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“[S]ince equilibrium is a relationship between actions, and since the actions of one per-

son must necessarily take place successively in time, it is obvious that the passage of

time is essential to give the concept of equilibrium any meaning. This deserves mention

since many economists appear to have been unable to find a place for time in equilib-

rium analysis and consequently have suggested that equilibrium must be conceived as

timeless.” F.A. Von Hayek (1937)
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1 Introduction

A double auction (DA) mechanism is a decentralized clearinghouse system under which a buyer

or seller submits orders based on his or her private information, without information available on

the total market demand and supply. A specialist or a market maker may be needed to set bids

and asks to accommodate the two order flows. But orders are either fully or partially filled one

at a time. If no complete information is available on the total market demand and supply, how is

it possible to tell if a DA mechanism has priced an asset right at equilibrium? Such a question is

central to the efficient markets hypothesis (EMH) (Fama (1970)), which has been lately under an

attack from behavioral finance for the existence of various financial anomalies such as momentum,

bubbles and crashes, which are often observed in the equity, foreign exchange, commodity, futures

as well as experimental markets (see, e.g., Baker and Wurgler (2007), Barberis et al. (1998), Shleifer

(1999), Smith et al. (1988)).

The benchmark model of this paper has the general form given below (Bertsekas (2010)):

P minimize F (y) =
m∑
j=1

(fj + gj)(y)

subject to y ∈ Y , and fj and gj are real-valued convex functions. A large class of economies and

markets can be represented by this form, which will be introduced more precisely in Section 2. For

example, let N denote the set of all indivisible shares or contracts1. There are m investors or agents

who initially own N . The value of owning a portfolio S ⊂ N to an agent j is his expected private

intrinsic value Euj(S,R) of cash flows generated by S minus the market value of buying S plus the

market value of his initial endowed portfolio, where R is some random variable. Such a quasilinear

form has been widely used in the auction and the DA literature. The market prices at equilibrium

are determined by agents’ expected private intrinsic values and the market clearing condition. It

turns out that such an equilibrium is also closely tied to an optimal solution to problem P.

The above model is not necessarily a perfect match with real exchange markets like the NYSE

and Nasdaq. But the insight in our study of the DA mechanism should still be useful for these

exchange markets and the EMH. Our study is built on the incremental subgradient method studied

by Nedić and Bertsekas (2001). In their approach the m agents form a cycle in an arbitrary order,

or are chosen randomly with equal probability, and prices are iterated along the cycle one agent

at a time, purely based on his revealed private demand or supply. They show that with certain

conditions on the stepsize in the iteration process the system can discover the market prices at

1Shares or contracts are traded in integer units but orders may be placed in fraction or integer.
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equilibrium without knowing the total demand and supply. Moreover, such a system is shown to

be robust even with presence of stochastic noises (Ram et al. (2009)). In our DA mechanism there

are two different sides: buyers and sellers. Let fj be the seller side and gj be the buyer side. Note

that an agent j equipped with fj +gj in the incremental subgradient method has been separated as

j seller and j buyer in the DA mechanism, under which sellers and buyers form two parallel lines in

an arbitrary order, or a pair of a buyer and a seller is chosen randomly with equal probability, and

prices are iterated according to private information revealed through buy and sell orders, very much

like the style of an actual exchange market. Some weight must be assigned how the bid and the ask

enter the prices (Chatterjee and Samuelson (1983) and Wilson (1985)).2 The DA mechanism with

bid and ask has an advantage over the incremental subgradient method in one important aspect:

It enables one to study how the relative strength of the stepsizes in bid and ask affects the price

process. Thus one can see how a bubble is created once buyers dominate sellers in bidding and how

a crash is created once sellers dominate buyers in asking. Moreover, we find that the DA mechanism

creates a bubble or crash in trends because the sequence of prices generated by the DA mechanism

converges to an equilibrium in a unique way, which is determined by the ratio in the limit of the

two stepsizes of bid and ask. We also show that these conclusions are robust with the stochastic

noises of Ram et al. (2009). When the stepsizes of bid and ask are at equal in the limit and have

equal weight of entering the prices, the DA mechanism will converge to an equilibrium determined

by the total demand and supply. That is, prices will follow the fundamental to an intrinsic value

equilibrium. We see this result as a strong quantitative support for the EMH. With our results,

one may also understand it better why there is a bubble or crash both in the experimental market

in Smith et al. (1988) and in so many real exchange markets.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 discusses

the equilibrium and defines bubbles, crashes and efficiency. Section 4 presents the main results with

DA mechanisms that do not have stochastic noises in buy and sell orders. Section 5 shows that

those results in Section 4 are robust even under the stochastic noises. Section 6 discusses the

2A DA mechanism has been modeled since then as a strategic form game with incomplete information, see,
e.g., Williasms (1991), Rustichini et al. (1994), Jackson and Swinkels (2005) and Fudenberg et al. (2007). One
major concern is the existence of equilibrium (with trade) and how strategic misreporting of private valuations may
jeopardize the competitive efficiency of a DA mechanism. Gjerstad and Dickhaut (1998) is a departure from this
tradition and they use a belief system formed by buyers and sellers after observing information that has been revealed.
They show that their system can reach competitive equilibrium under a DA mechanism after a few periods. Shneyerov
and Wong (2010) is another departure and they model a DA mechanism as a sequential bargaining game. A major
obstacle with the game theoretical approach of a DA mechanism is how to handle heterogeneous multiple objects
or assets and bring time into an equilibrium analysis as requested by Hayek (1937) in his article “Economics and
Knowledge”. Strategic games of price-quantity in Dubey (1982) and Dubey and Shubik (1978) with bidding are
exceptional in one important aspect, in which there can be more than one product for sale and no unit demand and
supply are assumed.
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literature and makes some remarks.

2 Model

We consider a class of problems that can be described by the following general form (Bertsekas

(2010)):

P minimize F (y) ≡ f(y) + g(y)

subject to y ∈ Y,

where

f =
n∑
i=1

fi and g =
m∑
j=1

gj .

For all i = 1, 2, · · · , n and j = 1, 2, · · · ,m, fi : Y → R and gj : Y → R are real-valued convex

functions and Y is a nonempty closed convex set of finite dimensions. As Bertsekas (2010) has

demonstrated, such a form covers a large class of problems in the literature: a). Least Squares

and Related Inference Problems; b). Dual Optimization in Separable Problem; c). Problems with

Many Constraints; d). Minimization of an Expected Value - Stochastic Programming; e). Weber

Problem in Location Theory; f). Distributed Incremental Optimization-Sensor Networks.

We use the notation

F ∗ = inf
y∈Y

F (y), Y ∗ = {y ∈ Y |F (y) = F ∗}, dist(y, Y ∗) = inf
y∗∈Y ∗

‖y − y∗‖

where ‖ · ‖ denotes the Euclidean norm. For any two vectors x and y in Rm, < x, y >=
∑m
j=1 xjyj .

For two sets A and B in Rd, we say A ≤ B if for any a ∈ A, there exists b ∈ B such that a ≤ b.

2.1 Job Matching Market and Economies with Indivisible Goods

We now show why this form of problem P naturally arises for a large class of economies or markets

typified by the job matching model of Kelso and Crawford (1982) and the related economy with

indivisible objects of Bikhchandani and Mamer (1997).

For the job matching market of Kelso an Crawford (1982), f is seen as the side of workers and

g is seen as the side of employers. For the economy with multiple objects of Bikhchandani and

Mamer (1997), f is seen as the side of objects and g is seen as the side of agents. Next we will

use the economy with multiple objects in Bikhchandani and Mamer (1997 ) to illustrate how to

define f and g. The job matching model of Kelso and Crawford (1982) and the assignment problem

(Shapley and Shubik (1971)) can be done similarly.
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Let N = {1, 2, · · · , n} denote the set of objects or assets and M = {1, 2, · · · ,m} denote the set

of agents. An agent j’s utility or intrinsic value function uj : 2N → R+ is defined by a set function

uj(S) over all object bundles S ⊂ N that satisfies uj(∅) = 0. We say that uj is weakly monotone

if uj(S) ≤ uj(T ) for all S, T ⊂ N such that S ⊆ T . A feasible allocation Z is a partition

(Z0, Z1, · · · , Zm) of the set of objects N , in which agent j, j ∈ M , is allocated the bundle Zj . Z0

is the unallocated bundle. Let Z̄ denote the set of all feasible allocations. Define e : 2N → Rn by

ei(S) = 1 for i ∈ S and ei(S) = 0 otherwise. Given a price vector p ∈ Rn+, agent j’s profit function

gj : 2N ×Rn+ → R is defined by

gj(S, p) = uj(S)−
∑
a∈S

pa

and his demand correspondence Dj : Rn → Rn is defined by

Dj(p) = {e(S) : gj(S, p) ≥ gj(T, p),∀T ⊂ N}.

A pair (Z, p) of a feasible allocation Z and a price vector p is a Walrasian or competitive

equilibrium if pa = 0 for all a ∈ Z0 and e(Zj) ∈ Dj(p) for all agents j. Let Z∗ be an optimal

allocation. That is,

Z∗ ∈ argmaxZ∈Z̄
∑
j∈M

uj(Zj).

Let V =
∑
j∈M uj(Z

∗
j ) for some Z∗.

Define gj(p) = gj(S, p) for e(S) ∈ Dj(p) for all j = 1, 2, · · · ,m and fi : Rn+ → R by fi(p) = pi

for all i = 1, 2, · · · , n. Note that gj is convex. We obtain the general form F (p) = f(p) + g(p)

subject to p ∈ Rn+.

To make a connection between problem P and the economic model to study competitive equi-

librium, we need two results:

Lemma 2.1 (Ma (1998a)). a). For all price vectors p ∈ Rn+, F (p) = f(p) + g(p) ≥ V ; b) A

price vector p is a Walrasian equilibrium if and only if F (p) = f(p) + g(p) = V .

