let T∆,d

I = T∆,c
I .

We also consider a modified Bellman operator with a quadratic objective function
and simplified constraints. The continuation value f(W (y)) in the objective function
is replaced by its quadratic approximation around the agent’s promised value w, the
feasibility constraint on continuation values is dropped, the consumption schedule is
restricted to be constant, only first order conditions are required, and the signal y =
∆[x+ a(z)] is approximated by just ∆x:18

T∆,qf(w) = sup
a,c,W

Φ∆,q(a, c,W ; f, w) (15)

s.t. a(z) ∈ A ∀z, c ≥ 0, and W (y) ∈ R ∀y
w = E∆

[
r̃∆[u(c)− h(a(z))] + e−r∆W (∆x)

]
(PKq)

r̃h′(a(z)) = −e
−r∆

∆

∫
R
W (∆x)g∆′

X|Z(x|z)dx ∀z (FOCq-AC)

r̃h′(a(x)) = e−r∆W ′(∆x) ∀x (FOCq-PHI),

where

Q(v; f, w) = f(w) + f ′(w)(v − w) +
f ′′(w)

2
(v − w)2 and

Φ∆,q(a, c,W ; f, w) = E∆
[
r̃∆[a(z)− c] + e−r∆Q(W (∆x); f, w)]

]
. (16)

Moreover, in the pure hidden information case, the sup is over piecewise continuously dif-
ferentiable functions a(·) and continuous functions W (·), and the (FOCq-PHI) condition
is required everywhere except for the (finitely many) points of discontinuity of a(·).
18When a(z) = 0, the equalities in the IC constraints below should be replaced by the inequality

r̃h′(0+) ≥ r.h.s, and when a(z) = A, these equalities should be replaced by r̃h′(A−) ≤ r.h.s. In the pure
hidden information case, when a(z) = 0 or a(z) = A, at an optimum the inequalities are attained with
equality (see e.g. Edmans and Gabaix [2011]).
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Figure 4: Quadratic approximations.

4.2 From Bellman Operators to HJB Equation

Below we establish the bounds in Theorem 1 and the proof of Theorem 2. Uniqueness of
the solutions Fζ of the differential equations and the existence of the limits F = limFζ
and wsp = limwsp,ζ in the statement of the Theorem 1 rely solely on the properties of the
differential equations (3) and (6) and are established in the online Appendix B (Corollary
3), where we more broadly analyze their properties.
The proof is based on the following crucial Proposition 7 and Lemma 7. The Propo-

sition establishes that, roughly, Fζ is close to being a fixed point of the T∆
I operator, and

that the simple policies are almost optimal in the problem T∆
I Fζ . Lemma 7 establishes

that if Fζ is close to a fixed point of T∆
I then the largest fixed point must be close to Fζ ,

and that the almost optimal policies for T∆
I Fζ are almost optimal in the full dynamic

programming problem.19

Proposition 7 Fix ζ ≥ 0 and Fζ solving the HJB equation (6) on an interval I with
F ′′ζ < 0. Then |T∆

I Fζ − Fζ |I∆ = o(∆) + O (ζ∆). Moreover, for any ε > 0, ∆ > 0 and
w ∈ I∆, Φ∆(a, c,W ;Fζ) ≥ Fζ(w) − O(ε∆) − O (ζ∆), where (a, c,W ) is a simple policy
defined for (Fζ , ε,∆, w) by (10) and (11).

For an interval I, ∆ > 0 and a set of feasible policies p = {(a, c,W )}w∈I for the
Bellman operator T∆

I let T
∆,p
I be the operator defined as T∆,p

I f(w) = Φ∆(a, c,W ; f), and
let F∆,p

I be the value achieved by the policies p. Note that F∆,p
I is a fixed point of T∆,p

I .

Lemma 7 Let F be defined on an interval I.
(i) If for some ε ≥ 0 and J ⊆ I∣∣T∆

I F − F
∣∣+
J

= o (∆) +O (ε∆) ,

19See also proof below Lemma 7 in Biais, Mariotti, Plantin, and Rochet [2007].
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then ∣∣F∆
J − F

∣∣+
J

= O (ε) +
o (∆)

∆
.

(ii) If for some ε ≥ 0 and J ⊆ I∣∣∣F − T∆,p
I F

∣∣∣+
J

= o (∆) +O (ε∆) ,

then ∣∣∣F − F∆,p
I

∣∣∣+ = O (ε) +
∣∣∣F − F∆,p

I

∣∣∣+
I\J

+
o (∆)

∆
.

Proof. (i) Fix ∆ > 0 We have∣∣F∆
J − F

∣∣+
J
≤

∣∣F∆
J − T∆

J F
∆
J

∣∣+
J

+
∣∣T∆
J F

∆
J − T∆

J F
∣∣+
J

+
∣∣T∆
J F − F

∣∣+
J
≤

≤ e−r∆
∣∣F∆

J − F
∣∣+ +

∣∣T∆
J F − F

∣∣+
J
,

Consequently

∣∣F∆
J − F

∣∣+ ≤ ∣∣T∆
J F − F

∣∣+
J

r∆
≤
∣∣T∆
I F − F

∣∣+
J

r∆
= O (ε) +

o (∆)

∆
.

(ii) The proof is analogous to case (i).

Given Proposition 7 and Lemma 7, the proof of Theorems 1 and 2 is as follows. For
any ζ,∆ > 0 and Fζ defined on I = [−∆1/3, ū + ∆1/3] the Proposition implies that
|T∆
I Fζ − Fζ |[0,ū) = o(∆) + O (ζ∆), and so part (i) of the Lemma with J = [0, ū) implies

that ∣∣F∆ − Fζ
∣∣+
[0,ū)

= O (ζ) +
o (∆)

∆
.

27



On the other hand, for any ζ,∆ > 0, Fζ defined on I = [0, wsp,ζ ], an approximation
error ε > 0 and the corresponding simple contract-action plan based on the set of sim-

ple policies p = {(a, c,W )}w∈I , we have, from the Proposition, that
∣∣∣Fζ − T∆,p

I Fζ

∣∣∣+
I∆

=

o (∆) +O (ε∆) +O (ζ∆) . Thus, part (ii) of the Lemma implies that∣∣∣Fζ − F∆,p
I

∣∣∣+
I

= O (ζ) +O (ε) +
∣∣∣Fζ − F∆,p

I

∣∣∣+
I\I∆

+
o (∆)

∆
=

= O (ζ) +O (ε) +
o (∆)

∆
.

The last equality follows from the continuity of Fζ , Fζ (0) = F∆,p
I (0) and Fζ(wsp,ζ) =

F (wsp,ζ) ≤ F∆,p
I (wsp,ζ). This concludes the proof of both Theorems.

