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Abstract

We analyze an equilibrium concept called revision-proofness for infinite-horizon

games played by a dynasty of players. Revision-proofness requires strategies to be

robust to joint deviations by multiple players and is a refinement of sub-game per-

fection. Sub-game perfect paths that can only be sustained by reversion to paths with

payoffs below those of an alternative path are not revision-proof. However, for the

important class of quasi-recursive games careful construction of off-equilibrium play

can render many, and in some cases all, sub-game perfect paths revision-proof.

1 Introduction

We consider infinite horizon repeated and dynamic games played by a sequence or dy-
nasty of strategic players. These players may be interpreted as distinct individuals or as
the selves of a single individual with time inconsistent preferences. Following Kocher-
lakota (1996), they may be interpreted as policymakers in a reduced form representation
of a macroeconomic policy game. Infinite horizon dynastic games typically admit large
sets of sub-game perfect equilibria. This lack of determinacy coupled with the unap-
pealingly severe nature of some equilibria has motivated a search for refinements. In
this paper we explore one such refinement which we label revision-proofness. A strategy
is revision-proof if there is no alternative strategy that weakly raises the payoffs of all
players in a sub-game and strictly raises the payoffs of some. Variations on this defini-
tion have been provided by Hammond (1975), Asheim (1997) (from whom we borrow
the name revision-proofness) and Caplin and Leahy (2006).1 However, as yet limited
characterization of the concept has been given. Our goal is to fill this gap.
∗Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15217
1Alternative renegotiation-proof concepts for repeated games have been provided by, inter alia, Kocher-

lakota (1996), Pearce (1987) and Farrell and Maskin (1989). We discuss these briefly below.
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Sub-game perfection in dynastic games requires that a strategy be robust to a rather
limited set of "revisions", namely those that involve a single player altering her action
and taking the response of her successors to this alteration as given. Since players do not
fully internalize the effect of their actions on other players’ payoffs, sub-game perfection
often permits strategies that all players agree are weakly inferior and some think are
strictly inferior to alternatives. The latter, however, can only be reached via coordinated
reforms and these are not possible.

Revision-proofness requires that a strategy be robust to a much larger set of alter-
natives. Now, all feasible paths of actions are candidate revisions. However, revision-
proofness permits a path to disrupt a strategy only if every player along the path weakly
prefers continuing with it to returning to the strategy and at least one player strictly
prefers this. A difficulty with the concept is that play prescribed arbitrarily far into
the future is relevant for determining whether or not a strategy is revision-proof. On
the one hand, revision-proofness requires that a strategy be robust to coordinated and,
given histories, mutually beneficial deviations of arbitrary length; on the other, it per-
mits players arbitrarily far in the future to block a revision that weakly benefits all of
their predecessors. As a result, recursive methods are of limited use in characterizing
revision-proofness, significantly complicating the analysis.

The extent to which revision-proofness refines sub-game perfection, depends upon
the structure of player preferences. We show that if (i) a player strictly prefers a revision
path A to a prescribed path B and (ii) deterring each player from being the last to join A
"traps" her successor’s payoff below that obtained from A, then B cannot be implemented
by any revision-proof strategy. We say that the path B is not revision-proof. We give two
implications of this result. First, if in every sub-game there is a path whose continuation
is optimal for the current and later players, then a strategy is revision-proof if (and only
if) it attains such an optimum in every sub-game. Sub-game perfection does not ensure
this.2 Second, if a sub-game perfect strategy uses an exploding sequence of punishments
to deter players from unilaterally joining a revision, then it is not revision-proof. If sub-
game perfect implementation of a path requires such a sequence, then the path is not
revision-proof.

By definition, if a strategy builds up player payoffs along any revision-path so that
eventually a player prefers to revert to the strategy, then it is revision-proof. We pur-
sue this logic in the context of quasi-recursive games, an important class of dynastic
game. In these games a player and her successor may have differing preferences over

2It does so under the stronger condition that player preferences are time consistent and satisfy a
"continuity-at-infinity" condition.
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the successor’s choices, but conditional on the successor’s choice, identical preferences
over future play. We give examples including a pension game of Hammond (1975), a
macro-policy game of Kocherlakota (1996) and a savings game with quasi-hyperbolic
discounting. We provide conditions that ensure many, and in some cases all, action
paths in quasi-recursive games are revision-proof. To the extent that the conditions we
give are satisfied, revision-proofness is a weak refinement with respect to paths and out-
comes. On the other hand, it remains restrictive with respect to off-equilibrium play. Our
procedure for showing that a given path is revision-proof (i.e. is implemented by at least
one revision-proof strategy) is constructive. We build a strategy that implements the
path and confronts all sufficiently long revisions with a "blocking" player. For this player
there is no alternative continuation path that raises her predecessors’ payoffs without
reducing her own or her successors’ payoffs. Consequently, the blocking player (or her
successors) will reject any attempt to revise the strategy towards a continuation path
that her predecessors prefer; any successful revision must leave the path following the
blocking player intact. The strategy is then constructed to ensure that any revision which
does this makes some prior player worse off and, consequently, is revision proof.

The paper proceeds as follows. After a brief review of the literature, a general dy-
nastic game is outlined in Section 2. The formulation allows players to care about past
histories of actions in arbitrary ways and so accommodates both repeated games (in
which players do not care about the past) and dynamic games (in which they care
about a state variable inherited from the past). Section 3 defines sub-game perfection
and revision-proofness respectively and introduces some preliminary results. Section 4
provides conditions for a path of actions not to be revision-proof and considers the
implications of these conditions for games featuring weak agreement over optima and
(potentially) exploding punishment paths. Sections 5 and 6 give conditions for revision-
proofness in quasi-recursive games first without and then with state variables. Section 7
relates revision-proofness to Asheim’s revision-proofness concept and Kocherlakota’s
reconsideration-proof concept. Section 8 concludes. Appendices give proofs and sup-
plementary results.

Literature In Hammond (1975) a strategy is defined to be a dynamic equilibrium if there
exists no alternative strategy that strictly raises the payoffs of players whenever it pre-
scribes different actions for those players. Thus, Hammond’s refinement is weaker than
that proposed here since we require the absence of an alternative that strictly raises the
payoffs of some players in a sub-game, while leaving the payoffs, but not necessarily the
actions of the others unchanged. Asheim (1997) proposes a refinement which he labels
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revision-proofness. We show that although formulated differently the concepts are iden-
tical. Asheim (1997) relates revision-proofness to the coalition-proof Nash concept of
Bernheim, Peleg, and Whinston (1987) and to the consistent planning concept of Strotz
(1956). It is well known that consistent plans need not exist. By extension, revision-proof
strategies need not exist. Caplin and Leahy (2006) address the existence problem in finite
horizon settings.

Kocherlakota (1996) gives a refinement for dynastic games which he calls reconsider-
ation-proofness. A strategy is reconsideration-proof if it is best amongst payoff station-
ary sub-game perfect strategies. Revision-proofness allows a player to compare two
strategies across histories and coordinate her successors onto the dominating one. In
contrast, reconsideration-proofness supposes that a player compares the continuations
of a given strategy and selects the dominant one subject to the constraint that her suc-
cessors will do likewise. In the absence of state variables or history dependence, only
payoff stationary equilibria survive this internal reconsideration process. Kocherlakota
(1996) further assumes that players coordinate onto a best payoff stationary equilibrium.
Reconsideration-proofness can be interpreted as a specialization of the renegotiation
concept of Farrell and Maskin (1989) to dynastic games.3 Kocherlakota (1996) devel-
ops reconsideration-proofness only for repeated games, not dynamic ones which is an
important limitation. To date no extension of the concept to dynamic games has been
provided.

Pearce (1987) supplies an alternative notion of renegotiation-proofness for repeated
games played by a finite number of infinitely-lived players. He assumes that a strategy
will be revised if there is a history and an alternative strategy that gives higher payoffs
at all subsequent histories relative to those obtained under the original strategy and at
the original history. Again a difficulty with this renegotiation-proof concept is that its
extension to dynamic games is unclear.

2 The Environment

We consider games played by a sequence or dynasty of one period-lived players. Players
may be interpreted as different individuals or different selves of the same individual. Let
(P , ρ) denote a metric space of actions and N the natural numbers. Successive players,

3Despite the differences, our results showing the limits of revision-proofness as a refinement of sub-
game perfection in quasi-recursive games, is in the spirit of van Damme (1989) who shows that Farrell
and Maskin (1989)’s concept has no bite in the repeated prisoner dilemma game when discount factors
are high enough.
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t ∈ N , choose actions pt from P . Let P = {pt}∞
t=1 be the complete path of actions

chosen by agents and for T ∈ N , let PT = {pt}T
t=1 be a T-period history of actions and

PT+1 = {pt}∞
t=T+1 a period T + 1 continuation path. The sets P∞ = P ×P × . . . and

PT := P × . . .×P , containing paths and T-period histories respectively, are endowed
with the associated product topologies. P0 is set equal to ∅ and p0 and P0 to null
elements. If T′ ≥ T and the first T elements of PT′ equal PT, then PT′ is said to be a
successor history to PT.

The objectives of the players are given by a payoff function U : N ×P∞ → R,
R = R ∪ {−∞}, with U(t, ·) the objective of the t-th player. U(t, ·) is defined over the
entire action path so that the t-th player’s payoffs depend upon her ancestors’, her own
and her descendants’ actions. Depending on the setting, this dependence can occur
because of preference interactions across individuals (e.g. altruism or envy), or selves
(e.g. intra-personal discounting, habit formation). In addition, earlier players may affect
the choice sets of later ones by, for example, the accumulation of capital. To economize
on notation we encode such effects into player objectives by assigning −∞ payoff values
to paths that past play renders infeasible. This becomes a further channel via which
players can affect the payoffs of successors.

Definition 1. Given U, t ∈ N and Pt−1 ∈ P t−1, define the set of feasible continuation
paths for the t-th player at Pt−1 by Πt(Pt−1) = {P ∈ P∞|U(t, Pt−1, P) > −∞}. P =

(Pt−1, Pt) is said to be feasible for the t-th player if Pt ∈ Πt(Pt−1). Denote the set of
feasible actions for the t-th player at Pt−1 by Γt(Pt−1) = {p|∃P with (p, P) ∈ Πt(Pt−1)}
(i.e. the projection of Πt(Pt−1) onto its first coordinate).

We impose the following condition.

Assumption 1. Let U satisfy:

(i) for all t ∈ N and Pt−1 ∈P t−1, Πt(Pt−1) 6= ∅;

(ii) for all t ∈ N and Pt−1 ∈P t−1,

Πt(Pt−1) = {(p, P)|p ∈ Γt(Pt−1), P ∈ Πt+1(Pt−1, p)}.

Assumption 1 (i) ensures that all players after all histories have a feasible continuation
path. Assumption 1 (ii) ensures that if a path is feasible for a player, then it is feasible
for all of the player’s successors. Conversely, a feasible action choice for the current
player combined with any feasible continuation path for the next player forms a feasible
continuation path for the current player, (i.e. following a feasible current action choice, a
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−∞ payoff cannot be delivered to the current player without the successor incurring such
a payoff as well). This formulation is quite general and allows us to derive a number of
basic results without imposing much structure on players’ objectives. Sections 5 and 6
consider quasi-recursive settings in which player payoffs do not depend on the past or
do so through a low dimensional state variable.

Together the set P , sequence of players N and the payoff function U defines a
dynastic game, G (U). The notation emphasizes the dependence of the game on player
objectives. Modulo a relabeling of players each sub-game of G (U) is itself a dynastic
game. The sub-game following Pt will be denoted G (U; Pt).

A strategy σ = {σt}∞
t=1, σt : P t−1 →P , describes player behavior after every history.

Let (σ|Pt) = {σt+r(Pt, ·)}∞
r=1 denote the continuation of σ after some history Pt and let

Φ(σ) denote the action path induced by strategy σ. We require strategies to be feasible
for players in the following sense, for all t and Pt−1:4

U(t, Pt−1, Φ(σ|Pt−1)) > −∞. (1)

Let S (U) denote the set of feasible strategies for G (U). Note that Assumption 1 implies
that S (U) 6= ∅. Of course, if σ ∈ S (U), then (σ|Pt) ∈ S (U; Pt). In the remainder of
the paper we will use the term strategy to refer to a feasible strategy.

The function U implies indirect payoff functions over players, histories and strategies
which we denote, Vt : ∪sP s ×S → R with:

∀Pr ∈ ∪sP
s, Vt(Pr, σ) := U(t, Pr, Φ(σ|Pr)).

Vt(Pr, σ) gives the t-th player’s evaluation of the history Pr and the continuation path
induced by σ after Pr.

3 Sub-game Perfection and Revision-proofness

We now define sub-game perfection and revision-proofness.

Definition 2. Given a game G (U), σ ∈ S (U) is sub-game perfect if there is no t ∈ N ,

4By Assumption 1, the period t feasibility condition in (1) does not restrict the future actions of players
at t + r, r ∈ N , beyond requiring that they too are feasible.
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history Pt−1 ∈P t−1 and action p ∈P such that:5

Vt(Pt−1, p, σ) > Vt(Pt−1, σ).

P ∈P∞ is a sub-game perfect path if P = Φ(σ) for some sub-game perfect strategy σ.

Definition 3. Given a game G (U), σ ∈ S (U) is revision-proof if there is no t ∈ N ,
history Pt−1 ∈P t−1 and alternative strategy σ′ with for all r ∈ N and Pr ∈Pr:

Vt+r(Pt−1, Pr, σ′) ≥ Vt+r(Pt−1, Pr, σ), (2)

and for at least one Pr,

Vt+r(Pt−1, Pr, σ′) > Vt+r(Pt−1, Pr, σ). (3)

A path P ∈P∞ is revision-proof if P = Φ(σ) for some revision-proof strategy σ.

Sub-game perfection rules out strictly profitable unilateral deviations; revision-proofness
rules out multilateral deviations that are strictly profitable for some and weakly prof-
itable for all players in a sub-game. Consequently, revision-proofness is a refinement of
sub-game perfection, a fact we record below.

Proposition 1. If σ is revision-proof for G (U), then it is sub-game perfect for G (U).

Proof. The contrapositive is proved. If σ is not sub-game perfect for G (U), then there is
some Pt = (Pt−1, pt) such that: Vt(Pt, σ) > Vt(Pt−1, σ). Let σ′ equal σ for all histories
except Pt−1. Set σ′t(Pt−1) = pt . Then Vt(Pt−1, σ′) > Vt(Pt−1, σ) and for all r ∈ N and
Pr, Vt+r(Pt, Pr, σ′) = Vt+r(Pt, Pr, σ). Thus, σ is not revision-proof for G (U).

The following result shows that revision-proofness satisfies a weak recursive prop-
erty.

Proposition 2. σ is revision-proof for G (U) if and only if (i) for each p ∈P , (σ|p) is revision-
proof for G (U; p) and (ii) @ a p and σ′ for G (U; p) such that U(1, p, Φ(σ′)) > V1(σ) and for
all t = 2, 3, . . . and Pt−2, U(t, p, Pt−2, Φ(σ′|Pt−2)) = Vt(p, Pt−2, σ).

