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Abstract
We study efficient allocations and optimal policies in a life-cycle economy with risky

human capital accumulation. The agents are ex-ante heterogeneous in their initial
human capital and in their ability level. Ex-post, they also differ in their realization of
shocks to human capital. The model incorporates two frictions. First, it assumes that
ability and labor supply are both private information of the agents. Second, it adds
a moral hazard component by assuming that schooling and realized rates of return to
human capital are both private information. Since models with those three sources of
heterogeneity are successful in replicating and explaining the distribution of earnings
and consumption observed in the data, the model is thus both realistic enough to be
useful for policy analysis, and tractable enough to carry out the analysis.

We assume that abilities are permanent and show that, under certain conditions,
the inverse of the intratemporal wedge follows a random walk. This result is, to our
knowledge, novel and implies that average intratemporal wedge increases over time.

We provide preliminary quantitative simulations for a two period economy and find
that high ability agent face the largest expected increase in the intratemporal wedge.

J.E.L Codes: E6, H2
Keywords: optimal taxation, income taxation, human capital

1 Introduction

In this paper we explore the optimal tax structure and efficient allocations in a model where

agents are heterogeneous in their ability to produce output, can invest in human capital to
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augment their productivity, and the rates of return to human capital evolve stochastically

over one’s lifetime. Abilities, labor supply and schooling decisions are all unobservable by

the government. We (plan to) calibrate the economy to US data and solve numerically for

the dynamics of efficient allocations and optimal tax schedules.

The main contribution of this paper is that it studies optimal taxation in a framework

that is able to account for key features of the dynamics of the earnings and consumption

that are observed in the data. As shown by Huggett, Ventura, and Yaron (2011), a properly

parameterized life-cycle incomplete markets economy with risky human capital and hetero-

geneity in abilities is able to quantitatively account for the hump shaped profile of average

earnings and an increase in the earnings dispersion and skewness over the life-cycle. More-

over, the stochastic process for earnings generated by the model is consistent with both

leading statistical models, the RIP (restricted income profile) models (see e.g. MaCurdy

(1982), Storesletten, Telmer, and Yaron (2004)) and the HIP (heterogeneous income profile)

models (see e.g. Lillard and Weiss (1979), Guvenen (2007)).1 Finally, the framework is also

consistent with the increased dispersion in consumption over the life-cycle, as documented

by Aguiar and Hurst (2008) or Primiceri and van Rens (2009). This research project takes

the economy with risky human capital and heterogeneity in abilities as a starting point for

the optimal taxation analysis.

The optimal tax problem combines a standard Mirrleesean private information friction

arising from unobservability of individual abilities with a moral hazard friction arising from

unobservability of schooling effort. The model has several notable properties. First, due to

the moral hazard friction, consumption dispersion increases over the lifetime and the inverse

Euler equation holds. Second, when the utility is additively separable in leisure and schooling

we show that the inverse of the intratemporal wedge follows a random walk. This result is,

to our knowledge, novel. It arises from two unique features of the model: the fact that the

inverse Euler equation holds, and the fact that the agents receive no new information about

1The difference between RIP and HIP models is that in HIP models people face heterogeneous life-cycle
earning profiles, while in RIP models individuals face similar life-cycle earning profiles.
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abilities over the course of their lifetime. While the assumption of additive separability is,

perhaps, not very realistic, the result is important as it serves as a useful benchmark for the

analysis of the dynamics of intratemporal wedges.

A key aspect that makes the optimal tax problem tractable is that we extend the

method developed in Boháček and Kapička (2008) (for riskless observable human capital)

and Kapička (2008) (for riskless unobservable human capital). In both papers we show that

with a first-order approach one can partially separate the redistributional dimension of the

optimal tax problem, where the social planner redistributes resources across agents, and the

dynamic dimension of the optimal tax problem, where the social planner chooses the opti-

mal sequences of labor supply and schooling. In addition, the dynamic dimension can be

conveniently written recursively. Using the recursive Lagrangean techniques of Marcet and

Marimon (2009) we show that a similar decomposition is possible in this model. The result

relies on the assumption that abilities are permanent (which is consistent with the model

structure of Huggett, Ventura, and Yaron (2011)). The assumption that human capital is

observable is also important for preserving tractability. It is, however, worth noting that

due to unobservability of schooling the model shares some features typically associated with

models with unobserved human capital, namely that the incentives to accumulate human

capital must be provided indirectly, through the income taxes.