4.3 Proof of Proposition 7

The proof of Proposition 7 is established by a series of Lemmas that relate values of
Bellman operators applied to the function F from Theorem 1, as well as their policy
functions. Below we provide an outline of the argument, while the detailed proofs are in
Appendix A. As regards the values, the line of argument can be illustrated as follows:

F ∼
Lemma 9

T∆,qF ∼
Lemma 10

T∆,d
I F ∼

Lemma 12
T∆,c
I F ∼

Lemma 13
T∆
I F.

The following Lemma shows the connection between the Bellman operator T∆,q, for
short period length ∆, and the HJB equation (3).

Lemma 8 Consider any twice differentiable function F : I →∞ with F ′′ < 0. Then:

T∆,qF (w)− r̃∆ sup
a,h,c

{
(ā− c) + F ′(w)[w + h̄− u(c)] + er∆

F ′′(w)

2
r̃Θ(ā, h̄)

}
= e−r∆F (w) +O

(
∆2
)
.

Moreover, for a fixed ε-suboptimal policy
(
a, h, c

)
in the problem above, together

with an ε-suboptimal policy (a, v) in the problem Θ
(
a, h
)
, for any ∆ > 0 the policy(

a∆
q , c

∆
q ,W

∆
q

)
, with

c∆
q = c. (17)

W∆
q (y) = w + r̃∆er∆[w + h̄− u(c)] + r̃

√
∆v(
√

∆y),

a∆
q (z) = a(

√
∆z),

is feasible and O (ε∆)-suboptimal for T∆,qF (w).
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The intuition for the Lemma is as follows. Finding the optimal policy (a, c,W ) for
the problem T∆,qF (w) can be split into two stages: first, choosing optimal mean action
a, mean effort h and wage c, and second, choosing optimal action scheme a corresponding
to a, h together with optimal incentivizing continuation value scheme W . As regards the
second step, given the quadratic approximation of F , it is only the first two moments ofW
that are relevant. The first moment is fully pinned down, given a, h and c, by the promise
keeping (PKq) constraint. Minimization of the second moment is, after renormalization
with respect to period length ∆, precisely the definition of Θ.
The following is essentially a corollary to the previous Lemma. We will call the

policies defined in (17) quadratic simple.

Lemma 9 Fix ζ ≥ 0 and Fζ solving the HJB equation (6) on an interval I with F ′′ζ < 0.
Then |T∆,qFζ−Fζ |I = o(∆)+O (ζ∆). Moreover, for any ε,∆ > 0, w ∈ I and correspond-
ing quadratic simple policy (aq, cq,Wq), Φ∆,q(aq, cq,Wq;Fζ , w) ≥ Fζ(w)−O(∆ε)−O (ζ∆),
uniformly in I.

Next Lemma shows that simplifications implicit in the definition of T∆,q - quadratic
approximation of F , possibly unbounded values of W , only local incentive constraints,
approximating public signal with just ∆x - are negligible when period length ∆ is short.
(We deal with constant consumption in Lemma 13.) Simple policies (Definitions 1 above
and 4 in Appendix A) differ from quadratic simple policies above (see Definition 3) in
that, essentially, they undo those simplifications: the tails of the continuation values are
truncated, the local IC implicit in the quadratic simple policies is replaced by the global
IC and the public signal is ∆[x+ a (z)].

Lemma 10 Let F : I → R be twice continuously differentiable with F ′′ < 0. Then
|T∆,d
I F − T∆,qF |I∆ = o(∆). Moreover, for fixed ε > 0 consider quadratic simple policies

(aq, cq,Wq) for T∆,qF (w), ∆ > 0, w ∈ I∆. Then for ∆ suffi ciently small, w ∈ I∆ and the
corresponding simple policies (a, c,W ), Φ∆(a, c,W ;F ) ≥ Φ∆,q(aq, cq,Wq;F,w)− O(ε∆),
uniformly in w.

The simple policies achieve similar values to the quadratic simple policies for the
following reasons. First, the truncation of continuation values has little effect on the
incentives. In the pure hidden information case, agent’s incentives, given private signal
(“noise”), are determined by the slope of W at nearby revenue realizations. Therefore,
giving up slope of the continuation valuesW at the tails affects agents incentives only for
extreme noise realizations. In the absolutely continuous case, given that F ′′ is negative
and bounded away from zero, usingW far away from its mean is costly. Under assumption
(A2-AC), there are hardly any revenue realizations that are so informative of agent’s effort
to be worth the cost of such extreme continuation values. Thus the truncation affects
agents incentives only slightly.20 On the other hand, given the truncation, the quadratic

20See also Sannikov and Skrzypacz [2007].
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approximation of F has little effect on the value of the problem and continuation values
are included in I.
Second, in the AC case, since the effect of the agent’s effort on the distribution of

public signal is small, the optimal incentivizing schemeW under local IC only is such that
the agent faces incentives almost constant in his own action (the expected continuation
value is almost linear in his own action). Given strict convexity of the cost of effort, the
agent’s problem is strictly convex and local incentives are suffi cient. Also, approximating
public signal by just ∆x affects incentives, and so the agent’s action only slightly. In the
PHI case the problem facing the agent could be nonconvex only at the noise realizations
close to the finitely many points of discontinuity of W . Thus, we also have the following
Lemma.

Lemma 11 Consider any simple policy (a, c,W ) defined in (10) for I,F, ε,∆, w.
(i) In the AC case, for suffi ciently small ∆, a (z) is the unique action that satisfies

the local version of (IC), for all z.
(ii) In the PHI case, for suffi ciently small ∆, a (x) is one of at most two actions that

satisfies the local version of (IC), for all x.

The next Lemma is relevant only for the PHI case. It establishes that the restriction
to piecewise continuously differentiable policies a and continuous W is without loss of
generality. The proof is closely related to the analogous results in the static mechanism
design with quasilinear utilities.

Lemma 12 Let Z = X, and let F : I → R be twice continuously differentiable with
F ′′ < 0. Then |T∆,d

I F = T∆,c
I F |I∆ = o(∆).

The last Lemma needed to establish the proof of Proposition 7 shows that the restric-
tion to wage contract-action schemes is without loss of generality.

Lemma 13 Assume F : I → R is twice continuously differentiable and F ′′ < 0. Then∣∣∣T∆,c
I F − T∆

I F
∣∣∣
I∆

= o (∆) .

Intuitively, since with short periods the signal about agent’s action is weak, in order to
provide nonegligible incentives the variation in utility from signal-contingent payments
must be of high order

√
∆. While the continuation value function may provide such

incentives, the direct money payments are only of order ∆. Thus, changing consumption
to be constant affects the incentives only slightly.