Proof. Necessity of the conditions in the proposition for revision-proofness is an immedi-
ate consequence of the definition. For sufficiency, suppose that σ satisfies the conditions

5Note that our restriction to feasible strategies eliminates uninteresting cases in which each player takes
an action yielding a −∞ payoff to its predecessor.
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in the proposition. Condition (i) ensures that there is no Pt−1, t = 2, 3, . . . and σ′ satis-
fying (2) and (3). Hence, any alternative σ′ either lowers the payoff of a player at some
t > 1 or leaves all such players’ payoffs unaltered. It only remains to rule out the possi-
bility that a strategy σ′ strictly raises the first player’s payoff while leaving all subsequent
players’ payoffs unchanged. This is done by Condition (ii).

A strategy σ is sub-game perfect for G (U) if and only if (i) σ1 is optimal for the initial
player given the continuations (σ|p), p ∈ P , and (ii) each continuation (σ|p) is sub-
game perfect for G (U; p). Thus, sub-game perfect strategies have a recursive structure.
Sections 5 and 6 impose additional "quasi-recursive" structure on player payoffs.6 Then,
following Abreu, Pearce, and Stacchetti (1990), the recursivity of sub-game perfection
may be exploited to show that the set (or correspondence) of sub-game perfect payoffs is
a fixed point of a time invariant, Bellman-like operator. In addition, if this set is bounded
(or the correspondence has a bounded graph), then this set (or correspondence graph) is
the largest bounded fixed point of the Bellman-like operator.

Proposition 2 asserts that σ is revision-proof for G (U) if and only if (i) it gives an
optimal payoff to the initial player subject to all later players receiving payoffs no lower
than under σ and (ii) each continuation (σ|p) is revision-proof for G (U; p).7 Condition (i)
implies that the continuations (σ|p) of a revision-proof strategy satisfy an infinite hori-
zon refinement of revision-proofness: the initial player can break the indifference of all
later players in her favor. In general, the infinite horizon reach of the refinement disrupts
full recursivity. Under stronger assumptions on player payoffs, in particular, the quasi-
recursiveness of later sections, a strategy σ is revision-proof if (i) is weakened to (i′) σ

gives an optimal payoff to the initial player subject to her immediate successor receiving
a payoff no lower than under σ and (ii) holds as before. Under quasi-recursiveness, if
later players have broken future indifferences in their favor (which (ii) ensures), then the
only potential indifferences left for the initial player to break are those of her immediate
successor. Ales and Sleet (2011) show that in this case, the set of revision-proof payoffs
is a fixed point of a modified version of the operator of Abreu, Pearce, and Stacchetti
(1990).8 Nonetheless, a difficulty with revision-proofness remains even if payoffs are

6Payoffs are quasi-recursive if a player and her successor have potentially different preferences over the
successor’s action given the past, but identical preferences over continuation paths given the past and the
successor’s action.

7Since each continuation strategy is revision-proof, opportunities for finding an alternative strategy
that weakly raises the payoffs of all and strictly raises the payoffs of some future players are exhausted.
Thus, (i) can be stated in terms of all future players receiving payoffs equal to those under σ as is done in
Proposition 2.

8This operator essentially purges all indifferences that can be broken by prior players from strategies.

8



quasi-recursive. By definition, if σ is not revision-proof, then there is an alternative σ′

that delivers a weakly higher payoff to all players in some sub-game G (U; Pt) and a
strictly higher payoff to at least one. However, play of any such σ′ for the first T periods
of G (U; Pt) followed by reversion to σ may make the player T periods into G (U; Pt)

worse off no matter how large T is made. In this case, σ is robust to all finite length
revisions, but is still not revision proof. The problem is that revision-proofness permits a
player arbitrarily far into the future to block a candidate revision. In quasi-recursive set-
tings, this implies that the largest bounded fixed point of the operator identified in Ales
and Sleet (2011) gives the set of payoffs from strategies that are "finite-revision-proof",
i.e. robust to all finite length revisions, but it may strictly contain the set of revision-
proof payoffs.9 Thus even if player payoffs are quasi-recursive, recursive methods may
fail to provide sufficient conditions for payoffs or paths to be generated by revision-proof
strategies. This complicates the analysis of revision-proofness and compels us to pursue
non-recursive approaches.

We close this section with a useful lemma which gives an elementary, but convenient
path-wise characterization of revision-proofness.

Definition 4. Given G (U), P′ is a successful revision path for σ at Pt−1 if for all r ∈ N ,

U(t− 1 + r, Pt−1, P′) ≥ Vt+r(Pt−1, P′r, σ), (4)

with strict inequality for at least one r

Lemma 1. Let Assumption 1 hold. σ is revision-proof for G (U) if only if there is no history
Pt−1 and path P′ such that P′ is a successful revision path for σ at Pt−1.

Proof. See Appendix A.

4 Revision-Proofness in dynastic games

In this section, we explore the extent to which revision-proofness can refine the set of
strategies and paths. To fix ideas, we begin with two simple examples.

9The situation is quite different from sub-game perfection in games played by a finite number of
infinite-lived players. In such games, if player payoffs are "continuous at infinity", then an alternative
strategy for a player that raises the player’s payoff in a sub-game, must also raise the player’s payoff if
it is played for a sufficiently large number of periods. Thus, a strategy that is robust to all unilateral
finite-length deviations is sub-game perfect.
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Example 1. Suppose two actions A and B. Players derive utility from their own and their
successor’s action choices. Player preferences are given by U(t, P) = u(pt) + v(pt+1),
where u(A) = u(B) and v(A) > v(B). Thus, each player is indifferent between taking
A or B, but strictly prefers that her successor takes action A. All player’s agree that
continuation of A∞ = (A, A, A, . . .) is optimal. The strategy σ1 with for all t and Pt−1,
σ1

t (Pt−1) = A is sub-game perfect and delivers the maximal payoff of u(A) + v(A) to all
players. Clearly, it is also revision-proof.

Consider another sub-game perfect strategy σ2, with for all t and Pt−1, σ2
t (Pt−1) = B.

In this case, each player is taking a maximal action given continuation play. However,
σ2 is not revision-proof. From any history Pt−1, the path A∞ is a successful revision:
it raises the payoff to all players t − 1 + r, r ∈ N , at histories Ar = (A, A, . . . , A), by
breaking the indifference of players in favor of predecessors.

In fact, strategy σ1 and the slight variation σ1′, in which the very first action is
switched to B, but otherwise A is played, are the only revision-proof strategies in this
game. All other strategies deliver weakly lower payoffs at all histories and strictly
lower payoffs at some. It follows that all revision-proof strategies attain player optima
U(t, Pt−1) in all sub-games G (U, Pt−1). �

In Example 1, revision-proofness breaks indifferences of later players in favor of ear-
lier ones and, hence, refines the set of sub-game perfect strategies. Caplin and Leahy
(2006) emphasize this aspect of the concept in finite horizon games. In infinite horizon
games, revision-proofness may additionally exclude strategies in which some or all play-
ers strictly prefer to take a sub-optimal current action given their successors’ prescribed
responses. In these cases, there may be no indifferences to break (and no successful
finite revisions), but an infinite revision may still improve all players’ payoffs relative to
reversion to the strategy. The next example illustrates.

Example 2. Suppose three actions A, B and C. A player derives utility from her own and
her successor’s action choices. Her preferences are given by: U(t, P) = u(pt) + v(pt+1),
where u(A) > u(B) ≥ u(C), v(A) > v(C) > v(B), and u(C) + v(C) > u(A) + v(B).
All players agree that A is a weakly optimal action in all periods (and a strictly optimal
one during their own lifetime). However, they would rather play C and have their
successor do likewise than play A and have their successor play B. It is clear that the
strategy σ1 with for all t and Pt−1, σ1

t (Pt−1) = A is sub-game perfect and delivers the
maximal payoff of u(A) + v(A) to all players. Consequently, it is also revision-proof.

10



A second sub-game perfect strategy is defined by σ2, with σ2
1 = C and, for t > 1,

σ2
t (Pt−1) =

C if pt−1 = σ2
t−1(Pt−2)

B otherwise.

In this case, the threat of a future play of B deters players from choosing their optimal
action A. No player would wish to be the last in a revision consisting of a finite number
of plays of A followed by reversion to σ2. Thus, all revision paths (Ar, Φ(σ2|Ar)) are
unsuccessful. But A∞ is a successful revision path: it raises the payoff to players at all
sub-histories Ar.

σ1 is the only revision-proof strategy in this game. Any other strategy, σ2 for example,
delivers a weakly lower payoff at all histories and a strictly lower payoff at some. As in
the last example, all revision-proof strategies attain player optima in all sub-games. �

A common element in the previous examples is the existence of a "dominating path"
P̃ = A∞ and a pair of "dominated continuation path sets", Di, i = 0, 1. In Example 2
these are given by D0 = P∞\{A∞} and D1 = P∞.10 The triple (P̃, D0, D1) satisfies two
properties. First, for any t and Pt−1, the t-th player strictly prefers P̃ to any path in D0

and players t + r, r ∈ N , weakly prefer the continuation of P̃ to any path in D1. Second,
to deter the t− 1 + r-th player from defecting away from a path in D0 (if r = 1) or D1 (if
r > 1) and playing A, a continuation path in D1 must be played. This second property
is rather trivial in the example since D1 = P∞. However, in more general settings it is
not. These properties ensure that no path in D0 is revision-proof. Essentially, deterring
successive players t+ r from being the last to join a finite revision P̃r "traps" continuation
play into sets that are payoff dominated by P̃.

The following proposition extends the intuition of the previous paragraph to settings
where the set D1 might change for every successive player. Starting from t and a prior
history Pt−1, Proposition 3 supposes a dominating path P̃ and a sequence of dominated
continuation path sets, Dr, r ∈ N . These satisfy two properties analogous to those above.
First, each player t− 1 + r, r ∈ N , weakly prefers (strictly for r = 1) the continuation
of P̃ to the paths in Dr-th continuation path set. Second, to deter the t− 1 + r-th player
from defecting away from a path in Dr and playing p̃r, a continuation path in Dr+1 must
be played. Proposition 3 shows that this ensures no path in D0 is revision-proof.

Proposition 3. Let Assumption 1 hold. Suppose that at Pt−1, there is a path P̃ and a family of
path sets {Dr}∞

r=0, Dr ⊆P∞, such that for each r ∈ {0} ∪N the following conditions hold:

10In Example 1, D0 = P∞\{A∞, (B, A∞)}.

11



(i) if P ∈ Dr, then U(t + r, Pt−1, P̃) ≥ U(t + r, Pt−1, P̃r, P) > −∞ with the first inequality
strict if r = 0;

(ii) if P ∈ Dr and U(t + r, Pt−1, P̃r, P) ≥ U(t + r, Pt−1, P̃r+1, P′), then P′ ∈ Dr+1.

No path in D0 is revision-proof.

Proof. Let P̃ and a family of sets {Dr} satisfy the conditions in the proposition at some
Pt−1. Suppose that σ is a revision-proof strategy and that Φ(σ|Pt−1) ∈ D0. We obtain
a contradiction. Let Φ(σ|Pt−1, P̃r) ∈ Dr. Since σ is revision-proof, it is also sub-game
perfect (Proposition 1) and so:

U(t + r, Pt−1, P̃r, Φ(σ|Pt−1, P̃r)) ≥ U(t + r, Pt−1, P̃r+1, Φ(σ|Pt−1, P̃r+1)).

Thus, by condition (ii), Φ(σ|Pt−1, P̃r+1) ∈ Dr+1. Hence, by induction, for all r ∈ {0}∪N ,
Φ(σ|Pt−1, P̃r) ∈ Dr. Then, by condition (i), for all r ∈ {0} ∪N ,

U(t + r, Pt−1, P̃) ≥ U(t + r, Pt−1, P̃r, Φ(σ|Pt−1, P̃r)).

with strict inequality at r = 0. By Lemma 1, this contradicts revision-proofness of σ.

We give two applications of Proposition 3. Let P∗
t (Pt−1) := argmaxP∞U(t, Pt−1, P)

be the set of optimal plans for the t-th player in the sub-game G (U; Pt−1). Let Ut(Pt−1) :=
maxP∈P∞ U(t, Pt−1, P) be the associated optimal payoff.

Definition 5. U exhibits weak agreement over optima at t and Pt−1, if there is a P∗ such
that for all r ∈ N ,

P∗r ∈P∗
t−1+r(Pt−1, P∗r−1).

U exhibits weak agreement over optima if it exhibits weak agreement over optima at all
t and Pt−1.

If weak agreement over optima occurs at (t, Pt−1), then there is a P∗ such that all
players after (t, Pt−1) agree that it is better to continue with P∗ than to switch to an
alternative path. The agreement need concern only a single optima at (t, Pt−1). There
may be other optimal paths for the player at t whose continuations are not optimal for
successors. Alternatively, successor players may have other optimal continuation paths
that are not optimal for the player at t. In this sense the agreement is weak. Weak
agreement over optima is much weaker than time consistency which requires successive
players to have identical preference orderings over continuation paths.
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It is clear that weak agreement over optima is necessary for any strategy and, hence,
necessary for all revision-proof strategies, to attain the optimal payoffs Ut(Pt−1) in all
sub-games.11 Our first application of Proposition 3 shows that it is also sufficient for all
revision-proof strategies to attain optima in all sub-games.

Corollary 1. Assume that U exhibits weak agreement over optima. σ is revision-proof for G (U)

if and only if for all t ∈ N and Pt−1 ∈P t−1, Φ(σ|Pt−1) is in P∗
t (Pt−1).

Proof. If for all t ∈ N and Pt−1 ∈ P t−1, Φ(σ|Pt−1) is in P∗
t (Pt−1), then evidently

σ is revision-proof since then it is not possible to find any t, Pt−1 and P′ such that
U(t, Pt−1, P′) > Vt(Pt−1, σ).

Conversely, suppose that σ is revision-proof and that there is some t and Pt−1 such
that Φ(σ|Pt−1) 6∈ P∗

t (Pt−1). Since U exhibits weak agreement over optima, there is
a path P∗ ∈ P∗

t (Pt−1). Thus, Φ(σ|Pt−1) ∈ D0 := {P|U(t, Pt−1, P∗) > U(t, Pt−1, P)}.
Weak agreement over optima implies that for all r ∈ N , Dr := {P|U(t + r, Pt−1, P∗) ≥
U(t + r, Pt−1, P∗r, P)} = P . Thus, the conditions of Proposition 3 hold and σ is not
revision-proof.

Examples 1 and 2 show that weak agreement over optima is not sufficient to ensure
that all sub-game perfect strategies attain optima in all sub-games. A sufficient condition
for this is time consistency and continuity at infinity of U.

Definition 6. U is time consistent if for all t ∈ N , (Pt, P) and (Pt, P′) ∈P∞,

U(t, Pt, P) > U(t, Pt, P′)⇔ U(t + 1, Pt, P) > U(t + 1, Pt, P′).

Definition 7. U(t, Pt−1, ·) is continuous at infinity if it is continuous in the relative product
topology on Πt(Pt−1), i.e. if for each sequence {P(n)}∞

n=1 with P(n) = {pn
r }∞

r=1 ∈
Πt(Pt−1), for all n, pn

r → pr and P = {pr}∞
r=1 ∈ Π(Pt−1), limn→∞ U(t, Pt−1, P(n)) =

U(t, Pt−1, P).

Proposition 4. Let Assumption 1 hold. Assume that U is time consistent and that each
U(t, Pt−1, ·), t ∈ N , is continuous at infinity, then a strategy σ is sub-game perfect for G (U) if
and only if each (σ|Pt−1) attains the payoff U(t, Pt−1).