Lemma 2.2 (Upper Envelope Theorem)(Ma and Nie (2003)). For all j ∈ M , ∂gj(p) =

−c̄oDj(p) for all p ∈ Rn+, where c̄oDj(p) is the closed convex hull of the demand set Dj(p).

For a proof of Lemmas 2.1 and 2.2, see Ma and Nie (2003). Lemma 2.1 is related to the

linear programming approach in Bikhchandani and Mamer (1987) and the dual. F (p) is called

the economic rent function by Smith (1965). Lemma 2.2 is basically an application of the Fenchel
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duality. Thus, a competitive equilibrium is related to those optimal solutions y in Y ∗ by Lemma

2.2. A vector y is an optimal solution in Y ∗ if and only if

0 ∈
n∑
i=1

c̄oSi(y)−
m∑
j=1

c̄oDj(y).

Moreover a price vector p is competitive only if 0 ∈ ∂(f +g)(p). The GS condition in Kelso and

Crawford (1982) is sufficient for the existence of competitive equilibrium. It is shown to be almost

necessary by Gul and Stacchetti (1999).

Gross Substitutes (GS) Condition (Kelso and Crawford (1982)). A utility function u :

2N → R satisfies the gross substitutes condition if its demand correspndence D : Rn → Rn, defined

by

D(p) = {e(S) : u(S)−
∑
a∈S

pa ≥ u(T )−
∑
b∈T

pb ∀S, T ⊂ N},

satisfies the following: For any p and q in Rn+ such that p ≤ q, for any S such that e(S) ∈ D(p),

there exists e(T ) ∈ D(q) such that {i ∈ S : pi = qi} ⊂ T .

Theorem 2.3 (Kelso and Crawford (1982), Gul and Stacchetti (1999)). Let the GS condition

hold for all utility functions uj , j = 1, 2, · · · ,m. Then a competitive equilibrium exists.

Moreover, under the GS condition, the set Y ∗ of the optimal solutions of the problem P coin-

cides with the set of all competitive equilibrium prices (Lemma 2.1). It is a lattice whenever Y is a

lattice under ∨ and ∧ by the following result and Theorem 4.1 in Topkis (1978) (Gul and Stacchetti

(1999)).

Theorem 2.4 (Ausubel and Milgrom (2002)). Let the GS condition hold for all utility func-

tions uj , j = 1, 2, · · · ,m. Then the function F (p) = f(p) + g(p) is submodular.

In Section 5, we also consider situations where uj is affected by some random variable Rj of

finite dimensions, which may persist with the DA mechanism all the way.

3 The DA Mechanism

The existence of competitive equilibrium is not a major concern of this paper. It exists if N contains

all shares of one single stock or shares of stocks that are substitutes in nature. Henceforth we call
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an optimal solution in Y ∗ an (intrinsic value) equilibrium, with understanding that f is the seller

side and g is the buyer side.

3.1 The DA Mechanism without Randomization

Let f =
∑m
i=1 fi and g =

∑m
i=1 gi.

3

The DA mechanism is defined as follows.

Let Φ0,k = Xk. For i = 1, 2, · · · ,m, let

ψi,k = Φi−1,k − akhi,k, hi,k ∈ ∂fi(Φi−1,k)

(DA) ϕi,k = Φi−1,k − bk`i,k, `i,k ∈ ∂gi(Φi−1,k)

Φi,k = αψi,k + (1− α)ϕi,k, α ∈ [0, 1].

Let Xk+1 = Φm,k.

The two sequences {ak} and {bk} are the stepsizes of ask and bid, respectively. In the NYSE

specialists have the power of controlling the stepsizes of bid and ask and in the Nasdaq market

makers typically control the stepsizes of bid and ask. hi,k and `i,k may be considered as the sell

and buy orders, respectively, after observing prices Φi−1,k. Prices are adjusted based on the buy

and sell orders and the stepsizes of bid and ask. The ask prices ψi,k and the bid prices ϕi,k are

weighted according to α (the α-DA in Chatterjee and Samuelson (1983) and Wilson (1985)). There

is a question how to keep a record of the orders that are executed. As long as the quasi-linear

structure remains, the ownership or change in ownership of the objects will not affect Y ∗ and the

problem P. This is somehow important for our DA mechanism. If objects are seen as shares of

some stocks or contracts, the details who own what shares or contracts and by how many will

become irrelevant for the fundamental value at equilibrium and the problem P.4 Because there are

changes in ownerships from k to k + 1, fi may not be the same for k and k + 1. Such an issue will

not cause problems for our results since what matters is just f in the end, which remains the same

across all k = 0, 1, 2 · · ·. For simplicity in notation we treat fi as if it remains the same across all k.

Also note that after each round k, buyers and sellers can form parallel lines in an arbitrary order.

3The number of objects may not be the same as the number of agents in the economy considered by Bikhchandani
and Mamer (1987). But one can alsways add a dummy on either side. If objects in N are initially owned by agents
in M (Ma (1998b)), fi should be defined by fi(p) =

∑
a∈Xi

pa where Xi is agent i’s initial endowment of objects.
4This implies that a company’s intrinsic value does not increase after learning that Warren Buffett owns shares of

that company. But share price may go up after the news at least temporarily because such news may create noises
in orders. We will study noises in detail in Section 5.
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The key is that each buyer or seller must be involved in the price iteration process (see Nedić and

Bertsekas (2001)).

A buy or sell order contains the genuine demand or supply information, no matter whether it

has been fully or partially executed. Therefore prices are adjusted according to the orders that are

placed not what has been executed.

In our DA mechanism above, if we set α = 0 and assume f = 0, the DA mechanism becomes

the incremental subgradient method in Nedić and Bertsekas (2001). If f 6= 0 and α ∈ (0, 1),

one can set αak = (1 − α)bk for all k = 0, 1, 2, · · ·, and then the DA mechanism also becomes

the incremental subgradient method. So the DA mechanism is a natural generalization of the

incremental subgradient method from algorithm design aspects. More important, almost all major

exchanges of stocks and derivatives use a version of DA mechanisms. The main advantage of the

DA mechanism with bid and ask is that we can see how the two sequences of stepsizes of bids

{bk} and asks {ak} affect the convergence of the generated price sequence {Xk}, so that we can

study issues like bubbles, crashes, and trends often observed in real exchange markets. As in the

incremental subgradient method, the DA mechanism is a decentralized system under which a buyer

and a seller reveal their private information at each moment, without knowing what the market

demand and supply are.5 It is somehow amazing to find out such a system can in fact reach a

market equilibrium in the end under certain regularities on, almost only on, the stepsizes of bid

and ask.

3.2 The DA Mechanism with Randomization

Next we introduce the DA mechanism with randomization, similar to Nedić and Bertsekas (2001).

Here we can have more freedom on the sizes of the two sides. Let f =
∑m
i=1 fi and g =

∑n
j=1 gj .

Let wk be a random variable taking equiprobable values from the set {1, 2, · · · ,m} and w′k be

a random variable taking equiprobable values from the set {1, 2, · · · , n}. Let hwk(Xk) ∈ ∂fwk(Xk)

and `w′
k
(Xk) ∈ ∂gw′

k
(Xk), where if wk takes a value j, then the vector ∂fwk(Xk) is ∂fj(Xk), similar

for g.

Our sequence {Xk} is generated by the DA mechanism with randomization as below.

Given Xk, let

ψk+1 = Xk − akhwk(Xk), hwk(Xk) ∈ ∂fwk(Xk)

5It is more likely that they do not care. It is our academia who cares very much.
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(RDA)

ϕk+1 = Xk − bk`w′
k
(Xk), `w′

k
(Xk) ∈ ∂gw′

k
(Xk).

And set Xk+1 = αψk+1 + (1− α)ϕk+1, α ∈ [0, 1].

We assume that the stepsizes satisfy the following conditions, which are commonly used for the

gradient, subgradient, and incremental subgradient methods in the literature (see, e.g., Correa and

Lemaréchal (1993), Nedić and Bertsekas (2001), Ram et al. (2009)).

Assumption 3.1 (Diminishing Stepsizes). Assume that the two sequences {ak} and {bk} of

stepsizes are such that (i). ak > 0 and bk > 0; (ii).
∑∞
k=0 ak = +∞ and

∑∞
k=0 bk = +∞; (iii).∑∞

k=0 a
2
k < +∞ and

∑∞
k=0 b

2
k < +∞.

3.3 Equilibrium

Beyond Y ∗, there are two related problems P(α) and P(α, λ), where α ∈ [0, 1] and λ is some

positive constant:

P(α) minimize F (y, α) ≡ (αf + (1− α)g)(y)

subject to y ∈ Y

and

P(α, λ) minimize F (y, α, λ) ≡ (αf + λ(1− α)g)(y)

subject to y ∈ Y.

We need additional notation:

F ∗(α) = inf
y∈Y

F (y, α), Y ∗(α) = {y ∈ Y |F (y, α) = F ∗(α)}

and

F ∗(α, λ) = inf
y∈Y

F (y, α, λ), Y ∗(α, λ) = {y ∈ Y |F (y, α, λ) = F ∗(α, λ)}.

With the help of the GS condition, it follows from Theorem 4.1 in Topkis (1978) and Theorem

2.4 that both Y ∗(α) and Y ∗(α, λ) are lattice whenever Y is. The following two results tell us how

the three sets of equilibria are related for a single asset. Since f is the supply side and g is the

demand side, the supply and demand curves are given by ∂f(y) and −∂g(y), respectively. Note
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that Y ∗ = Y ∗(α) for α = 1
2 .

Proposition 3.2 Let Y = R+ and assume ∂g(y) < 0 for y ∈ Y ∗. Then Y ∗ ≥ Y ∗(α) and

relint(Y ∗) ∩ relint(Y ∗(α)) = ∅ for any α such that 1 ≥ α > 1
2 . Similarly, Y ∗ ≤ Y ∗(α) and

relint(Y ∗) ∩ relint(Y ∗(α)) = ∅ for any α such that 1
2 > α ≥ 0.