5 Extensions

5.1 Changing signal structure

Suppose now that for period length ∆ the private signal z is distributed with density
γ∆
Z , while given the private signal z and action a the revenue y is distributed with
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density γ∆ (y|z, a). This extends the model in the paper along two dimensions. First, it
generalizes the way the period length ∆ parametrizes the distribution of signals. Second,
it generalizes the way agent’s effort affects the distribution of public signal.
For any a and h ≥ h (a) consider the following problem:

Θ∆(a, h) = inf
a,v

∫
v2(y)γ∆(y|z, a(z))γ∆

Z (z)dydz, (18)

ā =

∫
a(z)γ∆

Z (z)dz

h̄ =

∫
h(a(z))γ∆

Z (z)dz

a(z) ∈ arg max
a∈A

{
−r∆h(a) + e−r∆

∫
R
v(y)γ∆(y|z, a(z))dy

}
∀z.

Similarly, if z and y take only countably many values and γ∆
Z , γ

∆ stand for probabil-
ities, Θ∆ is defined analogously, with sums replacing integrals.
Suppose that for any such h, a lim∆→0

Θ∆(a,h)
∆

= Θ(a, h) for some function Θ, where
the convergence is uniform. Then all our results can be extended to this general case
(with the obvious changes in the definition of the optimal contracts). Below we consider
three examples.

5.1.1 Examples:

General mean shifting effort. We generalize the basic model by allowing the ef-
fect of effort on the revenue to vary with noise. In particular, fix a twice continuously
differentiable, bounded function φ and for any period length ∆ > 0 let

y = x+ ∆φ(x/
√

∆, a),

where the noise x and the private signal z are distributed with the joint denisty g∆ as
before.
With just slight changes in notation in the proof one establishes that

Θ(a, h) = inf
a,v

E
[
v(x)2

]
s.t. ā = E[φ(x, a(z))], h̄ = E[h(a(z))],

h′(a(z)) = −
∫
R
v(x)g′(x|z)φ2(x, a)dx ∀z (FOCΘ-AC)

h′(a(x)) = v′(x)φ2(x, a) ∀x (FOCΘ-PHI)

In particular, in the pure hidden action case, for any target action a, the optimal v
function is linear in [g′(x)φ2(x, a)/g(x)], andΘ(a, h(a)) = h′(a)×E[(g′(x)φ2(x, a)/g(x))2].

Folk Theorem. Consider now the model in which for every period length ∆ we have
y = ∆s, where s is a (public) signal with distribution that depends on action a and is

31



independent of ∆. The analysis in this case coincides with the analysis of a discrete time
model with fixed period length 1 and a fixed distribution of signals γS, in which the per
period discount factor converges to one. For simplicity let us consider the pure hidden
action case and assume that the sets of available actions A and possible public signals S
are finite, with conditional probabilities p (s|a) .
In our model only one player’s actions affect the public signal, and so the stan-

dard identifiability assumptions (see Fudenberg, Levine, and Maskin [1994]) reduce to
{p (·|a)}a∈A being linearly independent. Given linear independence, for any a ∈ A there
exists a function ζa such that:∑

s∈S
ζ (s) p (s|a) = 0, (19)∑

s∈S
ζ (s) p (s|a′) ≤ e−rr [h (a′)− h (a)] .

In other words, for the period length 1 the policy (a, ζa) satisfies the constraints of the
problem (18) for (a, h) = (a, h (a)) and so Θ1(a, h (a)) ≤

∑
s∈S (ζa (s))2 p (s|a) .

Now, for the period length ∆ > 0, for any action a the function ζ∆
a (y) = ∆e−r

e−r∆ ζa
(
y
∆

)
satisfies the constraints of the problem (18) for (a, h) = (a, h (a)), since for any action a′

we have:

−r∆h(a′) + e−r∆
∑
y∈∆S

ζ∆
a (y) γ∆ (y|a′) = ∆

[
−rh(a′) + e−r

∑
s∈S

ζa (s) p (s|a′)
]
,

and the result follows form the case ∆ = 1. Therefore

Θ∆(a, h (a)) ≤
∑
y∈∆S

(
ζ∆
a (y)

)2
γ∆ (y|a) = ∆2 e

−2r

e−2r∆

∑
s∈S

(ζa (s))2 p (s|a) = O
(
∆2
)
.

Consequently, the limit of the values of the optimal contracts is described by the solution
to the HJB equation (3) with Θ(a, h) = lim∆→0

Θ∆(a,h)
∆

= 0, and so, due to Proposition 3,
in the limit the first best outcome is achievable. In other words, for the particular model
that we considered we recover the Folk Theorem result.

Shifting Volatility. Suppose now that the agent’s action determines the volatility
of the revenue process. More specifically, let the set of available actions A ⊂ (0, 1) be
finite and for any period length ∆ the revenue be normally distributed with mean 0
and variance ∆ (1− a).21 Note that unlike in the previous example the signal structure
is not independent of ∆, i.e. revenue cannot be written as ∆s with distribution of s
independent of ∆.

21The model is trivial in the case when the Principal is risk neutral. If we assume that the Principal
has mean-variance preferences up (Fy) = E [y]− V ar [y], his per period utility is equal to ∆ (1− a− c),
and so (up to a constant) the same as considered in the paper.
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For the model with ∆ = 1 the set of conditional densities {γ1 (·|a)}a∈A is linearly
independent and so, just as in the example above, for any a ∈ A the exists a function ζa
satisfying (19). Consequently Θ1(a, h (a)) ≤

∫
(ζa (y))2 γ1 (y|a) dy.

With the period length ∆ > 0, for any action a the function ζ∆
a (y) = ∆e−r

e−r∆ ζa

(
y√
∆

)
satisfies the constraints of the problem (18) for (a, h) = (a, h (a)), since for any action a′:

−r∆h(a′) + e−r∆
∫
ζ∆
a (y) γ∆ (y|a′) dy = −r∆h(a′) + e−r∆

∫
ζa

(
y√
∆

)
γ∆ (y|a′) dy

= ∆

[
−rh(a′) + e−r

∫
ζa (y) γ1 (y|a′) dy

]
,

and the result follows form the case ∆ = 1. Therefore, as above, Θ∆(a, h (a)) = O (∆2),
and in the limit the first best outcome is achievable.

5.2 Changing payoff structure

The method can also be used to the models with different payoffstructure. One important
example concerns the problems with diversion of cash-flows (see DeMarzo and Fishman
[2007], Demarzo and Sannikov [2006], Biais, Mariotti, Plantin, and Rochet [2007]). The
difference with the model in the previous sections is that the “cost”of effort to the agent
will not be independent of consumption, but is in fact expressed directly in monetary
terms.
The action a of the agent will be interpreted as the amount of money diverted from

the cash flow, after the cash flow is observed. To be able to compare the results with the
literature we let a ∈ A = [0,∞). Agent’s benefit, in monetary terms, from stealing a is
h (a), where h is a concave function such that h′ < 1 and h′ (a) = γ < 1 for a ≥ A. For
any ∆ the stage game payoffs are thus:

uP (a, c) = ∆ (drift− a− c) + noise,

uA (a, c) = ∆u (c+ h (a)) .

