
A Spatial Model of Common-value Elections: Electoral

Mandates, Minor-Party Candidates, and the Signaling

Voter�s Curse

Joseph McMurray�y

February 2010

Abstract

This paper analyzes a spatial model of common-value elections. Within a con-

tinuum of alternatives, one policy is designated as optimal, but citizens observe only

private signals of this policy�s location. When two candidates compete for o¢ ce by

making binding policy commitments, their platforms converge in equilibrium, as in

standard median voter theorems, though with dramatically di¤erent welfare implica-

tions. When candidates are instead policy motivated, their platforms diverge. If plat-

form commitments are not binding, the winning candidate departs from his platform

policy in response to "mandates" conveyed by his margin of victory. This signaling

role for voters renders every vote "pivotal", including votes for candidates who are

unlikely to win the election. This eliminates the swing voter�s curse, but introduces

an analogous "signaling voter�s curse", causing uninformed citizens to abstain from

voting even when voting is costless.

1 Introduction

One of the earliest formal arguments in favor of the democratic institution of majority

voting is the Condorcet (1785) jury theorem: if one of two candidates or policy alternatives

is better, in some objective sense, for every member of society, then majority opinion in a
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large electorate will almost surely favor the superior alternative, as long as individual voters�

policy opinions are based on independent and minimally accurate information. Since public

policies inevitably e¤ect di¤erent groups of citizens di¤erently, however, existing literature

has largely dismissed this information pooling role of elections as applicable only to a few

speci�c voting environments such as juries and small committees. On the other hand, the

broad goals of many policies� such as national defense, economic and environmental stability,

and eliminating crime, poverty, or corruption� have essentially unanimous appeal; if voters

base policy evaluations on societal outcomes such as these, their preferences are likely to

be correlated, making the assumption of identical preferences a plausible approximation.

Feddersen and Pesendorfer (1996) also point out that in a common-value environment a

"swing voter�s curse" leads uninformed citizens to abstain from voting, in deference to those

with superior information, providing an explanation for otherwise puzzling empirical features

of voter participation such as the phenomenon of roll-o¤ (i.e. voting in some but not all

races on the same ballot) and the correlation between voter participation and information

variables, as well as later evidence from McMurray (2010a) that having well-informed peers

makes a citizen more likely to abstain.1

This paper extends the original Condorcet framework to accommodate a continuum of

policy alternatives, rather than just two. As in Condorcet�s model, one of these policies is

optimal, in the sense that it would maximize utility for every member of the electorate, if

implemented. Citizens cannot observe the optimal policy directly, but receive independent

private signals that are correlated with the truth. For simplicity, the optimal policy is

assumed to be at one of the two extremes of the policy space; because voters are risk-

averse, however, they nevertheless support moderate policies to avoid the severe disutility

of implementing the wrong policy extreme.2 Whereas voters in Condorcet�s original model

share identical information quality, this paper instead follows McMurray (2010b) in assuming

a continuum of expertise from which individual signal quality is drawn. The distribution of

expertise is assumed to have full support, implying that the distribution of voters�preferred

policies has full support as well. Thus, an immediate result of this model is a theoretical

foundation for the common assumption that voters�preferences are single-peaked over the

policy interval. Citizens with the most extreme policy preferences also have the strongest

convictions, providing an explanation for the empirical correlation between information and

ideology, observed by Palfrey and Poole (1987).

The large menu of policy alternatives in this model gives candidates an active role to play

in determining policy outcomes. In the �rst version of the model, two candidates commit

1McMurray (2010) discusses empirical evidence that information in�uences voting, and explains the puz-

zles that these �ndings present for standard models.
2Allowing any policy to be optimal leads to similar results.

2



to campaign policy platforms prior to the election, motivated by a desire to win o¢ ce. In

the unique equilibrium, both adopt platforms at the same moderate policy. This result

is reminiscent of the canonical median voter theorems of Black (1948) and Downs (1957),

and arises for the same reason: moving away from the center merely concedes votes to a

candidate�s opponent. The welfare implication of this result, however, di¤ers starkly from

previous models. In models of political compromise between competing interests, moderate

policies minimize the maximum distance to any voter�s ideal point, and so are desirable from

a utilitarian perspective.3 Here, the equilibrium policy outcome is optimal only on the basis

of prior information; if any private information were available, a superior policy could be

identi�ed.

A second version of this model assumes that candidates seek o¢ ce in an e¤ort to in�uence

policy outcomes, as other authors have assumed at least as early as Wittman (1977).4 As

in that literature (e.g. Wittman 1983), policy-motivated candidates�platforms diverge in

equilibrium. In this case, policy platforms become more extreme because informative voting

leads candidates to form more extreme beliefs.5 Accordingly, divergence from the center

actually enhances welfare, again unlike standard models.