Proof. See Appendix.

11If weak agreement did not hold, there would be at least one sub-game in which the attainment of an
optimal payoff Ut(Pt−1) by a player precludes its attainment by a later player.
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Sub-game perfection imposes a "local" optimality requirement on dynasties (each
player does the best she can given future play). When U exhibits time consistency and
continuity at infinity, this local optimality translates into "global" optimality over contin-
uation paths. Example 3 shows that time consistency is not sufficient to ensure that all
sub-game perfect strategies attain optima in all sub-games. Since time consistency im-
plies weak agreement over optima, the (unique) revision-proof strategy in the example
does attain these optima.

Example 3. Let P = R+, p0 ∈ R+ be given and U(t, P) = liminf
T→∞

∑T
r=1 βr[pr−1 − δpr]

with δ > β. Clearly, for all t, U(t, Pt−1) = pt−1, but sub-game perfect strategies with
Vt(Pt−1, σ) < U(t, Pt−1) for all t and Pt−1 are possible. These inflict ever increasing
continuation penalties on players who fail to choose non-zero actions.

As a second application of Proposition 3, we give an example in which U does not
exhibit weak agreement over optima and is not continuous at infinity. In the exam-
ple, revision-proofness excludes paths whose sub-game perfect implementations require
"explosively" bad sequences of penalties to deter finite length revisions

Example 4. Let P = R and for all t and P, let:

U(t, P) = W(Pt) := (1− β)u(pt) +
∞

∑
r=1

βr(1− β)v(pt+r),

where Pt = {pt−1+r}∞
r=1. Assume that u, v : P → R are not equal, bounded above

and unbounded below. Let p̂ ∈ argmaxPu(p) and p ∈ argminPv(p) −u(p), so that p̂
maximizes a player’s current payoff and p minimizes the difference between a prede-
cessor’s continuation payoff v and a player’s current payoff u. For each r ∈ {0} ∪N ,
Dr = D := {P|u( p̂) + β[v(p)− u(p)] > W(P)}. This set is non-empty since u and v are
unbounded below. We show that no path in D is revision-proof.

Let P̂ = ( p̂, p̂, . . .). By simple algebra, (1− β)u( p̂) + βv( p̂) > u( p̂) + β[v(p)− u(p)]
and so D ⊂ {P|W(P̂) > W(P)}. Thus, the sequence of sets {Dr}, each Dr = D , satisfies
(i) in Proposition 3. It remains to check that (ii) in Proposition 3 holds. To this end,
suppose P ∈ D and W(P) ≥W( p̂, P′). Thus, ( p̂, P′) ∈ D as well and so:

u( p̂) + β[v(p)− u(p)] > (1− β)u( p̂) +
∞

∑
s=1

βs(1− β)v(p′s).
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Rearranging the last expression and using v(p′1)− u(p′1) ≥ v(p)− u(p) gives:

u( p̂) + β[v(p)− u(p)] > (1− β)u(p′1) +
∞

∑
s=1

βs(1− β)v(p′s+1),

i.e. P′ ∈ D . It then follows from Proposition 3 that for all histories, no continuation path
in D is revision-proof. However, it is easy to check that D does contain paths that are sub-
game perfect. These paths are sustained by reversion to ever more severe paths within
D . For example, if a player receives the payoff w with u( p̂) + β[v(p)− u(p)]− ε > w,
then defection from w can only be sustained by reversion to a path P′ that delivers a
payoff of w′ to the subsequent player where:

u( p̂) + β[v(p)− u(p)]− ε > w ≥ (1− β)u( p̂) + (1− β)β(v(p′1)− u(p′1)) + βw′

≥ (1− β){u( p̂) + β(v(p)− u(p))}+ βw′

so w− (1−β)
β ε > w′. Consequently, in a sub-game perfect equilibrium, an exploding se-

quence of punishments is necessary to deter long sequences of deviations from a path
with initial payoff below u( p̂) + β[v(p)− u(p)]. However, such paths cannot be imple-
mented by a revision-proof strategy. �

Suppose for any path in a set D0 it is possible to construct a strategy that (i) imple-
ments the path and (ii) given any candidate revision path, both deters successive player
from being the last to join the revision and builds up their payoffs along the revision
so that at least one obtains more from reversion to the strategy than from the complete
revision. By definition that the paths in D0 will be revision-proof. We pursue this logic
in the next section in the context of quasi-recursive games. We give conditions under
which revision-proofness is relatively permissive with respect to paths. However, even
in these cases, it places restrictions on "off-equilibrium" play and, hence, refines the set
of sub-game perfect strategies.

5 Quasi-recursive Games

Many dynastic games have a quasi-recursive structure. See, inter alia, the diverse con-
tributions of Bernheim, Ray, and Yeltekin (1999), Leininger (1986), Asheim (1997) and
the examples below drawn from Kocherlakota (1996) and Hammond (1975). In these
games a player and her successor have differing preferences over the successor’s current
action, but conditional on this action identical preferences over the successor’s future
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action path. This section explores the implications of revision-proofness for play in
quasi-recursive settings without state variables. In the next section, state variables are
introduced.

For all t ∈ N and P ∈P∞, let

U(t, P) = W(Pt),

where W : P∞ → R is constructed from a current payoff function u : P → R and a
pair of intertemporal payoff aggregators Q : R×R → R and R : P ×R → R. Q gives
a player’s payoff by combining her current and continuation payoffs. R gives a player’s
continuation payoff by combining next period’s action with next period’s continuation
payoff. Formally, suppose that P and the triple (u, Q, R) satisfy the following condition.

Assumption 2. (i) P is a compact, convex subset of a normed space (P0, ‖ · ‖). P∞ is equipped
with the associated relative product topology.

(ii) Q : R×R→ R is increasing in both arguments, concave and and continuous. u : P →
R is concave and continuous.

(iii) R : P ×R → R is non-decreasing in its second argument, concave and continuous on
P ×R. Also, there is a β ∈ [0, 1) such that for all y, y′ ∈ R,

sup
P

|R(p, y)− R(p, y′)| ≤ β|y− y′|

Under Assumption 2, it is straightforward to show that there is a unique bounded,
continuous and concave function Y : P∞ → R satisfying for all (p, P), Y(p, P) =

R(p, Y(P)). We refer to Y as a continuation payoff function and define the payoff function
W : P∞ → R according to for all (p, P), W(p, P) = Q(u(p), Y(P)). Under Assumption 2,
W is also bounded, continuous and concave. This specification implies that given a his-
tory Pt+r the t-th and t + r-th players have the same preferences over continuation paths
Pt+r+1. In contrast the stronger assumption of time consistency requires that given a
history Pt+r−1, the t-th and t + r-th players have the same preferences over continuation
paths Pt+r.

The quasi-recursive structure accommodates many types of time inconsistency con-
sidered in the literature. We give two concrete applications below. Subsequently, we use
the first to illustrate the basic logic of our results. The second shows how a policy game
may be mapped into the quasi-recursive framework.

Example (Hammond’s overlapping generations pension game, see Hammond (1975)). A two
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period-lived agent is born at each t ∈ N ; a one period-lived old agent lives at t = 1.
Agents have an endowment of 1 when young and 0 when old. A young agent may
share her endowment with a contemporaneous old agent. Let uy, uo : R+ → R denote
the utility from consumption of young and old agents. Players are identified with two
period lived agents and are indexed by the date t ∈ N at which they are born and are
young. Let pt denote the consumption of the player (young agent) at t. The t-th player’s
preferences over paths (of young agent consumption) can be expressed as U(t, P) =

uy(pt) + uo(1− pt+1). Thus, u = uy, Q(u(p), y) = u(p) + y and R(p, y) = uo(1− p). �

Example (Kocherlakota’s policy game, see Kocherlakota (1996)). A two period-lived house-
hold is born at each t ∈ N ; a one period-lived old household lives at t = 1. Households
consume a quantity of a private good c when young and a quantity of a public good g
when old. The household born in period t has preferences: ut(ct, gt+1) = ct +

1
2 gt+1 over

private and public consumption in periods t and t + 1. Households receive an endow-
ment of income q when old and must borrow against this to finance private consumption
when young. They can borrow on an international loan market at rate r. At each date
t ∈ N , a government taxes the income of the old at rate pt to finance public consump-
tion. The young household at t ∈ N borrows the maximal amount subject to being
able to pay her taxes, i.e. borrows (1− pt+1)q/(1 + r). The goal of a date t government
is to maximize the discounted utility of current and future generations of households
including the current old generation, i.e. to maximize:

∞

∑
r=0

βr
(

ct+r +
1
2

gt+r

)
. (5)

By substituting optimal household choices and the government budget constraints gt+r =

pt+rq into (5), the objective of the government at t can be re-expressed as a function of
the continuation tax path Pt:

W(Pt) =
∞

∑
r=0

βrq
(

1
2

pr+t +
(1− pt+r+1)

(1 + r)

)
. (6)

Under the assumption that r < 1, the preferred path for the government at t is pt = 1,
because she derives no utility from the past consumption of the present old, and pt+r =

0, r ∈ N , to enable high private consumption of current and future young. Rearranging
(6) gives:

W(Pt) =
1
2

ptq +
q

1 + r
1

1− β
−
(

1
1 + r

− β

2

)
q

∞

∑
r=1

βr−1pt+r.
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By setting u(p) = 1
2 pq + q

1+r
1

1−β , Q(u(p), y) = u(p) + βy, v(p) = −
(

1
1+r −

β
2

)
qp and

R(p, y) = v(p) + βy, a quasi-recursive game may be associated with the example. �

5.1 Sub-game perfection in quasi-recursive games

As a precursor to subsequent analysis of revision-proofness, we provide some character-
ization of sub-game perfect strategies in quasi-recursive games. Let Y denote the set of
sub-game perfect continuation payoffs,

Y := {y|y = Y(Φ(σ)), σ is sub-game perfect}.

Proposition 11 in Appendix B shows that under Assumption 2, Y is a compact interval,
[y, y]. Lemma 3 in the same appendix characterizes the endpoints of this interval. It
shows that there is a stationary sub-game perfect action path (p, p, . . .) that attains y and
satisfies y = R(p, y). It shows that for the worst sub-game perfect continuation payoff
y there are two possibilities. In the first, y is obtained by a stationary sub-game perfect
action path (p, p, . . .), y = R(p, y) and u(p) = u∗ := maxP u(p). In this case, action p
is best for a current player and, amongst actions consistent with sub-game perfection,
worst for her predecessor. For the second case, there is no stationary sub-game perfect
path that attains the worst sub-game perfect continuation payoff. Instead this payoff
is attained by path that begins with a severe action p satisfying y > Y(p, p, . . .). The
subsequent period’s continuation payoff y′(p) satisfies y = R(p, y′(p)) < y′(p).

The previous remarks relate to sub-game perfect continuation payoffs. The best and
worst sub-game perfect payoffs for a player are given by Q(u∗, y) and Q(u∗, y).

Example (Hammond’s pension game, cont.) The action pt = 1 is both the best current
action for the t-th player, since it implies she consumes the entire endowment when
young, and the worst continuation action for the t− 1-th player since it implies she gets
nothing when old. Consequently, the "no-sharing path" P = (1, 1, 1, . . .) gives both the
worst sub-game perfect payoff Q(u∗, y) and the worst sub-game perfect continuation
payoff y to all players. The best sub-game perfect continuation payoff y is attained by
a path on which a player’s successor consumes the minimal amount consistent with
sub-game perfection, i.e. consumes p, where:

p = min
(p,p′)∈P2

{p|uy(p) + uo(1− p′) ≥ uy(1) + uo(0), p′ ∈ [p, 1]}. (7)
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There are two possibilities. In the first, p = 0 and uy(0) + uo(1) ≥ uy(1) + uo(0), i.e. the
player’s successor consumes nothing when young and gives everything to her prede-
cessor. She in turn receives a large amount (possibly the entire endowment) when old.
In the second case, p ∈ (0, 1] and uy(p) + uo(1− p) = uy(1) + uo(0). In this case, the
player’s successor gives the maximal amount 1− p consistent with sub-game perfection
when young and is motivated to do so by a gift of this amount when old. (1, p, p, . . .) is
the unique best sub-game perfect path for a player. �

5.2 Revision-proofness in quasi-recursive games

We now consider revision-proofness in quasi-recursive games. To build intuition con-
sider a finite horizon game lasting T periods. Suppose that the T-th player has an
objective WT : P → R and the T − 1-th player a continuation objective YT : P → R.
Further suppose that prior players, t = 1, . . . , T − 1, have objectives and continuation
objectives Wt : PT+1−t → R and Yt : PT+1−t → R generated by increasing aggre-
gators Q and R and current payoff functions u, v : P → R according to Wt(PT+1−t) =

Q(u(pt), Yt+1(PT−t)) and Yt(PT+1−t) = R(v(pt), Yt+1(PT−t)).12 In this setting a revision-
proof strategy σ can be derived by a backwards induction argument. Specifically, for all
histories PT−1, let σT be such that:

σT(PT−1) ∈ argmax
U ∗T

YT(p), U ∗
T = argmax

P

WT(p).

Thus, σT maximizes the T − 1-th player’s continuation payoff YT subject to maximizing
the T-th player’s payoff WT. For prior dates t and histories Pt−1, let σt be such that:

σt(Pt−1) ∈ argmax
U ∗

v(p), U ∗ = argmax
P

u(p). (8)

Then each σt(Pt−1) maximizes the continuation payoff v of the t − 1-th player subject
to maximizing the current payoff u of the t-th player. A strategy constructed in this
way prescribes optimal actions and breaks indifferences over a current player’s optimal
actions in favor of prior players. Consequently, it is not possible to raise the payoff of an
earlier player without reducing the payoff of a later one. The strategy is revision-proof.

The above construction relies on a terminal period in which the last player obtains
her optimal payoff. The argument cannot be applied to infinite horizon games, but it

12Here, in a slight abuse of notation, we simplify by assuming that R aggregates a current payoff v(pt)
rather than a current action pt with a continuation payoff. Hence, R is fully separable.
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suggests a procedure that can. Recall that in finite horizon games, a revision-proof strat-
egy prescribes an action for the terminal player that is best for her and, subject to this,
best for her predecessors. Rather trivially, this player "blocks" attempts by predecessors
to revise play in the terminal period. For infinite horizon games, we design revision-
proof strategies that endogenously create "blocking players" in all sub-games. These
players are analogous to terminal players in finite horizon games. They receive a best
sub-game perfect payoff and take actions that are maximal for predecessors subject to
being maximal for themselves. The payoffs of a blocking player or her successors are
reduced by any modification to their play that raises predecessor payoffs. Thus, block-
ing players create obstacles to revision. We use Hammond’s pension game to show how
revision-proof strategies that feature blocking players can be constructed. In this partic-
ular game, all sub-game perfect paths can be implemented with such strategies and so
all are revision-proof.

Example (Hammond’s pension game, cont.) Let P̃ be an arbitrary sub-game perfect path.
Consider the strategy σ defined as follows. First, Φ(σ) = P̃. Second, for all t and
Pt 6= (Pt−1, σt(Pt−1)), Φ(σ|Pt) = ( p̂, p, p, . . .), where p̂ = 1 and p is defined in (7). Thus,
the player following a defection takes her unique best current action and obtains her
best sub-game perfect payoff. In the language of the previous paragraph, this player is a
blocking player.