We thus go beyond the “linear”approach in the literature and allow the h function
to be nonlinear as well as agent to be risk averse. Furthermore, as in the literature, we
assume that in every period after observing the public signal the principal can break the
contract, which will result in a continuation payoffs wP , wA > 0 for the principal and the
agent.
Few remarks. One can show that the payoffs to the principal and the agent cannot

fall below wP and wA (see DeMarzo and Fishman [2007], Demarzo and Sannikov [2006],
Biais, Mariotti, Plantin, and Rochet [2007]). Also, the optimal contracts will never
require the agent to divert more than some finite amount A . In contrast to the “linear”
case, however, even the optimal contract may require the Agent to divert nonnegative
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amount. One can show that the values of the optimal contracts converge to F , where F
is the maximal function that solves

F (w) = max
ā,ū,c

{
drift− (ā+ c) + F ′ (w) (w − ū) +

rF ′′ (w)

2
Θ (ā, ū, c)

}
,

F (wA) = wP , F ≤ F ,

where

Θ(ā, ū, c) = inf
a,v

∫
v2(x)g(x)dx, (20)

s.t. ā =

∫
a(x)g(x)dx

ū =

∫
u(c+ h(a(x)))g(x)dx

v′ (x) = u′(c+ h(a(x)))h′(a(x)).

Note also that allowing the agent to be risk averse, we can treat this model as a model
of insurance: Agent observes own income, decides how much to report (where reporting
less than truth might involve some effi ciency loss). The principal can decide to end
the relationship, which here might mean that he implements a costly perfect monitoring
scheme so that the parties get the first best minus the exogenously determined cost of
monitoring.

6 Conclusions

We study a rich family of dynamic agency problems that includes the standard hidden
action and hidden information models as special cases. We develop a quadratic approx-
imation method that, when the period length is short, allows us to characterize the
upper boundary of the equilibrium value set by a differential equation, and to construct
contracts that are both relatively simple and almost optimal. The quadratic approxima-
tion method developed here should be useful in many dynamic settings with asymmetric
information (for example repeated partnerships and oligopoly games).
The solutions we derive depend on the information structure, including the corre-

sponding densities of signals. Nevertheless our method is very tractable as it involves
solving a family of simple static problems and a differential equation. The upper bound-
ary of the equilibrium value set depends on a single parameter of the information struc-
ture, the variance of incentive transfers. The simple contracts are built from the optimal
solutions of the static problems, which are functions of the likelihood ratios of public
signals familiar from the static contracting literature.
In particular, while easy to construct, the contracts are sensitive to the details of

the information structure, for any period length. The upper boundary of the value set
of the continuous time model is the limit, as the period length shrinks to 0, of the
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boundaries for the discrete time models with particular information structures, whereas
the optimal continuous time contract does not provide enough information to construct
(approximately) optimal discrete time contracts.

A Proofs for Section 4.3

The following Lemma will be used throughout the paper. It says that for any period
length ∆ > 0 and any of the Bellman operators applied to a strictly concave function
F , the continuation value policy function must have variance at most proportional to ∆.
Intuitively, this must be the case in order to bound the effi ciency loss, due to the high
variance and strict concavity of F , by potential per-period gains, which are of order ∆.

Lemma 14 Let I = [w,w] and F : I → R be twice continuously differentiable with
F ′′ < 0. Suppose that the policy (a, c,W ) is ∆-suboptimal for the problem XF (w) , with
w ≤ e−r∆w and X any of the Bellman operators T∆

I , T
∆,c
I , T∆,d

I and T∆,q. Then for
some V that depends on F only we have V∆ [W (∆[x+ a(z)])] ≤ V∆.

Proof. In each of the above problems the policy (a, c,W ) = (0, 0, er∆w) is an avail-
able policy that satisfies all the constraints and delivers a value of at least F (w) +
[minF ′]

(
er∆ − 1

)
w = F (w) + O(∆). Let ĥ = E∆[h(a(z))], û = E∆[u(c(∆[x + a(z)]))]

and Ŵ = E∆[W (∆[x+ a(z)])]. The promise-keeping constraint implies that

Ŵ − w = r̃∆er∆[w + ĥ− û] = O(∆),

since w ∈ [w,w], ĥ ∈ [0, h(A)] and û ∈ [0, ū]. Therefore, W (∆[x + a(z)]) − w =
(W (∆[x+ a(z)])− Ŵ ) + (Ŵ − w) implies

E∆[(W (∆[x+ a(z)])− w)2] = V∆ [W (∆[x+ a(z)])] +O(∆2).

Consequently, for Y either Φ∆,q (a, c,W ;F,w) or Φ∆ (a, c,W ;F ) we have Y ≥ F (w) +
O (∆) and

Y ≤ r̃∆A+e−r∆
(
F (w)+r̃∆er∆F ′(w)[w+ĥ−û]+

maxF ′′

2
V∆ [W (∆[x+ a(z)])]

)
+O(∆2),

which after rearranging terms gives the result for an appropriate V .

Proof. (Lemma 8) Fix w ∈ I and any feasible policy (a, c,W ) for T∆,qF (w), let ā =
E∆[a(z)], h̄ = E∆[h(a(z))] and W̄ = E∆[W (∆x)]. As in the proof of Lemma 14, the
promise-keeping constraint for T∆,qF (w) implies that W̄ − w = r̃∆er∆[w + h̄ − u(c)].
Therefore, T∆,qF (w) equals

= sup
a,c,W

{
r̃∆(ā, c) + e−∆rE∆[F (w) + F ′(w)(W (∆x)− w) +

1

2
F ′′(w)(W (∆x)− w)2]

}
≈ r̃∆ sup

a,c,W

{
(ā− c) + F ′(w)[w + h̄− u(c)] + e−r∆

F ′′(w)

2r̃∆
V∆[W (∆x)]

}
+ e−r∆F (w)

≈ r̃∆ sup
a,h,c

{
(ā− c) + F ′(w)[w + h̄− u(c)] + er∆

F ′′(w)

2
r̃Θ(ā, h̄)− F (w)

}
+ e−r∆F (w),
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where the two approximations are of O(∆2) and the last line follows from the definition
of Θ(ā, h̄), as we argue below.
For a given (ā, h̄), since F ′′(w) < 0 and

∫
g∆′
X|Z(x|z)dx = 0, the above optimization

problem involves the subproblem

inf
a,W0

E∆[W0(x)2]

s.t. ā = E∆[a(z)], h̄ = E∆[h(a(z))], 0 = E∆[W0(x)],

r̃h′ (a (z)) = −e
−r∆

∆

∫
W0(x)g∆′

X|Z(x|z)dx ∀z (FOC-AC),

r̃h′ (a (x)) = e−r∆W ′
0(x) ∀x (FOC-PHI),

where W0(x) = W (∆x) − W̄ . Note that the constraint 0 = E∆[W0(x)] can be dropped
since it will be satisfied by a solution (or infimum sequence) of the relaxed problem.
Also recall that g∆

X(x) =
√

∆gX(x
√

∆), g∆
Z (z)) =

√
∆gZ(z

√
∆), and g∆

X|Z(x|z)) =√
∆gX|Z(x

√
∆ | z
√

∆). Hence, if v(x) = e−r∆W0(x/
√

∆)/
[
r̃
√

∆
]
and ã(z) = a(z/

√
∆),

the subproblem becomes

inf
a,v

r̃2∆e2r∆E[v(x)2]

s.t. ā = E[ã(z)], h̄ = E[h(ã(z))],

h′(ã(z)) = −
∫
v(x)g′X|Z(x|z)dx ∀z (FOC-AC),

h′ (ã(x)) = v′ (x) ∀x (FOC-PHI).

