Guillermo Owen
A Game-theoretic Approach to Networks

     Let N = {1, 2, …, n} be a finite set. Let v be a game (characteristic function) with the player set N. Let ( be a network (graph) whose nodes are the elements of N. There is no connection assumed between ( and v, except that the nodes of the former are the players in the latter.

     Note the elements of ( are not the nodes, but rather the arcs (links). They are pairs of the form (i, j) where i(j are elements of N. These pairs are assumed undirected, so that we identify (i, j) with (j, i). 

We will assume v is non-negative and super-additive, so that 

v(S(T)  (  v(S) + v(T)          if   S(T = (.

Moreover (of course)

v(()  =  0.

     In [Myerson 1977], see also [Owen 1986], a graph-restricted game, w( =  (v/(),   is introduced, as follows:

1. If S is connected in (, then w((S) = v(S).

2. If S is disconnected, then w((S)  =  ( v(Tk), where this sum is taken over the (-connected components of S.
     We will call v/( the (-restricted game. Essentially, we think of v as the economic worth of coalition S, i.e. the amount it could win if it could coordinate all its members’ actions. On the other hand, ( tells us which messages can be sent, etc. Thus, S cannot coordinate all its members unless ( contains the necessary links. 

     This idea is well enough developed in Myerson/1977 and Owen/1986; we will not give further explanations of it.

     Let us now consider a “game” u with player set N((. Note the “players” in this game are either players in the original game [N, v] or links in the network (. The “coalitions” in this game are of the form S ((, where S ( N, and (( (. We define this game by

u(S (()  =  (v/() (S).

     Let ( represent the Shapley value. We compute ((u) in the usual way, and we will use

(i(N (i(u)

and

((i,j)(( ((i,j)(u)

to represent the diverse contributions of the players and the links, respectively, to the total available utility, (v/()(N).

  Example 1. Let N = {1, 2}, with v({1}) = v({2}) = 1, and v({1, 2}) = 4. Let ( = {(1, 2)}. 

     Thus each of players 1 and 2 can obtain 1 unit of utility. Together, they can obtain 4 units, but only if they can coordinate. In the absence of this coordination, they obtain only 2 units. The network (a very simple network) consists only of the link a = (1, 2). The players need this link to obtain the additional 2 units. We will have

u(() = u({a})  =  0
u({1}) = u(2}) = u({1, a}) = u({2, a})  =  1

u({1, 2}  =  2  ,   u({1, 2, a})  =  4.

     As may be seen, the link a is useless unless both of the original players, 1 and 2, are cooperating. It is easy to obtain the Shapley value:

(1(u)  =  5/3,  (2(u)  =  5/3,  (a(u)  =  2/3.

     In other words, the (owner of the) link can reasonably expect a payment of 2/3 units for facilitating the cooperation between 1 and 2. (Think of a telephone company.) 

Example 2. Of course, there is no reason why there could not be two different links, a and b, (in parallel) between the two nodes. (Think of competing messenger services.) We would then have

u(() = u({a}) = u({b}) =  0

u({1}) = u(2}) = u({1, a}) = u({2, a})  =  1
u({1, b}) = u(2, b}) = u({1, a, b}) = u({2, a, b})  =  1
u({1, 2} = 2 

   u({1, 2, a}) = u({1, 2, b}) = u({1, 2, a, b})  =  4.

     In this case, the value is

(1(u)  = (2(u)  =  11/6,      (a(u)  =  (u(b)  = 1/6.

As may be seen, competition drives down the two messengers’ expectations. 

Example 3. Contrariwise, it may be that the services of two messengers are required. (Perhaps it’s an international phone call, which requires the cooperation of two countries’ phone companies.) We represent this by putting the two links in series.

     In this case, we would have

u(() = u({a}) = u({b}) =  0

u({1}) = u(2}) = u({1, a}) = u({2, a})  =  1
u({1, b}) = u(2, b}) = u({1, a, b}) = u({2, a, b})  =  1
u({1, 2} = u({1, 2, a}) = u({1, 2, b})  = 2 

    u({1, 2, a, b})  =  4.

and the value is

(1(u) = (2(u) = 3/2,      (a(u)  =  (u(b)  = 1/2.

An Alternative Interpretation.

    We now consider an alternative interpretation of the above model.  

    The several elements of N are members of a team. (These may be humans, robots, etc.) Perfect coordination will allow the team to obtain its full worth, v(N). The team (or its manager) also controls the links. Unfortunately, the links are not perfect: thus, information sent along the links may be degraded, so that the team will not, in fact be able to coordinate perfectly. Of course, better, more efficient links may be provided, but these are costly. Thus the manager’s problem is to maximize the worth obtained, subject to a resource constraint.

