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Abstract

We revisit the role of limited commitment in a dynamic risk-sharing setting with pri-
vate information. We show that a Markov-perfect equilibrium, in which agent and insurer
cannot commit beyond the current period, and an infinitely-long contract to which only the
insurer can commit, implement identical consumption, effort and welfare outcomes. Unlike
contracts with full commitment by the insurer, Markov-perfect contracts feature non-trivial
and determinate asset dynamics. Numerically, we show that Markov-perfect contracts pro-
vide sizable insurance, especially at low asset levels, and are able to explain a significant
part of wealth inequality beyond what can be explained by self-insurance. The welfare
gains from resolving the commitment friction are larger than those from resolving the moral
hazard problem at low asset levels, while the opposite holds for high asset levels.
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1 Introduction

It is well-understood that in many settings risk-sharing can improve on what agents can achieve
through self-insurance. Indeed, this provides justification for a variety of social programs (e.g.,
unemployment insurance) as well as private arrangements (e.g., corporate compensation, per-
sonal insurance). The classic approach to studying optimal contracts in dynamic settings with
private information assumes the contracting parties have the ability to bind themselves to a life-
time agreement.1 These contracts, however, have unappealing properties, such as the agents’
ultimate “immiserization”, exploding inequality, and/or degenerate long-run wealth and con-
sumption distributions (see Phelan, 1998 for a review).

A natural way to avoid those problems is to study insurance arrangements in which at least
one contracting party lacks the ability to commit. For example, allowing the agent to walk
away from the agreement puts a limit on how much he can be punished after a sequence of bad
outcomes (see, for example, Phelan, 1995 or Krueger and Uhlig, 2006). Another possibility is to
allow contracting parties to threaten with perpetual autarky to support a long-term contractual
relationship (e.g., Kocherlakota, 1996; Thomas and Worrall, 1988, 1994; or Ligon, Thomas and
Worrall, 2002 among others).

In this paper, we revisit the role of limited commitment in a dynamic risk-sharing setting
with private information. Specifically, we consider a risk-averse agent endowed with a technol-
ogy that transforms effort into stochastic output and who can imperfectly self-insure through
savings. A profit-maximizing insurer can observe the agent’s asset holdings, but not his effort.
We assume that agent and insurer cannot commit to an agreement beyond the current period
and study the resulting implications for risk-sharing, asset dynamics and wealth inequality. We
focus on Markov-perfect insurance contracts, i.e., one-period agreements which only depend on
payoff-relevant variables: in our case, beginning-of-period asset holdings and the current output
state.

We show that a Markov-perfect equilibrium and an infinitely-long contract where only the
insurer can commit (“one-sided commitment”) are equivalent in terms of the history-contingent
sequences for consumption and effort they implement. However, their implications for asset dy-
namics are very different. An insurer endowed with commitment power can use utility promises
and agent’s savings interchangeably to implement desired risk-sharing allocations. This leads
to an indeterminacy of asset dynamics. In contrast, we show that the inability of the insurer
to commit to a long-term contract, implies that asset holdings by the agent become an inte-
gral part of insurance contracts, which results in non-trivial and determinate asset dynamics.
In effect, one could interpret a Markov-perfect equilibrium as a specific, empirically usable
implementation of a one-sided commitment contract.

We further show that Markov-perfect risk-sharing contracts provide partial insurance and are
characterized by “inverse Euler equations”, thus preserving standard properties of contracts with
full commitment in moral hazard settings familiar from the existing literature. However, unlike
in many of those settings, both theoretically and computationally, Markov-perfect equilibria
are easy to define and characterize—the optimal contracting problem can be written recursively
with a single scalar state variable, the agent’s asset holdings. This simplicity holds also if agents
can save privately on the side, as long as their asset holdings are observable to the insurer. Curse
of dimensionality issues which have been shown to arise in the “hidden savings” literature (e.g.,
Fernandes and Phelan, 2000; Kocherlakota, 2004; Doepke and Townsend, 2006) are avoided.

Our focus on Markov-perfect contracts therefore allows us to explore the role of asset con-
tractibility in a limited commitment environment in a tractable way. We find that whether

1Green (1987), Spear and Srivastava (1987), Thomas and Worrall (1990), Phelan and Townsend (1991),
Atkeson and Lucas (1992) among many others.
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agent’s asset accumulation decisions can be contracted upon or not affects the contract terms
as long as insurers make positive expected profits in equilibrium. This result arises because of a
disagreement in the marginal value of future assets between the agent and the insurer. Specifi-
cally, the agent wants to save more than the amount preferred by the insurer since this enables
him to raise his future outside option. The disagreement disappears when all the surplus of the
contract goes to the agent, as in the case of perfectly competitive insurance markets.

As an application of the theory, we show that Markov-perfect equilibrium insurance contracts
can be calibrated along some dimensions to resemble actual economies. The calibrated model
is used to gauge and compare the welfare costs of frictions like lack of commitment and private
information. We find that Markov-perfect contracts provide sizable insurance, particularly
for agents with low asset holdings. This has consequences for wealth inequality, as wealth-
poor agents have lower incentives to self-insure through asset accumulation when they have
access to insurance markets. For our parameterization, this effect is quite significant: compared
to autarky (self insurance), long-run wealth inequality, as measured by the Gini coefficient,
increases by about 30% when Markov-perfect contracts are made available. We find that the
welfare gains from resolving the commitment friction are larger than those from resolving the
moral hazard problem at low asset levels, while the opposite holds for high asset levels. Finally,
we calculate the gains associated with asset contractibility and show that they can be sizable.
For example, if the insurer is a monopolist facing the median-wealth agent, net present value
profits are almost 30% higher when assets are contractible.

Our paper relates and builds upon previous work on both repeated moral hazard and limited
commitment. Unlike here, the early papers on optimal risk-sharing in repeated moral hazard
settings by Townsend (1982) and Rogerson (1985b) assume full commitment by both sides and
do not allow agents to save privately or any other role for assets. Hidden private saving is allowed
by Allen (1985) and Cole and Kocherlakota (2001) in a stochastic income environment. They
show that, under certain conditions, no additional consumption smoothing over self-insurance
can be provided. In contrast, we obtain that additional smoothing over self-insurance is always
possible, even with double-sided lack of commitment. The reason is that in our setting, unlike in
the stochastic endowment case, the probability distribution over output is endogenous through
agent’s effort and so the insurer’s transfers affect the level of uncertainty the agent faces (see
also Abraham and Pavoni, 2008).