With informative voting, the candidate with the superior platform is more likely to win

the election by a single vote than to lose by a single vote. Accordingly, an additional vote

for that candidate is less likely to be pivotal (i.e. change the election outcome) than a vote

for his opponent. An uninformed citizen therefore su¤ers from a swing voter�s curse, as

in Feddersen and Pesendorfer (1996) and McMurray (2010b), and prefers to abstain rather

than vote for either candidate, even if voting is costless. Like those models, therefore, this

model provides an explanation for empirical phenomena such as roll-o¤, and the correlation

between relative information variables and turnout.

Following the citizen-candidate tradition of Osborne and Slavinski (1996) and Besley

and Coate (1997), a third speci�cation of this model assumes that candidate commitments

prior to an election are not credible: once elected, a candidate may implement the policy

of his choice.6 For policy-motivated candidates, this means using available information to

estimate the location of the optimal policy. Since voting takes place before policy decisions

are made, that information may include the total numbers of votes each candidate received.

Consistent with the popular notion of an electoral mandate, a candidate who wins the election

3Though Duggan (2005) notes that this normative conclusion may not be justi�able.
4Besley and Case (2003) argue that policy-motivations are necessary for explaining empirical evidence

that policy outcomes depend on the identities of political o¢ ce holders.
5Speci�cally, a candidate bases his platform decision on the belief that he will receive a majority of votes

(since otherwise his platform will not be implemented).
6Throughout this paper, masculine pronouns refer to candidates and feminine pronouns refer to citizens.
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by a larger margin than expected develops more extreme beliefs, and therefore adopts a more

extreme policy than his campaign platform. Similarly, a candidate becomes more moderate

in response to a narrow victory. Since literally every vote in�uences the margin of victory, the

result that candidates respond to vote totals provides a foundation for the popular mantra

that "every vote counts", contrary to standard models in which a vote has no in�uence unless

it creates or breaks a tie.

The result that every vote in�uences policy outcomes undermines the logic of the swing

voter�s curse, since a citizen no longer needs to condition her behavior on the unlikely event

in which her vote is pivotal. However, a relatively uninformed citizen now su¤ers from a

signaling voter�s curse, and therefore once again has reason to abstain. The logic behind this

result is that voters have heterogeneous information quality. Since the winning candidate

cannot observe the underlying quality of each vote, he infers that each vote is of average

quality. If a citizen of below-average quality votes, therefore, it will prompt a more drastic

policy response than the underlying information merits. For a su¢ ciently well-informed cit-

izen, too large a policy move may be better than no move at all; for a su¢ ciently uninformed

citizen, however, it is better to abstain from voting. As in Feddersen and Pesendorfer (1996)

and McMurray (2010b), then, abstention is strategic, re�ecting the e¤ort of uninformed cit-

izens to delegate to those with better information. Abstention is also welfare-improving, as

in those models, even though the private information of nonvoters is not utilized.

One standard result in spatial voting models is Duverger�s (1954) Law, which essentially

states that plurality rule elections foster two strong parties, and discourage the creation of

smaller parties. This is because, while a vote for either of two major candidates is already

unlikely to be pivotal, voting for a sure loser is less likely still to change the election outcome.

The standard model predicts that citizens should not vote for fringe parties, who therefore

should have no incentive to make a costly run for o¢ ce. If a minor party candidate did

manage to attract strong support, he would risk splitting votes with the closer of the two

major candidates, thereby inadvertently deciding the election in favor of his least-favored

opponent. That analysis changes in this setting, however, because eventual policy outcomes

depend on each candidate�s vote total. Even if he does not win o¢ ce, then, voting for an

extreme candidate pulls policy in the desired direction. This therefore justi�es the casting

of a "protest vote" for a candidate that is likely to lose, in an e¤ort to send a message to the

candidate who wins, in turn providing an incentive for the losing candidate to have run for

o¢ ce in the �rst place.

In addition to the references above, this model shares much in common Razin�s (2003)

model of signaling in common-value elections. Most notably, that model demonstrates

the possibility of electoral mandates, inferred by the winning candidate from his margin of
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victory. In that model, however, large margins of victory can also make a winning candidate

more moderate, rather than more extreme. Candidates also behave deterministically, rather

than strategically, and voters have homogeneous information quality. The possibility of

multiple candidates is not considered, and voter abstention is not allowed. Shotts (2006)

and Meirowitz and Shotts (2007) consider an alternative role for signaling in elections, which

is to in�uence incumbent politicians�perceptions of re-election prospects.