     We will assume that a “standard” link is similar to the one appearing in Example 1, above. With this link, as noted, the team is able to obtain 10/3 units of total worth. With no link at all, the team could only obtain 2 units. 

     Of course the link itself could be more or less efficient. A more efficient link, represented as in Example 2 above by 2 parallel links, increases the total utility obtained to 11/3. A less efficient link (Example 3) decreases the utility to 3 units.           

     The question, now, deals with different types of links. A “standard” link is treated as a single player in the game u. More or less efficient links can be thought of as links in parallel or series. But how does one treat other links (of intermediate high or low efficiency)?     

     We will approach this by the use of multilinear extensions (vide Owen/1972, Owen/1988). 

     Considering the game of Example 1, we see that the MLE for game u is simply

F(q1, q2, qa)  = q1 + q2 + 2q1q2qa
with partial derivatives

F1 =  1 + 2q2 qa   ;     F2  =  1 + 2q1qa    ;    Fa =  2 q1q2
Now the standard technique for evaluating the Shapley value is to evaluate these partial derivatives along the main diagonal of the unit cube, and integrate from 0 to 1. Thus

(1  =  (1  F1(t, t, t) dt  =  (1 (1+2t2) dt  =  5/3

                                    (0                           (0

with a similar result for (2+, and finally

(a  =  (1  Fa(t, t, t) dt  =  (1 2t2 dt  =  2/3

                                       (0                           (0

     For Example 2, (with two parallel links) the MLE will be

F(q1, q2, qa, qb )  = q1 + q2 +  2q1q2qa + 2q1q2qb ( 2q1q2qaqb.

Now, the derivatives are given by

 F1 = 1 + 2q2qa + 2q2qb– 2q2 qaqb ;  F2  = 1 + 2q1qa + 2q1qb – 2q1qaqb  ; 

Fa = 2 q1q2 – 2 q1q2 qb ;     Fb = 2 q1q2 – 2 q1q2 qa 
and we see that now (1 and (2 are each obtained by integrating 1 + 4t2 – 2t3, giving 11/6, while (a and (b are obtained by integrating 2t2 – 2t3, giving 1/6.

    Finally, for Example 3, with the two links in series, the MLE is

F(q1, q2, qa, qb )  = q1 + q2 + 2q1q2qaqb
In this case, the derivatives are given by

 F1 = 1 + 2q2 qaqb ;  F2  = 1 + 2q1qaqb  ; Fa = 2 q1q2 qb ;  Fb = 2 q1q2 qa.

     Thus (1 and (2 are obtained by integrating the function 1+2t3, which gives us 3/2, while (a and (b are obtained by integrating 2t3, giving ½. 

     We recall Shapley’s 1953 interpretation of the value:

The players … agree to play the game v in a grand coalition, formed in the following way: 1…. the coalition adds one player at a time…. 2. The order in which the players are to join is determined by chance, with all arrangements equally probable.  3. Each player … is promised the amount which his adherence contributes ….

      Of course, there is no reason – other than the desire for symmetry – why all arrangements should be equally probable. Owen/1972 obtains this symmetry by assuming that each player’s arrival time is a random variable; these variables are independent and identically distributed. The exact form of this distribution is not in itself important, except that it should be continuous so that ties have probability 0. In particular, a uniform distribution in the unit interval will work very well.

     Suppose, however, that all permutations of the players are not equally probable. To continue with Shapley’s parable, the players have indeed agreed to meet, but their times of arrival, though independent, are not identically distributed. One player may be habitually tardy, another one strives to arrive almost exactly at the hour stipulated, another is always early, etc. Let, then, player i’s time of arrival, Xi, have the distribution Gi:

Gi(t)  =  Prob {Xi ( t}

We assume all players arrive during the interval [0, 1]. In that case, player i’s expected marginal contribution – and thus, her expected payment – will be given by the Stieltjes integral

Zi  =  (1 Fi (G1(t), G2(t), …, Gn(t)) dGi(t)

                                      (0

     The vector Z = (Z1, Z2, …, Zn) thus obtained is always an imputation (see Owen/1972, Theorem 4). 

     Let us now apply this to the case in hand. As mentioned above, the game u has two types of “player”: the actual players, elements of N, and the links in network (. We will assume the elements of N are treated symmetrically. This means that, for each of them, the time of arrival is uniformly distributed, i.e.

Gi(t)  =  t       for 0 (  t (  1.

The links however can be given different distributions. 

Example 1 (continued). In Example 1, there is only one link, a. As mentioned there, the MLE is 

 F(q1, q2, qa)  = q1 + q2 + 2q1q2qa
with partial derivatives

F1 =  1 + 2q2 qa   ;     F2  =  1 + 2q1qa    ;    Fa =  2 q1q2
     If we suppose that link a also has uniform distribution, then of course we will have

F1 =  F2  =  1 + 2t2    ;    Fa =  2t2
and integrating these, we obtain the values (5/3, 5/3, 2/3) as mentioned.