We differ from most classic papers on “limited commitment” by agents (e.g., Thomas and
Worrall, 1988, 1994; Kocherlakota, 1996; Ligon et al., 2002; Krueger and Uhlig, 2006 among
others) in terms of precisely when agents can renege on a contract and, more importantly,
what this timing implies for the resulting model dynamics. In those papers, the main issue
is the potential inability to support full insurance when agents can opportunistically renege
on the contract (and go to autarky or another insurer) within the period, after a high output
is realized. Asset accumulation is not studied since, unlike here, insurers are assumed to be
able to commit to an infinitely-long contract and thus implement any desired incentive-feasible
allocation through promised utility. In contrast, our main focus is on the private asset dynamics
that arise when both agents and insurers can commit within a period, but cannot commit across
periods.2

The rest of the paper is organized as follows. Section 2 presents the model environment.
Section 3 defines and characterizes a Markov-perfect equilibrium (MPE), assuming perfectly
competitive insurance markets. Section 4 shows that MPE implements the same consumption
and effort sequences as an infinitely-long contract to which the insurer can commit subject to
per-period participation constraints by the agent. Section 5 presents a numerical analysis of

2Our timing regarding when agents can leave the contract is similar to that in Phelan (1995) who, however,
assumes that: insurers can fully commit (thus, no asset accumulation); agents’ income is unobservable; and
agents need to sit out one period if they renege before they can sign-up with another insurer.
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Markov-perfect insurance contracts and welfare analysis of the frictions of lack of commitment
and moral hazard in a calibrated version of the model. Section 6 extends the results by allowing
insurers to have market power and shows that whether asset are contractible or not affects
equilibrium contracts generically. Section 7 concludes.

2 The Environment

Consider an infinitely-lived agent who maximizes expected discounted utility from consumption
c and disutility from effort e. Period utility is given by u(c) − e, where uc(c) > 0, ucc(c) < 0
and u satisfies Inada conditions.3 The agent discounts future utility by factor β ∈ (0, 1).

The agent is endowed with a technology that produces output as a function of effort. There
are n ≥ 2 possible values for output: 0 ≤ y1 < . . . < yn. Let πi(e) be the probability of output
yi being realized. Suppose e takes values on the set E which is a closed interval in R+.

Assumption 1 For all e ∈ E: (i)
∑n

i=1 π
i(e) = 1; (ii) “full support”, πi(e) > 0; (iii) πi(e)

is twice continuously differentiable for all i = 1, . . . , n; and (iv) the “monotone likelihood ratio

property” holds, πi
e(e)
πi(e)

is non-decreasing in i.

The agent can save or borrow at the gross rate, r. His asset holdings, a are constrained to
the set A = [a, ā].

Assumption 2 (i) 0 < r < β−1; (ii) a = − y1

r−1 .

We further assume ā ∈ (0,∞) and sufficiently large so that it never binds. Assumption 2(i)
is a standard condition ensuring the existence of a finite upper bound on asset holdings. As-
sumption 2(ii) sets the minimal asset position, a equal to the natural borrowing limit (Aiyagari,
1994) which allows us to focus on interior solutions for asset choice.

3 Markov-Perfect Insurance Contracts

The agent has access to a perfectly competitive insurance market with free entry, populated by
risk-neutral, profit-maximizing insurers. Demand for market insurance exists in our setting since
the agent cannot span the n-dimensional output uncertainty through just borrowing and saving
in the single non-contingent asset a. As discussed in the introduction, we assume that neither
the insurers nor the agent can bind themselves to a contract extending beyond the current
period. However, within-period contracts are perfectly enforceable. Insurance contracts are
offered before effort is exerted and specify the exchange of realized output for state-contingent
transfers. Agent’s effort is not observable by insurers. In contrast, the agent’s assets are always
observable and their choice—which occurs after output is realized—is assumed to be contractible
(relaxing the latter is discussed in Section 6.2).

We study dynamic insurance contracts, the terms of which depend only on fundamentals,
i.e., payoff-relevant variables: beginning-of-period assets and current output realization. Due to
our lack of commitment assumption insurance contracts cannot depend on variables capturing
future promises, such as “promised utility”. Following Maskin and Tirole (2001), we call these
contracts Markov-perfect.

3Throughout the paper we use subscripts to denote partial derivatives and primes for next-period values.
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Agents starting the period with different asset levels will, in general, be offered different
contracts. Insurance contracts, {T i(a),Ai(a)}ni=1, consist of transfers and future asset holdings
as functions of the agent’s beginning-of-period assets, a ∈ A and the realized output state,
i = 1, ...n. When entering an agreement with an insurer, the problem of the agent is to choose
the level of effort, given the current offered contract and all anticipated future contracts. Call
the associated state-contingent agent consumption Ci(a) ≡ ra+T i(a)−Ai(a). Given anticipated
future contracts, {T i(.),Ai(.)}ni=1, which induce future value V(Ai(.))—to be defined below—
the agent’s problem is

max
e

n∑
i=1

πi(e)
[
u(Ci(a)) + βV(Ai(a))

]
− e.

The first-order condition is
n∑
i=1

πie
[
u(Ci(a)) + βV(Ai(a))

]
− 1 = 0. (1)

Since the insurer cannot commit beyond the current period, he takes future insurance con-
tracts as given. In other words, the insurer takes V(Ai(a)) induced by {T i(a),Ai(a)}ni=1, as
given. Note that the insurer can affect the agent’s continuation value through the future-assets
component of the contract, ai = Ai(a).

Insurers also need to take into account how the agent’s effort responds to the offered contract
for the period (incentive-compatibility). We use the “first-order approach” (Rogerson, 1985a)
and impose the first-order condition of the agent, (1) as a constraint in the insurer’s problem.
We assume the probability functions πi(e) are such that the first-order approach is valid. For
example, if

∑i
j=1 π

j
ee(e) ≥ 0 for all i on top of Assumption 1, then our probability functions

satisfy the sufficient conditions for the validity of the first-order approach: the “monotone
likelihood ratio property” (MLRP) and the “convexity of the distribution function condition”
(CDFC)—see Rogerson (1985a) for a proof. Of course, many alternative sufficient conditions
are possible. For example, in the two-output case (n = 2) it is sufficient to assume that π2(e)
is strictly increasing and strictly concave in e.

Free entry in the insurance market results in zero expected profits in each period and for any
sub-market indexed by agent’s assets holdings, a. Cross-subsidization across agents at different
asset levels is ruled out—if an insurer makes profits on some agents but makes a loss on others,
another insurer could come in and offer a better contract to the former group. This result holds
regardless of the rate at which insurers discount profits.

Perfect competition implies all the gains from insurance contracts go to the agent. Thus,
the problem of an insurer facing agent with assets a can be written as

max
{τ i,ai}ni=1,e

n∑
i=1

πi(e)
[
u(ci) + βV(ai)

]
− e (2)

subject to incentive-compatibility and zero per-period profits,

n∑
i=1

πie(e)
[
u(ci) + βV(ai)

]
− 1 = 0 (3)

n∑
i=1

πi(e)[yi − τ i] = 0, (4)

and where we used ci ≡ ra+ τ i − ai to simplify notation.

We now formally define a Markov-perfect equilibrium and Markov-perfect contracts in our
setting.

5



Definition 1 A Markov-perfect equilibrium (MPE) is a set of functions {{T i,Ai}ni=1, E ,V} :
A→ Rn × An × E× R such that for all a ∈ A:

{{T i(a),Ai(a)}ni=1, E(a)} = argmax
{τ i,ai}ni=1,e

n∑
i=1

πi(e)
[
u(ci) + βV(ai)

]
− e

subject to (3) and (4) and where

V(a) =
n∑
i=1

πi(E(a))
[
u(Ci(a)) + βV(Ai(a))

]
− E(a),

where Ci(a) = ra+ T i(a)−Ai(a) and ci = ra+ τ i − ai.
A Markov-perfect contract for any given asset level a ∈ A is the state-contingent transfer
and asset choices {τ i = T i(a), ai = Ai(a)}ni=1 associated with a MPE.