Proof. Let Y ∗(α) = [v, v]. Then we have that (α∂f + (1 − α)∂g)(y) > 0 for any y > v and

(α∂f + (1− α)∂g)(y) < 0 for any y < v. Since

α∂f + (1− α)∂g = α(∂f + ∂g) + (1− 2α)∂g,

we have that (1−2α)∂g(y) ⊂ (α∂f+(1−α)∂g)(y) for any y ∈ Y ∗. If α > 1
2 , then (1−2α)∂g(y) > 0

for any y ∈ Y ∗. So y 6< v for any y ∈ Y ∗. If there exists y ∈ Y ∗ such that y < v, then

0 = (α∂f+(1−α)∂g)(y), which implies that (1−2α)∂g(y) = 0, a contradiction. Thus, Y ∗ ≥ Y ∗(α)

and relint(Y ∗) ∩ relint(Y ∗(α)) = ∅ for any α such that 1 ≥ α > 1
2 . Similarly, Y ∗ ≤ Y ∗(α) and

relint(Y ∗) ∩ relint(Y ∗(α)) = ∅ for any α such that 1
2 > α ≥ 0. This completes the proof.

Similarly, we have the following result. Note that Y ∗ = Y ∗(α, λ) whenever λ = α
1−α for

α ∈ (0, 1).

Proposition 3.3 Let Y = R+ and ∂g(y) < 0 for y ∈ Y ∗. (i). If λ < α
1−α , then Y ∗ ≥ Y ∗(α, λ);

(ii). If λ > α
1−α , then Y ∗ ≤ Y ∗(α, λ).

One can also follow the proof in Proposition 3.2 to study how an entry of a seller or a buyer

may affect the equilibrium prices. Next we define bubbles, crashes and efficiency.

Definition 3.4. Let {Xk} be the sequence of prices generated by a DA mechanism for an asset

or good, i.e., all items in N are identical. (i). It is a bubble if there exists a λ such that λ > α
1−α

and the sequence {Xk} converges to y ∈ Y ∗(α, λ) \ Y ∗; (ii). It is a crash if there exists a λ such

that λ < α
1−α and the sequence {Xk} converges to y ∈ Y ∗(α, λ) \ Y ∗; (iii). It is efficient if it

converges to Y ∗.

A bubble is created for an asset or good if its price reaches a high level that is not supported

by its fundamental. A crash is created for an asset or good if its price reaches a low level that does
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not reflect its fundamental. These definitions are consistent with those defined in the literature of

finance (see, e.g., Barberis et al. (1998), Shleifer (1999), Lo (2005)) and in experimental markets

studied by Smith et al. (1988). A DA mechanism is efficient if the sequence of prices generated con-

verges to an equilibrium supported by its fundamental, i.e., agents’ intrinsic values. This definition

is consistent with the one defined by Fama (1965):

“The challenge of the theory of random walks to the proponent of fundamental anal-

ysis, however, is more involved. If the random-walk theory is valid and if security

exchanges are ‘efficient markets’, then stock prices at any point in time will represent

good estimates of intrinsic or fundamental values.”

We will answer this challenge question for problem P, in a style demanded by F.A. Von Hayek

(1937). A word of caution is in order: The security exchanges discussed by Fama (1965) may be

more complicated than what has been modeled by P. Our DA mechanism may be seen at best an

ideal proxy of real DA mechanisms used by various security exchanges. But this does not mean

that our study is not useful for these markets. For example, the EMH has been extensively studied

in the empirical literature. It should be worthwhile if it can be proved with a rigorous study in

theory. Indeed, one has to answer the question if there is a possibility for a DA mechanism to

be efficient in an abstract and general framework. Such a question is critical for the EMH since

stock prices are, afterall, determined through bids and asks by DA mechanisms. One underlying

assumption of the EMH is that a DA mechanism can always find a market equilibrium supported

by intrinsic values. On the other hand, the behavioral finance that heavily depends on investors’

sentiment may be criticized to be speculative without first answering the question in theory if a

DA mechanism can indeed generate bubbles and crashes. The aim below is to find conditions when

the DA mechanism defined above is efficient and when it creates bubbles or crashes.

4 Main Results

We need to assume that all subgradients are bounded, as in Nedić and Bertsekas (2001):

Assumption 4.1 (Subgradient Boundness). There exist scalars C1, C2, · · · , Cm andD1, D2, · · · , Dm

such that

‖h‖ ≤ Ci, ∀h ∈ ∂fi(Xk) ∪ ∂fi(Φi−1,k), i = 1, 2, · · · ,m, k = 0, 1, 2, · · ·
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and

‖`‖ ≤ Di, ∀` ∈ ∂gi(Xk) ∪ ∂gi(Φi−1,k), i = 1, 2, · · · ,m, k = 0, 1, 2, · · · .

For the economy or market introduced in Subsection 2.1 there are a finite number of objects.

Moreover, f and g are polyhedral functions. So this assumption is automatically satisfied. Next

we provide a result that is an analogy to Lemma 2.1 in Nedić and Bertsekas (2001).

Lemma 4.2. Let Assumption 4.1 hold. Let {Xk} be the sequence generated by (DA) mecha-

nism above. Then for all y ∈ Y and k ≥ 0, we have

‖Xk+1 − y‖2 ≤ ‖Xk − y‖2 − 2akα(f(Xk)− f(y))− 2bk(1− α)(g(Xk)− g(y))

+ (αakC + (1− α)bkD)2,

where C =
∑m
i=1Ci and D =

∑m
i=1Di.

Proof.

‖Φi,k − y‖2 = ‖αψi,k + (1− α)ϕi,k − y‖2

= ‖α(ψi,k − y) + (1− α)(ϕi,k − y)‖2

= α2‖ψi,k − y‖2 + (1− α)2‖ϕi,k − y‖2 + 2α(1− α)〈(ψi,k − y), (ϕi,k − y)〉

= α2‖Φi−1,k − y − akhi,k‖2 + (1− α)2‖Φi−1,k − y − bk`i,k‖2

+2α(1− α)〈(Φi−1,k − y − akhi,k), (Φi−1,k − y − bk`i,k)〉

= α2‖Φi−1,k − y‖2 − 2akα
2〈hi,k, (Φi−1,k − y)〉+ α2a2

k‖hi,k‖2

+(1− α)2‖Φi−1,k − y‖2 − 2bk(1− α)2〈`i,k, (Φi−1,k − y)〉+ (1− α)2b2k‖`i,k‖2

+2α(1− α)‖Φi−1,k − y‖2 − 2α(1− α)ak〈hi,k, (Φi−1,k − y)〉

−2α(1− α)bk〈`i,k, (Φi−1,k − y)〉+ 2α(1− α)akbk〈hi,k, `i,k〉

= ‖Φi−1,k − y‖2 − 2αak〈hi,k, (Φi−1,k − y)〉 − 2(1− α)bk〈`i,k, (Φi−1,k − y)〉

+‖αakhi,k + (1− α)bk`i,k‖2

Since we have ‖hi,k‖ ≤ Ci, ‖`i,k‖ ≤ Di for all k = 0, 1, 2, · · ·, we obtain

‖Φi,k − y‖2 ≤ ‖Φi−1,k − y‖2 − 2〈(αakhi,k + (1− α)bk`i,k), (Φi−1,k − y)〉+ (αakCi + (1− α)bkDi)
2.
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Sum over i = 1, 2, · · · ,m, we get

m∑
i=1

‖Φi,k − y‖2 ≤
m∑
i=1

‖Φi−1,k − y‖2 − 2
m∑
i=1

〈(αakhi,k + (1− α)bk`i,k), (Φi−1,k − y)〉

+
m∑
i=1

(αakCi + (1− α)bkDi)
2.

So we have

‖Xk+1 − y‖2 ≤ ‖Xk − y‖2 − 2
m∑
i=1

〈(αakhi,k + (1− α)bk`i,k), (Φi−1,k − y)〉

+
m∑
i=1

(αakCi + (1− α)bkDi)
2.

By the definition of hi,k and `i,k,

〈hi,k, (y − Φi−1,k)〉 ≤ f(y)− f(Φi−1,k)

and

〈`i,k, (y − Φi−1,k)〉 ≤ g(y)− g(Φi−1,k).

Then

‖Xk+1 − y‖2 ≤ ‖Xk − y‖2 − 2αak

m∑
i=1

(fi(Φi−1,k)− fi(y))− 2(1− α)bk

m∑
i=1

(gi(Φi−1,k)− gi(y))

+
m∑
i=1

(αakCi + (1− α)bkDi)
2.

So

(1.1) ‖Xk+1 − y‖2 ≤ ‖Xk − y‖2 − 2αak(f(Xk)− f(y))− 2(1− α)bk(g(Xk)− g(y))

−2αak

m∑
i=1

(fi(Φi−1,k)− fi(Xk))− 2(1− α)bk

m∑
i=1

(gi(Φi−1,k)− gi(Xk))

+
m∑
i=1

(αakCi + (1− α)bkDi)
2.

Next we need to estimate fi(Φi−1,k)− fi(Xk) and gi(Φi−1,k)− gi(Xk).

Lemma 4.2.1. ‖Φi−1,k −Xk‖ ≤
∑i−1
j=1(αakCj + (1− α)bkDj).

Proof of Lemma 4.2.1. We show Lemma 4.2.1 by induction. Note that Φ0,k − Xk = 0.

Assume that it holds for i− 1. Then

‖Φi,k −Xk‖ = ‖(αψi,k + (1− α)ϕi,k)−Xk‖

13



≤ α‖ψi,k −Xk‖+ (1− α)‖ϕi,k −Xk‖

≤ α‖Φi−1,k − akhi,k −Xk‖+ (1− α)‖Φi−1,k − bk`i,k −Xk‖

≤ ‖Φi−1,k −Xk‖+ αakCi + (1− α)bkDi by induction hypothesis

≤
i−1∑
j=1

(αakCj + (1− α)bkDj) + αakCi + (1− α)bkDi.