1.1 Relationship to the existing literature

Recent research on optimal taxation with private information followed the seminal contri-

butions of Mirrlees (1971), Mirrlees (1976), and Mirrlees (1986), and extended them to

dynamic economies. It has mostly focused on cases when the individual skills are exogenous

(Golosov, Kocherlakota, and Tsyvinski (2003), Kocherlakota (2005)), Albanesi and Sleet

(2006), Battaglini and Coate (2008), Farhi and Werning (2005), Werning (2007)). A most

complete life-cycle analysis is Golosov, Tsyvinski, and Troshkin (2010) and Farhi and Wern-

ing (2010) who analyze optimal taxation in an environment with where individual skills are

Markov (essentially a stripped-down version of the RIP model).
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In contrast, this paper focuses on a case when individual skills are endogenous. A signifi-

cant progress in this direction has been made by Grochulski and Piskorski (2005) who study

a problem with unobservable risky human capital. However, investment in human capital

is their model is only possible in the initial period and the dynamics in the remaining peri-

ods is technically similar to the above models with exogenous skills. Boháček and Kapička

(2008) and Kapička (2008) study environments with riskless human capital in an infinite

horizon setting. Boháček and Kapička (2008) assumes that human capital is observable,

while Kapička (2008) assumes that it is unobservable.2 While each of those models captures

some important component of endogenous skill formation, neither of them is rich enough to

fully capture the earnings and consumption dynamics observed in the data.

A related research has studied environments with risky physical capital: Albanesi (2007)

studies a problem with observable risky physical capital, while Shourideh (2010) studies

optimal allocation with entrepreneurial risk in a multiperiod setting.

2 The Model

Consider the following life-cycle economy. Agents live for J > 1 periods. They like to

consume, dislike working and schooling, and have preferences given by

E
J∑
j=1

βj−1 [U(cj)− V (lj, sj)] , 0 < β < 1, (1)

where j is age, cj is consumption, lj is labor, and sj is schooling. The function U is strictly

increasing, strictly concave, and differentiable. The function V is strictly increasing, strictly

convex, and differentiable in both arguments.

The agent’s earnings are determined by agent’s ability a, current human capital hj,

2Kapička (2006) analyzes the optimal steady state allocations in a similar environment with unobservable
human capital and a restriction that the government can only use current income taxes and agents cannot
borrow or save. See also Diamond and Mirrlees (2002) who analyze unobservable human capital investments
in a static framework.
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current labor lj and the rental rate of human capital w:

yj = wahjlj (2)

The ability is constant over agent’s lifetime and is known to the agents at the beginning of

period 1. Ability and initial human capital h1 are allowed to be correlated, and their joint

distribution has density q(a, h1). The ability has a continuous support A = (a, a), with a

possibly being infinite. Human capital in the first period, as well as in all other periods, has

a continuous support H = (h, h), with h possibly infinite.

Human capital next period hj+1 depends on idiosyncratic human capital depreciation

shock zj, current human capital hj, and on current schooling sj:

hj+1 = ezj+1F (hj, sj) (3)

where the function F is strictly increasing, strictly concave, and differentiable in both argu-

ments. The idiosyncratic human capital shock is serially uncorrelated, but its density can

depend on age j. As is standard in the moral hazard literature, it is useful to transform the

state-space representation of the problem to work directly with the distribution induced over

hj. To that end, I construct a density function of human capital in period j + 1 conditional

on fj = F (hj, sj), and denote it by pj+1(hj+1|fj). I also construct a density function of a

sequence of human capital shocks hj = (h1, . . . , hj) for a given history of schooling choices

sj−1 and initial human capital h1. It is given by

P j(hj|h1, s
j−1) = p2(h2|F (h1, s1)) . . . pj(hj|F (hj−1, sj−1)) j = 1, . . . , J.

Finally, note that

∂pj+1 [hj+1, F (hj, sj)]

∂sj
=
∂pj+1 [hj+1, F (hj, sj)]

∂f
Fs(hj, sj) (4)
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This economy is identical to Huggett, Ventura, and Yaron (2011), with two exceptions.

First, this model includes leisure. That is essential for thinking about optimal taxation.