We next characterize Markov-perfect equilibria in our setting. The constraint set is non-
empty for all a ∈ A—for example, the full-insurance contract with e = min{E} or setting
{e, τ i, ai} to their autarky levels (see Appendix A) are always feasible. Since A is compact,
existence of a fixed point, V in problem (2)—(4) can be then shown as in Abraham and Pavoni
(2006), using standard contraction mapping arguments.

In what follows, to simplify notation, we use E[x] =
∑n

i=1 π
i(e)xi for any variable x.

Proposition 1 A Markov-perfect equilibrium is characterized by:

(i) Ci(a) non-decreasing in i, with C1(a) < Cn(a), for all a ∈ A;

(ii) the inverse Euler equations

uc(Ci(a)) =
βr

E
[

1
uc(C(Ai(a)))

] ,
for all a ∈ A and i = 1, . . . , n.

Proof. With Lagrange multipliers λ and µ on (3) and (4), respectively, the first-order conditions
with respect to transfers and assets are

uc(c
i)
[
πi(e) + λπie(e)

]
− µπi(e) = 0 (5)[

−uc(ci) + βVa(ai)
] [
πi(e) + λπie(e)

]
= 0, (6)

for all i = 1, . . . , n. Re-arrange (5) as,

µπi(e)

uc(ci)
= πi(e) + λπie(e).

Since this expression holds for any i, sum over i = 1, ..., n and obtain

µ

n∑
i=1

πi(e)

uc(ci)
=

n∑
i=1

πi(e) + λ

n∑
i=1

πie(e).

Given
∑n

i=1 π
i(e) = 1 for all e, we have

∑n
i=1 π

i
e(e) = 0, which implies

µ =
1

E[ 1
uc(c)

]
> 0. (7)
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Given Assumption 1 (the monotone likelihood ratio property) and µ > 0, part (i) follows from
the fact that the incentive-compatibility constraint (3) binds at optimum (i.e., λ > 0)—see
Rogerson (1985a) or Bolton and Dewatripont (2004) for discussion and proofs. The monotonic-
ity of period consumption in output is a static property—see the first-order condition (5)—so
the standard proofs carry over.

To show part (ii), note that given uc(c
i) > 0 and µ > 0, (5) implies πi(e) + λπie(e) > 0 for

all i = 1, . . . , n. Thus, from from (6) we get

−uc(ci) + βVa(ai) = 0, ∀i (8)

The envelope condition implies

Va(a) = r
n∑
i=1

uc(c
i)[πi(e) + λπie], (9)

which, using (5), implies Va = rµ. Replace µ from (7) and update one period. Plugging the
resulting expression into (8), we obtain the inverse Euler equations as stated in the proposition.

Proposition 1 shows that Markov-perfect contracts preserve standard features of insurance
under asymmetric information. Part (i) states that these contracts do not provide full insurance,
as is generally the case for insurance arrangements in the presence of private information. Part
(ii) shows that consumption paths are characterized by the familiar inverse Euler equations
from the full commitment literature (e.g., Rogerson, 1985b; Golosov et al., 2006).

4 Equivalence of Markov-perfect and one-sided commitment
contracts

In this section, we investigate further the role of commitment by the insurer. Specifically, we
show that in our setting the insurer’s inability to commit to a long-term contract is immaterial,
in the sense that endowing him with commitment would not alter the consumption and effort
allocation the agent receives when signing a contract, nor social welfare. However, we argue
that the Markov-perfect equilibrium analyzed in the previous section provides a justification
for specific asset dynamics, which are indeterminate in the setting with full commitment by the
insurer.

Consider a “one-sided commitment” contract, such that insurers are able to commit to
an infinite sequence of state-contingent transfers, but agents are allowed to walk away at the
beginning of each period, before output is realized. Although the agent is assumed to be unable
to commit to stay in the contract beyond the current period, we assume that he cannot renege on
the terms of the contract for the period if he decides to stay on. Thus, the agent’s participation
constraint must be satisfied in every period. This timing of events is similar to Phelan (1995),
except that we allow the agent to sign up with another insurer right away, instead of sitting-out
for one period. Crucially, our timing is different from that in much of the “limited commitment”
literature (Thomas and Worrall, 1988, 1994; Ligon, Thomas and Worrall, 2002; Kocherlakota,
1996; Krueger and Uhlig, 2006 among many others) where agents can walk away after observing
the output realization. The lack of commitment friction that we stress is thus not about short-
term opportunistic behavior of agents when output is high, but about their ability to walk away
at the beginning of any time period, should the terms of the contract leave them worse-off than
their best alternative.

Let st ∈ {1, ..., n} be the output state in period t and st ≡ {s0, . . . , st} denote the history
of output states from period 0 up to period t. Given initial asset holdings, a0 ∈ A, a one-
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sided commitment contract consists of history-dependent sequences for consumption, assets
and effort. Let {c(a0, st), a(a0, s

t), e(a0, s
t)}∞t=0 denote those sequences,. For any t = 0, ...,∞

and any history st, let α(st) denote the beginning-of-period asset holdings by the agent, obtained
using the policy rule in a MPE, Ai(a), i.e., α(st) = Ast(α(st−1)) with α(s−1) = a0.

Proposition 2 Given α(s−1) = a0 ∈ A and any history s∞, a one-sided commitment contract
implements history-contingent consumption and effort sequences {c(a0, st), e(a0, st)}∞t=0 identi-
cal to the sequences {Cst(α(st−1), E(α(st−1))}∞t=0 implemented in a Markov-perfect equilibrium
solving problem (2)—(4).

Proof. See Appendix B.

Whether the insurer can or cannot commit in our setting does not affect the insurance
received by the agent—our Markov-perfect contracts in which insurers can only commit for the
current period implement the same outcome as when insurers can commit to infinitely-long
contracts. As shown in Karaivanov and Martin (2011), the key to this equivalence result is
that agent and insurer face the same rate of return r. Instead, if the insurer had superior
return on assets, then his ability to commit allows him to support higher promised utility in the
future and offer a contract with a higher net present value than achieved in a Markov-perfect
equilibrium. On the other hand, the commitment ability of the agent matters regardless of the
parties’ returns on assets. If both sides could commit to an infinitely-long contract, promises
lower than any outside option can be used at some point of time, after some histories, which
results in higher ex-ante welfare—see Karaivanov and Martin (2011) for more discussion.

Proposition 2 shows that consumption and effort allocations in a Markov-perfect equilibrium
are equivalent to those in one-sided commitment contracts, which are have been studied often
in the literature. Markov-perfect insurance contracts are thus not as restrictive as they may
initially appear. There is, however, an important difference between MPE and one-sided com-
mitment contracts. One-sided commitment contracts feature an indeterminate path for assets
since assets and promised-utility are interchangeable in terms of implementing future allocations
(see the proof of Proposition 2 for details). Infinitely many asset paths are thus consistent with
the same insurance contract. In contrast, in a Markov-perfect equilibrium insurers cannot use
promised utility to implement dynamic insurance arrangements since they lack the ability to
commit to any promises involving events beyond the present period. In this case, the agent’s
asset holdings are the only instrument insurers can use to manipulate the contract’s future
value. Importantly, this leads to non-trivial, determinate asset dynamics which we can use to
evaluate the model empirically.