This completes the proof of Lemma 4.2.1.

So

‖fi(Φi−1,k)− fi(Xk)‖ ≤
i−1∑
j=1

Ci(αakCj + (1− α)bkDj)

and

‖gi(Φi−1,k)− gi(Xk)‖ ≤
i−1∑
j=1

Di(αakCj + (1− α)bkDj).

Plug into (1,1), we have

‖Xk+1 − y‖2 ≤ ‖Xk − y‖2 − 2αak(f(Xk)− f(y))− 2(1− α)bk(g(Xk)− g(y))

+2
m∑
i=1

(αakCi + (1− α)bkDi)
i−1∑
j=1

(αakCj + (1− α)bkDj)

+
m∑
i=1

(αakCi + (1− α)bkDi)
2

= ‖Xk − y‖2 − 2αak(f(Xk)− f(y))− 2(1− α)bk(g(Xk)− g(y))

+(
m∑
i=1

(αakCi + (1− α)bkDi))
2

= ‖Xk − y‖2 − 2αak(f(Xk)− f(y))− 2(1− α)bk(g(Xk)− g(y))

+(αakC + (1− α)bkD)2.

This completes the proof of Lemma 4.2.

We are now ready to prove one of our main results. Note that the convergence theorem for the

diminishing stepsize in Nedić and Bertsekas (2001) does not apply to the DA mechanism because

the relative strength of the two stepsizes of bid and ask for (DA) mechanism matters very much,

which is capitured by λ and the additional condition on ak and bk. Moreover, (DA) mechanism

may not converge to an optimal solution in Y ∗, leaving the door open for both bubbles and crashes.
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Proposition 4.3. Let Assumptions 3.1 and 4.1 hold and Y be compact. If there exists a

positive constant λ such that
∞∑
k=0

|bk − λak| < +∞

and {Xk} be the sequence generated by (DA) mechanism. Then

lim inf
k→∞

dist(Xk, Y
∗(α, λ)) = 0.

Proof. From Lemma 4.2, we obtain for all y∗ ∈ Y ∗(α, λ) and k ≥ 0,

‖Xk+1 − y∗‖2 ≤ ‖Xk − y∗‖2 − 2ak[(αf + (1− α)λg)(Xk)− (αf + (1− α)λg)(y∗)]

−2(bk − λak)(1− α)(g(Xk)− g(y∗)) + (αakC + (1− α)bkD)2.

Since Y is compact, g is continuous, image (g(Y )) is bounded. That means there exists M > 0

such that |g(y)| ≤M for all y ∈ Y . Hence,

0 ≤ ‖Xℵ+1 − y∗‖2 ≤ ‖X0 − y∗‖2 − 2
ℵ∑
k=0

ak[(αf + (1− α)λg)(Xk)− (αf + (1− α)λg)(y∗)]

+2(
ℵ∑
k=0

|bk − λak|) · (1− α) · 2M +
ℵ∑
k=0

(αakC + (1− α)bkD)2

= I − II + III + IV.

I is a constant. When ℵ goes to infinity, III < +∞ since
∑∞
k=0 |bk − λak| < +∞ and

IV ≤ 2(α2C2
∞∑
k=0

a2
k + (1− α)2D2

∞∑
k=0

b2k) < +∞.

Thus, II < +∞. We obtain

lim inf
k→∞

[(αf + (1− α)λg)(Xk)− (αf + (1− α)λg)(y∗)] = 0.

Otherwise, ∃δ > 0 such that ∀k ∈ ℵ,

(αf + (1− α)λg)(Xk)− (αf + (1− α)λg)(y∗) > δ.

And then II > δ
∑∞
k=0 ak = +∞, a contradiction.

Now take a subsequence {Xnk} of {Xk} such that

0 ≤ (αf + (1− α)λg)(Xnk)− (αf + (1− α)λg)(y∗) <
1

k
.

15



By the fact that Y is compact, {Xnk} has at least one accumulation point y0, say, and since

αf + (1− α)λg is continuous, we have that

lim
k→∞

(αf + (1− α)λg)(Xnk) = (αf + (1− α)λg)(y0).

By the definition of {Xnk}, we know that

lim
k→∞

(αf + (1− α)λg)(Xnk) = (αf + (1− α)λg)(y∗), y∗ ∈ Y ∗(α, λ).

Hence, y0 ∈ Y ∗(α, λ). So

lim inf
k→∞

dist(Xk, Y
∗(α, λ)) = 0.

This completes the proof.

One can strengthen Proposition 4.3 by applying Proposition 1.3 in Correa and Lemaréchal

(1993) as follows.

Proposition 4.4. Let Assumptions 3.1 and 4.1 hold. Then the sequence {Xk} in Proposition

4.3 converges to some optimal solution y0 ∈ Y ∗(α, λ).

Proof. Let

δk = 2ak[(αf + (1− α)λg)(Xk)− (αf + (1− α)λg)(y0)] + 2(|bk − λak|) · (1− α) · 2M

+(αakC + (1− α)bkD)2 > 0.

Then
∑∞
k=0 δk = II + III + IV < +∞ (see the proof of Propositin 4.3). We also have that

‖Xk+1 − y0‖2 ≤ ‖Xk − y0‖2 − 2ak[(αf + (1− α)λg)(Xk)− (αf + (1− α)λg)(y0)]

+2(|bk − λak|) · (1− α) · 2M + (αakC + (1− α)bkD)2

≤ ‖Xk − y0‖2 + δk.

Then applying Proposition 1.3 in Correa and Lemaréchal (1993) with the result in Proposition 4.3,

we have that

lim
k→∞

Xk = y0.
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Theorem 4.5 (Efficiency). Let Assumption 4.1 hold and assume that α = 1
2 . Let {ak} and

{bk} be two sequences of stepsizes satisfying Assumption 3.1 and
∞∑
k=0

|bk − ak| < +∞.

Then the sequence {Xk} generated by (DA) mechanism converges to an optimal solution in Y ∗.

Note that Y ∗ = Y ∗(1
2). Theorem 4.5 follows from Proposition 4.4 by setting λ = 1. For a single

asset, with α = 0.5, (DA) mechanism may generate a bubble (crash) if the two sequences {ak} and

{bk} of stepsizes satisfy Assumption 3.1 and
∞∑
k=0

|bk − λak| < +∞

for some λ that is greater (smaller) that 1.

4.1 What is λ?

We have seen λ above many times. In Proposition 4.3 we need λ to satisfy the condition such

that
∑∞
k=0 |bk − λak| < +∞. Does it always exist such a λ for any two sequences {ak} and {bk}

satisfying Assumption 3.1? Unfortunately the answer is negative. This shows that the relative

strength between ask and bid is quite subtle for the DA mechanism. Such an issue does not exist

for the incremental subgradient method in Nedić and Bertsekas (2001) because there is only one

single sequence of stepsize needed there.

Example 4.6. Let

ak =


1
k , k is odd

1
k2
, k is even

bk =


1
k2
, k is odd

1
k , k is even

Then
∞∑
k=0

|ak − λbk| ≥
∑

k≥[λ]+1

k is odd

|ak − λbk|

=
∑

k≥[λ]+1

k is odd

ak − λ
∑

k≥[λ]+1

k is odd

bk

=
∑

k≥[λ]+1

k is odd

1

k
− λ

∑
k≥[λ]+1

k is odd

1

k2
= +∞
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for any λ.

Even if the limit limk→∞
bk
ak

exits and equals 1, there may not exist λ such that

∞∑
k=0

|bk − λak| <∞.

Example 4.7. Let ak = 1

k
3
4

and bk = ak(1 + a
1
3
k ). Then

lim
k→∞

bk
ak

= lim
k→∞

(1 +
1

k
1
4

) = 1.

But
∞∑
k=0

|bk − ak| =
∞∑
k=0

a
4
3
k =

∞∑
k=0

1

k
= +∞.

Note that, by Proposition 4.8 below, if λ exists, it can only be 1. Hence, λ does not exist here.

The following answers what λ must be.

Proposition 4.8. Let Assumption 3.1 hold. If
∑∞
k=0 |bk − λak| < +∞ for some λ, then the

following must hold

lim inf
k→∞

bk
ak
≤ λ ≤ lim sup

k→∞

bk
ak
.

Proof. If there exist δ > 0 and k0 such that bk
ak
− λ > δ for all k ≥ k0, then

∞∑
k=k0

|bk − λak| ≥ δ
∞∑

k=k0

ak = +∞, a contradiction.

Hence, lim infk→∞
bk
ak
≤ λ is one necessary condition for

∑∞
k=0 |bk − λak| < +∞. Similarly,

lim supk→∞
bk
ak
≥ λ. This completes the proof.

Proposition 4.9. Let Assumption 3.1 hold. If there exists a λ such that
∑∞
k=0 |bk−λak| < +∞,

then it must be unique.
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Proof. Suppose, on the contrary, that there are two λ and λ′ such that

∞∑
k=0

|bk − λak| < +∞ and
∞∑
k=0

|bk − λ′ak| < +∞.

Then

|λ− λ′|
∞∑
k=0

ak ≤
∞∑
k=0

|bk − λak|+
∞∑
k=0

|bk − λ′ak| < +∞.

But
∑∞
k=0 ak = +∞, a contradiction. This complets the proof.