It is easy to verify that σ is sub-game perfect; we check that it is revision-proof. We
focus on the simplest case in which p = 0, i.e. the case in which it is possible to sustain
0 consumption when young as part of a sub-game perfect strategy, because players suf-
ficiently value consumption when old.13 Let Pt be a history and P′′ a successful revision
path at Pt. Then, each player t + r, r ∈ N , receives a weakly higher payoff and some
receive a strictly higher payoff from P′′ than from reversion to the strategy. Thus, for all
r ∈ N , uy(p′′r ) + uo(1− p′′r+1) ≥W(Φ(σ|Pt, P′′r−1)) with the inequality strict for some r.
Let t + r0 be the first date such that uy(p′′r0

) + uo(1− p′′r0+1) > W(Φ(σ|Pt, P′′r0−1)). Then
either p′′r0

is above or p′′r0+1 is below the corresponding actions prescribed by σ. Sup-
pose that p′′r0

6= σt+r0(Pt, P′′r0−1). Then Φ(σ|Pt, P′′r0) = (1, 0, 0, . . .). This continuation
path is not just the best sub-game perfect path for the t + r0 + 1-th player, it is a best
possible path for this player: she consumes the maximal amount of 1 in both periods of
her life. The player at t + r0 + 1 will "block" revisions that fail to match this. Thus, if
p′′r0
6= σt+r0(Pt, P′′r0−1), then p′′r0+1 must equal 1 and p′′r0+2 must equal 0. Hence, the t+ r0-

13Our analysis extends to situations in which p > 0 and this case is covered by our general result,
Proposition 5. However, to maximize transparency, we do not detail it here.
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th player receives a payoff of uy(p′′r0
) + uo(1− p′′r0+1) = uy(p′′r0

) + uo(0) ≤ uy(1) + uo(0).
But uy(p′′r0

) + uo(1− p′′r0+1) > W(Φ(σ|Pt, P′′r0−1)) ≥ uy(1) + uo(0), where the first in-
equality is by assumption and the second stems from the fact that σ is sub-game perfect
and uy(1)+ uo(0) is the lowest possible sub-game perfect payoff. However, this leads to a
contradiction. So, p′′r0

must equal and p′′r0+1 must be lower than the actions prescribed by
the strategy. In particular, p′′r0+1 < 1. But exactly the same argument applied at t + r0 + 1
shows that p′′r0+1 = 1 ≥ σt+r0+1(Pt, P′′r0), another contradiction. We conclude that there
are no successful revision paths at any history. Thus, by Lemma 1, σ and, hence, P̃ is
revision-proof. Since P̃ was an arbitrary sub-game perfect path, it follows that all such
paths are revision-proof in this game. �

The pension game has two features that greatly simplify the analysis. First, play-
ers care only about actions in the two periods of their life and, second, a player and
her immediate successor have strictly conflicting preferences over the successor’s action.
Consequently, the unique optimal action for a successor gives the worst possible con-
tinuation payoff for a predecessor. This enables a blocking player to be placed in every
sub-game immediately following a deviation. Proposition 5 shows that the essential
logic of the example generalizes. In more general settings, a blocking player who attains
her best sub-game perfect payoff may not inflict a very severe penalty on her immediate
predecessors. Hence, to sustain a given path, it is often necessary to embed the blocking
player deeper into the sub-game following a defection. We construct (revision-proof)
strategies that do this. These strategies prescribe repeated play of an action p̂ that max-
imizes a player’s current payoff function u and, given this, maximizes the continuation
payoff of predecessors. Thus, p̂ solves a problem similar to (8) in the finite horizon set-
ting. By making the string of p̂ plays long enough a continuation payoff very nearly
equal to ŷ = R( p̂, ŷ), ŷ = Y(P̂), P̂ = ( p̂, p̂, . . .) is attained. This is more severe than
Y( p̂, P) = R( p̂, y), the continuation payoff obtained if a blocking player immediately
follows a defector, and, hence, sustains more paths. As time passes and the blocking
player is approached player continuation payoffs are built up towards y. The blocking
player or her successors are made worse off by any revision to their play that benefits
predecessors. Given this, the player immediately prior to the blocking player cannot
revise future play in her favor and by playing p̂ obtains her best possible current payoff.
Further any change to her play that benefits prior players makes her worse off. This logic
extends back through the game tree until the initial defection that triggered play of the
p̂ actions is reached. If the initial defecting player is better off adhering to the strategy
than triggering this play, then the strategy is proof against any revision that benefits her
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and, conditional on her defection, players between her and the blocking player. This
leaves open the possibility of a successful revision for players who move after the block-
ing player. Such a possibility is eliminated if the continuation of a best sub-game perfect
path can itself be sustained by reversion to play involving a later blocking player.

Remark 1. Analysis of the pension game was simplified by the fact that a player and her
successor had conflicting objectives over the later player’s action and that players cared
about actions in only two periods. Kocherlakota (1996)’s policy game has the first of
these properties, but not the second. Pursuing the logic sketched above and formalized
in Proposition 5 below, as in the pension game, all sub-game perfect paths may be shown
to be revision-proof in this game.14

We impose two assumptions. The first is on the aggregator R and uses the following
definition.

Definition 8. Define the set of best current actions by U ∗ := argmaxPu(p) and the
correspondence of best current actions that are best for predecessors by R̃∗ : Y(P∞) →
2P , R̃∗(y) := argmaxU ∗R(p, y).

Assumption 2 ensures that U ∗ and each R̃∗(y) is non-empty and compact.

Assumption 3. The correspondence R̃∗ has a constant value R∗.

Assumption 3 holds if the restriction of R to U ∗ ×Y has the form R(p, y) = R′(v(p), y)
with v : U ∗ → R and each R′(·, y) increasing on v(U ∗). This in turn holds trivially if
U ∗ is single-valued or if R has the form R′(v(p), y) on all of P ×Y . Let p̂ belong to R∗

and define P̂ = ( p̂, p̂, . . .), ŵ := Q(u( p̂), Y(P̂)) and ŷ := Y(P̂). In quasi-recursive games
with weak agreement over optima ŵ is the best sub-game perfect payoff for a player;
in Hammond’s pension game, Kocherlakota’s policy game and games in which all best
current actions are worst for predecessors ŵ is the worst sub-game perfect payoff.

We now provide our second assumption.

Assumption 4. Q(u(p), y) ≥ ŵ := Q(u( p̂), ŷ). If Q(u(p), y) = ŵ := Q(u( p̂), ŷ), then
R(u(p), y) ≥ ŷ := R(u( p̂), ŷ).

This assumption implies that a player weakly prefers implementing the continuation
of a predecessor’s preferred sub-game path P (and obtaining her own best continuation

14More precisely, Proposition 5 applies to the reduced form quasi-recursive game that we associated
with Kocherlakota’s policy game. The former is reduced form in that the (optimal) actions of private
households are substituted out. The revision-proof refinement applied to this game translates into a
revision-proof refinement for the fully specified game played by policymakers and private households.
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payoff y) to taking a best current action that is best for predecessors p̂ and having all
successors do the same. Further, if a player is indifferent between these paths, then her
predecessor weakly prefers the former. We use this assumption to ensure that neither
players nor, if they are indifferent, their predecessors prefer deviating from the best sub-
game perfect path used to reward a blocking player to paths with payoffs approximately
equal to ŵ that feature a later blocking player. Assumption 4 holds automatically in
Hammond’s pension game and Kocherakota’s policy game since in these games P̂ is a
worst sub-game perfect path and, hence, gives a payoff ŵ below that from the sub-game
perfect path P. It also holds in games with weak agreement over optima in which paths
of the form P̂ are simultaneously best and best continuation sub-game perfect paths.

We now state our first main result for quasi-recursive games.

Proposition 5. Let Assumptions 2 to 4 hold. Let P̃ be any path such that (i) for all t, W(P̃t) ≥ ŵ
and (ii) if t > 1 and W(P̃t) = ŵ, then Y(P̃t) ≥ ŷ. There is a revision-proof strategy σ that
implements the path P̃.

Proof. See Appendix C.

Corollary 2 below strengthens condition (ii) of Proposition 5 to hold in all periods
including the first and obtains a stronger result. It is now not possible to raise the first
period continuation payoff Y(P̃) implied by the strategy without reducing the payoff of a
later player. This stronger conclusion is not needed to establish revision-proofness since
there is no 0-th period player to receive a continuation payoff of Y(P̃). However, it is
useful in deriving later results.15

Corollary 2. Let Assumptions 2 to 4 hold. Let P̃ be any path such that (i) for all t, W(P̃t) ≥ ŵ
and (ii) for all t, if W(P̃t) = ŵ, then Y(P̃t) ≥ ŷ. There is a revision-proof strategy σ that
implements the path P̃ and there is no alternative σ′ that delivers the same payoffs to all players
as σ and satisfies Y(Φ(σ′)) > Y(P̃).

Proof. See Appendix C.

In Hammond’s pension game and Kocherlakota’s policy game the worst sub-game
perfect path involves repeated play of the unique best current action p̂ = 1. Proposition 5
implies that in such games all sub-game perfect paths are revision proof. However, it is
easy to construct quasi-recursive games in which repeated play of a best current action is
not a worst sub-game perfect path. In such games, there are sub-game perfect paths with

15Specifically, it is used in the proof of Theorem 2, where a revision-proof strategy is constructed from
revision-proof continuation strategies.
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payoffs below ŵ at some or all dates. Proposition 5 is silent on the revision-proofness of
these.

We now show that with some strengthening of the conditions of Proposition 5, all
paths delivering payoffs strictly above the worst sub-game perfect payoff, w, are revision-
proof.16 To the extent that these conditions hold, the revision-proof concept is quite
permissive with respect to paths and outcomes. The argument underpinning the result
is quite long, but the idea is simple. Recall that p is the first action of a sub-game
perfect path giving the lowest continuation payoff y, see Subsection 5.1. Given a path
P̃ that delivers payoffs W(P̃t) > w to successive players, a strategy σ is constructed
that implements this path and prescribes p following a defection (from P̃) until player
payoffs are driven above ŵ. Irrespective of post-defection play ŵ is achieved within
a finite number of periods. Once ŵ is reached a revision-proof continuation strategy
defined as in Corollary 2 is pursued. Figure 1 illustrates the construction.

Q (u(p) , χ ( ·))

Figure 1: Construction of revision-proof σ. Following play of p 6= p̃, the continua-
tion strategy prescribes play of a sequence of p actions until a sub-game is reached
in which a revision-proof continuation strategy is played. This play implies a contin-
uation payoff of y1 to the initial defecting player, sufficiently low to deter unilateral
defection. Along the p path, continuation payoffs evolve according yt+1 = γ(yt) > yt.
If a further defection occurs to p 6= p, reversion to play of p and, eventually, a contin-
uation revision-proof strategy is prescribed. This play delivers a continuation payoff
χ(y1) > y1 to the defecting player that strictly deters unilateral defection. Following
plays of p or defections, continuation payoffs and, hence, payoffs are built up until
the latter exceed ŵ and a continuation revision-proof strategy is played.

16If w < ŵ, then paths with payoffs that remain above w, but are sometimes below ŵ are revision-proof.
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The construction of σ implies sub-games in which revision-proof continuation strate-
gies are played. By definition, it is not possible to revise these so as to raise the payoffs
of a player in the sub-game without reducing the payoff of some other player in the
sub-game. Revisions that begin and end before such a revision-proof continuation strat-
egy is reached (and player payoffs have been driven above ŵ) involve a last deviator
whose payoff is reduced by construction. Revisions that begin before a revision-proof
continuation strategy is reached, but continue on into a sub-game in which such a con-
tinuation strategy is played are more complicated, but these too turn out to leave all
players’ payoffs unaltered or they reduce the payoffs to some.

Our argument requires two further assumptions. They are used to ensure that p
prescriptions are consistent with the building up of payoffs to values above ŵ. Assump-
tion 5 asserts that a player is better off playing p and receiving a best sub-game perfect
continuation payoff y, than taking a best current action p̂ that is best for predecessors
and having all her successors do the same. It combines concern with the future with
disagreement between successive players about the later player’s play (i.e. play of p by
a successor is not too bad for the successor, but is bad for a predecessor; play of p̂ is
optimal for a successor, but bad for a predecessor).

Assumption 5. Q(u(p), y) > Q(u( p̂), ŷ) = ŵ.

Assumption 6 restricts the slope of Q in its second argument.

Assumption 6. For all y ≥ y′ and p, there is a value κ > 0 such that

βκ(y− y′) ≤ Q(u(p), y)−Q(u(p), y′) < κ(y− y′).

This assumption is satisfied if, in addition to Assumption 2, Q and R are quasi-linear.
For example, if Q(u(p), y) = u(p) + δy and R(p, y) = v(p) + βy with δ ∈ (0, ∞) and
β ∈ (0, 1), then Q(u(p), y) − Q(u(p), y′) = δ(y − y′) and Assumption 6 holds with
κ = δ/β. We now state the second main result of this section.

Theorem 2. Suppose that Assumptions 2 to 6 hold. Let P̃ be any path such that for all t,
W(P̃t) > w, then P can be supported by a revision-proof strategy.

Proof. In Appendix D.

We give a simple example of a game that satisfies these assumptions.

Example (Overlapping generations game with partial agreement) Overlapping generations
of players t ∈ N live for two periods. Let P = [0, 1]. The objective of the t-th player,
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who is young in period t and old in t + 1 is given by:

U(t, P) = uy(pt) + uo(pt+1),

where uy(p) = 1
2 p(1− p) and uo(p) = 1− p. In terms of our general quasi-recursive

notation: u = uy, Q(u(p), y) = u(p) + y and R(p, y) = uo(p).
For this example, uy is maximized by p̂ = 1

2 , while uo is minimized by p = 1 and
maximized by p = 0. ( p̂, p, p, p, . . .) = (1/2, 1, 0, 0, . . .) is a worst sub-game perfect path.
Its continuation (1, 0, 0, . . .) has a worst sub-game perfect continuation payoff y = 0 and
it has a payoff of Q(u( p̂), y) = 1

8 . ( p̂, p, p, p, . . .) = (1/2, 0, 0, 0, . . .) is a best sub-game
perfect path. Its continuation (0, 0, 0, . . .) has a best sub-game perfect continuation payoff
y = 1 and it has a payoff of Q(u( p̂), y) = 9

8 . Repetition of the unique best current action
1
2 gives a payoff of Q(u( p̂), ŷ) = 5

8 which exceeds the worst sub-game perfect payoff.
Assumption 4 is satisfied, 1 = Q(u(p), y) > Q(u( p̂), ŷ) = 5

8 . Thus, Proposition 5 applies
and sub-game perfect paths with payoffs that remain above 5

8 can be implemented by
a revision-proof strategy. However, Proposition 5 does not apply to those sub-game
perfect paths that deliver payoffs between 1

8 and 5
8 to some players. Assumption 5 is

satisfied since 1 = Q(u(p), y) > ŵ = Q(u( p̂), ŷ) = 5
8 . and the quasi-linearity of Q and

R ensure that Assumption 6 holds. By Theorem 2 all paths with payoffs that remain
strictly above 1

8 are revision-proof. �

6 Quasi-recursive Games With State Variables

We briefly extend the quasi-recursive environment of Section 5 to allow for state vari-
ables and, hence, history dependence in player preferences or constraints. Let K ⊆ Rm

denote a set of feasible states. Define a law of motion for states Λ : Rm ×P → R
m and

for k ∈ K , let Γ(k) = {p|Λ(k, p) ∈ K }. Assume that Γ is non-empty valued for all
k ∈ K . Let Λ1 = Λ and, for t ≥ 1, let Λt+1 : K ×P t+1 → R

m be defined recursively
according to:

Λt+1(k, Pt, pt+1) = Λ(Λt(k, Pt), pt+1). (9)

Λt+1(k, Pt+1) is the period t + 2 state given an initial state k ∈ K and choices Pt+1

between periods 1 and t + 1. The set of feasible paths given initial state k ∈ K is:

Π(k) = {P ∈P∞|∀t, Λt(k, Pt) ∈ K }. (10)
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Given an initial k, the function U : N ×P∞ → R∪ {−∞} is generated according to:

U(t, P) = W(Λt(k, Pt−1), Pt), (11)

where W : K ×P∞ → R, R = R ∪ {−∞} is defined below. It follows from (11)
that the t-th player’s objective depends on histories Pt−1 through their effect on the
current state variable kt = Λt(k, Pt−1). This formulation accommodates psychological
state variables such as habit formation or altruism for predecessors as well as physical
state variables via the assigning of −∞ payoffs to infeasible choices. W is constructed
from Λ, u : K ×P → R and aggregators Q : R×R → R and R : K ×P ×R → R.
Similar to Section 5, Λ and R are used to construct a continuation payoff function Y :
K ×P∞ → R ∪ {−∞}. This is done formally in Theorem 3, Appendix E. Payoffs are
constructed from Q, u and Y according to:17

W(k, p, P′) = Q(u(k, p), Y(Λ(k, p), P′)).