Therefore the value of this last problem is by definition r̃2∆e2r∆Θ(ā, h̄). This justifies
the substitution of Θ(ā, h̄) in the equation above and establishes the proof.

Proof. (Lemma 9) From Lemma 8 we have

T∆,qFζ(w)− Fζ (w)

= sup
a,h,c

r̃∆

{
(ā− c) + F ′ζ(w)[w + h̄− u(c)] + er∆

F ′′ζ (w)

2
r̃Θ(ā, h̄)− Fζ(w)

}
+O

(
∆2
)

= O (ζ∆) +O
(
∆2
)
.

The last equality follows because Fζ satisfies the HJB equation (6). Lemma 8 also yields
that Φ∆,q(aq, cq,Wq;Fζ , w) ≥ Fζ(w)−O (∆2)−O (∆ε)−O (ζ∆), establishing the proof.

Definition 3 For a twice differentiable function F : I →∞ with F ′′ < 0, ε > 0, w ∈ I
and ε-suboptimal policies

(
a, h, c

)
and (a, v) as in Lemma (8), the policies

(
a∆
q , c

∆
q ,W

∆
q

)
defined in (17), for ∆ > 0, will be called quadratic simple.
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Remark 2 In the pure hidden information case, the v in the definition of a quadratic
simple policy at w is continuous and piecewise twice continuously differentriable (see the
definition of Θ). We assume that for any ε > 0, there is a common finite set D such that
the set of functions v′′ for all w ∈ I are equicontinuous outside of D, which is without
loss of generality (see Remark 1).

The following two technical Lemmas are crucial for the proofs of Lemmas 10 and 11
in the absolutely continuous case. Lemma 15 will be used to show that the incentives
provided by the tails of the continuation values are negligible, for short period length.
Lemma 16 will establish that the expected continuation value for the agent is almost linear
in action, for short period length. This will be used to show strict convexity of agent’s
problem and so that the local incentives are suffi cient, as well as that approximating
public signal by ∆x hardly affects the incentives, and so agent’s action.

Lemma 15 Suppose [X|Z = z] is absolutely continuous and g satisfies (A2). For any
ε > 0 there exist Mε such that for all v : R2 → R with E∆

[
v (x, z)2] ≤ 1 the following

holds

P
[{

z :

∣∣∣∣∫
|v|>Mε

v (x, z) g′X|Z (x|z) dx

∣∣∣∣ ≤ ε

}]
≥ 1− ε.

Proof. Fix ε > 0 and consider a function v that satisfies E[v (x, z)2] ≤ 1. We have, from
the Tshebyshev’s inequality,

P
[{

z :

∫
v(x, z)2gX|Z(x|z)dx > 2/ε

}]
<

∫
v(x, z)2g(x, z)dxdz

2/ε
≤ ε/2.

Due to Assumption (A2-AC) the term

ΓN (z) =

∫
|g′
X|Z(x|z)|>NgX|Z(x|z)

g′X|Z(x|z)2

gX|Z(x|z)
dx

converges pointwise to zero as N ↑ ∞ (Lebesgue’s Monotone Convergence Theorem).
Also, there exists a set Lε ⊂ R and Nε > 0 so that PZ [Lε] > 1− ε/2 and for all z ∈ Lε,
ΓNε (z) ≤ ε3

8
. Define the set Bv

ε = Lε ∩
{
z :
∫
v(x, z)2gX|Z(x|z)dx ≤ 2/ε

}
, which satisfies

PZ [Bv
ε ] ≥ 1− ε.

Let D(z) = {x | |g′X|Z(x|z)| > NεgX|Z(x|z)}. If follows from the Cauchy-Shwartz
inequality that for all z ∈ Bv

ε∫
D(z)

∣∣v(x, z)g′X|Z(x|z)
∣∣ dx ≤ [∫ v(x, z)2gX|Z(x|z)dx×

∫
D(z)

g′X|Z(x|z)2

gX|Z(x|z)
dx

] 1
2

≤ ε

2
.

On the other hand, for Mε >
4Nε
ε2
and any z ∈ Bv

ε we have∫
{x/∈D(z):|v|>Mε}

∣∣v (x, z) g′X|Z(x|z)
∣∣ dx ≤ Nε

Mε

∫
v2(x, z)gX|Z(x|z)dx <

ε

2
.
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Altogether, the above two expressions establish that for all z ∈ Bv
ε∫

|v|>Mε

∣∣v (x, z) g′X|Z(x|z)
∣∣ dx ≤ ε,

which establishes the proof.

Lemma 16 Suppose [X|Z = z] is absolutely continuous and g satisfies (A2). For any
ε > 0 and M there exists δ̂ > 0 such that for all δ (·) with 0 ≤ δ (·) ≤ δ̂ and v : R2 → R
the following holds∣∣∣∣∫

|v|≤M
v (x, z) g′X|Z (x|z) dx−

∫
|v|≤M

v (x+ δ(z), z) g′X|Z (x|z) dx

∣∣∣∣ ≤ ε ∀z (21)

E
[
v2 (x+ δ(z), z) 1|v|≤M

]
≤ E

[
v2 (x, z) 1|v|≤M

]
+ ε.