5 Numerical Analysis

In this section we calibrate a version of our model and solve for the resulting Markov-perfect
equilibrium. In addition to demonstrating the relative numerical simplicity of the solution,
we show that Markov-perfect contracts possess characteristics that can be calibrated to match
certain features of US macro data. We also use our calibration to perform a simple welfare
analysis comparing the gains from resolving private information vs. commitment problems in
our setting. All references to a Markov-perfect equilibrium in this section correspond to the
computed MPE.
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5.1 Parametrization and computation

Assume a generalized CRRA parameterization for the utility function,

u(c) =
α(c1−σ − 1)

1− σ
.

where α > 0 and σ > 0 with u(c) = ln c for σ = 1. We consider an economy with n = 3, “low”,
“medium” and “high” output levels, labeled yL, yM and yH , respectively. The probability
functions, πi(e) are given by

πL(e) = 1− πM (e)− πH(e)

πM (e) =
ϕ eν

1 + eν

πH(e) =
(1− ϕ) eν

γ + eν
,

where γ, ν > 0 and ϕ ∈ (0, 1). It can be directly verified that the chosen probability functions
satisfy the sufficient conditions for the validity of the first-order approach (Rogerson, 1985a).

If γ 6= 1 the likelihood ratios πi
e(e)
πi(e)

are different for medium and high output and so transfers

differ for all levels of output.

In picking parameter values, we follow Castañeda, Dı́az-Gimémez, and Ŕıos-Rull (2003) who
match earnings, the wealth distribution and other aggregates for the US economy in a model
with a mix of dynastic and life cycle features. Table 1 displays our selection of parameters.
The values for β and σ are taken straight from Castañeda et al. We also set r equal to the
value which their calibration implies for the annual interest rate net of depreciation. For the
three output levels, we take their values for the endowments of labor efficiency units.4 We set
the value for ν arbitrarily to 0.5 and pick ϕ and γ so that the long-run distribution of realized
output levels in a Markov-perfect equilibrium approximates the proportions for the US reported
in Castañeda et al. (2003)—see Table 2 below. The remaining parameter, α affects only the
scale of effort levels in equilibrium and is set large enough for effort to be significantly different
(in a numerical sense) than zero for high asset levels. Finally, following Castañeda et al. (2003)
and most of the related literature, we assume agents are subject to a non-borrowing constraint,
i.e., we set a = 0. For our parameterization, this constraint only binds for the lowest output
state.

Table 1: Parameter values

α β σ r ν ϕ γ yL yM yH

4.000 0.924 1.500 1.061 0.500 0.450 2.000 0.10 0.315 0.978

We start by computing the autarky problem (see Appendix A for its formulation and solution
properties). We use a discrete grid of 1,000 points for the state space but allow all choice
variables to take any admissible value.5 Cubic splines are used to interpolate between grid
points.

4See Table 5 in Castañeda et al. (2003). Note that they parameterize four endowment levels; the fourth
type is about 1, 000 times more productive than the first type and comprises 0.04% of working-age households.
Since our economy already makes important simplifications with respect to theirs—no life-cycle features, taxes,
etc.—we omit this fourth type to simplify the numerical analysis and exposition of results.

5We did not find significant gains from further increasing the size of the grid. For example, the value of
autarky at zero assets computed with 1, 000 and with 10, 000 grid points differs by only 0.02%.
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The upper bound for assets ā is set to 60 which ensures that all three asset accumulation
functions, Ai(a) cross the 45-degree line. We use the same asset grid for all computations
performed below. For clarity of exposition, graphs only display asset holdings up to a = 5,
which includes 99.95% of agents in a stationary equilibrium in autarky and virtually all agents
in a MPE.

To compute a Markov-perfect equilibrium, we use the following iterative algorithm to find
fixed-point in the value function V(a) and its corresponding policy functions: (i) start with the
agent’s value in autarky as initial guess for V; (ii) solve the insurer’s maximization problem (2)—
(4) which outputs a new value function; (iii) update and continue iterating until convergence.
Subsequently, we use the first-order conditions to the insurer’s problem to improve the precision
of the solution.

In addition, we compute the long-run distribution of assets by assuming continuum of agents.
This is done using standard techniques: the decisions rules derived from the numerical solution
imply a transition matrix on which we iterate until obtaining a distribution that maps into
itself.

5.2 Autarky vs. Markov-perfect equilibrium

Figure 1 displays transfers from the insurer to the agent in the computed MPE, as functions of
the agent’s current assets a. Clearly, the principal is able to provide insurance over and above
the self-insurance allocation achieved by the agent in autarky. Specifically, for our calibration
we obtain yL < T L(a) < yM < T M (a) < T H(a) < yH for all a ∈ A. Thus, if realized
output is low, the principal provides the agent with higher consumption than in autarky while,
if realized output is medium or high, he provides the agent with lower consumption than in
autarky. Although not shown on the graph, the transfer functions for the low and medium
states become almost flat for high asset levels, whereas the transfer function for the high state
converges towards that for the medium state.

We next compare the state-contingent consumption levels in autarky and the computed
Markov-perfect equilibrium. For all asset levels, consumption for the low and medium output
states is higher in a MPE, whereas consumption in the high output state is always higher in
autarky. The differences for the low and medium states are significant at low asset levels. For
example, at zero assets, computed MPE levels of cL and cM are 99% and 38% higher than those
in autarky, respectively.

Figure 2 provides a measure of the degree of consumption insurance achieved in a MPE
as opposed to in autarky as function of assets a. Specifically, we display cM/cL and cH/cL in
autarky and in the computed Markov-perfect equilibrium. We see that for high asset holdings,
the agent is self-insuring adequately and thus, both ratios approach one in either environment.
For low asset levels, however, there is significant demand for market insurance. For example,
at zero assets, the agent contracting with a competitive insurer obtains about 1.5 times of
his consumption in the low state if output is medium or high. In autarky, the same agent
would instead consume about 2.2 and 3.4 times his consumption in the low state, respectively,
indicating much lower ability to smooth consumption.

Naturally, given the additional insurance provided in a Markov-perfect equilibrium over
autarky, agent’s effort decreases when contracting with an insurer (the graph is omitted to save
space). At zero assets, effort in autarky is about 3 times higher than in the computed Markov-
perfect equilibrium. This difference in effort levels becomes smaller at higher asset levels: for
instance, at a = 5 the agent only exerts about 15% more effort in autarky.

Despite the above differences, the long-run measures of agents with specific output realiza-
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Figure 1: Transfers in a MPE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5

Assets

ττττ
H

ττττ
M

ττττ
L

y
H

y
M

y
L

tions do not differ dramatically between autarky and Markov-perfect equilibrium—see Table 2.
However, self-insurance and MPE insurance yield significantly different long-run distribution of
assets (wealth). The Gini coefficient of the wealth distribution is 0.35 in autarky and 0.45 in
the Markov-perfect equilibrium. As a reference, the canonical model by Aiyagari (1994) which
is basically our autarky model from Appendix A, but with exogenous output probabilities, fea-
tures a Gini coefficient of 0.38, whereas the model by Castañeda et al. (2003) matches the US
Gini coefficient of 0.78.6 Figure 3 displays the Lorenz curves for autarky and the computed
Markov-perfect equilibrium. Most of the difference between the Lorenz curves in the two set-
tings is explained by the fact that wealth-poor agents contracting with an insurer have lower
incentives to self-insure through asset accumulation.