Let µ(k) = supΠ(k) Y(k, P) and µ(k) = infΠ(k) Y(k, P). It is easily seen that:

µ(k) = sup
p∈Γ(k)

R(k, p, µ(Λ(k, p))), µ(k) = inf
p∈Γ(k)

R(k, p, µ(Λ(k, p))).

Define the sub-game perfect continuation payoff correspondence Y : K → 2R\∅,

Y (k) = {y|y = Y(k, Φ(σ)), σ is sub-game perfect} ⊆ Y0(k) = [µ(k), µ(k)].

Proposition 12 in Appendix E asserts that Y is compact valued. Given this we can
identify maximal and minimal sub-game perfect continuation payoff functions: y(k) =

max Y (k) and y(k) = min Y (k). We can further show that:

y(k) = max R(k, p, y(Λ(k, p))) s.t. p ∈ Γ(k), (12)

Q(u(k, p), y(Λ(k, p))) ≥ sup
p′∈Γ(k)

Q(u(k, p′), y(Λ(k, p′)))

and that the best possible sub-game perfect payoff at each k ∈ K is given by:

w(k) = sup
Γ(k)

Q(u(k, p), y(Λ(k, p))) (13)

17It is easy to check that these definitions are consistent with Assumption 1 with Πt(Pt−1) =
Π(Λt(k, Pt−1)).
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Let p : K →P denote a selection from the optimal policy correspondence for (12). Let:

S(y)(k) = max
U ∗(y)(k)

R(k, p, y(Λ(k, p))),

where U ∗(y)(k) = argmaxΓ(k)Q(u(k, p), y(Λ(k, p))). S(y)(k) is the best possible con-
tinuation payoff for a preceding player at k given that the current player makes an
optimal choice and is faced with the continuation payoff function y. Let y0 = y and
consider the iteration: yn+1 = S(yn), n ∈ {0} ∪N . The continuation value func-
tion yn is induced by a sequence of n players taking a best action for predecessors
amongst their best action sets and the n-th player obtaining her best possible pay-
off. Thus, for some initial k0 ∈ K and T ∈ N , the policy correspondences asso-
ciated with the maximizations maxU ∗(yn)(k) R(k, p, yn(Λ(k, p))), n = 1, . . . , T, gener-
ate a sequence of actions analogous to the p̂ actions used in the constructions of the
previous section. Without state variables, paths consisting of repeated play of p̂ fol-
lowed by an optimal path for a "blocking player" were used to construct revision-proof
strategies. With state variables the situation is similar except that the policy corre-
spondences Ψ(k) = argmaxU ∗(yn)(k)R(k, p, yn(Λ(k, p))) are used to construct play lead-
ing up to the blocking player. Let wn+1(k) = maxΓ(k) Q(u(k, p), yn(Λ(k, p))) and let
w∞(k) = lim infn→∞ wn(k). For an appropriate choice of n a payoff arbitrarily close to
w∞(k) can be attained by the first player in a sequence of the sort described above.

We impose the following analogue of Assumption 4. It implies that players along the
continuation of a best path (for a blocking player) are strictly better off than if a path
with payoff close to w∞(k) is pursued.

Assumption 4′. For each k ∈ K , Q(u(k, p(k)), y(k)) > w∞(k).

We can now state an analogue of Proposition 5 for quasi-recursive games with state
variables. The proof follows the same logic as the proof of Proposition 5 and is available
upon request. It invokes Assumption 2′, Appendix E, a generalization of Assumption 2
for games with state variables, to ensure that the continuation payoff function Y is well
defined.

Proposition 6. Let Assumption 2′ in Appendix E and Assumption 4′ hold. Consider a state
k ∈ K . Let P̃ be any path such that for all t, inft W(P̃t) > w∞(k). There is a revision-proof
strategy σ that implements the path P̃.

The following example illustrates.
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6.1 Example: Saving with quasi-hyperbolic preferences

A decision-maker has an initial endowment of capital k1 and access to a linear technology
for producing output from capital q = Ak, A > 0. In each period t she divides current
output Akt into consumption pt and future capital kt+1. Let K , P = R+ denote sets
of capitals and consumptions. Capital evolves according to a function Λ : R×P → R,
where:

Λ(k, p) = Ak− p.

For k ∈ K , define Γ(k) = {p|p ∈ [0, Ak]}. Let Λ1 = Λ and, for t ≥ 1, define Λt+1 :
K ×P t+1 → R as in (9). Λt+1(k, Pt+1) gives capital for use in t + 2 given an initial
capital k and prior consumption choices Pt+1. The set of feasible consumption paths
given capital k, Π(k), is then defined as in (10). Let β ∈ (0, min(1, Aγ−1)) and γ ∈ (0, 1).
Each player’s continuation payoff function is identified with:

Y(k, P) =

∑∞
t=1 βt−1 p1−γ

t
1−γ if P ∈ Π(k)

−∞ otherwise,

where the restriction of Y to Graph Π satisfies 0 ≤ Y(k, P) ≤ bk1−γ, b = A1−γ

1−γ (1 −
(βA1−γ)

1
γ )−γ and Y encodes infeasible plans outside of Graph Π with −∞ values. Y

satisfies the recursion:

Y(k, p, P′) = R(k, p, Y(Λ(k, p), P′)),

where R(k, p, y) = u(k, p) + βy and u(k, p) = p1−γ

1−γ if p ∈ Γ(k) and is −∞ otherwise. The
decision-maker’s payoff in each period is:

W(k, p, P′) = Q(u(k, p), Y(Λ(k, p), P′)),

where: Q(u(k, p), y) = u(k, p) + βδy, δ ∈ (0, 1). The following proposition characterizes
the set of sub-game perfect continuation payoffs in this case.

Proposition 7. The sub-game perfect continuation payoff correspondence Y is given by:

Y (k) =
[
bk1−γ, bk1−γ

]
.

The minimal sub-game perfect continuation payoff function y(k) = bk1−γ is the unique function
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satisfying:

bk1−γ =
(Ak− k′(k))1−γ

1− γ
+ βbk′(k)1−γ,

where

k′(k) = argmax[0,Ak]
(Ak− k′)1−γ

1− γ
+ βδbk′1−γ,

i.e. it is the unique Markov perfect value function.

The proof of the proposition is quite long and in the interests of space is omitted. It is
available from the authors on request. In addition, defining b1 = b and for each n ∈ N ,

bn+1k1−γ =
(Ak− kn+1(k))1−γ

1− γ
+ βbnkn+1(k)1−γ,

where

kn+1(k) = argmax[0,Ak]
(Ak− k′)1−γ

1− γ
+ βδbnk′1−γ,

we have that bn ↓ b. Thus, the value function obtained by having a terminal player
obtain her optimal payoff and a sequence of preceding players choosing their best current
payoff converges to the Markov (worst sub-game perfect) payoff function. Application
of Proposition 6 implies that all paths with payoffs above the Markov (worst sub-game
perfect) value function are revision-proof. In fact, in this case, a slight strengthening of
the result establishes that all paths are revision-proof.

7 Revision-Proofness and the Literature

We relate revision-proofness to similar concepts in the literature.

7.1 Asheim’s notion of revision-proofness

Asheim (1997) introduces an equilibrium concept he calls revision-proofness and we will
call A-revision-proofness. We now show that despite apparent differences in their formu-
lations, the concepts are in fact identical. We first introduce some preliminary concepts
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and definitions from Asheim. A strategy correspondence S associates each history Pt−1

with a set of strategies, i.e. S : ∪t∈N P t−1 → 2S .

Definition 9. (Asheim)

1. A strategy correspondence is internally stable if for all t ∈ N , Pt−1 ∈ P t−1 and
σ ∈ S(Pt−1), there is no Pt+r−1 = (Pt−1, Pr) and σ′ ∈ S(Pt+r−1) such that
Vt+r(Pt+r−1, σ′) > Vt+r(Pt+r−1, σ).

2. A strategy correspondence is externally stable if for all t ∈ N , Pt−1 ∈ P t−1,
σ′ ∈ S \S(Pt−1), there is some Pt+r−1 = (Pt−1, Pr) and σ ∈ S(Pt+r−1) such that
Vt+r(Pt+r−1, σ) > Vt+r(Pt+r−1, σ′).

3. A strategy correspondence is stable if it is both internally and externally stable.

Definition 10. (Asheim) σ is A-revision-proof at Pt−1 if it belongs to S(Pt−1), where S is
stable strategy correspondence.

Lemma 2.

1) Let S be a strategy correspondence internally stable, then there is a function Ψ : ∪t∈N P t−1

→ R such that for each Pt−1 and all σ ∈ S(Pt−1), Vt(Pt−1, σ) = Ψ(Pt−1).

2) Let S be a stable strategy correspondence with payoff function Ψ. Let σ ∈ S(Pt−1), then
for all Pt+r−1 = (Pt−1, Pr), σ ∈ S(Pt+r−1) and Vt+r(Pt+r−1, σ) = Ψ(Pt+r−1).

Proof. Part 1) If σ, σ′ ∈ S(Pt−1), then immediately from the definition of internal stability
Vt(Pt−1, σ) ≥ Vt(Pt−1, σ′) ≥ Vt(Pt−1, σ). Set Ψ(Pt−1) to this common value. Part 2) Let
Pt+r−1 = (Pt−1, Pr). If σ ∈ S(Pt−1), then, either σ ∈ S(Pt+r−1), in which case the
preceding step implies Vt+r(Pt+r−1, σ) = Ψ(Pt+r−1) or σ /∈ S(Pt+r−1). In the latter
case, by external stability of S, there is a successor history Pt+r+s−1 = (Pt−1, Pr, Ps) =

(Pt−1, Pr+s) such that Ψ(Pt+r+s−1) > Vt+r+s(Pt+r+s−1, σ). But since σ ∈ S(Pt−1), internal
stability implies that Vt+r+s(Pt+r+s−1, σ) ≥ Ψ(Pt+r+s−1). We deduce that, in fact, if
σ ∈ S(Pt−1), then σ ∈ S(Pt+r−1) and Vt+r(Pt+r−1, σ) = Ψ(Pt+r−1).

The preceding lemma implies that if σ is A-revision-proof at Pt−1, then it is A-
revision-proof at all successor histories Pt+r−1. We will say that σ is A-revision-proof
if it is A-revision-proof at P0 (and, hence, at all successor histories). If σ is A-revision
proof, then all other strategies σ′ must either deliver the same payoffs as σ after each
history (and, hence, can be taken to belong to the same stable correspondence as σ) or
they must deliver a strictly lower payoff than σ after some history. Consequently, we
have the following result.
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Proposition 8. σ is revision-proof if and only if it is A-revision-proof.

Proof. (If) Suppose that σ is A-revision-proof and that there is a history Pt−1 and an al-
ternative strategy σ′ such that ∀Pr, Vt+r(Pt+r−1, σ′) ≥ Vt+r(Pt+r−1, σ) with the inequality
strict for at least one Pr. The A-revision-proofness of σ implies that there is a stable strat-
egy correspondence S such that σ ∈ S(P0). Now, σ′ cannot be in S(Pt−1) as well, since
then S would fail to be internally stable. On the other hand if σ′ /∈ S(Pt−1), then S fails to
be externally stable since for all Pt+r−1, Vt+r(Pt+r−1, σ′) ≥ Vt+r(Pt+r−1, σ) = Ψ(Pt+r−1),
where Ψ is the payoff function associated with S and the equality stems from the previ-
ous lemma. Hence, if σ is A-revision-proof, it is revision-proof.

(Only If) Suppose that σ is revision-proof. For each Pt−1, define S(Pt−1) to be the
set of strategies that give the same payoffs at Pt−1 and all successor histories as σ. Each
S(Pt−1) is non-empty since it contains σ. Since for all Pt−1, the members of S(Pt−1)

give the same payoffs at Pt−1 and all successor histories, S is internally stable. Revision-
proofness and the definition of S imply that for all Pt−1 any σ′ /∈ S(Pt−1) must give
a strictly lower payoff after some successor history. Thus, S is externally stable. Since
σ ∈ S(P0), σ is A-revision-proof.

7.2 Kocherlakota’s reconsideration-proofness

Kocherlakota (1996) specializes Farrell and Maskin (1989)’s definition of renegotiation-
proofness to games played by dynasties. He considers only repeated games without
history dependence. Player preferences are defined by a function W : P∞ → R accord-
ing to, for all t and P, U(t, P) = W(Pt). The payoffs induced by a strategy σ are given
by: Vt(Pt−1, σ) = W(Φ(σ|Pt−1)).

Definition 11. (Kocherlakota) In a repeated game, a strategy σ is reconsideration-proof if
(1) it is sub-game perfect, (2) it is payoff stationary, i.e. for all Pt−1, Vt(Pt−1, σ) = V for
some number V, (3) there is no other sub-game perfect equilibrium σ′ such that for all
Pt−1, Vt(Pt−1, σ′) = V′ > V.

Proposition 9. If, in a repeated game, σ is revision-proof and payoff stationary, then it is
reconsideration-proof.

Proof. If σ is revision-proof, then it is also sub-game perfect and, hence, satisfies 1) of
the reconsideration -proof definition. Payoff stationarity implies that σ satisfies 2) of the
reconsideration-proof definition. Additionally, there is no alternative sub-game perfect
equilibrium such that for all Pt−1, Vt(Pt−1, σ′) ≥ Vt(Pt−1, σ) = V with strict inequality
after some Pt−1. In particular 3) of the reconsideration-proof definition is satisfied.
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Revision-proofness ensures (1) of Definition 11 and if (2) holds, ensures (3) of this def-
inition as well. However, revision-proofness, does not require (2). Reconsideration-
proofness is, therefore, a refinement of revision-proofness in repeated games. Revision-
proofness has the advantage that it can be applied to dynamic games, reconsideration-
proofness cannot.