Proof. For every x and z, |g′X|Z(x|z) − g′X|Z(x − δ(z)|z)| ≤ δ|g′′X|Z(x − ξ(x, z)|z)| for
some ξ(x, z) ∈ [0, δ(z)] ⊂ [0, δ̂]. Therefore, with δ̄ and M̄ the constants in (A2), for every

δ ≤ min
{
δ̄, ε

MM̄

}
we have that∫

|v|≤M

∣∣v(x, z)
[
g′X|Z(x|z)− g′X|Z(x− δ(z)|z)

]∣∣ dx ≤ δM

∫
R

∣∣g′′X|Z(x− ξ(x, z)|z)
∣∣ dx

≤ δMM̄ ≤ ε,

which establishes (21).
Similarly, for any δ ≤ min{δ̄, ε/[M2

√
M̄ ]} we have that∫

R

∫
|v|≤M

∣∣v(x, z)2 (g(x, z)− g(x− a(z), z))
∣∣ dxdz

≤ δM2

∫
R

∫
R

∣∣g′X|Z(x− ξ(x, z)|z)gZ(z)
∣∣ dxdz

≤ δM2

∫
R

[∫
R

g′X|Z(x− ξ(x, z) | z)2

gX|Z(x|z)
dx

] 1
2

gZ(z)dz ≤ δM2
√
M̄ ≤ ε,

with the second inequality following from the Cauchy-Schwarz inequality, which estab-
lishes the Lemma.

Definition 4 For a twice differentiable function F : I →∞ with F ′′ < 0, ε > 0, ∆ > 0,
w ∈ I∆ and quadratic simple policies (aq, cq,Wq) in the problem T∆,qF (w), define the
simple policy (a, c,W ) for T∆,c

I F (w) as

c = cq,

W (y) = C +Wq(y)1|Wq(∆x)−E∆[Wq(∆x)]|≤
√

∆Mε
(AC)

W (y) = C +


Wq(−

√
∆Mε) if ∆x < −

√
∆Mε

Wq(∆x) if |∆x| ≤
√

∆Mε

Wq(
√

∆Mε) if ∆x >
√

∆Mε

(PHI)

a(z) is an action that satisfies the (IC) constraint in (8),
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where Mε is the constant defined in Lemma 15,22 when X|Z is AC, and such that
PX([−Mε,Mε]) ≥ 1 − ε, when X ≡ Z. C is chosen to satisfy the (PK) constraint
in (8).

Note that in the case when F solves the HJB equation (6) the above definition of a
simple policy agrees with the one in Definition 1.

Proof. (Lemma 10) Fix ε > 0 and ∆ > 0 such that
√

∆ < δ/A, for δ as in Lemma 16
(with M = Mε) and w ∈ I∆.

Step 1: We first show that Φ∆(a, c,W ;F ) ≥ Φ∆,q(aq, cq,Wq;F,w)−O(ε∆), uniformly
in w. Since ε is arbitrary, in view of Lemma 8, this establishes |T∆,qF−T∆,d

I F |+
I∆ = o(∆).

By Taylor series expansion, for y = ∆[x+ a(z)]

F (W (y)) = F (w) + F ′ (w) (W (y)− w) +
1

2
F ′′ (w) (W (y)− w)2 + o([W (y)− w]2).

(PK) implies that w − E∆[W (y)] = O(∆) and
∣∣W (y)− E∆[W (y)]

∣∣ = O(
√

∆) by con-
struction (note that when Z = X the IC constraint implies W ′(y) ≤ r̃h′(A)), and so
|w −W (y)| = O(

√
∆) for all y. Therefore, for ∆ small enough the policy (a, c,W ) is

feasible when w ∈ I∆ and

Φ∆(a, c,W ;F ) ≥ r̃∆(E∆ [a(z)]− c) + e−r∆
[
F (w) + F ′(w)E∆[W (y)− w] (22)

+
F ′′(w)

2
E∆[(W (y)− w)2]

]
+ o (∆)

Let us bound from below the terms in the second line of the above expression by the
corresponding terms in Φ∆,q(aq, cq,Wq;F,w).

Case 1: X|Z has continuous density. Given the definition of W , the necessary
local version of (IC) take the following form:

−h′(a(z)) =
e−r∆

r̃∆

∫
R
W (∆[x+ a (z)])g∆′

X|Z(x|z)dx

=
1

∆

∫
|v|≤Mε

√
∆v(
√

∆[x+ a(z)])g∆′
X|Z(x|z)dx, (23)

whereas the definition of Wq and (FOCq-AC) imply

−h′(aq(z)) =
e−r∆

r̃∆

∫
R
W (∆x)g∆′

X|Z(x|z)dx =
1

∆

∫
R

√
∆v(
√

∆x)g∆′
X|Z(x|z)dx.

Lemma 14 implies that V∆
[√

∆v(
√

∆x)
]
≤ V∆, and so Lemma 15 applied to v(x) yields

P∆

[∣∣∣∣ 1

∆

∫
|v|>Mε

√
∆v(
√

∆x)g∆′
X|Z(x|z)dx

∣∣∣∣ ≤ ε

]
= P

[∣∣∣∣∫
|v|>Mε

v(x)g′X|Z(x|z)dx

∣∣∣∣ ≤ ε

]
≥ 1−ε.

22We assume, without loss of generality, that VX [v(x)]] ≤ 1 - else work with rescaled v.

39



On the other hand, from Lemma 16 follows that for suffi ciently small ∆ and every z∣∣∣∣∫
|v|≤Mε

√
∆v(
√

∆x)g∆′
X|Z(x|z)dx−

∫
|v|≤Mε

√
∆v(
√

∆[x+ a (z)])g∆′
X|Z(x|z)dx

∣∣∣∣
=

∣∣∣∣∫
|v|≤Mε

v(x)g′X|Z(x|z)dx−
∫
|v|≤Mε

v(x+
√

∆a(z))g′X|Z(x|z)dx

∣∣∣∣ ≤ ε

Consequently, with probability greater than 1− ε, |h′(aq(z)− h′ (a(z)) | ≤ 2ε, and so

P∆[|aq(z)− a(z)| ≤ 2ε

inf h′′
] ≥ P∆[|h′(aq(z)− h′(a(z))| ≤ 2ε] ≥ 1− ε. (24)

Since also c(y) ≡ cq and actions are bounded we have

r̃∆
∣∣(E∆ [aq(z)]− cq)− (E∆ [a(z)]− c)

∣∣ = O(ε∆). (25)

Subtracting (PKq) for problem T∆,qF from (PK) for problem T∆,dF and using (24), we
obtain

e−r∆F ′(w)
∣∣E∆ [W (y)]− E∆ [Wq(∆x)]

∣∣ = O(ε∆). (26)

Finally

E∆[(W (y)− w)2] = r̃2e2r∆E∆[∆v2(
√

∆[x+ a (z)])1|v|≤Mε ] +O
(
∆2
)

(27)

≤ r̃2e2r∆E∆[∆v2(
√

∆x)1|v|≤Mε ] +O (ε∆)

≤ r̃2e2r∆E∆[∆v2(
√

∆x)] +O (ε∆) = E∆[(Wq (∆x)− w)2] +O (ε∆) .

The first inequality follows from Lemma 15. The equalities follow from the definitions of
Wq and W and the fact that E∆[W (∆[x+ a(z)])− w] = O(∆) and E∆[Wq (∆x)− w] =
O(∆), from (PK) and (PKq). Inequalities (25)—(27) establish the proof of Case 1.