Second, the ability a affects earnings directly, rather than indirectly through the human

capital production function. That is irrelevant in an incomplete markets economy studied

by Huggett, Ventura, and Yaron (2011) if the human capital production function takes the

Ben-Porath form:

F (h, s) = h+ (hs)α. (5)

To see that both formulations are isomorphic, redefine human capital as follows: Let h̃ = ha

and ã = a1−α. Then the law of motion for human capital is F̃ (h, s) = h̃ + ã(h̃s)α, and

the earnings are y = wh̃l, identical to the ones in Huggett, Ventura, and Yaron (2011).

However, both formulations have different implications in a Mirrleesean economy with private

information and observable human capital where it makes a difference whether h or ha is

observed. The formulation chosen in this research proposal has the advantage that it is

entirely consistent with the existing optimal taxation literature.3

3 An Incomplete Markets Economy

Consider first an economy where the agents can self-insure against idiosyncratic shocks by

saving. Denote the saving made in period j by kj+1. In addition, the government taxes the

agents of age j by an exogenously given tax function Tj (ej, kj). The savings yield a gross

rate of return r. The economy is essentially a Bewley-type incomplete markets economy.

In a market economy, the agent with initial human capital h1 and ability a choose se-

quences of labor supply, schooling and human capital {cj(a, h1, z
j), lj(a, h1, z

j), sj(a, h1, z
j),

3Both formulations are again isomorphic if both h and a are either observable or unobservable. The first
case is inconsistent with the Mirrleesean framework, while the second one would be extremely hard to solve
in general.
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hj+1(a, h1, z
j+1)} to maximize the lifetime utility

J∑
j=1

βj−1

∫
Zj

[
U
(
cj(a, h1, z

j)
)
− V

(
lj(a, h1, z

j), sj(a, h1, z
j)
)]
P̂ j(h1, z

j) dzj, (6)

subject to the budget constraint

cj(a, h1, z
j) + kj+1(a, h1, z

j) = rkj(a, h1, z
j) + yj(a, h1, z

j)− Tj
[
yj(a, h1, z

j), kj(a, h1, z
j)
]
,

law of motion for human capital (3), the earnings function (2), and a terminal condition

kJ+1 = 0. They take their ability and their initial human capital as given.

A recursive formulation is as follows. The value function Gj(h, k; a) satisfies

Gj(h, k; a) = max
c,l,s,k′

{
U(c)− V (l, s) + β

∫
Hj+1

Gj+1(h
′, k′; a)pj+1(h

′|F (h, s)) dh′

}
, j = 1, . . . , J

subject to

c+ k′ = rk + awhl − Tj (awhl, k)

with the terminal condition GJ+1 = 0.

4 Optimal Taxation in a J Period Model

4.1 Efficient Allocations

The information structure is as follows: ability a, labor supply lj and schooling sj are all

private information. Consumption cj, earnings yj and human capital realizations hj are

all publicly observed. Let sj(h
j) be schooling in period j after a history of human capital

realizations hj and let s = {sj(hj)}Jj=1 be an arbitrary state contingent schooling plan. Define

7



the utility of type a agent that reports â and chooses schooling plan s by

Ŵ (â, s|a, h1) =
J∑
j=1

βj−1

∫
Hj−1

[
U(cj(â, h

j))− V
(
yj(â, h

j)

ahj
, sj(h

j)

)]
P j
(
hj|h1, s

j−1(hj−1)
)
dhj,

where consumption plan c(a) = {cj(a, hj)}Jj=1 and earnings plan y(a) = {yj(a, hj)}Jj=1 are al-

locations chosen by the social planner. Let ŝ(â|a, h1) be the utility maximizing schooling plan

that an a−type would choose if he reported â. Define also the utility maximizing schooling

plan conditional on truthtelling by s(a, h1) = ŝ(a|a, h1), and let W (a) = Ŵ (a, s(a, h1)|a, h1)

be the corresponding lifetime utility. Incentive compatibility requires that the agent prefers

to tell the truth about her ability and that the schooling choice maximizes his utility:

W (a, h1) ≥ Ŵ (â, ŝ(â|a, h1)|a, h1) ∀a, â ∈ A∀h1 ∈ H. (7)

The planner chooses consumption plan c(a), earnings plan y(a) and schooling plan ŝ(â|a, h1)

to maximize the expected lifetime utility4

∫
A×H

W (a, h1)q(a, h1) da dh1 (8)

subject to the incentive constraint (7) and the resource constraint

∫
A×H

J∑
j=1

r−j+1

∫
Hj−1

[
cj(a, h

j)− yj(a, hj)
]
P j
(
hj|h1, s

j−1(a, hj−1)
)
dhj q(a, h1) da dh1 ≤ 0.