Example 2 (continued). Suppose, however, that the link’s time of arrival has distribution

Ga(t)  =  2t – t2.

In this case, we have

F1  =  1 + 2t (2t–t2)  =  1 + 4t2 – 2t3.

Z1 is obtained by integrating this. But this is precisely how we obtained (1 for the network of Example 2, above. 

     On the other hand, Za is obtained by integrating, not Fa, but rather, 

FaGa’  =  2t2(2-2t)  =  4t2– 4t3.

As seen above, this is the sum of the two integrands (each equal to 2t2–2t3) which were used above to obtain (a and (b. In other words, the 4-player game given above in Example 2 is equivalent to this 3-player game, if only we change the path of integration.

Example 3 (continued). Suppose, finally, that the link has distribution

Ga(t)  =  t2.

We will then have

F1  =  1 + 2t(t2)  =  1 + 2t3.

Then Z1 is obtained by integrating this. Again, this is precisely the integrand that we used to calculate (1 (and also (2) in Example 3. Similarly, Za is obtained by integrating
FaGa’  =  2t2(2t)  =  4t3.

We note once again that this is the sum of the two integrands used to calculate (a and (b in Example 3. Once again, we see that the 4-player game given above is equivalent to this new 3-player game, if only we change the path of integration.

Observation. The B distribution.   

As noted above, in each of the examples above, we can model the link’s greater or lesser efficiency by changing the distribution of its “time of arrival” variable. It should be noted, moreover, that in each of the three cases, the distribution

G(t)  =  t
G(t)  =  2t – t2
or

G(t)  =  t2
is a Beta distribution. We recall that the Beta distribution in the unit interval is a distribution with two parameters, c and b, given as the integral of the density

(c,b (t)  =    tc-1(1-t)b-1
                                                                 B(c, b)

where B(a, b) is the well-known Beta function. In particular, for c = b = 1, we find the cumulative distribution, i.e., the integral of (c,d , is in fact the uniform distribution, G = t . For c = 1, b = 2, we find G = 2t–t2, and for c = 2, b = 1, we obtain G = t2.  (This cumulative distribution is also known as the regularized incomplete beta function, frequently denoted It(c, b).)
     We conclude that differential efficiency in links can be modeled by using the Beta distribution, (c,b . In general, a larger value of c means a less efficient link (i.e., more of the information might be lost), and a larger value of b, a more efficient link (more of the information arrives in good order).

     We will approach this by assuming that longer links (traveling a long distance from node to node) are, ceteris paribus, less efficient (more information is lost). On the other hand, thicker links (which allow for some redundancy) can carry more information. To take these into account, we will assume that the parameter c increases for longer links, whereas b increases for thicker links. 
     Example 4. Consider the same game as before. Suppose the length of the node (1, 2) is fixed. We will assume it has unit length, so that c = 1. In that case, we can vary b by making the link thicker or thinner. We would then have, B(1, b) = 1/b so that (1,b(t) = b(1-t)b-1 . The cumulative distribution is simply 

G(t) = (1-t)b.
     As seen above, the MLE for this game is given by   

F(q1, q2, qa)  = q1 + q2 + 2q1q2qa 
and the value for “player” a (the link) is obtained by integrating

Fa Ga’  =  2q1q2 b(1-t)b-1.

Since 1 and 2 are actual players (nodes) in the game, we will have qi(t) = t for i = 1 and 2, and so

Fa Ga’  =  2bt2(1-t)b-1.

The value to link a, obtained by integrating this quantity from 0 to 1, turns out to be

(a (b) = 4/(b+1)(b+2)

     Since we interpret this as the value lost in transmission, we see how the thickness affects value. We have of course assumed that the cost of the link is an increasing function of this thickness, say K(b). It would now be necessary to compare this cost with the value lost, to determine the optimal thickness. We would, then, minimize the function K(b) + (a(b), or, more generally, H(b) = K(b) + ((a(b), where ( is a known constant. The optimal thickness is obtained, of course, by differentiation.

     Specifically, suppose that the cost of the link is in fact directly proportional to thickness. We wish then to minimize the function

H(b)  =  b + 4( / (b+1)(b+2)

Differentiating, and setting the derivative equal to 0, we obtain

1 – 4((2b + 3) / (b2+ 2b + 3)2  =  0

or  

· =  (b2+ 2b + 3)2 / (8b + 12).

     The graph of this function is given below, for 1 ( b ( 5. It is easy to solve numerically for b as a function of (.
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