Case 2: X ≡ Z. Given the definition of W , the necessary local version of (IC) take
the following form:

r̃h′(a(x)) = e−r∆W ′ (y) = r̃v′(
√

∆[x+ a (x)]), (28)

whereas, given the definition of Wq and (FOCq-PHI), we have

r̃h′(aq(x)) = e−r∆W ′
q (∆x) = r̃v′(

√
∆x).

Let D be the finite set of points such that each v in the definition of the policy is
twice continuously differentiable on R\D (see Remark 2) and consider the set

N∆
ε = [−Mε/

√
∆,Mε/

√
∆− A]\

⋃
d∈D

{d/
√

∆ + ζ : ζ ∈ [0, A]}.
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For suffi ciently small ∆, P∆
[
N∆
ε

]
≥ 1− ε. Moreover, for any x ∈ N∆

ε , v
′ is continuously

differentiable on [
√

∆x,
√

∆[x+a(x)]]. Consequently, for all such x |h′(aq(x)−h′(a(x))| ≤√
∆ max v′′, where the maximum is taken over the set [−Mε,Mε], and hence

|aq (x)− a (x)| ≤
√

∆ max v′′

inf h′′
.

Since P∆
[
N∆
ε

]
≥ 1 − ε, we have that the inequalities (25) and (26) hold. Moreover, by

taking the maximum over max v′′ over [−Mε,Mε] for all w (which is well defined, due to
the assumption of equicontinuity) we establish that the bounds in those inequalities are
uniform in w ∈ I∆. Finally, (27) follows from Lemma 15 just as in the previous case.
This establishes the proof.

Step 2: We will show that
∣∣∣T∆,d
I F (w)− T∆,qF (w)

∣∣∣+
I∆

= o(∆).

Case 1: X|Z has continuous density. The proof is fully analogous to the previous
step. For a policy (a, c,W ) that is ε∆-suboptimal in the problem T∆,d

I F (w) define
(aq, cq,Wq) as in Definition 1: cq = c,Wq (∆x) = C+W (∆x) if

∣∣W (∆x)− E∆ [W (y)]
∣∣ ≤√

∆Mε and Wq (∆x) = C otherwise, while aq (z) is defined by the (FOCq-AC) condition
and C is chosen to satisfy (PKq). By construction (aq, cq,Wq) is feasible T∆,qF (w) and
we prove as in step 1 that Φ∆,q(aq, cq,Wq;F,w) ≥ Φ∆(a, c,W ;F )−O(ε∆).

Case 2: X ≡ Z.23 For a policy (a, c,W ) that is ε∆-suboptimal in the problem
T∆,d
I F (w) define (aq, cq,Wq) as follows. Let cq = c, aq (x) = a (x) for x ∈ [−Mε/

√
∆ +

1,Mε/
√

∆ − 1], aq (x) = 0 for x /∈ [−Mε/
√

∆,Mε/
√

∆] and aq piecewise continuously
differentiable. Wq is defined by the local IC in (15), continuity and PK. The policy
(aq, cq,Wq) is feasible by construction, and we must prove that Φ∆,q(aq, cq,Wq;F,w)
≥ Φ∆(a, c,W ;F )−O(ε∆).
On the one hand, P∆[aq(x) = a(x)] ≥ 1 − 2ε for suffi ciently small ∆, which implies

the analogues of (25) and (26). On the other hand, for all x, x ∈ [−Mε/
√

∆,Mε/
√

∆]

Wq(∆x̄)−Wq(∆x) = r̃er∆
∫ x̄

x

∆h′(aq(x))dx = r̃er∆
∫ x̄

x

∆h′(a(x))dx

= r̃er∆
[ ∫ x

x

∆h′(a(x))(1 + a′(x))dx−∆(h(a(x))− h(a(x)))
]

= W (∆[x+ a(x)])−W (∆[x+ a(x)]) +O(∆),

Consequently V∆[Wq(∆x)] ≤ V∆
[
W (y)1|x|≤Mε/

√
∆

]
+O(∆2). Moreover, since V∆[W (y)]

≤ V∆ (Lemma 14) and W ′ ∈ [0, h′(A)], there is Kε such that for any ∆, |x| ≤ Mε/
√

∆
implies y ∈ B, where B = {y | |W (y)− E∆[W (y)]| ≤

√
∆Kε}.

23In Step 1 we used the fact that the quadratic simple policies, for all ∆, are based on the same set of
v functions from the definition of Θ. In particular, the Wq functions have the same number of points of
discontinuity, for all ∆. In this Step, without additional proofs we cannot assume such uniformity, and
so the construction is different.
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Altogether

Φ∆,q (aq, cq,Wq;F,w) = r̃∆(E∆[a(x)]− c) + e−r∆
[
F (w) + F ′(w)E∆[W (y)− w] +

1

2
F ′′(w)V∆ [W (y)1B]

]
+O (ε∆) ≤ Φ∆ (a, c,W ;F ) +O (ε∆) ,

which establishes the Lemma.

Proof. (Lemma 11) Fix w ∈ I and a simple policy (a, c,W ).
(i) Consider the necessary local version of (IC) in (23). Since h is strictly convex,

Lemma 16 implies that for suffi ciently small ∆ and any z there is a unique solution a (z)
to this equation.
(ii) Consider now the necessary local version of (IC) in (28). Since h′ is strictly convex,

it follows that if v′ is continuously differentiable on (
√

∆[x+ a1],
√

∆[x+ a (x)]) for some
a1 < a (x) (without loss of generality) then a1 cannot be the solution to this equation.
Therefore, since for ∆ > 0 small there may be at most one point of discontinuity of v′′

on an interval of length
√

∆A, for every x there are only two actions that satisfy (28).

The following Lemma 17 is relevant only for the proof of Lemma 12. It is related to
the standard results in the static mechanism design.

Lemma 17 Suppose X ≡ Z. For any ∆ > 0 and w ∈ I∆, if (a, c,W ) satisfies (IC)
in T∆,c

I F (w) then x + a(x) is nondecreasing. Conversely, if (a, c,W ) satisfies the local
version of (IC) almost everywhere and x+ a(x) is nondecreasing, then (a, c,W ) satisfies
the IC.

Proof. The proof is standard, but we provide it for completeness. Suppose first that
(a, c,W ) is incentive compatible. Therefore for any x′ > x

−r̃h(a(x′)) + e−r∆W (∆[x′ + a(x′)]) ≥ −r̃h(a(x)− (x′ − x)) + e−r∆W (∆[x+ a(x)]),

−r̃h(a(x)) + e−r∆W (∆[x+ a(x)]) ≥ −r̃h(a(x′) + (x′ − x)) + e−r∆W (∆[x′ + a(x′)]).

Hence,
h(a(x′))− h(a(x)− (x′ − x)) ≤ h(a(x′) + (x′ − x))− h(a(x)).