(9)

To reduce the complexity of the problem, we will assume that r = β−1.

4We plan to solve the problem for other social welfare functions, namely the Rawlsian social welfare
function as well.
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4.1.1 First-Order Approach

The first-order approach replaces the incentive constraint (7) with two conditions. The first

one is the first-order condition in schooling and says that, at the optimum, the marginal costs

of schooling (given by the disutility from spending an additional unit of time by schooling)

must be equal to the expected marginal benefit of schooling (given by the additional utility

arising from the fact that the distribution of future human capital shocks is now more

favorable):

Vs

(
yj(a, h

j)

ahj
, sj(a, h

j)

)
=

J−j∑
i=1

βi
∫
Hi

[
U(cj+i(a, h

j, ζ i))− V
(
yj+i(a, h

j, ζ i)

aζi
, sj+i(a, h

j, ζ i)

)]
×
Psj

j+i (hj, ζ i|h1, s
j+i−1(a, hj, ζ i−1))

P j (hj|h1, sj−1(a, hj−1))
dζ i (10)

for all histories hj ∈ Hj. The second one is an envelope condition saying how the lifetime

utility needs to vary with ability in order to deter the agent from misreporting his type:

W (a, h1) = W (h1)

+

∫ a

a

J∑
j=1

βj−1

∫
Hj−1

[
Vl

(
yj(ε, h

j)

εhj
, sj(ε, h

j)

)
yj(ε, h

j)

εhj
P j(hj|h1, s

j−1(ε, hj−1)) dhj
]
dε

ε

(11)

where W (h1) = W (a, h1) is the lifetime utility of the least able agent with initial human

capital h1. For now, I will assume that the first-order approach is valid and the set of

allocations that satisfy (7) is identical to the set of allocations that satisfy (10) and (11).

We will return to the problem of validity of the first-order approach later.

Replacing the incentive constraint (7) with (10) and (11) leads to a relaxed planning

problem. The relaxed planning problem maximizes (8) subject to the constraints (9), (11)

and (10) by choosing c, y, s and W . Let λ, θ(a, h1)q(a, h1) and βj−1φj(a, h
j)q(a, h1), j =

1, . . . , J−1 be the (appropriately normalized) Lagrange multipliers on the resource constraint

(9), on the envelope condition (11), and on the first order condition (10). The Lagrangean
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is

L =

∫
A×H

J∑
j=1

βj−1

∫
Hj−1

{
U(cj(a, h

j))− V
(
yj(a, h

j)

ahj
, sj(a, h

j)

)
− λ

[
cj(a, h

j)− yj(a, hj)
]

+ θ(a, h1)

[
U(cj(a, h

j))− V
(
yj(a, h

j)

ahj
, sj(a, h

j)

)
−
∫ a

a

Vl

(
yj(ε, h

j)

εhj
, sj(ε, h

j)

)
yj(ε, h

j)

εhj

dε

ε

]

− φj(a, hj)

[
Vs

(
yj(a,h

j)

ahj
, sj(a, h

j)
)

Fs (hj, sj(a, hj))
−

J−j∑
i=1

βi
∫
Hi

[
U(cj+i(a, h

j, ζ i))−V
(
yj+i(a, h

j, ζ i)

aζi
, sj+i(a, h

j, ζ i)

)]

×
Psj

j+i(hj, ζ i|h1, s
j+i−1(a, hj, ζ i−1))

P j(hj|h1, sj−1(a, hj−1))

1

Fs (hj, sj(a, hj))
dζ i

]

− θ(a, h1)W (h1)

}
P j(hj|h1, s

j−1(a, hj−1)) dhj q(a, h1) da dh1

The first-order condition in W (h1) implies

∫
A

θ(a, h1)q(a, h1) da = 0 ∀h1 ∈ H. (12)

Integrating the Lagrangean by parts and using (12), one obtains

L =

∫
A×H

J∑
j=1

βj−1

∫
Hj−1

{
(1 + θ(a, h1))

[
U(cj(a, h

j))− V
(
yj(a, h

j)

ahj
, sj(a, h

j)

)]
− λ

[
cj(a, h

j)− yj(a, hj)
]

− φj(a, hj)

[
Vs

(
yj(a,h

j)

ahj
, sj(a, h

j)
)