Table 2: Long-run measure of agents, according to output realizations

yL yM yH

Autarky 0.585 0.228 0.187
MPE 0.605 0.218 0.176

The parameterization adopted here allows our autarky economy with endogenous effort to

6This number is calculated using the 1992 Survey of Consumer Finances. Budŕıa-Rodŕıguez et al. (2002)
update it to 0.803 using the 1998 Survey.
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Figure 2: Consumption insurance in Autarky and MPE
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perform similarly to Aiyagari’s model with exogenous earnings. Taking this economy as a
benchmark, our MPE calibration results indicate that augmenting the Aiyagari self-insurance
framework to an insurance market environment with lack of commitment and moral hazard
frictions, as assumed here, goes in the right direction, in the sense that we show it can help
explain a non-trivial additional part of long-run wealth inequality.

We take one final look at the differences between autarky and Markov-perfect equilibrium
by focusing on the median-wealth agent in each environment. Table 3 shows his assets, effort,
expected income (post-transfers and including asset income) and assets over expected income in
both environments. The median-wealth agent is significantly poorer in the computed Markov-
perfect equilibrium. In autarky, he holds assets three times as large as his period income; while
in a MPE his asset holdings are only about 80% of his period income. Coupled with lower effort
level, the median-wealth agent is also income-poorer in a MPE, although the income differential
with autarky is much smaller.

Table 3: Statistics for median-wealth agent

a e Ey a/Ey

Autarky 1.119 1.031 0.380 2.948
MPE 0.247 0.942 0.321 0.772

Note: expected income, Ey =
∑n

i=1 π
i(e)yi + (r − 1)a for autarky and Ey =

∑n
i=1 π

i(e)τ i + (r − 1)a for MPE.

5.3 Welfare analysis

The dynamic insurance contracts we study above feature two important frictions: private in-
formation and limited commitment. In this section, we compute the welfare costs associated
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Figure 3: Lorenz curves
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with these frictions for our calibrated economy. We start by computing the welfare gains for an
agent from moving from autarky to the computed MPE insurance contract. Specifically, for all
a ∈ A we solve for the consumption equivalent compensation function ∆(a) defined in

n∑
i=1

πi(Ê(a))
{
u(Ĉi(a)[1 + ∆(a)]) + βΩ(Âi(a))

}
− Ê(a) = V(a), (10)

where {Ĉi(a), Âi(a), Ê(a)}ni=1 are the optimal policy functions in autarky, Ω(a) is the value func-
tion in autarky (see Appendix A) and V(a) is the agent’s value in a Markov-perfect equilibrium
(see Definition 1).

Figure 4 displays ∆(a), i.e., the welfare gains associated with moving from autarky to
Markov-perfect insurance as function of agent’s current assets, a. Clearly, these gains can be
quite sizable. For example, at zero assets, the welfare gains are equivalent to a one-time payment
of 326% of period consumption in autarky. Naturally, the gains are decreasing in assets as the
demand for market insurance decreases with wealth. Still, the welfare gains are significant
even for asset-rich agents; at a = 5 (where an agent in autarky is richer than 99.95% of the
population), the value of ∆ is about 10%.

The relatively large welfare gains we obtain at zero assets are in part due to the non-
borrowing constraint, which severely limits the ability of the agent to self-insure when very
poor. To see this, consider decreasing the lower bound on asset holdings to a = −1 (as a
reference, in our calibration the “natural borrowing limit”, Aiyagari, 1994 is about −1.64).
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Figure 4: Welfare gains from moving from autarky to MPE
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The welfare gains at zero assets drop to 127% of consumption in autarky. This number is
significantly lower than with a non-borrowing constraint, but still very seizable (the equivalent
compensation at the new asset lower bound a = −1 climbs to 4, 244%)

Next, starting from our computed MPE, we consider the welfare gains that result from
resolving the information and commitment frictions. A Markov-perfect equilibrium with full
information, i.e., when effort is observable and contractible and so the moral hazard problem
is resolved, can be defined analogously to Definition 1 but without the incentive compatibility
constraint (see also Karaivanov and Martin, 2011 for more discussion on the full information
case). To study the gains from resolving the commitment friction we solve the contracting
problem assuming full (double-sided) commitment, i.e., assuming both sides can bind themselves
to a lifetime agreement at time zero. This full-commitment problem is formulated exactly as the
one-sided commitment problem from Section 4 and Appendix B, but without the lower bound
on promised utility.

We compute the equivalent compensation function ∆(a) for the two scenarios outlined above.
This involves replacing V(a) in (10) with the corresponding value function from either the
full-information (with lack of commitment) or full-commitment (with moral hazard) solutions.
Figure 5 displays the welfare gains from resolving the information and commitment frictions.
We measure the relative magnitudes of these gains by taking the ratio of the corresponding
consumption equivalent compensations over all asset levels.

The left panel in Figure 5 displays the gains from resolving the information friction in a
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Figure 5: Welfare gains from resolving information and commitment frictions
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Note: the dashed line indicates the ratio of consumption equivalent compensations is equal to 1.

Markov-perfect equilibrium. As we see, the welfare gains can be large: at zero assets, going
from autarky to a Markov-perfect equilibrium with full information is 19 times better than
going to a Markov-perfect equilibrium with private information. Although not visibly apparent
in the chart, the value from resolving the information friction is non-monotonic—first decreasing
and then increasing in assets (a minimum is achieved at about a = 4.9). The reason for this
non-monotonicity is that there are two opposing forces at play. On the one hand, demand
for insurance is decreasing in assets. With full information we obtain full rather than partial
insurance, which is especially valued at low asset levels. On the other hand, as agent’s assets
increase, it becomes more costly for the insurer to induce the desired amount of effort when it
is private information. Thus, the gains from going to a Markov-perfect equilibrium fall much
more rapidly with private information than with full information. For our parameterization, the
latter force only dominates for asset levels that are held by virtually no agent in the long-run,
but we have computed alternative examples where it dominates for all asset levels.

Endowing the insurer and agent with commitment power results in significant welfare gains
for the agent. Recall from Section 4 that simply endowing the insurer with commitment does
not affect the resulting contract. Therefore, what is key for the gains from commitment is the
inability of the agent to walk away from the agreement, which allows the insurer to front-load
agent’s consumption and extract agent’s assets providing better incentives to supply effort. The
gains from full commitment at low asset levels can be huge: in our parametrization going from
autarky to a setting with full commitment at a = 0 is 69 times better in terms of consumption
equivalence compensation than going to a Markov-perfect equilibrium. The gains erode rapidly
as asset holdings increase (not displayed in the Figure).

The right panel in Figure 5 compares head-to-head the welfare gains from resolving the
information and commitment frictions. For our parameterization, the gains from commitment
are higher than those from resolving the moral hazard problem at low asset levels, while the
opposite holds for high asset levels. This result follows from the analysis above. The gains from
agent’s commitment are associated with the insurer’s ability to immiserate the agent in the
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long-run and, as such, depend crucially on the initial demand for insurance, i.e., the initial asset
level. For high asset levels, there is simply too little scope for market insurance in the presence
of the moral hazard problem. On the other hand, the welfare improvement from resolving the
private information problem comes from the insurer’s ability to provide full insurance, which is
still valued at high asset levels.