When an equity is lack of liquidity, the accumulated spreads
∑
k |bk − ak| can be large and the

competitive efficiency of the DA mechanism may be in jeopardy. Note that these conditions on

λ are based on the two sequences {ak} and {bk} only even though the price sequence of the DA

mechanism depends on the buy and sell orders. Thus, the efficiency of an exchange such as the

NYSE and Nasdaq may be tested through the two stepsizes of bid and ask. Consider a quote from

Investopedia.com:

What’s the main difference between a specialist and a market maker? Not much. Both

the New York Stock Exchange (NYSE) specialist and the Nasdaq market maker try to

increase the liquidity on their respective exchanges and provide more fluid and efficient

trading. -http://www.investopedia.com

Investors believe that the NYSE and Nasdaq are the most efficient markets. What does it mean

precisely by efficiency here? Is it good enough for the bid−ask spread to be small for being efficiency

of an exchange? Our results provide an answer more precisely through the conditions on the two

stepsizes of bid and ask. Note the differences. Our conditions, though related, are not on the

bid−ask spread. They are on the two “speeds” of bid and ask. In our setup a key condition for a

1
2 -DA mechanism to be efficient is such that

∑∞
k=0 |bk − ak| <∞ for the two sequences of stepsizes

satisfying Assumption 3.1. Moreover, the following must hold

lim inf
k→∞

bk
ak
≤ 1 ≤ lim sup

k→∞

bk
ak
.

These conditions apply to the DA mechanism (see Theorem 4.5) and the DA mechanism with

randomization below (see Proposition 4.11 with m = n), without or with stochastic noises (see

Propositions 5.5 and 5.7 with noises and m = n). In fact they are quite intuitive. But their proofs

are somehow involved technically.
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4.2 Main Result for the DA Mechanism with Randomization

The DA mechanism with randomization is defiend in Subsection 3.2. We need an assumption for

our result.

Assumption 4.10. a). The sequence {wk}({w′k}) is a sequence of independent random vari-

ables, each unifromly distributed over the set {1, 2, · · · ,m}({1, 2, · · · , n}). Furthermore, the two

sequences {wk} and {w′k} are independent of the sequence {Xk}.

b). The two sets of subgradients {hwk(Xk), k = 0, 1, 2, · · ·} and {`w′
k
(Xk), k = 0, 1, 2, · · ·} are

bounded. That is, there exist some positive constants C0 and D0 such that, with probability 1,

‖hwk(Xk)‖ ≤ C0 and ‖`w′
k
(Xk)‖ ≤ D0, ∀k ≥ 0.

Proposition 4.11 Let Assumptions 3.1 and 4.10 hold. If there exists a positive constant λ

such that
∞∑
k=0

|bk
n
− λak

m
| < +∞,

then the sequence {Xk} generated by (RDA) mechanism converges to some optimal solution in

Y ∗(α, λ).

Proof We obtain for all k and y ∈ Y ∗(α, λ), as in the proof of Proposition 4.3,

E{‖Xk+1−y‖2|Fk} ≤ ‖Xk−y‖2−2α
ak
m

(f(Xk)−f(y))−2(1−α)
bk
n

(g(Xk)−g(y))+(αakC+(1−α)bkD)2,

where Fk = {X0, X1, · · · , Xk}.

Two definitions are in order. A sample path is a sequence of {Xk}. For each y∗ ∈ Y ∗(α, λ), let

Ωy∗ denote the set containing all sample paths {Xk} such that

2
∞∑
k=0

[(α
ak
m
f + (1− α)

bk
n
g)(Xk)− (α

ak
m
f + (1− α)

bk
n
g)(y∗)] < +∞

and that {‖Xk−y∗‖} converges. By the supermartingale convergence theorem (see Theorem 3.1 in

Nedić and Bertsekas (2001) or Appendix 7.1), for each y∗ ∈ Y ∗(α, λ), we have that Ωy∗ is a set of

probability 1. Let {νi} be a countable subset of the relative interior relinti(Y
∗(α, λ)) that is dense

in Y ∗(α, λ). Define Ω =
⋂∞
i=1 Ωνi . Then Ω has probability 1 since

Prob(
∞⋃
i

Ω̄νi) ≤
∞∑
i=1

Prob(Ω̄νi) = 0.
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Since Y is compact, g is continuous, there exists M such that |g(y)| ≤ M for all y ∈ Y . For each

sample path in Ω, the sequence ‖Xk − νi‖ converges so that {Xk} is bounded. By

2
∞∑
k=0

[(α
ak
m
f + (1− α)

bk
n
g)(Xk)− (α

ak
m
f + (1− α)

bk
n
g)(y)] ≤ K < +∞,

we have

2
∞∑
k=0

ak
m

[(αf + λ(1− α)g)(Xk) − (αf + λ(1− α)g)(y)]

≤ 2
∞∑
k=0

|bk
n
− λak

m
| · |g(Xk)− g(y)|+K

≤ 4M
∞∑
k=0

|bk
n
− λak

m
|+K < +∞

Thus, we have that

lim
k→∞

[(αf + λ(1− α)g)(Xk)− (αf + λ(1− α)g)(y∗)] = 0.

Otherwise, if there exist δ > 0 such that for all k,

(αf + λ(1− α)g)(Xk)− (αf + λ(1− α)g)(y∗) > δ,

then we have

2
∞∑
k=0

ak
m

[(αf + λ(1− α)g)(Xk)− (αf + λ(1− α)g)(y)] >
δ

m

∞∑
k=0

ak = +∞,

which is impossible.

Continuity of αf + λ(1− α)g implies that all the limit points of {Xk} are belong to Y ∗(α, λ).

Since {νi} is a dense subset of Y ∗ and ‖Xk − vi‖ converges, it follows that {Xk} cannot have more

than one limit point, so it must converge to some vector y ∈ Y ∗(α, λ). This completes the proof.

5 The DA Mechanism with Stochastic Noises

Stochastic noises in buy and sell orders are important. Some of the noises may come from the fact

that investors may not know precisely the intrinsic value functions u so that the submitted orders

may deviate from the “true” orders. Note that these noises may go all the way along with the DA

mechanism. The very existence of noises may jeopardize the efficiency of an exchange. But the DA

mechanism can perform very well with stochastic noises as we will show below.
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Let f =
∑m
i=1 fi and g =

∑m
i=1 gi. Assume X0 is a random initial vector. Let εi,k and δi,k denote

two independent random noise vectors, ak > 0 and bk > 0 denote step-size.

The DA mechanism with stochastic noises is defined as follows.

Let Φ0,k = Xk. For i = 1, 2, · · · ,m, let

ψi,k = Φi−1,k − ak(hi,k + εi,k), hi,k ∈ ∂fi(Φi−1,k)

ϕi,k = Φi−1,k − bk(`i,k + δi,k), `i,k ∈ ∂gi(Φi−1,k)

Φi,k = αψi,k + (1− α)ϕi,k, α ∈ [0, 1].

Let Xk+1 = Φm,k. We define F ik to be the σ-algebra generated by the sequence

Φ0,0,Φ1,0, · · · ,Φm,0, · · · ,Φi,k. Note that F0
k is also denoted as Fk.

Remark: These noise terms are similar to Ram et al. (2009). In fact, if α = 0 and f = 0,

the DA mechanism with stochastic noises above becomes the incremental subgradient method with

stochastic errors studied by Ram et al. (2009). However, the results in Ram et al. (2009) do not

apply here because there are two sequences of stepsizes that interact together to determine the

price iteration process of the DA mechanism.

Assumption 5.1. There exist deterministic scalar sequences {µk}, {νk}, {τk} and {σk} satis-

fying the following. For all i and k,

‖E[εi,k|F i−1
k ]‖ ≤ µk, ‖E[δi,k|F i−1

k ]‖ ≤ τk;

E[‖εi,k‖2|F i−1
k ] ≤ ν2

k , E[‖δi,k‖2|F i−1
k ] ≤ σ2

k.

Note that µk ≤ νk and τk ≤ σk for all k = 0, 1, · · ·.

Assumption 5.2. There exist scalars C1, C2, · · · , Cm and D1, D2, · · · , Dm such that

‖h‖ ≤ Ci, ∀h ∈ ∂fi(Xk) ∪ ∂fi(Φi−1,k), i = 1, 2, · · · ,m, k = 0, 1, 2, · · ·

and

‖`‖ ≤ Di, ∀` ∈ ∂gi(Xk) ∪ ∂gi(Φi−1,k), i = 1, 2, · · · ,m, k = 0, 1, 2, · · · .

Let C =
∑m
i=1Ci and D =

∑m
i=1Di.
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Lemma 5.3. Let Assumptions 5.1 and 5.2 hold. Then the sequene {Xk} generate by the DA

mechanism with stochastic noises is such that for any step size rule and any y ∈ Y ,

E[‖Xk+1 − y‖2|Fmk−1] ≤ ‖Xk − y‖2 − 2αak(f(Xk)− f(y))− 2(1− α)bk(g(Xk)− g(y))

+2(αakµk + (1− α)bkτk)
m∑
i=1

E[‖Φi−1,k − y‖|Fmk−1]

+(αakC + (1− α)bkD + αmakνk + (1− α)mbkσk)
2,

Note that Fmk−1 = F0
k .

Proof of Lemma 5.3.