The remainder of this paper is organized as follows. Section 2 introduces the model, and

Section 3 characterizes equilibrium, assuming the various combinations of o¢ ce or policy

motivation, and credible commitments or responsive candidates. Section 4 then introduces

the possibility of abstention, and Section ?? analyzes welfare for the above model speci�ca-
tions. Section 6 considers the possibility of multiple candidates, and Section 7 concludes.

Proofs of most formal results are presented in the Appendix.

2 The Model

A society consists of N citizens and two candidates, A and B. From an interval [�1; 1]
of alternatives, a policy must be chosen that will provide a common bene�t to every citizen.

The optimal policy Z 2 f�1; 1g lies at one of the two extremes of the policy space, but is
an unknown state of the world; ex ante, either extreme is equally likely to be optimal (i.e.

Pr (Z = 1) = Pr (Z = �1) = 1
2
). Citizens unanimously prefer policies that are as close as

possible to Z: if policy x is implemented, each receives the following utility:

u (x; Z) = � (x� Z)2 . (1)

Note that u (x; Z) is strictly concave in x, re�ecting an assumption that citizens are risk-

averse.

On the issue at hand, citizens di¤er in expertise. Independently from one another (and

independent of Z), each citizen is endowed with information quality Qi 2 [0; 1], drawn from a
common distribution F which, for technical convenience, is assumed to have a di¤erentiable

and strictly positive density f . Each citizen also observes a private signal Si 2 f�1; 1g,
which is positively correlated with the true state variable Z (but independent of Qi and,

conditional on Z, independent of other citizens�signals). The strength of this correlation

varies with expertise; conditional on Z and Qi, the distribution of Si is given as follows,

where s; z 2 f�1; 1g and q 2 [0; 1],

Pr (Si = sjZ = z;Qi = q) =
1

2
(1 + zsq) . (2)

The correlation between Si and Z (conditional on Qi), then, is simply

corr (Si; ZjQi) = Qi.
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Thus, Si can be interpreted as a citizen�s private opinion of Z, and Qi can be interpreted as

the strength of her conviction. To a perfectly informed citizen (i.e. Qi = 1), for instance,

Si reveals Z perfectly; to a perfectly uninformed citizen (i.e. Qi = 0) Si reveals nothing.

The distribution F of expertise within the population is common knowledge, but Qi and

Si are observed only privately. Conditional on private information, the posterior distribution

of Z is given by the same expression as in (2):

Pr (Z = zjSi = s;Qi = q) =
1

2
(1 + zsq) . (3)

for s; z 2 f�1; 1g and q 2 [0; 1]. A citizen�s expectation of the optimal policy, then, is

simply E (ZjSi; Qi) = SiQi. Based on her private information alone, this is the policy that

would maximize the expectation of (1). Thus, preferences over policies are single-peaked,

as in traditional models. By the assumption that F has full support (i.e. that f is strictly

positive), the distribution of citizens�ideal points has full support on the policy interval.

With individual citizens thus informed, candidates propose policy platforms xA; xB 2
[0; 1] (say xA � xB). Observing these platforms, each citizen then votes (at no cost) for one

of the two candidates. For most of Section 3, abstention from voting is not allowed. Section

4 introduces voter abstention, and then Section 6 considers the possibility of additional

candidates. Representing voter abstention as a vote for candidate 0, therefore, the set

of actions expands from fA;Bg to fA;B; 0g to fA;B;C;D; 0g. I restrict attention to

pure strategies7 that are also symmetric, meaning that citizens of the same type (q; s) 2
[0; 1] � f�1; 1g respond to candidate platforms (xA; xB) 2 [0; 1]2 identically. Let � =�
� : [0; 1]� f�1; 1g � [0; 1]2 ! fA;Bg

	
denote the set of all such strategies.8

Votes are cast simultaneously, and an election winner W 2 fA;Bg is determined by
simple majority rule, breaking a tie if necessary by a fair coin toss. Let yj 2 [0; 1] denote
the policy that candidate j implements after winning the election (i.e. if W = j) and taking

o¢ ce. In Section 3.4, yj : Z2+ ! [�1; 1] is a strategic choice variable, possibly di¤ering in
response to vote totals (a; b) 2 Z2+. In Sections 3.2 and 3.3, an election winner is instead

required to implement his campaign platform yj = xj.