6 The role of asset contractibility

In the preceding sections, we assumed that the agent’s assets decisions can be contracted upon.
Here, we show that our results for the case of a perfectly competitive insurance market with free
entry are unaffected by this assumption—even if insurers cannot control (but can still observe)
agent’s savings, the same MPE results. However, we also show that, more generally, when
insurers have at least some market power asset (non-)contractibility does affect Markov-perfect
insurance contracts.

6.1 Generalized insurance problem

Consider an agent with a general outside option as a function of assets, B(a). To capture
the full spectrum from a monopolistic insurer to partial market power to perfect competition,
assume that the agent’s outside option is at least as high as his value in autarky—denoted
Ω(a) (see Appendix A)—and up to the value obtained in perfectly competitive Markov-perfect
equilibrium, V(a), as analyzed in Section 3. We make the following assumptions about the
agent’s outside option.

Assumption 3 Let B(a) be differentiable, strictly increasing, strictly concave, and such that
for all a ∈ A: B(a) ∈ [Ω(a),V(a)].

Insurers discount future profits at rate r. This assumption can be interpreted as the insurer
being able to carry resources intertemporally using the same technology as the agent.7 The
problem of the insurer is

Π(a) = max
{τ i,ai}ni=1,e

n∑
i=1

πi(e)

[
yi − τ i +

Π(ai)

r

]
(11)

subject to

n∑
i=1

πie(e)
[
u(ci) + βB(ai)

]
− 1 = 0 (12)

n∑
i=1

πi(e)
[
u(ci) + βB(ai)

]
− e−B(a) = 0. (13)

Since profits strictly decrease in transfers, the profit-maximizing insurer will always drive the
continuation value of the agent to the agent’s outside option. Thus, in equilibrium, the agent’s
continuation value is B(a). In the special case B(a) = V(a) for all a ∈ A Lemma 2 in Appendix
B proves that the above problem is equivalent to the perfectly competitive MPE problem (2)—
(4).

7In Karaivanov and Martin (2011), for the case with full information, we allow the insurer’s discount rate to
be anything in between r and β−1 and analyze how differences in technology interact with lack of commitment.
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Proposition 3 For any given B(a) satisfying Assumption 3, a Markov-perfect equilibrium is
characterized by:

(i) Ci(a) non-decreasing in i, with C1(a) < Cn(a), for all a ∈ A;

(ii) the inverse Euler equations,

uc(Ci(a)) =
βr

E[ 1
uc(C(Ai(a)))

]
,

for all a ∈ A and for all i = 1, . . . , n.

Proof. With Lagrange multipliers λ and µ on the incentive and participation constraints,
respectively, the first-order conditions with respect to transfers and assets are

−πi(e) + uc(c
i)
[
λπie(e) + µπi(e)

]
= 0 (14)

πi(e)Πa(a
i)

r
+
[
−uc(ci) + βBa(a

i)
] [
λπie(e) + µπi(e)

]
= 0, (15)

for all i = 1, . . . , n. Adding up (14), we obtain,

µ = E

[
1

uc(c)

]
> 0. (16)

Part (i) then follows from standard arguments as in the proof of Proposition 1.

To show part (ii), note that for all i = 1, . . . , n, (14) implies λπie(e) + µπi(e) = πi(e)
uc(ci)

> 0

given uc(c
i) > 0 and πi(e) ∈ (0, 1). Thus, from (15) we get

Πa(a
i)− r +

βrBa(a
i)

uc(ci)
= 0, (17)

for all i = 1, . . . , n.

The envelope condition implies

Πa(a) = λr
n∑
i=1

πie(e)uc(c
i) + µr

n∑
i=1

πi(e)uc(c
i)− µBa(a).

Solving for λ from (14) we can rearrange the above expression as follows

Πa(a) = r

n∑
i=1

πi(e)

{
1− uc(ci)E

[
1

uc(c)

]}
+ µr

n∑
i=1

πi(e)uc(c
i)− µBa(a).

which, using (16), simplifies to

Πa(a) = r −Ba(a)E

[
1

uc(c)

]
. (18)

Update one period and plug into (17) to obtain the inverse Euler equations from the proposition
statement.

As in Section 2, Markov-perfect equilibria preserve standard properties of dynamic insurance
under private information. The “partial insurance” and “inverse Euler equations” properties
hold regardless of the agent’s outside option or, equivalently, the insurer’s market power.
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6.2 Asset contractibility

So far we have assumed that insurers, whether competitive or possessing some market power
can perfectly control agent’s assets. Proposition 3 shows that market power does not affect the
basic properties of Markov-perfect contracts. So does market power matter generally speaking?
As we show next, the answer is affirmative in the case when agent’s assets remain observable
but cannot be directly controlled by the insurer. Realistically, one can imagine many situations
falling in this category—insurers or governments can know agents’ asset positions (via tax
records, required disclosure, etc.) but may not be able to directly command what agents do
with their assets. We show that asset non-contractibility can alter the terms of Markov-perfect
insurance contracts when insurers have market power (even a small deviation from free entry is
sufficient).

Suppose assets are non-contractible, that is, the agent cannot be contractually bound to a
specific asset accumulation choice. In this case, Markov-perfect contracts (defined analogously
to Definition 1) consist only of output-contingent transfers, {T i(a)}ni=1. The problem of the
agent is

max
{ai}ni=1,e

n∑
i=1

πi(e)
[
u(ci) + βB(ai)

]
− e, (19)

where ci ≡ ra+T i(a)− ai. Unlike in the contractible case, the agent chooses both effort, e and
future asset holdings, ai.

Proposition 4 For any given outside option B(a) satisfying Assumption 3, a Markov-perfect
equilibrium does not depend on asset contractibility if Πa(a) = 0 for all a ∈ A and only if
Πa(Ai(a)) = 0 for all a ∈ A and all i = 1, . . . , n.

Proof. If assets are non-contractible then, for any given contract, {T i(a)}ni=1 the agent’s savings
decision is characterized by the following optimality condition:

−uc(ci) + βBa(a
i) = 0, (20)

for all i = 1, . . . , n. At optimum condition (20) must be satisfied by the insurer as an additional
constraint in the contracting problem (11). Note that de facto we are using a ‘first-order
approach’ in the actions ai and e replacing the agent’s optimization problem (19) with its
first-order conditions. In practice, the validity of this approach can be verified using methods
suggested by Abraham and Pavoni (2006) which is what we report on in the following numerical
section.

If Πa(a) = 0 for all a ∈ A then (17) implies (20) and thus, MPE with and without con-
tractible assets are identical. Conversely, suppose Markov-perfect equilibria with and with-
out contractible assets are identical. Together, (17) and (20) then imply Πa(a

i) = 0 for all
i = 1, . . . , n.