Since h is convex, this implies that a(x′) ≥ a(x)− (x′ − x).
Conversely, we argue by contradiction. Assume that (a, c,W ) satisfies the local IC

and x+ a(x) is nondecreasing. Let

V (x, x′) = −r̃h(a(x′) + (x′ − x)) + er∆W (∆[x′ + a(x′)]).

By local IC, V2(x, x) = 0 for all x. Suppose that for some x′ > x we have 0 < V (x, x′)−
V (x, x). Then

0 <

∫ x′

x

V2(x, s)ds =

∫ x′

x

[V2(x, s))− V2(s, s)]ds = −
∫ x′

x

∫ s

x

V12(z, s)dzds.
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But
V12(z, s) = r̃h′′(a(s) + (s− z))(1 + a′(s)) ≥ 0.

which is a contradiction. The case V (x, x′) > V (x, x) with x′ < x is analogous.

Proof. (Lemma 12) Fix ∆, ε > 0 and consider any ∆-suboptimal policy (a, c,W ) for
T∆,cF (w). LetMε be such that P∆

X [[−Mε/
√

∆,Mε/
√

∆]] ≥ 1− ε. We construct a policy
(ad, cd,Wd) as follows. The function ad(·) is derived from the function a(·) below so that
ad(·) is piecewise continuously differentiable and x+ ad(x) is nondecreasing. Then we let
cd = c, and Wd be such that it satisfies the local version of (IC):

r̃h′(ad(x)) = e−r∆W ′
d(∆[x+ ad(x)]),

is continuous and the constant of integration is adjusted so that it satisfies the PK
condition. By Lemma 17, the policy (ad, cd,Wd) is feasible by construction.
Below we will define ad so that ad (x) = 0 if x /∈ [−Mε/

√
∆,Mε/

√
∆ + A], x + ad(x)

is nondecreasing and∫ Mε/
√

∆

−Mε/
√

∆

|ad(x)− a(x)| dx ≤ ε and
∫ Mε/

√
∆

−Mε/
√

∆

|a′d(x)− a′(x)| dx ≤ ε. (29)

Recall that if f is nondecreasing, then f is differentiable a.e. and
∫ b
a
f ′(x)dx ≤ f(b) −

f(a).24 Since

h′(ad(x))(1 + a′d(x))− h′(a(x))(1 + a′(x))

= h′(ad(x))(a′d(x)− a′(x)) + (h′(ad(x))− h′(a(x)))(1 + a′(x)),

(29) implies that for any x, x ∈ [−Mε/
√

∆,Mε/
√

∆],

Wd(∆[x+ ad(x)])−Wd(∆[x+ ad(x)]) = r̃er∆∆

∫ x

x

h′(ad(x))(1 + a′d(x))dx

≤ W (∆[x+ a(x)])−W (∆[x+ a(x)]) + r̃er∆∆

[
h′(A)ε+ maxh′′

[
2Mε√

∆
+ a(x)− a(x)

]]
The rest of the proof will follow as in last step of Lemma 10 to establish that

Φ∆ (ad, cd,Wd;F ) ≥ Φ∆ (a, c,W ;F )−O (ε∆).
We now construct an ad satisfying (29) and x + ad(x) is nondecreasing. First, note

that since for any y > x we have a (x) ≥ a (y)− y−x
∆
, a may not discontinuously decrease.

Therefore, the set of points D ⊂ [−Mε/
√

∆,Mε/
√

∆] at which a may be discontinuous
is at most countable. Moreover, if J =

∑
x∈D(a(x+)− a(x−)), then

J +

∫ Mε/
√

∆

−Mε/
√

∆

(1 + a′(x))dx =
2Mε√

∆
+ a(x)− a(x) ≤ A+

2Mε√
∆
.

24See, for example, Theorem 2 in Chapter 5 of Royden [1988].
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Since 1 + a′(x) ≥ 0, this implies that J ≤ A + 2Mε√
∆
. Let Df be a finite set of points

where a is discontinuous such that
∑

x∈Df (a(x+) − a(x−)) ≥ J − ε/2, and let δ =

minx∈Df (a(x+)− a(x−)).
For any n ∈ N and x ∈ [−Mε/

√
∆,Mε/

√
∆] let

a′n (x) =
n

2

∫ x+1/n

x−1/n

a′ (s) ds.

The function a′n is differentiable and for any x, a
′
n(x) ≥ −1 (since a′(x) ≥ −1). From

the Lebesgue’s Density Theorem it follows that for suffi ciently large n,
∫Mε/

√
∆

−Mε/
√

∆
|a′n(x)−

a′(x)|dx ≤ δ.
Finally, for Df = {d1, ..., ḋn}, d0 = −Mε/

√
∆, dn+1 = Mε/

√
∆, and for any x ∈

[di, di+1) let

ad (x) = a (di) +

∫ x

di

a′n (s) ds.

The function ad satisfies (29) and x + ad(x) is nondecreasing by construction, which
establishes the proof.

Proof. (Lemma 13) Fix ε,∆ > 0 and any w ∈ I∆, and let (a, c,W ) be a policy function
that is ε∆−suboptimal in the problem T∆

I F (w). Using Lemma 15 and arguments as in
the proof of Lemma 10, we may assume without loss of generality that for every public
signal y = ∆[x+ a (z)],

∣∣W (y)− E∆ [W (y)]
∣∣ = O(

√
∆), and that

Φ∆(a, c,W ;F ) = r̃∆(E∆[a(z)]− E∆[c(y)]) + e−r∆
[
F (w) (30)

+ F ′(w)
(
E∆[W (y)]− w

)
+
F ′′(w)

2
V∆[W (y)]

]
+ o(∆).

Let the policy (ac, cc,Wc) with constant consumption be defined so that ac ≡ a,
E∆ [u (c (y))] = u (cc) and

e−r∆Wc (y) = ∆r̃
[
u (c (y))− E∆ [u (c (y))]

]
+ e−r∆W (y) .

We will compare the terms in (31) with the analogous terms for the policy (ac, cc,Wc).
We have E∆ [a (z)] = E∆ [ac (z)], E∆ [W (y)] = E∆ [Wc (y)] and, from concavity of u,
cc ≤ E∆ [c (y)]. Letting ζ (y) := r̃er∆ [u (c (y))− u (cc)], we have that

V∆ [Wc (y)]− V∆ [W (y)] =

E∆
[(
W (y) + ∆ζ (y)− E∆ [W (y)]

)2
]
− E∆

[(
W (y)− E∆ [W (y)]

)2
]

=

∆2E∆
[
ζ2 (y)

]
+ ∆E∆

[(
W (y)− E∆ [W (y)]

)
ζ (y)

]
≤ ∆2(r̃er∆u)2 + ∆3/2r̃er∆u = o (∆) .
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