Following Myerson (1998, 2000), I assume that the precise number N of citizens is un-

known, but is commonly known to follow a Poisson distribution with mean �; together with

voter and candidate strategies, the realization of N determines the numbers NA and NB of

votes for either candidate, which in turn determine the election winner W , and therefore

the ultimate policy outcome Y 2 [�1; 1].9 Citizens and policy-motivated candidates seek

7Mixed strategies could be allowed, but would be used with zero probability in equilibrium.
8If abstention is allowed, the set of strategies is instead �0 =

n
� : [0; 1]� f�1; 1g � [0; 1]2 ! fA;B; 0g

o
.

9As Bade (2006) discusses, one advantage of this assumption is that NA and NB are independent. In

the numerical examples in Sections 3.4 and 6, N is instead �xed and known.
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to maximize the expectation of u (Y; Z), while o¢ ce-motivated candidates seek to maximize

the probability of being elected. The analysis in Section 3 seeks to characterize a perfect

symmetric Bayesian equilibrium, in which citizen and candidate strategies are optimal in

each subgame, given the behavior of others.

3 Equilibrium

This section analyzes perfect Bayesian equilibrium behavior for both citizens and can-

didates, for various speci�cations of the model outlined above. This analysis proceeds by

backward induction: section 3.1 begins with the voting stage-game, assuming that candi-

date platforms have been �xed. Given voters�behavior, sections 3.2 and 3.3 then allow

candidates to choose policy platforms, with the assumption that platform commitments

are binding: the winning candidate must implement his platform policy (i.e. yj = xj for

j = A;B). These two sections di¤er in the assumption of candidate motivations: in Sec-

tion 3.3, candidates� themselves citizens� seek to maximize (1) by implementing superior

policies; in Section 3.2, candidates desire only the perquisites of winning and holding o¢ ce.

Finally, Section 3.4 treats campaign platform promises as non-credible, allowing the winning

candidate to implement any policy of his choice. As in Section 3.3, candidates are assumed

to be policy-motivated.

For the exposition of results in Section 3, some additional notation is useful. First,

let p� (jjz) denote the probability with which a citizen of type (q; s) votes for candidate
j 2 fA;B; 0g in state z 2 f�1; 1g, according to voting pro�le � (which depends implicitly
on candidate platforms (xA; xB), which are suppressed from notation).

p� (jjz) =
X
s=1;�1

Z
q:�(q;s;xA;xB)=j

1

2
(1 + zsq) f (q) dq. (4)

By the decomposition property of Poisson random variables (see Myerson, 1998), the numbers

NA andNB of A and B votes in state z are independent Poisson random variables with means

�p� (Ajz) and �p� (Bjz). Accordingly, let  � (a; bjz) denote the probability in state z of a
particular voting outcome (NA; NB) = (a; b).

 � (a; bjz) =
e��p�(Ajz)

a!
[�p� (Ajz)]a

e��p�(Bjz)

b!
[�p� (Bjz)]b . (5)

Of particular interest are events in which one additional vote for either candidate would

be pivotal, changing the election outcome. Let �0� (z) denote the probability in state z of an

exact tie, and let �A� (z) and �
B
� (z) denote the probabilities in state z with which candidates
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A and B, respectively, win the election by exactly one vote:

�0� (z) �
1X
k=0

 � (k; kjz) (6)

�A� (z) �
1X
k=0

 � (k + 1; kjz) (7)

�B� (z) �
1X
k=0

 � (k; k + 1jz) . (8)

A vote for candidate A is pivotal (event pivA) when either the candidates tie and A loses the

tie-breaking coin toss, or A wins the coin toss but loses the election by exactly one vote; a

B vote is pivotal (event pivB) under symmetric circumstances. In state z, therefore, these

events occur with the following probabilities:

Pr� (pivAjz) =
1

2
�0� (z) +

1

2
�B� (z)

Pr� (pivBjz) =
1

2
�0� (z) +

1

2
�A� (z) .

By the environmental equivalence property of Poisson games (see Myerson, 1998), an

individual citizen from within the game reinterprets NA and NB as the numbers of A and

B votes cast by her peers; by voting herself, she can add one to either total. Accord-

ingly,  � (a; bjz) is the probability of a particular election outcome should she abstain, and
Pr� (pivAjz) and Pr� (pivBjz) are the probabilities with which her own A or B vote, respec-

tively, will be pivotal. From (1), the utility di¤erence in state Z between two policies x1
and x2 can be written as

u (x2; Z)� u (x1; Z) = � (x2 � Z)2 + (x1 � Z)2

= 2 (x2 � x1) (Z � �x) ,

where �x � x1+x2
2

is the midpoint between the two policies. The sign of this expression

depends on which policy is closer to the ideal policy Z: having assumed that xA � xB, the

superior policy in state �1 is xA, while xB is better in state 1. Accordingly, let Pz denote
the probability in state z with which a single vote for the superior candidate is pivotal, and

let ~Pz denote the probability in state z with which a single vote for the inferior candidate is

pivotal (where, in both cases, the implicit dependence on the voting strategy � is suppressed

from notation):