Fs (hj, sj(a, hj))
−

J−j∑
i=1

βi
∫
Hi

[
U(cj+i(a, h

j, ζ i))−V
(
yj+i(a, h

j, ζ i)

aζi
, sj+i(a, h

j, ζ i)

)]

×
Psj

j+i(hj, ζ i|h1, s
j+i−1(a, hj, ζ i−1))

P j(hj|h1, sj−1(a, hj−1))

1

Fs (hj, sj(a, hj))
dζ i

]

−Θ(a, h1)Vl

(
yj(a, h

j)

ahj
, sj(a, h

j)

)
yj(a, h

j)

ahj

}
P j(hj|h1, s

j−1(a, hj−1)) dhj q(a, h1) da dh1

where Θ(a, h1) is the cross-sectional cumulative of the Lagrange multipliers on the envelope
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condition:

Θ(a, h1) =
1

aq(a)

∫ a

a

θ(ε, h1)q(ε, h1) dε. (13)

Finally, rearranging the terms involving φ, one obtains

L =

∫
A×H

J∑
j=1

βj−1

∫
Hj−1

{(
1 + θ(a, h1) + Φj(a, h

j)
) [
U(cj(a, h

j))− V
(
yj(a, h

j)

ahj
, sj(a, h

j)

)]

− λ
[
cj(a, h

j)− yj(a, hj)
]
− φj(a, hj)

Vs

(
yj(a,h

j)

ahj
, sj(a, h

j)
)

Fs (hj, sj(a, hj))

−Θ(a, h1)Vl

(
yj(a, h

j)

ahj
, sj(a, h

j)

)
yj(a, h

j)

ahj

}
P j(hj|h1, s

j−1(a, hj−1)) dhj q(a, h1) da dh1

where Φj(a, h
j) is the intertemporal cumulative of the Lagrange multipliers on the first order

condition in schooling: Φ1(a, h1) = 0 and then for j = 2, . . . , J ,

Φj(a, h
j) =

j−1∑
i=1

φi(a, h
i)
pf i+1 (hi+1|F (hi, si(a, h

i)))

pi+1 (hi+1|F (hi, si(a, hi)))
.

The expression for Φ is simplified by the property (4). Note that both cumulative multi-

pliers have an economic interpretation: Θ(a, h1) indicates how much the planner desires to

redistribute resources across agents, and is a key in determining how much to distort labor

supply of a a−type agent. Φj(a, h
j) indicates how costly it is for the social planner to respect

the first-order condition in schooling (10). Note that Φ1(a, h1) = 0.

The planning problem an now be written as a saddle point of the Lagrangean:

max
c,y,s

min
λ,θ,φ
L.
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4.2 Theoretical Implications

The first-order conditions in consumption are

1

U ′(cj(a, hj))
=

1 + θ(a, h1) + Φj(a, h
j)

λ
(14)

This implies that, conditional on ability, there is a dispersion in consumption in all the

periods except for the first one. In addition, the Inverse Euler Equation holds, as the next

Proposition shows:

Proposition 1

1

U ′(cj(a, hj))
=

∫
H

1

U ′(cj+1(a, hj+1))
pj+1

(
hj+1|F (hj, sj(a, h

j))
)
dhj+1 ∀hj ∈ Hj

Proof. Note that

Φj+1(a, h
j+1) = Φj(a, h

j) + φj(a, h
j)
pf j+1 (hj+1|F (hj, sj(a, h

j)))

pj+1 (hj+1|F (hj, sj(a, hj)))
.

Hence

∫
H

Φj+1(a, h
j+1)pj+1

(
hj+1|F (hj, sj(a, h

j))
)
dhj+1 = Φj(a, h

j).

The rest of the proof follows from the first-order condition (14).

The first-order conditions in labor imply that

ahj
Vl (lj(a, hj), sj(a, hj))

− 1

U ′(cj(a, hj))
=
[
1 + γ

(
lj(a, h

j), sj(a, h
j)
)] Θ(a)

λ

+
φj(a, h

j)

λ

Vls (lj(a, h
j), sj(a, h

j))

Vl (lj(a, hj), sj(a, hj))

1

Fs (hj, sj(a, hj))
.
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where γ(lj, sj) =
ljVll(lj ,sj)

Vl(lj ,sj)
. Define the intratemporal wedges by

τj(a, h
j) = 1− Vl (lj(a, h

j), sj(a, h
j))

ahjU ′(cj(a, hj))
.