8 Conclusion

What types of outcomes can we expect to emerge when players with conflicting objec-
tives sequentially take actions that affect their predecessors and, possibly, their succes-
sors? To address the question we consider strategies that are robust to joint deviations
of successive players. We call these strategies revision-proof. Although this concept is
not new, the literature contains very little prior characterization.

The main message of this paper is that if it is possible to support a path with off-
equilibrium play that deters unilateral defection and blocks every infinite revision by
eventually giving some player more than she can be obtain from joining the revision,
then the path is revision-proof. In games where there is some consensus about how to
play or not play, this may only be possible for a small set of paths and the concept may
be quite selective. In quasi-recursive games where optimal actions for successors are
quite costly for predecessors, but optimal actions for predecessors are not too costly for
successors, the concept is quite permissive with respect to paths.

We have given applications of our results to games played by overlapping genera-
tions of players, to savings games played by an agent with quasi-hyperbolic discounting
preferences and to a simple macroeconomic policy game. In the latter case, the macroe-
conomic policy game mapped directly into a reduced form quasi-recursive game. For
macroeconomic policy games in which private households take actions that influence the
physical state of a later policymaker, a mapping into a quasi-recursive game exists, but it
is more complicated. In these settings, the associated reduced form quasi-recursive game
explicitly incorporates private households’ beliefs about future policy actions, as well as
the actions themselves. The revision-proofness concept can be extended to these games
and we conjecture that analogues of our results are available for them. We also con-
jecture that our procedure for designing revision-proof strategies, with off-equilibrium
payoff build ups culminating in blocking players, has application to a broader range
of quasi-recursive and non-quasi recursive games. We leave these extensions to future
work.
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Appendix

A Proofs for Sections 3 and 4

Proof of Lemma 1. (Necessity) Suppose that σ is revision-proof for G (U) and that at some
Pt−1 there is a successful revision path P′ = {p′r}∞

r=1. Modify σ to obtain a new
strategy σ′ such that Φ(σ′|Pt−1) = P′, but otherwise σ′ equals σ. Then for all r,
Vt+r(Pt−1, P′r, σ′) ≥ Vt+r(Pt−1, P′r, σ) with strict inequality for at least one r. Also, for all
dates r and histories Pr 6= P′r, Φ(σ′|Pt−1, Pr) = Φ(σ|Pt−1, Pr), so that Vt+r(Pt−1, Pr, σ′)
= Vt+r(Pt−1, Pr, σ). This contradicts the assumed revision-proofness of σ. Hence, at no
Pt−1 is there a successful revision path P′.

(Sufficiency) Let σ be such that there are no successful revision paths at any history
Pt−1. Then, by Assumption 1, σ ∈ S (U). Let Pt−1 and σ′ be arbitrary. Let Ps be a
history such that:

Vt+s(Pt−1, Ps, σ′) > Vt+s(Pt−1, Ps, σ).

Thus, U(t + s, Pt−1, Ps, Φ(σ′|Pt−1, Ps)) > Vt+s(Pt−1, Ps, σ). Since there are no success-
ful revision paths at any history, it follows that there is some r and sub-history Pr of
(Ps, Φ(σ′|Pt−1, Ps)) such that:

U(t + r, Pt−1, Ps, Φ(σ′|Pt−1, Ps)) < Vt+r(Pt−1, Pr, σ).

Hence, the adoption of σ′ at Pt−1 either leaves all payoffs unaltered or strictly lowers
some. Since σ′ and Pt−1 were arbitrary, it follows that σ is revision-proof for G (U).

Proof of Proposition 4. Sufficiency is obvious. We remark that by Assumption 1, each
Ut(Pt−1) is greater than −∞ and so a strategy σ attaining the payoffs Ut(Pt−1) is in
S (U). We turn to necessity. Suppose that σ is sub-game perfect (and so in S (U))
and that there is some t and Pt−1 such that U(t, Pt−1) > Vt(Pt−1, σ). Then there is
a path P′ such that (Pt−1, P′) ∈ Dom Πt(Pt−1) and U(t, Pt−1, P′) > Vt(Pt−1, σ) + ε
for some small ε > 0. Continuity in the product topology implies a T such that
U(t, Pt−1, P′T, Φ(σ|Pt−1, P′T)) +ε > U(t, Pt−1, P′). So, U(t, Pt−1, P′T, Φ(σ|Pt−1, P′T)) >
Vt(Pt−1, σ). Consider the player at t + T − 1. By sub-game perfection, U(t + T −
1, Pt−1, P′T−1, Φ(σ|Pt−1, P′T−1)) ≥ U(t + T − 1, Pt−1, P′T, Φ(σ|Pt−1, P′T)). Time consis-
tency then implies:

U(t, Pt−1, P′T−1, Φ(σ|Pt−1, P′T−1)) ≥ U(t, Pt−1, P′T, Φ(σ|Pt−1, P′T)) > V(t, Pt−1, σ).

Iterating back from T in this way, we obtain: Vt(Pt−1, σ) = U(t, Pt−1, Φ(σ|Pt−1)) >
Vt(Pt−1, σ). This is a contradiction. We conclude that U(t, Pt−1) = Vt(Pt−1, σ).

B Sub-game perfection with quasi-recursive payoffs

Let C denote the set of bounded, continuous functions f : P∞ → R equipped with the
sup-norm ‖ · ‖ : C → R+, with for f ∈ C , ‖ f ‖ = supP∞ | f (P)|, and the partial order
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≥, with for f , f ′ ∈ C , f ≥ f ′ if for all P ∈ P∞, f (P) ≥ f ′(P). Let 0 denote the zero
function: 0 : P∞ → 0.

Proposition 10. Suppose Assumption 2 holds. Then there is a unique function Y ∈ C such that
Y(p, P′) = R(p, Y(P′)). Also, lim ‖Tn(0)−Y‖ → 0.

Proof. Define the operator T on the domain C by T( f )(p, P) = R(p, f (P)). Since R is
increasing in its second argument, T is increasing. Also, |T(0)| = |R(p, 0)| < ∞. Finally,
by the discounting property of R in Assumption 2,

T( f + b)(p, P) = R(p, f (P) + b) ≤ R(p, f (P)) + βb = T( f )(p, P) + βb

and so T satisfies a discounting property as well. This verifies the assumptions of Becker
and Boyd (1997)’s generalization of Blackwell’s theorem. It follows that T : C → C and
has a unique fixed point in C . Also, for any P, |Y(P)− Tn(0)(P)| ≤ βn|Y(Pn)| ≤ βn‖Y‖.
Since the last term converges to 0 as n converges to ∞, we have lim ‖Tn(0)−Y‖ → 0.

Let Y0 := [−‖Y‖, ‖Y‖]. Evidently, Y(P∞) ⊂ Y0 := [−‖Y‖, ‖Y‖]. Given Assump-
tion 2, W(p, P) = Q(u(p), Y(P)) is also continuous with respect to the relative product
topology on P∞. Define the B-operator as follows.

Definition 12. Let B : 2R → 2R be given by for all Y ′ ⊂ R,

B(Y ′) =
{

y
∣∣∣∣∃(p, y′) ∈P ×Y ′, with y = R(p, y′), Q(u(p), y′) ≥ sup

P

inf
Y ′

Q(u(p′′), y′′)
}

.

Let Y = {y|y = Y(Φ(σ)) with σ sub-game perfect}.

Proposition 11. (i) Y = B(Y ). (ii) If W ⊂ R satisfies W ⊆ B(W ), then W ⊆ Y . (iii) Y
is a compact interval, [y, y].

Proof. (i) and (ii) are immediate applications of arguments in Abreu, Pearce, and Stac-
chetti (1990) and are omitted. Endow 2R with the set inclusion ordering and define set
convergence in the Kuratowski sense. For monotone, decreasing sequences of closed sets
{Cn}, Cn ⊂ R, the (Kuratowski) limit exists and is given by limn→∞ Cn := ∩∞

n=1Cn. B is
monotone in the set inclusion ordering. In addition, B(Y0) ⊂ Y0. Thus, the sequence
{Bn(Y0)} is monotone decreasing.

Let W be a compact interval. Let y1, y2 belong to B(W ). Then there exists (p1, y′1)
and (p2, y′2) each in P ×W such that for k = 1, 2, yk = R(pk, y′k) and Q(u(pk), y′k) ≥
sup
P

inf
W

Q(u(p), y). Let H : [0, 1] → R be defined as for all ψ ∈ [0, 1], H(ψ) = R(ψp1 +

(1 − ψ)p2, ψy′1 + (1 − ψ)y′2). H is well defined by the convexity of P and W . Let
λ ∈ [0, 1], then by continuity of R and, hence, H, there is a ψ such that (1 − λ)y1 +
λy2 = R(ψp1 + (1− ψ)p2, ψy′1 + (1− ψ)y′2). By concavity of u and Q, Q(u(ψp1 + (1−
ψ)p2), ψy′1 + (1 − ψ)y′2) ≥ ψQ(u(p1), y′1) + (1 − ψ)Q(u(p2), y′2) ≥ sup

P

inf
W

Q(u(p), y).

Hence, λy1 + (1− λ)y2 ∈ B(W ) and B(W ) is an interval. Let y∞ ∈ cl (B(W )). Then
there is a sequence {yk} with each yk ∈ B(W ) and limk→∞ yk = y∞. For each yk there is a
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(pk, y′k) ∈ P ×W such that yk = R(pk, y′k) and Q(u(pk), y′k) ≥ sup
P

inf
W

Q(u(p), y). Since

P and W are compact, the sequence {pk, y′k} admits a convergent subsequence (pkn , y′kn
)

with limit (p∞, y′∞). By the continuity of R, u and Q, y∞ = lim R(pkn , y′kn
) = R(p∞, y′∞)

and each Q(u(pkn), y′kn
) ≥ sup

P

inf
W

Q(u(p), y′) so Q(u(p∞), y′∞) ≥ sup
P

inf
W

Q(u(p), y′).

Hence, y∞ ∈ B(W ) and so B(W ) is closed. Since P and W are compact and R is
continuous, B(W ) is bounded. Combining results, B(W ) is a compact interval.

Hence, since Y0 is a compact interval, the {Bn(Y0)} is a decreasing sequence of
compact intervals. Thus, Y∞ := limn→∞ Bn(Y0) = ∩∞

n=0[yn
, yn] = [y, y], where [y

n
, yn] =

Bn(Y0), y = supn y
n

and y = infn yn. Since Y ⊆ Y0 , B(Y0) ⊆ Y0, Y = B(Y ) and B is
monotone, we have for all n, Y ⊆ Bn(Y0). Thus, Y ⊆ Y∞. For the reverse inclusion see
Abreu, Pearce, and Stacchetti (1990). This proves (iii).

By Proposition 11 (iii), it is sufficient to characterize the endpoints y and y of Y . By
Proposition 11 (i), these endpoint payoffs satisfy:

y = min
{

R(p, y′)
∣∣∣ s.t. (p, y′) ∈P × [y, y] and Q(u(p), y′) ≥ Q(u∗, y)

}
(MIN)

and

y = max
{

R(p, y′)
∣∣∣ s.t.(p, y′) ∈P × [y, y] and Q(u(p), y′) ≥ Q(u∗, y)

}
, (MAX)

where u∗ = maxP u(p). In addition, by Proposition 11 (ii) if y′ and y′ satisfy the above
conditions, then y ≤ y′ ≤ y′ ≤ y. Let: X = {p ∈P |Q(u(p), y) ≥ Q(u∗, y)}.

Lemma 3.

1. The solution to (MIN) is attained by a pair (p, y′(p)), where:

p ∈ argmin
X

R(p, y′(p))

and for each p ∈ X , y′(p) is the unique element of Y satisfying Q(u(p), y′(p)) =
Q(u∗, y). Either y′(p) = y in which case y = R(p, y) and u(p) = u∗ or y′(p) > y in
which case y > Y(p, p, . . .).

2. There is a p ∈ X such that y = R(p, y). If Q(u(p), y) > Q(u∗, y), then y =

Y(p, p, . . .) = maxP∞ Y(P).

Proof. As previously noted, (MIN) has a solution. Let (p, y′) ∈ P × Y be such a solu-
tion. Feasibility of (p, y′) implies Q(u(p), y′) ≥ supP Q(u(p′), y). Suppose that y′ > y
and Q(u(p), y′) > Q(u∗, y). Then, by the monotonicity of R(p, ·) and the continuity of
Q(u(p), ·), the payoff R(p, y′) can be weakly reduced by lowering y′. Thus, there must
be a solution to (MIN) with either Q(u(p), y′) = Q(u∗, y) or y′ = y. However, if y′ = y,
then Q(u∗, y) ≥ Q(u(p), y′) and feasibility of (p, y′) implies that Q(u(p), y′) = Q(u∗, y)
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for this case as well. For each p in X , by the continuity and monotonicity of Q(u(p), ·),
there is a unique y′(p) ∈ Y such that: Q(u(p), y′(p)) = Q(u∗, y). Thus, wlg (MIN)
may be replaced with the restricted problem: minX R(p, y′(p)), which has a solution
since (MIN) does. Let p denote such a solution. If y′(p) = y, then we have immediately
that: y = R(p, y) and Q(u(p), y) = Q(u∗, y). Hence, u(p) = u∗ and the minimal payoff
and minimal continuation payoff are attained by repetition of p. On the other hand, if
y′(p) > y, then

y = R(p, y′(p)) > R(p, y) = R(p, R(p, y′(p))) > R(p, R(p, y)) > . . . > Y(p, p, . . .)

and the minimal continuation payoff exceeds that from repetition of p.
For part 2 of the Lemma, let (p, y) be a solution to (MAX). Since R is non-decreasing

in its second argument, (p, y) is a solution as well and y = R(p, y). Since P is compact,
P∞ is compact in the product topology. The Lipschitz condition on R ensures that Y
is continuous in this topology and so, by Weierstrass’s theorem, there is a P′ = (p′, P′′)
that maximizes Y on P∞ and attains a maximal payoff µ. Since R non-decreasing in
its second argument it follows that P′′ attains µ as well, i.e. µ = R(p′, µ). Suppose
that Q(u(p), y) > Q(u∗, y) and µ = R(p′, µ) > y = R(p, y). Let λ ∈ [0, 1], pλ =

λp + (1− λ)p′ and yλ = λy + (1− λ)µ. Then, by the concavity of R, for all λ ∈ (0, 1],
R(pλ, yλ) ≥ λR(p, y) + (1− λ)R(p′, µ) > R(p, y). By the continuity of u and Q, there is a
λ ∈ (0, 1] small enough that, Q(u(pλ), yλ) ≥ Q(u∗, y). Now, R(pλ, yλ) ≥ λR(p, y) + (1−
λ)R(p′, µ) = yλ. It follows using the monotonicity property of R and definition of Y that
yψ := Y(pλ, pλ, . . .) ≥ yλ > y. But then, since Q is increasing in its second argument,
Q(u(pλ), yψ) > Q(u(pλ), yλ) ≥ Q(u∗, y). But this contradicts Proposition 11 (ii).