‖Φi,k − y‖2 = ‖αψi,k + (1− α)ϕi,k − y‖2

= ‖α(ψi,k − y) + (1− α)(ϕi,k − y)‖2

= α2‖ψi,k − y‖2 + (1− α)2‖ϕi,k − y‖2 + 2α(1− α) < ψi,k − y, ϕi,k − y >

= α2‖Φi−1,k − y − akhi,k − akεi,k‖2 + (1− α)2‖Φi−1,k − y − bk`i,k − bkδi,k‖2

+2α(1− α) < Φi−1,k − y − akhi,k − akεi,k,Φi−1,k − y − bk`i,k − bkδi,k >

= α2‖Φi−1,k − y − akhi,k‖2 + α2a2
k‖εi,k‖2 − 2α2 < Φi−1,k − y − akhi,k, akεi,k >

+(1− α)2‖Φi−1,k − y − bk`i,k‖2 + (1− α)2b2k‖δi,k‖2

−2(1− α)2 < Φi−1,k − y − bk`i,k, bkδi,k >

+2α(1− α) < Φi−1,k − y − akhi,k,Φi−1,k − y − bk`i,k >

−2α(1− α) < Φi−1,k − y − akhi,k, bkδi,k > −2α(1− α) < Φi−1,k − y − bk`i,k, akεi,k >

+2α(1− α)akbk < εi,k, δi,k >

= ‖α(Φi−1,k − y − akhi,k) + (1− α)(Φi−1,k − y − bk`i,k)‖2 + ‖αakεi,k + (1− α)bkδi,k‖2

−2α < Φi−1,k − y − akhi,k, αakεi,k + (1− α)bkδi,k >

−2(1− α) < Φi−1,k − y − bk`i,k, αakεi,k + (1− α)bkδi,k >

= ‖Φi−1,k − y‖2 − 2αak < hi,k, (Φi−1,k − y) > −2(1− α)bk < `i,k, (Φi−1,k − y) >

+‖αakhi,k + (1− α)bk`i,k‖2 + ‖αakεi,k + (1− α)bkδi,k‖2

−2α < Φi−1,k − y − akhi,k, αakεi,k + (1− α)bkδi,k >

−2(1− α) < Φi−1,k − y − bk`i,k, αakεi,k + (1− α)bkδi,k >

Taking conditional expectations with respect to the σ-field F i−1
k , we further obtain that

E[‖Φi,k − y‖2|F i−1
k ] = {‖Φi−1,k − y‖2 − 2αak < hi,k, (Φi−1,k − y) > −2(1− α)bk < `i,k, (Φi−1,k − y) >

23



+‖αakhi,k + (1− α)bk`i,k‖2}

+{E[‖αakεi,k + (1− α)bkδi,k‖2|F i−1
k ]

−2α < Φi−1,k − y − akhi,k, E[αakεi,k + (1− α)bkδi,k|F i−1
k ] >

−2(1− α) < Φi−1,k − y − bk`i,k, E[αakεi,k + (1− α)bkδi,k|F i−1
k ] >}

= I + II.

Consider II first. We have that

II ≤ (αakνk + (1− α)bkσk)
2 + 2α(‖Φi−1,k − y‖+ ak‖hi,k‖)(αakµk + (1− α)bkτk)

+2(1− α)(‖Φi−1,k − y‖+ bk‖`i,k‖)(αakµk + (1− α)bkτk)

= (αakνk + (1− α)bkσk)
2 + 2‖Φi−1,k − y‖(αakµk + (1− α)bkτk)

+2αakCi(αakµk + (1− α)bkτk) + 2(1− α)bkDi(αakµk + (1− α)bkτk).

Now consider I. We have that

I ≤ ‖Φi−1,k − y‖2 − 2αak(fi(Φi−1,k)− fi(y))− 2(1− α)bk(gi(Φi−1,k)− gi(y))

+‖αakCi + (1− α)bkDi‖2

since hi,k ∈ ∂fi(Φi−1,k) and `i,k ∈ ∂gi(Φi−1,k).

Taking the expectations contional on Fmk−1 = F0
k , we obtain from I + II that

E[‖Φi,k − y‖2|Fmk−1] ≤ E[‖Φi−1,k − y‖2|Fmk−1]− 2αak(fi(Xk)− fi(y))− 2(1− α)bk(gi(Xk)− gi(y))

+2E[‖Φi−1,k − y‖|Fmk−1](αakµk + (1− α)bkτk) +Mi,k,

where

Mi,k = (αakCi + (1− α)bkDi)
2 + (αakνk + (1− α)bkσk)

2

+2αakCi(αakµk + (1− α)bkτk) + 2(1− α)bkDi(αakµk + (1− α)bkτk)

+2αakE[‖fi(Φi−1,k)− fi(Xk)‖|Fmk−1] + 2(1− α)bkE[‖gi(Φi−1,k)− gi(Xk)‖|Fmk−1].

Note that Φ0,k = Xk and Φm,k = Xk+1. Taking sum over i = 1, 2, · · · ,m, we have that

E[‖Xk+1 − y‖2|Fmk−1] ≤ ‖Xk − y‖2 − 2αak(f(Xk)− f(y))− 2(1− α)bk(g(Xk)− g(y))

+2(αakµk + (1− α)bkτk)
m∑
i=1

E[‖Φi−1,k − y‖|Fmk−1] +
m∑
i=1

Mi,k.

Next we consider
∑m
i=1Mi,k.
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Lemma 5.3.1. We claim that

‖Φi−1,k −Xk‖ ≤
i−1∑
j=1

[αakCj + (1− α)bkDj + αak‖εj,k‖+ (1− α)bk‖δj,k‖].

Proof of Lemma 5.3.1. We prove by induction.

‖Φi,k −Xk‖ = ‖(αψi,k + (1− α)ϕi,k)−Xk‖

≤ α‖ψi,k −Xk‖+ (1− α)‖ϕi,k −Xk‖

= α‖Φi−1,k − akhi,k − akεi,k −Xk‖+ (1− α)‖Φi−1,k − bk`i,k − bkδi,k −Xk‖

≤ ‖Φi−1,k −Xk‖+ αak‖hi,k‖+ (1− α)bk‖li,k‖

+αak‖εi,k‖+ (1− α)bk‖δi,k‖.

By induction, we get that

‖Φi,k −Xk‖ ≤
i∑

j=1

[αakCj + (1− α)bkDj + αak‖εj,k‖+ (1− α)bk‖δj,k‖].

This completes the proof of Lemma 5.3.1.

We now continue the proof of Lemma 5.3. Hence,

E[‖fi(Φi−1,k)− fi(Xk)‖|Fmk−1] ≤ E[Ci

i−1∑
j=1

(αakCj + (1− α)bkDj + αak‖εj,k‖+ (1− α)bk‖δj,k‖)|Fmk−1]

≤ Ci

i−1∑
j=1

(αakCj + (1− α)bkDj + αakνk + (1− α)bkσk);

and

E[‖gi(Φi−1,k)− gi(Xk)‖|Fmk−1] ≤ E[Di

i−1∑
j=1

(αakCj + (1− α)bkDj + αak‖εj,k‖+ (1− α)bk‖δj,k‖)|Fmk−1]

≤ Di

i−1∑
j=1

(αakCj + (1− α)bkDj + αakνk + (1− α)bkσk).

Then

m∑
i=1

Mi,k ≤
m∑
i=1

(αakCi + (1− α)bkDi)
2 +m(αakνk + (1− α)bkσk)

2

+2
m∑
i=1

(αakCi + (1− α)bkDi)(αakµk + (1− α)bkτk)

+2
m∑
i=1

(αakCi + (1− α)bkDi)
i−1∑
j=1

(αakCj + (1− α)bkDj + αakνk + (1− α)bkσk)
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(since µk ≤ νk and τk ≤ σk)

≤
m∑
i=1

(αakCi + (1− α)bkDi + αakνk + (1− α)bkσk)
2

+2
m∑
i=1

(αakCi + (1− α)bkDi + αakνk + (1− α)bkσk) •

i−1∑
j=1

(αakCj + (1− α)bkDj + αakνk + (1− α)bkσk)

= (
m∑
i=1

(αakCi + (1− α)bkDi + αakνk + (1− α)bkσk))
2

= (αakC + (1− α)bkD + αmakνk + (1− α)mbkσk)
2.

This completes the proof of Lemma 5.3.

5.1 The DA Mechanism with Stochastic Noises and without Randomization

Assumption 5.4. The following holds:

∞∑
k=0

akµk <∞,
∞∑
k=0

bkτk <∞,
∞∑
k=0

a2
kν

2
k <∞,

∞∑
k=0

b2kσ
2
k <∞.

Proposition 5.5. Let Assumptions 3.1, 5.1, 5.2, and 5.4 hold. Assume that Y is compact and

Y (α, λ) is nonempty for some positive constant λ > 0 such that

∞∑
k=0

|bk − λak| < +∞.

Then the sequence {Xk} generated by the DA mechanism with stochastic noises converges to an

optimal solution y∗ ∈ Y ∗(α, λ), with probability 1.

Proof. By Lemma 5.3, for any y∗ ∈ Y ∗(α, λ), we have that

E[‖Xk+1 − y∗‖2|Fmk−1] ≤ ‖Xk − y∗‖2 − 2αak(f(Xk)− f(y∗))− 2(1− α)bk(g(Xk)− g(y∗))

+2(αakµk + (1− α)bkτk)
m∑
i=1

E[‖Φi−1,k − y∗‖|Fmk−1] +Mk,

where

Mk = (αakC + (1− α)bkD +mαakνk +m(1− α)bkσk)
2.

Since

E[‖Φi−1,k − y∗‖|Fmk−1] ≤ E[‖Φi−1,k −Xk‖|Fmk−1] + ‖Xk − y∗‖ by Lemma 5.3.1
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≤
i−1∑
j=1

(αakCj + (1− α)bkDj + αakνk + (1− α)bkσk) + ‖Xk − y∗‖.

Hence

2(αakµk + (1− α)bkτk)
m∑
i=1

E[‖Φi−1,k − y∗‖|Fmk−1]

≤ 2(αakµk + (1− α)bkτk)
m∑
i=1

(
i−1∑
j=1

(αakCj + (1− α)bkDj + αakνk + (1− α)bkσk) + ‖Xk − y∗‖)

≤ 2(αakµk + (1− α)bkτk)
m∑
i=1

i−1∑
j=1

(αakCj + (1− α)bkDj + αakνk + (1− α)bkσk)

+m(αakµk + (1− α)bkτk)(‖Xk − y∗‖2 + 1).

And then

E[‖Xk+1 − y∗‖2|Fmk−1] ≤ (1 +m(αakµk + (1− α)bkτk))‖Xk − y∗‖2

−2αak(f(Xk)− f(y∗))− 2(1− α)bk(g(Xk)− g(y∗))

+(Mk +Nk),

where

Nk = 2(αakµk + (1− α)bkτk)
m∑
i=1

i−1∑
j=1

(αakCj + (1− α)bkDj + αakνk + (1− α)bkσk)

+m(αakµk + (1− α)bkτk).