The first-order conditions in labor imply that the wedges satisfy

1

U ′(cj(a, hj))

τj(a, h
j)

1− τj(a, hj)
=
[
1 + γ

(
lj(a, h

j), sj(a, h
j)
)] Θ(a)

λ

+
φj(a, h

j)

λ

Vls (lj(a, h
j), sj(a, h

j))

Vl (lj(a, hj), sj(a, hj))

1

Fs (hj, sj(a, hj))
.

If labor supply and schooling are additively separable and labor supply has constant elasticity

then we have the following sharp characterization of the intratemporal wedges:

Proposition 2 Suppose that V (l, s) = l1+γ

1+γ
+ g(s). Then

1

τj(a, hj)
=

∫
H

1

τj+1(a, hj+1)
pj+1

(
hj+1|F (hj, sj(a, h

j))
)
dhj+1.

Proof. The expressions for wedges imply that

1

U ′(cj(a, hj))

τj(a, h
j)

1− τj(a, hj)
=

1

U ′(cj+1(a, hj+1))

τj+1(a, h
j+1)

1− τj+1(a, hj+1)
.

Rearranging,
τj(a, h

j)

1− τj(a, hj)
1− τj+1(a, h

j+1)

τj+1(a, hj+1)
=

U ′(cj(a, h
j))

U ′(cj+1(a, hj+1))
.

Since (1) holds,

1− τj(a, hj)
τj(a, hj)

=

∫
H

1− τj+1(a, h
j+1)

τj+1(a, hj+1)
pj+1

(
hj+1|F (hj, sj(a, h

j))
)
dhj+1.

Rearranging, the result follows.

The result is due to several facts. First, the tax revenue of an a−type agent is proportional

to
τj(a,h

j)

1−τj(a,hj) (Saez (2001)). Second, if the assumptions of Proposition 2 hold then (since the

ability shock is permanent) the social planner wants to keep the tax revenue valued at the
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utility cost 1
U ′(cj(a,hj))

constant over time and state. Hence the expression 1
U ′(cj(a,hj))

τj(a,h
j)

1−τj(a,hj)

is constant over time and state. Since 1
U ′(cj(a,hj))

follows a random walk, the result follows.

Jensen’s inequality then implies that the average intratemporal wedge is increasing over time,

τj(a, h
j) <

∫
H

τj+1(a, h
j+1)pj+1

(
hj+1|F (hj, sj(a, h

j))
)
dhj+1.

and so the intratemporal wedge is on average increasing over time. Second (this needs more

work), since the intratemporal wedge is between zero and one, in an infinite horizon economy

the intratemporal wedge will converge to one.

4.3 A Recursive formulation

The above problem can be solved using the following three-step procedure adapted from

Boháček and Kapička (2008) and Kapička (2008). First, fix a Lagrange multiplier λ. Sec-

ond, fix a function θ(a, h1) and compute the cumulative Lagrange multiplier Θ(a, h1) using

(13). Conditional on those values, the problem has a recursive representation that uses the

recursive Lagrangean method of Marcet and Marimon (2009). Denote Φ to be the costate

variable corresponding to the cumulative Lagrange multiplier on the first-order condition

(10) in schooling. Let Ωj(h,Φ; a, h1) be the value of having human capital h and a costate

variable Φ at the beginning of period j for an agent with ability a and initial human capital

h1. It can be shown that Ωj is given by

Ωj(h,Φ; a, h1) = max
c,l,s

min
φ

{
[1 + θ(a, h1) + Φ] [U(c)− V (l, s)]− λ (c− ahl)− φ Vs (l, s)

Fs (h, s)

− Vl (l, s) lΘ(a, h1) + β

∫
H

Ωj+1 [h′,Φ′(h′); a, h1] pj+1(h
′|F (h, s)) dh′

}
(15)

where the law of motion for Φ is

Φ′(h′) = Φ + φ
pf j+1 (h′|F (h, s))

pj+1 (h′|F (h, s))
.
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The dynamic program is initiated at (h,Φ) = (0, h1), and is terminated with ΩJ+1 = 0.

Once the problem is computed, one updates the θ function by using a period 1 first order

condition in consumption. This generates a new function Tθ:

Tθ(a, h1) =
λ

U ′ (c1(a, h1))
− 1

The iterations proceed until T converges. Finally, one iterates on the Lagrange multiplier λ

until the resource constraint (9) clears.