C Proof of Proposition 5

Proof. Throughout this proof, we repeatedly use the continuity, monotonicity and dis-
counting properties of u, Q and R as described in Assumption 2 and, in particular, their
implication that W is continuous. We also use Assumption 3, R∗ does not depend on
y. Let p̂ ∈ R∗ ⊂ U ∗ and p be as in the preceding text. Let N = {0, ∞} ∪N . Define
P : N → P∞ as follows. For each T ∈ {0} ∪N , let P(T) = ( p̂, . . . , p̂, p, p, . . .), with T
the number of periods until the sequence (p, p, . . .) begins. Let P(∞) = P̂ = ( p̂, p̂, . . .).
Choose τ : P → N to satisfy for each p ∈P\U ∗, ŵ > W(p, P(τ(p))), which is possible
given the definition of ŵ and U ∗ and the continuity of W.

Set σ so that Φ(σ) = P̃. For each t ∈ N , if Φ(σ|P̃t−1) 6= P(T), T ∈ N and p 6= p̃t,
then set Φ(σ|P̃t−1, p) = P(∞). For all t ∈ N and Pt−1, (i) if Φ(σ|Pt−1) = P(∞), then for
p ∈ P\U ∗, set Φ(σ|Pt−1, p) = P(τ(p)) and for p ∈ U ∗, set Φ(σ|Pt−1, p) = P(∞), (ii) if
Φ(σ|Pt−1) = P(T), T ∈ N , then for each p ∈ P , set Φ(σ|Pt−1, p) = P(T − 1), (iii) if
Φ(σ|Pt−1) = P(0), and p 6= p, then set Φ(σ|Pt−1, p) = P(∞).

It is easy to see that σ is sub-game perfect. We now show that it is revision-proof.
By Lemma 1, it is sufficient to show that there is no history Pt, t ∈ {0} ∪N , and
revision path P′′ = {p′′r }∞

r=1 with histories P′′r and continuations P′′r such that for r ∈ N ,
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W(P′′r ) ≥ W(Φ(σ|Pt, P′′r−1)) with at least one of these inequalities strict. Suppose that
such a history Pt and revision path P′′ exists, we seek a contradiction. For each r ∈ N ,
let Wr := W(P′′r ) and Yr := Y(P′′r ). It is immediate that P′′ 6= Φ(σ|Pt). We distinguish
three further cases. Case 1: Φ(σ|Pt) = P(∞) and for all r ∈ N , p′′r ∈ U ∗. Case 2: either
Φ(σ|Pt) = P̃t+1 6= P(T), T ∈ N , or Φ(σ|Pt) = P(0), there is a first date r0 ∈ N at
which p′′r0

6= σt+r0(Pt, P′′r0−1) and Φ(σ|Pt, P′′r0) = P(∞) and from r0 + 1 onwards each
p′′r ∈ U ∗. Case 3: There is a first date r0 at which Φ(σ|Pt, P′′r0−1) = P(T), T ∈ N . It is
easily checked that all Pt and P′′ with P′′ 6= Φ(σ|Pt) fall into one of these cases.

Suppose that P′′ belongs to Case 1. Since in this case every p′′r belongs to U ∗, the def-
inition of σ implies that for all r ∈ N , Φ(σ|Pt, P′′r−1) = P(∞) and W(Φ(σ|Pt, P′′r−1)) =
ŵ. On the other hand since some p′′r may belong to U ∗\R∗ and, therefore, may not be
maximal for R on U ∗, we have that Wr = Q(u(p′′r ), Y(P′′r+1)) ≤ Q(u(p′′r ), ŷ) = ŵ. Hence,
there is no player for whom Wr > W(Φ(σ|Pt, P′′r−1). But this contradicts the assumed
property of P′′ and so, in fact, P′′ cannot belong to Case 1.

Next suppose that P′′ belongs to Case 2. Similar to Case 1, for r > r0, Wr ≤ ŵ =
W(Φ(σ|Pt, P′′r−1)). By (i) in the proposition and Assumption 4, ŵ ≤W(Φ(σ|Pt, P′′r0−1)).
Also, since p′′r0

need not be in U ∗ and some later p′′r values need not be in R∗, Wr0 =
Q(u(p′′r0

), Y(P′′r0+1)) ≤ Q(u(p′′r0
), ŷ) ≤ ŵ. In addition, by (ii) in the proposition and

Assumption 4, either the player at t + r0 is strictly worse off adhering to P′′, Wr0 <
W(Φ(σ|Pt, P′′r0−1)), or she is no worse off, Wr0 = ŵ = W(Φ(σ|Pt, P′′r0−1)), and, if
t + r0 > 1, the player at t + r0 − 1 receives a weakly lower continuation payoff from
P′′, Yr0 ≤ Y(Φ(σ|Pt, P′′r0−1)). Since P′′ coincides with Φ(σ|Pt) between 1 and r0 − 1, it
follows that all players between to t and t + r0 − 1 are weakly worse off adhering to P′′.
But then there is no player for whom Wr > W(Φ(σ|Pt, P′′r−1) and so, in fact, P′′ cannot
belong to Case 2.

Finally, suppose that P′′ belongs to Case 3. Then there is a first date t+ r0 + 1 at which
Φ(σ|Pt, P′′r0) = P(T) for some T ∈ N . By Lemma 4 below, for r = 1, . . . , T, W(P′′r0+r) =

W(Φ(σ|Pt, P′′r0+r−1)) and, if t + r0 > 0, Yr0+1 ≤ Y(Φ(σ|Pt, P′′r0)). There are two sub-
cases. In sub-case 3A, r0 > 0, Φ(σ|Pt, P′′r0−1) = P(∞), p′′r0

6∈ P\U ∗ and Φ(σ|Pt, P′′r0)
= P(τ(p′′r0

)). In this case, using the definition of τ(p′′r0
), Lemma 4 and the monotonicity

of Q, the player at t + r0 is made strictly worse off since: W(Φ(σ|Pt, P′′r0−1)) = ŵ >
W(p′′r0

, P(τ(p′′r0
))) = Q(u(p′′r0

), Y(P(τ(p′′r0
))) ≥ Q(u(p′′r0

), Yr0+1). But then P′′ cannot be-
long to sub-case 3A. In sub-case 3B, r0 = 1 and Φ(σ|Pt) = P(T). By Lemma 4, for
r = 1, . . . , T, W(P′′r ) = W(Φ(σ|Pt, P′′r−1)). If P′′T+1 = P(0) = (p, p, . . .), i.e. there are no
further defections from the strategy, then for all r ∈ N , W(P′′r ) = W(Φ(σ|Pt, P′′r−1))
and there is no player for whom W(P′′r ) > W(Φ(σ|Pt, P′′r−1)). If there is a first r1 > T
such that p′′r1

6= p and for all r > r1, p′′r ∈ U ∗, then following our analysis of Case 2,
for all r, W(P′′r ) ≤ W(Φ(σ|Pt, P′′r−1)) and again there is no player for whom W(P′′r ) >
W(Φ(σ|Pt, P′′r−1)). Finally, if there is a first r1 > T such that p′′r1

6= p and a first r2 > r1
such that p′′r ∈ P\U ∗, then following our analysis of sub-case 3A some player is made
worse off. Thus, either no player is made strictly better off or some player is made strictly
worse off and P′′ cannot belong to sub-case 3B. This exhausts all possible cases and so
there is no history Pt and revision path P′′ such that latter weakly raises the payoff of

38



all players relative to reversion to the strategy and strictly raises the payoff of some. It
follows from Lemma 1 that the strategy is revision-proof.

Lemma 4. Let σ, P : {0, ∞}∪N →P∞ and P′′ be as in the previous proof. For any t ∈ {0}∪
N and Pt, if Φ(σ|Pt) = P(T), T ∈ N , then for r = 1, . . . , T, W(P′′r ) = W(Φ(σ|Pt, P′′r−1))
and Y(P′′) ≤ Y(Φ(σ|Pt)).

Proof. As in the proof of Proposition 5, for all r ∈ N , let Wr = W(P′′r ) and Yr = Y(P′′r ).
Consider play at t + T. Given that Φ(σ|Pt) = P(T), the construction of σ implies:
Φ(σ|Pt, P′′T−1) = P(1). Thus, σ implements the best sub-game perfect path, P(1) =
( p̂, p, p, . . .), for the t + T-th player. Since P′′ at least matches the payoffs received under
the strategy, it follows that:

WT ≥W(P(1)) = Q(u( p̂), Y(P(0))) = Q(u∗, y).

We claim that WT = W(P(1)) and YT ≤ Y(P(1)). Suppose the claim is false, then either
A) WT > W(P(1)) or B) WT = W(P(1)) and YT > Y(P(1)). We show that in either of
these cases, YT+1 > y and P′′T+1 is a sub-game perfect path. This contradiction establishes
the claim.

Suppose A) WT > W(P(1)), then Q(u(p′′T), YT+1) = WT > W(P(1)) = Q(u∗, y) and,
since u∗ ≥ u(p′′T) and Q is monotone, YT+1 > y. Suppose B) WT = W(P(1)) and YT >
Y(P(1)), then R(p′′T, YT+1) = YT > Y(P(1)) = R( p̂, y) and since R is weakly monotone
in its second argument, either YT+1 > y or p′′T 6= p̂. If YT+1 ≤ y and p′′T 6= p̂, then,
by definition of p̂, p′′T 6∈ U ∗ and u∗ = u( p̂) > u(p′′T). However, WT = Q(u(p′′T), YT+1)
= Q(u∗, y) and so either p′′T ∈ U ∗ or YT+1 > y must occur. Hence, in fact, YT+1 > y.

Suppose that for some k ∈ N , YT+k > y. Since:

y = max
(p,y′)
{R(p, y′), y′ ∈ [y, y], Q(u(p), y′) ≥ Q(u∗, y)} (14)

and R(p′′T+k, YT+k+1) = YT+k > y, (p′′T+k+1, YT+k+1) is not feasible for (14). Either 1)
Q(u(p′′T+k), YT+k+1) < Q(u∗, y), 2) YT+k+1 < y or 3) YT+k+1 > y. If 1) holds then the
player at t + T + k is strictly worse off under P′′ than under the continuation of σ (which
is sub-game perfect and, thus, gives a payoff weakly above Q(u∗, y) after all histories).
But this contradicts the assumed property of P′′. So 1) cannot hold. If 2), but not 1) holds,
then R(p′′T+k, y) ≥ R(p′′T+k, YT+k+1) = YT+k > y. But since (p′′T+k, y) is clearly feasible
for (14), this contradicts the optimality of y in (14). Hence, 3) holds and YT+k+1 > y. By
induction for all k ∈ N , YT+k = R(p′′T+k, YT+k+1) > y with each Q(u(p′′T+k), YT+k+1) ≥
Q(u∗, y). But then, in fact, P′′T+1 is a sub-game perfect path with continuation payoff
YT+1 > y. This is a contradiction. We conclude that WT = W(P(1)) = W(Φ(σ|P′′T−1))
and YT ≤ Y(P(1)).

At t + T − 1 after (Pt, P′′T−2), σ implements the path P(2) = ( p̂, p̂, p, p, . . .). The
t + T − 1-th player receives Q(u∗, Y(P(1))) and since u(p′′T−1) ≤ u∗ and YT ≤ Y(P(1)),
we have: WT−1 = Q(u(p′′T−1), YT) ≤ Q(u∗, Y(P(1))) = W(Φ(σ|P′′T−2)). However, by
the assumed property of P′′, WT−1 ≥ W(Φ(σ|P′′T−2)). So, WT−1 = W(Φ(σ|P′′T−2)),
u(p′′T−1) = u( p̂) = u∗ and YT = Y(P(1)). Moreover, YT−1 = R(p′′T−1, YT) ≤ R( p̂, Y(P(1)))
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= Y(P(2)) since YT = Y(P(1)), p′′T−1 ∈ U ∗ and p̂ is maximal for R(p, Y(P(1))) on U ∗.
Continuing with this logic back to t + 1, we find that P′′ must give each player between
t + 1 and t + T current and continuation payoffs equal to those obtained under σ and
the player at t a continuation payoff less than or equal to that obtained under σ, i.e. less
than or equal to Y(P(T)). This completes the proof.

Corollary 2. Let Assumptions 2 to 4 hold. Let P̃ be any path such that (i) for all t, W(P̃t) ≥ ŵ
and (ii) if W(P̃t) = ŵ, then Y(P̃t) ≥ ŷ. Then there is a strategy σ that implements P̃ and is
revision-proof and there is no alternative σ′ that delivers the same payoffs to all players as σ and
satisfies Y(Φ(σ′)) > Y(P̃).

Proof. Given the strengthening of (ii) to hold at t = 1 as well as later dates, the strategy
constructed in the proof of Proposition 5 has the desired properties.

D Proof of Theorem 2

We begin with some preliminary lemmas. Define γ : (y, y]→ (y, y] according to:

γ(y) =


y′ ∈ argmax

(y,y]
R−1(p, ·)(y) y ∈ (y, R(p, y)]

y′ = y y ∈ (R(p, y), y].

Thus, if y ∈ (y, R(p, y)], then y = R(p, γ(y)) and γ(y) is next period’s best continuation
payoff when y is today’s continuation payoff and p is played in the next period. Note that
if β = 0 (e.g. in two period-lived OLG models), then R is constant in its second argument,
y = R(p, y) and (y, R(p, y)] is empty. Thus, if y ∈ (y, R(p, y)], then, necessarily, β > 0.

Lemma 5. Let Assumption 2 hold. γ is is strictly increasing on (y, R(p, y)]. For y ∈ (y, R(p, y)],

γ(y) ≥ y + (1−β)
β (y− y).

Proof. The strict monotonicity of γ is immediate from the definition and, by Assump-
tion 2, the monotonicity of R(p, ·). For y ∈ (y, R(p, y)], we have: R(p, y) ≤ y <

y = R(p, γ(y)). Thus, by the Lipschitz property of R in Assumption 2, y − y ≤
R(p, γ(y))− R(p, y) ≤ β(γ(y)− y) and so γ(y) ≥ y + (1−β)

β (y− y).

Lemma 6 constructs a function χ : (y, R(p, y)] → (y, y] that is used to define punish-
ment continuation payoffs in the proof of Theorem 2.

Lemma 6. Let Assumptions 2 and 6 hold. If R(p, y) > y, then there is a function χ :
(y, R(p, y)] → (y, y] such that i) for each y ∈ (y, R(p, y)], χ(y) > y and Q(u(p), γ(y)) >

Q(u( p̂), χ(y)), ii) if y, y′ ∈ (y, R(p, y)] and y′ > y, then χ(y′)− y′ ≥ χ(y)− y.

Proof. Let y ∈ (y, R(p, y)]. We first show that Q(u(p), γ(y)) > Q(u( p̂), y). Suppose not,
i.e. Q(u(p), γ(y)) ≤ Q(u( p̂), y). Recall that Q(u(p), y′(p)) = w = Q(u( p̂), y). Also,
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R(p, y′(p)) = y < y = R(p, γ(y)), and since R(p, ·) is monotone by Assumption 2,
y′(p) < γ(y). Then by the Lipschitz properties of R and Q in Assumptions 2 and 6,
Q(u(p), γ(y))− w ≤ Q(u( p̂), y)−Q(u( p̂), y) < κ(y− y) = κ(R(p, γ(y))− R(p, y′(p)) ≤
κβ(γ(y)− y′(p)) ≤ Q(u(p), γ(y))− Q(u(p), y′(p)) = Q(u(p), γ(y))− w. This is a con-
tradiction. Hence, Q(u(p), γ(y)) > Q(u( p̂), y).