Apply Lemma 3.2 in Ram et al. (2009) (also see Appendix 7.1).

Let qk = m(αakµk + (1− α)bkτk) and Wk = Mk +Nk.

Then

∞∑
k=0

qk = mα
∞∑
k=0

akµk +m(1− α)
∞∑
k=0

bkτk < +∞

∞∑
k=0

Wk =
∞∑
k=0

(Mk +Nk).

Since

∞∑
k=0

Mk =
∞∑
k=0

(αakC + (1− α)bkD +mαakνk +m(1− α)bkσk)
2

≤ 4
∞∑
k=0

[(αakC)2 + ((1− α)bkD)2 + (mαakνk)
2 + (m(1− α)bkσk)

2]

< ∞

27



and

∞∑
k=0

Nk =
∞∑
k=0

2(αakµk + (1− α)bkτk)
m∑
i=1

i−1∑
j=1

(αakCj + (1− α)bkDj + αakνk + (1− α)bkσk) +
∞∑
k=0

qk

≤
∞∑
k=0

[
m∑
i=1

(αakµk + (1− α)bkτk + αakCi + (1− α)bkDi)]
2 +

∞∑
k=0

qk

≤
∞∑
k=0

Mk +
∞∑
k=0

qk <∞.

Hence
∑∞
k=0Wk <∞.

Therefore, we get, with probability 1, the sequence ‖Xk − y∗‖2 converges to some non-negative

random variable for every y∗ ∈ Y (α, λ). Also with probability 1, we have

∞∑
k=0

(αak(f(Xk)− f(y∗)) + (1− α)bk(g(Xk)− g(y∗))) < +∞,

which implies that

∞∑
k=0

ak[(αf + (1− α)λg)(Xk)− (αf + (1− α)λg)(y∗)]

≤
∞∑
k=0

(αak(f(Xk)− f(y∗)) + (1− α)bk(g(Xk)− g(y∗))) +
∞∑
k=0

(1− α)|bk − λak||g(Xk)− g(y∗)|

< +∞.

For Y is compact, image of g is bounded. Assume ∃M > 0 such that |g(y)| ≤ M for all y ∈ Y .

Then
∞∑
k=0

(1− α)|bk − λak||g(Xk)− g(y∗)| ≤ 2M(1− α)
∞∑
k=0

|bk − λak| < +∞.

Since
∑∞
k=0 ak = +∞, then

lim inf
k→∞

(αf + (1− α)λg)(Xk) = (αf + (1− α)λg)(y∗),

with probability 1.

By considering a sample path for which

lim inf
k→∞

(αf + (1− α)λg)(Xk) = (αf + (1− α)λg)(y∗)

and ‖Xk− y∗‖2 converges for any y∗, we conclude that the sample sequence must converge to some

y∗ in view of continuity of f . Hence, the sequence {Xk} converges to some optimal solution in

Y ∗(α, λ) with probability 1. This completes the proof.

28



5.2 The DA Mechanism with Randomization and Stochastic Noises

Recall that wk is a random variable taking equiprobable values from the set {1, 2, · · · ,m} and

w′k is a random variable taking equiprobable values from the set {1, 2, · · · , n}. Also recall that

hwk(Xk) ∈ ∂fwk(Xk) and `w′
k
(Xk) ∈ ∂gw′

k
(Xk), where if wk takes a value j, then the vector

∂fwk(Xk) is ∂fj(Xk), similar for g.

Our sequence {Xk} is generated by the DA mechanism with randomization and stochastic noises

as below.

Given Xk, let

ψk+1 = Xk − ak(hwk(Xk) + εwk,k), hwk(Xk) ∈ ∂fwk(Xk)

and

ϕk+1 = Xk − bk(`w′
k
(Xk) + δw′

k
,k), `w′

k
(Xk) ∈ ∂gw′

k
(Xk).

And set Xk+1 = αψk+1 + (1− α)ϕk+1, α ∈ [0, 1]. We define Fk to be the σ-field generated

by X0, X1, · · · , Xk.

Assumption 5.6. a). The sequence {wk}({w′k}) is a sequence of independent random vari-

ables, each unifromly distributed over the set {1, 2, · · · ,m}({1, 2, · · · , n}). Furthermore, the two

sequences {wk} and {w′k} are independent of the sequence {Xk}.

b). The two sets of subgradients {hwk(Xk), k = 0, 1, 2, · · ·} and {`w′
k
(Xk), k = 0, 1, 2, · · ·} are

bounded. That is, there exist some positive constants C0 and D0 such that, with probability 1,

‖hwk(Xk)‖ ≤ C0 and ‖`w′
k
(Xk)‖ ≤ D0, ∀k ≥ 0.

Proposition 5.7. Let Assumptions 3.1, 5.1, 5.4 and 5.6 hold and Y be compact. Let λ be a

positive constant such that
∞∑
k=0

|bk
n
− λak

m
| < +∞.

Then the sequence {Xk} generated by the DA mechanism with randomization and stochastic noises

converges to some optimal solution in Y ∗(α, λ), with probability 1.

Proof. As in the proof of Proposition 5.5, we obtain for all k and y ∈ Y ∗(α, λ)

E[‖Xk+1 − y‖2|Fk] ≤ (1 + αakµk + (1− α)bkτk)‖Xk − y‖2
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−2α
ak
m

(f(Xk)− f(y))− 2(1− α)
bk
n

(g(Xk)− g(y))

+(αakC0 + (1− α)bkD0 + αakνk + (1− α)bkσk)
2.

Since
∑∞
k=0(αakµk + (1− α)bkτk) < +∞, and we have that

∞∑
k=0

(αakC0 + (1− α)bkD0 + αakνk + (1− α)bkσk)
2

≤ 4
∞∑
k=0

((αakC0)2 + ((1− α)bkD0)2 + (αakνk)
2 + ((1− α)bkσk)

2) < +∞

Apply Lemma 3.2 in Ram et al. (2009) again. We get, with probability 1, the sequence {‖Xk−y∗‖2}

converges to a non-negative random variable and

∞∑
k=0

(2α
ak
m

(f(Xk)− f(y)) + 2(1− α)
bk
n

(g(Xk)− g(y))) < +∞.

Then

∞∑
k=0

2[(α
ak
m
f + (1− α)λ

ak
m
g)(Xk)− (α

ak
m
f + (1− α)λ

ak
m
g)(y)]

≤
∞∑
k=0

(2α
ak
m

(f(Xk)− f(y)) + 2(1− α)
bk
n

(g(Xk)− g(y)))

+
∞∑
k=0

2(1− α)|bk
n
− λak

m
| • |g(Xk)− g(y)|

<∞.

Since
∑∞
k=0 |

bk
n − λ

ak
m | < +∞, Y is compact, the image of g is bounded. Hence

∞∑
k=0

2
ak
m

[(αf + (1− α)λg)(Xk)− (αf + (1− α)λg)(y)] < +∞.

Then, since
∑∞
k=0

ak
m = +∞ and (αf + (1− α)λg)(Xk)− (αf + (1− α)λg)(y) ≥ 0, we have that

lim inf
k→∞

(αf + (1− α)λg)(Xk) = inf
y∈Y

(αf + (1− α)λg)(y).

After this step, we use exactly the same argument as in the proofs of Proposition 4.11 and Propo-

sition 5.5. We get the result.

6 Literature and Remarks

In a free-market system, priviate information is successively reflected in the price of a good or an

asset in time through individual decision what to buy or sell, as remarked by F.A. Von Hayek in

1937. Without knowing what may be the price at equilibrium for a good, the market with an
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invisible hand of Adam Smith can in fact reach an equilibrium. Such a view is the foundation for

any economic analysis based on equilibrium. The incremental subgradient method in Nedić and

Bertsekas (2001) provides a framework how this may be done in theory.6 Such an approach is

especially important for economics since private information is typically unknown publicly while

the market equilibrium must contain all relevant private information.

In an exchange market like equity, individuals decide what to buy or sell and their actions are

successively accomplished in time through a DA mechanism with bid and ask. Such a decentralized

mechanism is far from perfect, as we have shown that both bubbles and crashes for an asset can

be produced. Nonetheless we also have shown that it can be efficient in the sense that it can find

a market equilibrium in the end without knowing where it is priorly.

The study of competitive efficiency of a DA mechanism starts with experiments for an identi-

cal good in Smith (1962, 1965) where an artificial market is created with competitive equilibrium

unknown by buyers and sellers who participate the experimental market. A DA mechanism is used

for a seller to sell her initial endowed units of an object and for a buyer to buy units of the object in

order to realize his valuations. Buyers’ valuations and sellers’ reservations are private information.

In the experiments the DA mechanism converges quickly to a neighbor of the competitive equilib-

rium, even with a few participants. A great number of experiments have been conducted since then

and a similar result has been obtained (see a survey in Friedman (1993) and the edited volume

by Friedman and Rust (1993)). In recent years the competitive efficiency of a DA mechanism has

been retested in experiments with more complicated environments, which are deliberately designed

to be a proxy of an actual exchange market like equity. Smith et al. (1988) find that both bubbles

and crashes can be generated by a DA mechanism under these environments. Porter and Smith

(2003) provide a survey for bubbles and crashes in the laboratory with DA mechanisms. Therefore,

the competitive efficiency of DA mechanisms is a complicated issue and should not be taken for

granted. We show that the competitive efficiency of a DA mechanism depends on the relative

strength of the stepsizes of bid and ask, together with the buy and sell orders. The efficiency can

be jeopardized if the stepsizes of bid and ask are not at equal strength.

Bubbles and Crashes are not limited to the experiments. There was a housing (as well as a

mortgage) bubble in year 2007 in the USA. There was an internet bubble in the 90s worldwide.