The dynamic program (15) is clearly in the heart of this computational procedure. It has

four state variables, but it is worth noting that only two of them (h and Φ) are changing

over time; the other two (a and h1) are constant. Also, h1 enters the problem only through

θ and Θ, which will somewhat simplify the computational procedure. Furthermore, the

optimization problem itself is relatively simple, as it features no constraints (apart from

nonnegativity constraints on c, l and s) and only four variables. It is therefore expected

that, despite its complexities, it will be feasible to solve the problem numerically.5

Note also that the dynamic program (15) makes it easy to pinpoint the contribution of

both frictions that are present in the model. In the absence of the moral hazard friction

one would set Φ = φ = 0. In the absence of the private information friction one would set

θ = Θ = 0. The dynamic program can therefore be easily adapted to “shut down” either

one of those frictions to study its contribution to the optimal tax problem.

5We have solved a two period version of the dynamic program (15) with relative ease.
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5 A Two Period Example

We now solve for the Pareto efficient allocation in a simple two period example. The utility

functions are given by

U(c) =
c1−ρ

1− ρ

V (l, s) =
l1+γ

1 + γ
+

s1+ε

1 + ε
.

The human capital production function takes the Ben-Porath form (5). I assume that the

ability a is lognormally distributed with density q(a) = LN(µa, σ
2
a). Human capital shocks

h2 are drawn from a truncated lognormal distribution, p(h2|f) = LN(µz+ln f, σ2
z). A simple

differentiation yields that pf (h2|f) = lnh2−µz−ln f
σ2
z

p(h2|f)
f

.

We make two simplifying assumptions in this numerical example. First, we assume that

the initial human capital h1 is the same for everyone. Second, we modify the general setup

by assuming that the social planner faces a Rawlsian problem of maximizing the utility of

the least able agent. This implies that θ(a) = 1 and that Θ(a) = 1−Q(a)
aq(a)

.

The first-order conditions in the second period determine the optimal consumption and

labor supply as a function of a and λ:

1 + θ(a)

λ
+ φ

lnh− µz − ln f

σ2
z

= c2(a, h)ρ

1 + θ(a)

λ
+ φ

lnh− µz − ln f

σ2
z

= ahl2(a, h)−γ − 1 + γ

aq(a)
Θ(a)

For the numerical simulations we assume that ρ = 1, γ = 2 and ε = 2. That is, the Frisch

elasticity of labor supply is 0.5, and the elasticity of schooling is also 0.5. The discount rate

is β = 0.96. The initial human capital is h1 = 1 and the human capital production function

has α = 1. The parameters of the ability distribution are σa = 0.5 and µa = −σ2
a

2
, implying

that the ability distribution has mean one. The parameters of the human capital shock

distribution are σz = 1 and µz = −σ2
z

2
, implying again that the shocks have mean one.
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Figure 1: Optimal schooling in the first period

Since human capital shocks have mean one, human capital decreases on average over

time for people with schooling less than one their, and increases on average for people with

schooling more than one. Figure 1 shows that schooling increases with ability, but for

majority of people human capital will be lower in the second period. Labor supply also

increases with ability. (The fact that labor supply and schooling are not substitutes is in

part a consequence of the particular functional form of V , and will not likely hold more

generally, see Kapička (2008)).

The intratemporal wedge in the first period and the expected intratemporal wedge in

the second period are shown in Figure 2. The figure confirms that the expected intratem-

poral wedge is higher than the intratemporal wedge in the first period. This confirms the

theoretical findings in Proposition 2. The difference is most pronounced for higher ability

level where the agents expect next period intratemporal wedge to be about 10% higher than
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Figure 2: Intratemporal Wedges

today. Overall, the intratemporal wedge in period 1 decreases with abilities and converges

to zero due to the fact that abilities are lognormally distributed.

Figure 3 shows the intratemporal wedge in the second period as a function of human

capital. The wedges are shown for three selected ability levels, low, medium and high. In

all cases the intratemporal wedge is very high for low human capital realizations and then

decreases with human capital. The decrease is most rapid for higher ability levels.

6 Calibration of the J Period Model

To be completed.

18



10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Human Capital

W
ed

ge

 

 
Low Ability
Medium Ability
High Ability

Figure 3: Intratemporal Wedge in the Second Period

7 Quantitative Results for the J Period Model

To be completed.

8 Conclusions

To be completed.
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