In general, expected profits depend non-trivially on assets, since the latter affect the agent’s
demand for insurance. Intuitively, the agent wants to save more than the amount preferred
by the insurer since this enables the agent to raise his outside option, B(ai) and secure higher
future utility. This misalignment of incentives disappears in the perfect competition case where
all the surplus goes to the agent. In that case expected profits Π(a) are identically zero for all
a ∈ A and so Πa(a) = 0 for all a ∈ A. Therefore, Markov-perfect contracts do not depend on
whether agent’s assets are contractible or not.
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6.3 Welfare

We now evaluate numerically how Markov-perfect insurance contracts are affected by asset
(non-)contractibility as a function of the insurer’s market power for our parameterization from
Section 4. Define the outside option of the agent as follows,

B(a) = (1− θ)Ω(a) + θV(a),

where θ ∈ [0, 1], Ω(a) is the agent’s value in autarky, as defined in Appendix A and V(a) is
the value obtained by the agent in a Markov-perfect equilibrium with perfect competition, as
defined and characterized in Section 3. Note that, from Proposition 4, the function V(.) is
the same for the cases with contractible and non-contractible assets. The value of θ can be
interpreted to reflect the insurer’s market power. When θ = 0, the insurer is a monopolist
who maximizes profits subject to the agent receiving at least his autarky value; when θ = 1 we
obtain the environment with perfect competition among insurers.

The numerical procedure we use when θ < 1 is similar to what we did in Section 5. The main
difference is that here, we search for a fixed-point in profits, Π(a) for any given θ. Specifically,
we compute Markov-perfect equilibrium for θ on [0, 1], in 0.05 increments. For all θ values less
than one we solve both the problem with contractible and non-contractible assets.

As shown above, asset non-contractibility affects the terms of Markov-perfect insurance
contracts except in the perfectly competitive case. To quantify this effect, Figure 6 measures
the gains (in terms of profits for the insurer) from being able to contract on asset accumulation,
as a function of θ for select asset levels—note that, for a given θ, B(a) is the same in the
contractible and non-contractible cases. The gains from asset contractibility can be quite large:
e.g., for the median-wealth agent in a MPE from Table 3, a monopolist insurer (θ = 0) can
make almost 30% more profits if assets are contractible. Note that even though the profit
ratios displayed in Figure 6 are not monotone in assets, the differences in profits between the
contractible and non-contractible cases are.

Remember, our analysis relies on using the agent’s first-order condition with respect to
assets as a constraint in the insurer’s problem. To confirm the validity of this approach we use
the verification technique proposed by Abraham and Pavoni (2008). That is, after computing
Markov-perfect equilibrium, we solve the agent’s maximization problem (19) globally (without
using first-order conditions) and verify that the difference between the resulting net present
value for the agent and B(a) is below some desired tolerance. Table 4 reports maximum and
median errors for selected values of θ. In all cases, the validity of the approach is verified.

Table 4: Verification of first-order approach when assets are non-contractible

θ Maximum error Median error

0.00 1× 10−6 2× 10−11

0.25 2× 10−7 2× 10−11

0.50 2× 10−7 2× 10−11

0.75 2× 10−7 2× 10−11

1.00 3× 10−6 9× 10−14

Note: “error” for any asset level a is defined as [v(a)−B(a)]/B(a), where v(a) is the value that results from solving the

agent’s maximization problem (19) globally (i.e., without using first-order conditions). See Abraham and Pavoni (2008).
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Figure 6: The value of asset contractibility
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corresponds to the case with contractible assets.

7 Concluding remarks

The Markov-perfect dynamic insurance contracts studied in this paper offer several character-
istics that make them attractive for empirical analysis. Specifically, we have: simple recursive
representation with single, scalar state without the curse of dimensionality even if agents can
(observably) save on the side; determinacy in asset dynamics; non-degenerate long-run wealth
distribution; and sizable (hence, potentially testable) effects when varying key environment as-
sumptions such as market power and asset contractibility. We plan on pursuing research along
these lines using structural estimation techniques, for example, by testing consumption and as-
sets implications of our Markov-perfect insurance contracts against those of alternative models
from the literature (permanent income, limited commitment, etc.)
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A Autarky

This appendix characterizes the agent’s autarky, or self-insurance, problem which is one possible
way to determine his outside option when contracting with the insurer. The timing in each
period is as follows. First, the agent decides how much effort e to put in, then output yi is
realized, and finally the agent decides how much to consume, ci and to save, ai in each state
i = 1, . . . , n. The agent faces the state-by-state budget constraint, ci + ai = ra+ yi. Applying
standard arguments, write the agent’s self-insurance problem recursively as

Ω(a) = max
{ai}ni=1,e

n∑
i=1

πi(e)[u(ra+ yi − ai) + βΩ(ai)]− e,

where Ω(a) is the agent’s value function. Our assumptions on u, the condition r < β−1 and the
upper bound on assets are sufficient for the autarky problem to be well-defined. Alternatively,
assuming r < β−1 and DARA utility it is easy to adapt the proof of Schechtman and Escud-
ero (1977) to our environment with endogenous income distribution showing that assets stay
bounded (details available upon request).

The autarky value function Ω(a) is strictly increasing in agent’s assets. Intuitively, since
r < β−1, the agent saves only to insure against current and future consumption volatility. An
agent with more assets can do everything a poorer agent can, but is in a better position to
self-insure against a long sequence of low outputs.

As is standard in self-insurance models, consumption smoothing is imperfect (ci differ across
states with different yi). Other features of the autarky solution are that optimal consumption
and savings in each state are increasing in assets, a. Assets are reduced if the agent is in
the lowest income state(s) and increased (for some asset range) if the agent is in the highest
state(s).8

B Equivalence between MPE and one-sided commitment con-
tract

B.1 Recursive one-sided commitment problem

As we show in Karaivanov and Martin (2011), without loss of generality, the one-sided com-
mitment contract described in section 4 can be written as a two-stage recursive problem where
agent’s assets are taken away by the insurer in the initial period and replaced by future utility
promises.9 The reason is that future assets and utility promises are completely interchangeable
to an insurer who has full commitment—any allocation can be implemented via infinitely many
appropriately chosen combinations of these two instruments. In the first stage of the one-sided
commitment problem, insurers solve a static problem offering the agent the maximum possible
utility subject to breaking-even and incentive-compatibility. Without loss of generality an in-
surer sets the agent’s asset future holdings to their minimum, a and, in exchange, promises the
agent lifetime utility wi0. Since the agent can walk away at the beginning of each period, the
promised utility needs to be at least as high as the agent’s outside option: the value of con-
tracting with another insurer starting with a assets (since ωi0 enters the objective with positive
sign this constraint will not bind typically). Let w be the value of this outside option, which is
endogenous and will be determined below.

8The proofs of these statements (available upon request) are relatively standard and hence, omitted.
9In that paper, we show this result in the full-information setting, but it is straightforward to adapt the proof

for the moral hazard case here.
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The first-stage (t = 0) problem of the insurer is

VC(a0) ≡ max
{ci0,ωi

0}ni=1,e0

n∑
i=1

πi(e0)
[
u(ci0) + βωi0

]
− e0 (21)

subject to

n∑
i=1

πie(e0)
[
u(ci0) + βωi0

]
− 1 = 0

n∑
i=1

πi(e0)
[
yi + ra0 − ci0 − a+ r−1ΠC(ωi0)

]
= 0

ωi0 − w ≥ 0, ∀i.

The first constraint ensures incentive-compatibility. The second constraint is the “zero ex-ante
profits” condition for the insurer. The third constraint ensures the agent remains in the contract
from tomorrow on, for any realization of current output.