Soft and hard commodities like coffee, sugar, gold and silver, etc. may be in a process of forming

a bubble at present. Financial economists are fully aware of these bubbles and crashes as well

6See Kibardin (1980) for the earliest contribution about the method. A more detailed reference of the method
can be found in Bertsekas (2010) and Ram et al. (2009).
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as momentum (see, e.g., Chan and Jegadeesh (1996), Barberis et al. (1998), Shleifer (1999), Lo

(2005) and references therein.).7 Behavioral finance has become quite popular since the 90s in

order to understand these financial anomalies. The main conclusion appears to be that investors’

sentiment, related to “loss aversion, overconfidence, overreaction, mental accounting, and other

behavioral biases” (Lo(2005)), is important for asset pricing. If sentiment affects how investors

bid and ask under a DA mechanism, our study provides quantitative evidence how sentiment may

affect prices.

The existence of financial anomalies does not imply that the fundamental is not important and

the EMH should be abandoned. On the contrary, bubbles, crashes and momentum are all built on

the foundation that there exists some fundamental there. Prices under a DA mechanism of this

paper do move along with changes in fundamentals in f and g.

For the economy or market studied in this paper, the demand and supply for an agent j equipped

with gj and fj are related to the subgradients of gj and fj , respectively, by the Fenchel duality

(Ma and Nie (2003)). The subgradient method widely used to find an optimal solution of problem

P is in fact consistent with the Walrasian hypothesis. Smith (1962, 1965) notice this connection

for an economy with a single product.8 His definition of the economic rent function is just like

problem P. This economic rent function is defined by Ma (1998a) for an exchange economy with

multiple objects to study the English auction. The connection of the subgradient method and the

Walrasian hypothesis has been studied by Ma and Nie (2003).

We have shown that the job matching model of Kelso and Crawford (1982) and its related

exchange economy with multiple objects of Bikhchandani and Mamer (1987) are of the form given

by problem P. But an optimal solution to problem P, which exists under a broad condition, may

not be at a competitive equilibrium. The gross substitutes (GS) condition of Kelso and Crawford

(1982) is important.9 This condition is sufficient for the existence of competitive equilibrium for

exchange economies with multiple objects studied by Bikhchandani and Mamer (1987) and Gul

and Stacchetti (1999). Kelso and Crawford (1982) define the condition on the demand functions

that are set-valued mappings while Gul and Stacchetti (1999) define it on the preference primitive.

Loosely speaking, two goods satisfy the GS condition if a good that is in demand and whose price

7For counter arguments from the EMH, see studies in Fama (1998), Fama and French (1988), Chordia and
Shivakumar(2002), among others. For a joint, see Lo (2005).

8He objected the Walrasian hypothesis because it used information on the total demand and supply. This is well
justified because the DA mechanism is not a centralized system.

9Additional studies and applications of this condition can be found in Fujishige and Yang (2003), Hatfield and
Kojima (2010), Hatfield and Milgrom (2005), Mishraa and Parkes (2007), Reijnierse et al. (2002). See Roth and
Sotomayor (1990) for the related literature.

32



is not raised will be still in demand if the price(s) of other good(s) arises. Largely motivated by the

spectrum auctions (Milgrom (2000)), many English or ascending price auctions have been studied in

the literature with multiple objects.10 Since prices ascend (with a minimum increment) for objects

in excess demand and the market demand −
∑m
j=1Dj(y) at y ∈ Y , with a negative sign (see Lemma

2.2), is just a subset of the subdifferential
∑m
j=1 ∂gj(y) of the function

∑m
j=1 gj(y), the GS condition

guarantees that prices are moving closer to the equilibrium, since the function F decreases along

such a price path. Since the GS condition is sufficient for the existence of competitive equilibrium,

such a process must end up with a competitive equilibrium in finite time, because function F is

polehedral so that the speed of descend near equilibrium is also bounded away from zero. A key

question is that agents are required to report their demand sets and there are strategic issues of

misreporting. This is why it is important to find a Vickrey auction that has the ascending price

feature. Note that all these auctions in the literature are not decentralized systems. Moreover,

only buyers are active in bidding. Sellers are kept without actions.

Our study of the DA mechanism is motivated by a market where there are potentially a large

number of agents and a large number of assets, in spirit of a large DA market studied in Fudenberg

et al. (2007). The primary task of our paper is for price discovery. Strategic reporting plays a

smaller role. Indeed, the fact that our results are robust with stochastic noises shows that agents

may have quite limited gains with misreporting. Nevertheless, our DA mechanism approach may

still provide an option to sell multiple objects in an environment where sellers’ private information

also matters, e.g., the production economy in Gul and Stacchetti (1999).

Our results are closely related to those obtained with the incremental subgradient method in

Nedić and Bertsekas (2001). Nonetheless, the DA mechanism, to our best knowledge, has not

been studied in the literature along the line of their decentralized approach. Because the problem

P has so many other applications (Bertsekas (2010)), our DA mechanism, as a natural extension

of the incremental subgradient method, provides an alternative how an optimal solution can be

approached for those environments.
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7 Appendix: Subdifferentials

In this section we introduce some definitions and results in the nonsmooth analysis from Clarke et

al (1988), the supermartingale convergence theorem (Nedić, A., and D.P. Bertsekas (2001)), and

Lemma 3.2 in Ram et al (2009)), for the sake of completeness. In particular, the class of the Clarke

regular functions plays an important role in our analysis.

Let ϕ : Y → R ∪ {+∞} be an extended real-valued mapping on Y where Y ⊂ Rn+. Define the

effective domain of ϕ by

Dom(ϕ) = {y ∈ Y : ϕ(y) <∞}.

It is (locally) Lipschitz near y if for some constant K, for all points y, y′ in some neighborhood

of y, we have

| ϕ(y)− ϕ(y′) |≤ Kd(y, y′).

The directional direvative of ϕ at y ∈ Y in the direction w ∈ Y is defined as

(1) ϕ′(y;w) = lim
t↓0

ϕ(y + tw)− ϕ(y)

t
,

when the limit exists.

A vector η ∈ Rn is a sub-gradient of ϕ at y ∈ Dom(ϕ) if for all directions w ∈ Y the following

holds

< η,w >≤ ϕ′(y;w).

The sub-differentiable of ϕ at y, denoted by ∂ϕ(y), is the set of all sub-gradients of ϕ at y (possibly

empty), i.e.,

∂ϕ(y) = {η ∈ Rn :< η,w >≤ ϕ′(y;w), ∀w ∈ Y }.
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It is Gâteaux differentiable at y if the limit in (1) exists for all w ∈ Y , and there exists an

element ϕ′(y) ∈ Y (called the Gâteaux derivative) that satisfies

ϕ′(y;w) =< ϕ′(y), w >, ∀w ∈ Y.

The Clarke directional direvative ϕ0(y;w) of ϕ at y in the direction w is defined as follows

ϕ0(y;w) = lim sup
x→y
t↓0

ϕ(x+ tw)− f(x)

t
.

A function ϕ is regular at y if it is Lipschitz near y and for all w the directional derivative

ϕ′(y;w) exists and ϕ′(y;w) = ϕ0(y;w).

For a convex function ϕ that is also Lipschitz near y: Every convex function on a compact set

Y is regular Lipschitzian. Convex functions that are Lipschitz near y are regular at y.

If the function ϕ is convex and locally Lipschitzian at y, we know that ∂ϕ(y) is a nonempty,

compact, and convex set. Moreover, it is upper semicontinuous at y in the sense that for all ε > 0

there exists δ > 0 such that

‖ x− y ‖< δ =⇒ ∂ϕ(x) ⊂ ∂ϕ(y) + εB

where B is the open unit ball in Y .

The sub-differential ∂ϕ can be expressed as

∂ϕ(y) = {η ∈ Rn : ϕ(w)− ϕ(y) ≥< η,w − y >,∀w ∈ Y }.

It is known that ∂ϕ is a maximal monotone operator, i.e., < f1 − f2, y1 − y2 >≥ 0 if fj ∈

∂ϕ(yj), j = 1, 2, and there is no other monotone set-valued map whose graph contains strictly the

graph of ∂ϕ.

If the function ϕ is Gâteaux differentiable at y, then we know that ∂ϕ(y) = {∇ϕ(y)}.

y minimizes ϕ on Y iff 0 ∈ ∂ϕ(y).

For any two regular functions ϕ and ψ at y, the sum ϕ+ ψ is regular at y and

∂(ϕ+ ψ)(y) = ∂ϕ(y) + ∂ψ(y).

7.1 Supermartingale Convergence Theorem and Lemma 3.2

Theorem 3.1 (Nedić, A., and D.P. Bertsekas (2001)): Let Xk, Zk and Wk, k = 0, 1, 2, · · ·, be three

sequences of random variables and let Fk, k = 0, 1, 2, · · ·, be sets of random variables such that

Fk ⊂ Fk+1 for all k. Suppose that:
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(a) The random variables Xk, Zk, and Wk are nonnegative, and are functions of the random

variables in Fk.

(b) For each k, we have E{Xk+1|Fk} ≤ Xk − Zk +Wk.

(c) There holds
∑∞
k=0Wk <∞.

Then, we have
∑∞
k=0 Zk <∞, and the sequence Xk converges to a nonnegative random varaible

X, with probability 1.

Lemma 3.2 (Ram et al. (2009)): Let (Ω,F , P ) be a probability space and let F0 ⊂ F1 ⊂ · · · be

a seqenuce of sub σ-fields of F . Let uk, vk and wk, k = 0, 1, 2, · · ·, be non-negative Fk-measurable

random variables and let {qk} be a deterministic sequence. Assume that
∑∞
k=0 qk <∞,

∑∞
k=0wk <

∞, and

E{uk+1|Fk} ≤ (1 + qk)uk − vk + wk

hold with probability 1. Then, with probability 1, the sequence {uk} converges to a non-negative

random variable and
∑∞
k=0 vk <∞.
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