Define d : (y, R(p, y)] → (y, y] according to, for y ∈ (y, R(p, y)], Q(u( p̂), d(y)) =

Q(u(p), γ(y)). By the continuity of Q in Assumption 2 and the previous inequality,
Q(u(p), γ(y)) > Q(u( p̂), y), d is well defined and d(y) > y. Let y < y′ ≤ R(p, y). We
show that d(y)− y ≤ d(y′)− y′. Assume to the contrary that d(y′)− d(y) < y′ − y. We
have:

0 < Q(u(p), γ(y′))−Q(u(p), γ(y)) = Q(u( p̂), d(y′))−Q(u( p̂), d(y)) ≤ κ(d(y′)− d(y))

< κ(y′ − y) ≤ κ(R(p, γ(y′))− R(p, γ(y))) ≤ βκ(γ(y′)− γ(y))

≤ Q(u(p), γ(y′))−Q(u(p), γ(y)).

But this is a contradiction, so that d(y)− y ≤ d(y′)− y′. Set χ(y) = (d(y) + y)/2. Then,
since d(y) > y, d(y) > χ(y) = (d(y) + y)/2 > y. Also, by the monotonicity of Q,
Q(u(p), γ(y)) = Q(u( p̂), d(y)) > Q(u( p̂), χ(y)). This proves (i) in the Lemma. If y, y′ ∈
(y, R(p, y)] and y′ > y, then χ(y′)− y′ = (d(y′)− y′)/2 ≥ (d(y)− y)/2 = (χ(y)− y).
This proves (ii) in the Lemma.

Proof of Theorem 2.

Proof. Construct a strategy σ as follows. Set Φ(σ) = P̃. Proceed through successive
dates t ∈ N . At each date t, the continuation strategy following a defection from P̃,
(σ|P̃t−1, p), p 6= p̃t, is constructed so as to incorporate a phase in which player payoffs
are "built up" until they exceed ŵ. Thereafter a revision-proof continuation strategy
constructed as in the proof of Corollary 2 is played. At t, W(P̃t) > w = Q(u( p̂), y). By
Assumption 2 and the continuity and monotonicity of Q, there is a y1 ∈ (y, y] such that
W(P̃t) > Q(u( p̂), y1). We use a function υ : ∪r∈N Pr → [y, y] to attach continuation
payoffs to histories during the build up phase. υ is defined recursively as follows. For
each p ∈ P\{ p̃t}, let υ(p) = y1. If υ(Pr) ∈ (y, R(p, y)] and υ has not previously
taken values outside of (y, R(p, y)], i.e. for all Ps such that Pr is a successor to Ps,
υ(Ps) ∈ (y, R(p, y)], then υ(Pr, p) is updated according to:

υ(Pr, p) =

{
γ(υ(Pr)) if p = p
χ(υ(Pr)) otherwise.

Also, σt+r(P̃t−1, Pr) is set to p. If υ(Pr) enters (R(p, y), y] for the first time, then the
build up phase is concluded and for successor histories Ps to Pr, υ(Ps) is set arbi-
trarily. The continuation strategy following such a history, (σ|P̃t−1, Pr), is set as fol-
lows. First, Φ(σ|P̃t−1, Pr) is set equal to (p′, p, p, . . .), where p′ lies in the interval be-
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tween p and p and satisfies υ(Pr) = R(p′, y). Such a p′ exists by the convexity of P ,
the continuity of R (Assumption 2) and the fact that υ(Pr) ∈ (R(p, y), R(p, y)], since
y = R(p, y). Now, by the concavity of u and Q in Assumption 2 and Assumptions 4
and 5, W(Φ(σ|P̃t−1, Pr)) = Q(u(p′), y) ≥ λQ(u(p), y) + (1 − λ)Q(u(p), y) ≥ ŵ with
equality only if λ = 0. Also, by Assumption 4, at each date s ∈ N and each sub-history
Ps = (p′, p, p, . . . , p), W(Φ(σ|P̃t−1, Pr, Ps)) = Q(u(p), y) ≥ ŵ. Thus, along the continu-
ation path Φ(σ|P̃t−1, Pr) = (p′, p, p, . . .) each player receives a payoff weakly more than
ŵ. In addition, if at any date along the path a player receives ŵ, then this player and
all her successors are playing p and the continuation payoff for this player’s predeces-
sors from this point onwards is at its maximal value y. Thus, by Corollary 2, there is
a revision-proof strategy σ′ with Φ(σ′) = (p′, p, p, . . .) and there is no alternative con-
tinuation strategy that weakly raises the payoff of all players after (P̃t−1, Pr) and strictly
raises the continuation payoff of the player at (P̃t−1, Pr−1). Set (σ|P̃t−1, Pr) = σ′.

If β = 0, then y1 > y = R(p, y) and so after all defections p 6= p̃t, this procedure
sets (σ|P̃t−1, p) to a common revision-proof continuation strategy σ′. In this case, define
r = 1. If β > 0, then let ε1 = 1−β

β (y1 − y) > 0 and ε2 = χ(y1) − y1 > 0. Now, by
Lemmas 5 and 6, υ(Pr+1) − υ(Pr) ≥ min(γ(υ(Pr)) − υ(Pr), χ(υ(Pr)) − υ(Pr)) ≥ ε =
min(ε1, ε2) > 0. Thus, continuation payoffs rise by at least ε during each period of the
build up phase and this phase cannot last more than r = (R(p, y)− y1)/ε + 1 periods.
Thus, after all histories (P̃t−1, Pr) with the first element of Pr not equal to p̃t and r ≥ r,
the continuation strategy (σ|P̃t−1, Pr) is revision-proof.

We now verify that σ is revision-proof. Let Pt be a history and P′′ a candidate revision
path beginning at t + 1. We consider two cases. In the first case, Pt enters a sub-game in
which a revision-proof continuation strategy constructed as in the proof of Corollary 2 is
played, i.e. Pt incorporates a first deviation from P̃ at some date t0 < t, passes through
a phase in which player continuation payoffs are built up until at some date t1 with
t0 < t1 ≤ t, υ(Pt1) ∈ (R(p, y), y]. From Pt1 a revision-proof continuation strategy is
prescribed by σ. Since P′′ revises this continuation strategy, by the definition of revision-
proofness, it cannot make all players from t + 1 onwards weakly better off and some
strictly better off relative to the strategy.

In the second case, Pt does not enter a sub-game in which a revision-proof continu-
ation strategy constructed as in Corollary 2 is played, i.e. Pt = P̃t or Pt incorporates a
first deviation from P̃ at some date t0 ≤ t and passes through a payoff build up phase
that is not concluded by t, υ(Pt) ∈ (y, R(p, y)]. There are two sub-cases.

In the first, P′′ reverts to the play prescribed by the strategy before a revision-proof
continuation strategy is reached, i.e. at a date t1 + 1 ∈ N such that υ(Pt, P′′t1+1) ∈
(y, R(p, y)]. Then, either t1 = 0 and P′′ = Φ(σ|Pt), in which case, trivially, no player
is made strictly better off by the revision or t1 > 0 and P′′ 6= Φ(σ|Pt). In the latter
situation, the player at t + t1 is the last deviator from the play prescribed by the strat-
egy. The choice of the y1 and χ terms in the construction of σ ensure that this player is
strictly worse off relative to reversion to the strategy. For example, if Pt = P̃t and t1 = 1,
then the t + 1-th player is the sole defector and she obtains W(P̃t+1) by adhering to the
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strategy and Q(u(p′′1 ), y1) ≤ Q(u( p̂), y1) < W(P̃t+1) if she defects. If Pt 6= P̃t or t1 > 1,
then the last defector deviates from a prescribed play of p at t + t1. She forfeits a pay-
off of Q(u(p), γ(υ(P′′t1−1))) and obtains Q(u(p′′t1

), υ(P′′t1)) = Q(u(p′′t1
), χ(υ(P′′t1−1))) ≤

Q(u( p̂), χ(υ(P′′t1−1))) < Q(u(p), γ(υ(P′′t1−1))).
In the second sub-case, P′′ does not revert to the play prescribed by σ before a

revision-proof continuation strategy is reached. However, by the argument above a date
t2 ≤ r is reached at which (σ|Pt, P′′t2−1) is revision-proof. Then either some player from
t + t2 onwards is made worse off by P′′t2

relative to reversion to the strategy or, by Corol-
lary 2, all players from t + t2 onwards receive the same payoff from P′′t2

as from reversion
to the strategy and the continuation payoff Y(P′′t2

) is no more than that under the strat-
egy. In the latter situation, if there are deviating players between t + 1 and t + t2 − 1,
then the last such deviator (at t + t1 with 1 ≤ t1 ≤ t2 − 1) is made strictly worse off
relative to the strategy since she receives a continuation payoff Y(P′′t1+1) weakly less than
that available under the strategy, υ(P′′t1), and so

Q(u(p′′t1
),Y(P′′t1+1)) ≤ Q(u(p′′t1

), υ(P′′t1)) = Q(u(p′′t1
), χ(υ(P′′t1−1)))

≤ Q(u( p̂), χ(υ(P′′t1−1))) < Q(u(p), γ(υ(P′′t1−1))) = W(Φ(σ|Pt, P′′t1−1)).

Thus, either some player is made worse off or no players are made better off by the
revision.

These cases exhaust all possibilities. There is no history Pt and path P′′ such that the
latter strictly raises the payoffs of some players and does not reduce the payoff of any
relative to the strategy. σ is revision-proof.

E Sub-game perfection with quasi-recursive payoffs and
state variables

We impose the following assumption on quasi-recursive games with state variables.

Assumption 2′. (i) P is a closed, convex subset of a normed space P0 and K a closed,
convex subset of Rm. Endow Graph Π ⊆ K ×P∞ with the (relative) product topology.

(ii) Λ is continuous and concave and Γ : K → 2P\∅ is compact-valued and continuous.

(iii) u : K ×P → R is real valued and continuous on (the closed set) Graph Γ and is otherwise
−∞. Q : R×R → R is real-valued if both of its arguments are real-valued and is −∞
valued otherwise. Q is increasing in both of its arguments and continuous and concave on
R×R.

(iv) R : K ×P × R → R is real-valued if (k, p, y) ∈ Graph Γ × R and is −∞ valued
otherwise. For each (k, p), R(k, p, ·) is non-decreasing. R is continuous on Graph Γ×R.
There is a β ∈ (0, 1), α ∈ (0, β−1) and a continuous function ψ : K → R++ such that:
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(a) for all (k, p) ∈ Graph Γ and y, y′ ∈ R

|R(k, p, y)− R(k, p, y′)| ≤ β|y− y′|;

(b)

sup
(k,p)∈Graph Γ

∣∣∣∣ψ(Λ(k, p))
ψ(k)

∣∣∣∣ < α;

(c)

sup
(k,p)∈Graph Γ

∣∣∣∣R(k, p, 0)
ψ(k)

∣∣∣∣ < ∞.

Given ψ as in Assumption 2′, let

Cψ =

{
f : Graph Π→ R

∣∣∣∣∣ f continuous and sup
Graph Π

∣∣∣∣ f (k, P)
ψ(k)

∣∣∣∣ < ∞

}
.

The following theorem is a variant of the continuous existence theorem of Becker and
Boyd (1997). It ensures the existence of a continuation payoff function Y whose restric-
tion to Graph Π belongs to Cψ (and is, hence, continuous and ψ-bounded.)

Theorem 3. Let K , P , Π, R and Λ satisfy Assumption 2′. There exists a unique function
Y : K ×P∞ → R∪ {−∞} such that (a) the restriction of Y to Graph Π belongs to Cψ, (b) for
(k, P) 6∈ Graph Π, Y(k, P) = −∞ and (c) Y satisfies for all (k, p, P′) ∈ K ×P∞,

Y(k, p, P′) = R(k, p, Y(Λ(k, p), P′)).

Proof. Available upon request.

For Y ′ : K → 2R\∅, the B-operator is given by:

B(Y ′)(k) =

{
y ∈ R

∣∣∣∣∣∃(p, y′) ∈Γ(k)×R with y = R(k, p, y′), y′ ∈ Y ′(Λ(k, p)) and

Q(u(k, p), y′) ≥ sup
p′′∈Γ(k)

inf
y′′∈Y ′(Λ(k,p′′))

Q(u(k, p′′), y′′)

}

The following analogue of Proposition 11 may then be obtained by applying similar
arguments.

Proposition 12. (i) For all k ∈ K , Y (k) = B(Y )(k). (ii) If for all k ∈ K , B(Y ′)(k) ⊆
Y ′(k), then for all k ∈ K , Y ′(k) ⊆ Y (k). (iii) Y is compact-valued.

Proof. Available upon request.

44



References

Abreu, D., D. Pearce, and E. Stacchetti (1990). Towards a theory of discounted games
with imperfect information. Econometrica 58, 1041–1063.

Ales, L. and C. Sleet (2011). Finite revision-proofness. Working Paper.

Asheim, G. (1997). Individual and collective time-consistency. Review of Economic Stud-
ies 64, 427–443.

Becker, R. and J. Boyd (1997). Capital theory, Equilibrium Analysis and Recursive Utility.
Blackwell Press.

Bernheim, B. D., B. Peleg, and M. Whinston (1987). Coalition-proof nash equilibria i:
Concepts. Journal Economic Theory 42(1), 1–12.

Bernheim, B. D., D. Ray, and S. Yeltekin (1999). Self-control, saving, and the low asset
trap. Working Paper.

Caplin, A. and J. Leahy (2006). The recursive approach to time inconsistency. Review of
Economic Studies 131, 134–156.

Farrell, J. and E. Maskin (1989). Renegotiation in repeated games. Games and Economic
Behavior 4, 327–360.

Hammond, P. (1975). Charity: Altruism or cooperative egoism. In E. Phelps (Ed.),
Altruism, Morality and Economic Theory. Russell Sage Foundation Publications.

Kocherlakota, N. (1996). Reconsideration-proofness: A refinement for infinite time
horizon time inconsistency. Review of Economic Studies 15, 595–609.

Leininger, W. (1986). The existence of markov perfect equilibria in a model of growth
with limited altruism between generations. Review of Economic Studies 53, 349–367.

Pearce, D. (1987). Renegotiation proof equilibria: Collective rationality and intertempo-
ral cooperation. Cowles Foundation DP No. 855.

Strotz, R. (1955-1956). Myopia and inconsistency in dynamic utility maxmization. Re-
view of Economic Studies 23(3), 1650180.

van Damme, E. (1989). Renegotiation-proof equilibria in repeated prisoner’s dilemma.
Journal of Economic Theory 51, 206–217.

45


	Introduction
	The Environment
	Sub-game Perfection and Revision-proofness
	Revision-Proofness in dynastic games
	Quasi-recursive Games
	Sub-game perfection in quasi-recursive games
	Revision-proofness in quasi-recursive games

	Quasi-recursive Games With State Variables
	Example: Saving with quasi-hyperbolic preferences

	Revision-Proofness and the Literature
	Asheim's notion of revision-proofness
	Kocherlakota's reconsideration-proofness

	Conclusion
	Proofs for Sections 3 and 4
	Sub-game perfection with quasi-recursive payoffs
	Proof of Proposition 5
	Proof of Theorem 2
	Sub-game perfection with quasi-recursive payoffs and state variables