The function ΠC(ω) solves the following, second-stage problem for any ω ≥ w:

ΠC(ω) = max
{ci,ωi}ni=1,e

n∑
i=1

πi(e)
[
yi + (r − 1)a− ci + r−1ΠC(ωi)

]
(22)

subject to

n∑
i=1

πie(e)
[
u(ci) + βωi

]
− 1 = 0

n∑
i=1

πi(e)
[
u(ci) + βωi

]
− e = ω

ωi − w ≥ 0, ∀i.

The (r − 1)a term in the objective reflects that agent’s assets are fixed at a each period. The
first constraint ensures incentive compatibility with the agent’s unobserved effort choice. The
second constraint, referred to as “promise keeping” embodies the commitment ability of insurers
to always deliver on their utility promise ω. The last constraint reflects the bound on future
promises implied by the agent’s inability to commit for more than one period.

In a competitive equilibrium, by free entry we must have that w = VC(a).

B.2 Auxiliary results

To prove Proposition 2 we will use two auxiliary Lemmas.

Lemma 1 For any ∆τ > 0 there exist εi > 0, i = 1, ..., n such that
∑n

i=1 ε
i = ∆τ and∑n

i=1 π
i
e[u(ci + εi)− u(ci)] = 0.

Proof. Since
∑

i π
i
e = 0, it is enough to show that we can choose εi so that u(ci+εi)−u(ci) = b

where b is some appropriately chosen positive constant. From the strict monotonicity of u a
unique solution to this equation in εi on [0,∞) exists and is strictly increasing in b. Call this
solution φi(b, ci). Since

∑
i φ

i(b, ci) is also strictly increasing in b and since φi(0, ci) = 0 for all
ci, ∃b > 0 that solves

∑
i φ

i(b, ci) = ∆τ for any ∆τ > 0.
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Let P1 be the problem of a competitive insurer as stated in (2)—(4). Let P2 be the problem
of a profit-maximizing insurer facing an agent with general outside option B(a), which we write
as follows:

Π(a) = max
{τ i,ai,e}ni=1

n∑
i=1

πi(e)

[
yi − τ i +

Π(ai)

r

]
subject to

n∑
i=1

πie(e)
[
u(ci) + βB(ai)

]
− 1 = 0

n∑
i=1

πi(e)
[
u(ci) + βB(ai)

]
− e−B(a) = 0.

Lemma 2 Equivalence of problems P1 and P2 for B(a) = V(a).

(i) For B(a) = V(a) in P2 any MPE solving P2 features Π(a) = 0 for all a ∈ A and is also
a solution to P1.

(ii) Any MPE solving P1 is a solution to P2 at B(a) = V(a).

Proof. For part (i), call S1 a MPE solving P1 and S2 a MPE solving P2. Any P2 solution at
B(a) = V(a) satisfies V(a) =

∑n
i=1 π

i(e2)
[
u(ci2) + βV(ai2)

]
− e2, i.e., it achieves the same value,

V(a) as S1. Clearly, at B(a) = V(a) S2 also satisfies (3). However, could it violate (4)? Suppose
yes. Suppose first (4) did not bind at S2 so that its expected transfers are too low relative to
expected output, i.e.,

∑n
i=1 π

i(e2)[y
i−τ i2] > 0. But then, in P1 we can increase transfers starting

from S2 while satisfying (3) (see Lemma 1) until (4) binds and get higher ex-ante value for the
agent—recall that S2 achieves V(a). This is a contradiction with the optimality of S1. Next,
suppose (4) did not bind in the opposite direction (transfers, τ i2 are too high relative to expected
output at S2). This implies that S1 has lower expected transfers than S2 since it satisfies (4) at
equality. Thus, at B(a) = V(a) S1 satisfies all constraints of P2 but yields higher profits than
S2 (due to its lower expected transfers) which contradicts the optimality of S2. Therefore, it
must be that S2 at B(a) = V(a) satisfies (4), which in turn, implies that its associated profits,
Π(a) are identically zero for any a ∈ A.

For part (ii), note that S1 is feasible for P2 at B(a) = V(a) and yields Π(a) = 0 for all
a ∈ A. Suppose, however, S1 is not optimal for P2, i.e., profits, Π(a) at S2 are actually positive.
But then, since S2 satisfies (3) and achieves V(a), as does S1, then back in P1 we can increase
expected transfers starting from S2 until (4) (zero profits) is satisfied while keeping (3) satisfied
(see Lemma 1) which would generate a higher value V(a)—a contradiction with the optimality
of S1.

B.3 Proof of Proposition 2

Proof. Define Π̂(a) = Π(a) − ra where Π is the profits function in problem P2 above. Since
B is assumed strictly increasing, we can perform a change of variables by calling w = B(a) and
call Π̄(w) ≡ Π̂(B−1(w)). This yields the following mathematically equivalent formulation of P2:

Π̄(w) = max
{τ i,wi,e}ni=1

n∑
i=1

πi(e)

[
yi − ci +

Π̄(wi)

r

]
(23)
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subject to

n∑
i=1

πie(e)
[
u(ci) + βwi

]
− 1 = 0

n∑
i=1

πi(e)
[
u(ci) + βwi

]
− e− w = 0

wi −B(a) ≥ 0.

Note that in the second-stage of the one-sided commitment problem (22), calling Π̄C(w) ≡
ΠC(w)− ra and w = B(a) yields an equivalent problem to (23) for any function B(a) so their
solutions must coincide. In terms of value functions, we must have

ΠC(w)− ra = Π(a)− ra. (24)

Also, at B(a) = V(a) we know by Lemma 2 that problem (23), which is equivalent to P2 for
any B(a), will have the same solution(s) as problem P1 defined in (2)—(4), starting from the
same a.

Changing variables from w to B(a), the first-stage of the one-sided commitment problem
(21) is equivalent to:

max
{ci0,ai0,e0}ni=1

n∑
i=1

πi(e0)
[
u(ci0) + βB(ai0)

]
− e0 (25)

subject to

n∑
i=1

πie(e0)
[
u(ci0) + βB(ai0)

]
− 1 = 0

n∑
i=1

πi(e0)
[
yi + ra0 − ci0 − a+ r−1ΠC(B(ai0))

]
= 0

B(ai0)−B(a) ≥ 0, ∀i.

Plugging in for ΠC in terms of Π from (24), the second constraint can be rewritten as

n∑
i=1

πi(e0)
[
yi − τ i0 + r−1Π(ai0)

]
= 0, (26)

where τ i0 = ci0 +a−ra0. From the second-stage problem (22) (which was shown to be equivalent
to (23) and hence to P2 earlier on) we have Π(ai0) = 0 at B(a) = V(a)—see Lemma 2, part
(i). Thus, constraint (26) becomes

∑n
i=1 π

i(e0)
[
yi − τ i0

]
= 0 and so the first-stage problem (25)

at B(a) = V(a) is equivalent to problem P1, (2)—(4) starting from the same a0. Overall, we
have shown that the one-sided commitment problem with free entry by insurers (21)—(22) is
equivalent to P1—the Markov-perfect insurance problem with free entry. Thus, starting at the
same initial asset level, a0 ∈ A, we obtain equivalence of consumption and effort allocations, for
any given sequence of output realizations, as written in the proposition statement.
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