P1 = Pr� (pivBjZ = 1) P�1 = Pr� (pivAjZ = �1)
~P1 = Pr� (pivAjZ = 1) ~P�1 = Pr� (pivBjZ = �1).
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3.1 Equilibrium Voting Behavior

If the policy outcomes that will result from electing candidates A and B are determined

exogenously, then candidates have no role to play, and the election reduces to a game among

citizens only. Citizens seek to implement the superior policy, but which policy outcome is

superior depends on the state variable: when yA < yB, candidate A�s policy is superior to

candidate B�s policy if Z = �1 and candidate B�s policy is superior if Z = 1. A citizen�s

expectation E (ZjQi; Si) = QiSi of the state depends on her private information; of natural

interest, therefore, is a belief threshold strategy �T , according to which citizens with high

expectations vote B and citizens with low expectations vote A.

De�nition 1 The symmetric voting strategy pro�le �T is a belief threshold strategy, with
belief threshold T 2 [�1; 1], if

�T (q; s) =

(
A if qs � T

B if qs > T
.

�T is a symmetric belief threshold strategy if T = 0.

Lemma 1 states that optimal voter responses to exogenous platforms yA < yB can be

characterized by a belief threshold, and that an equilibrium belief threshold exists.10 If

platforms yB = �yA are symmetric around zero then equilibrium voting is a symmetric belief
threshold strategy, meaning that voting is also sincere (i.e. � (q;�1) = A and � (q; 1) = B).

Lemma 1 If yA; yB are �xed exogenously then the best response to any symmetric voting
strategy � is a belief threshold strategy �T . Furthermore, there exists a belief threshold T �

such that �T � is a symmetric Bayesian equilibrium. �0 is such an equilibrium if and only if

policy outcomes yB = �yA are symmetric around zero.

Proof. See Appendix.
In this section, candidate platforms are assumed to be �xed. In what follows, candidates

instead choose policy outcomes (or at least platforms) to maximize some objective, taking

the belief threshold voting behavior of characterizes as given.

3.2 Platform Commitment and O¢ ce Motivation

In this and the following section, candidates are assumed to commit credibly to policy

platforms xA and xB before the election. In other words, the winning candidate must

10If yA = yB then, trivially, any voting strategy constitutes an equilibrium.
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implement his platform (i.e. yj = xj for j = A;B). Candidates are further assumed to be

o¢ ce motivated, each receiving utility 1 if he wins the election and utility 0 if he loses. A

candidate�s expected utility, then, is merely his probability of winning the election, given

voters�strategies and his own and his opponent�s platforms.

A citizen prefers the policy platform that is nearest to her private expectation of Z;

accordingly, as Lemma 1 states, citizens with high expectations vote for candidate B while

citizens with low expectations vote for candidate A. Which candidate receives the larger

share of votes, therefore, depends (in expectation) on which platform is closest to a larger

fraction of citizens�expectations. Given the symmetry of the model, this is the platform that

is closer to the zero policy (i.e. the ex ante median of citizens�expectations). In choosing his

platform, therefore, an o¢ ce-motivated candidate seeks to adopt a more moderate position

than his opponent. Accordingly, as Theorem 1 now states, the unique perfect symmetric

Bayesian equilibrium is such that both candidates adopt the zero policy.

Theorem 1 (Median Voter Theorem) If policy platform commitments are binding and

candidates are o¢ ce-motivated, and if there is a unique equilibrium threshold T � (xA; xB) in

the stage-game associated with every pair xA 6= xB of candidate platforms, then (��; x�A; x
�
B)

is a perfect symmetric Bayesian equilibrium if and only if �� is the belief threshold strategy

�T � and x�A = x�B = 0.

Proof. See Appendix.
The candidate behavior predicted by Theorem 1 closely resembles that predicted by

the well-known Median Voter Theorem introduced by Black (1948) and Downs (1952), and

for the same reason: e¤orts to attract large fractions of the electorate push candidates

toward one another, and toward the median voter�s ideal point. The welfare implications in

this model di¤er dramatically, however, from the implications in a model with fundamental

di¤erences in tastes. In that context, the median voter theorem is a positive outcome,

representing a compromise between the competing desires of citizens at opposite ends of the

preference spectrum; if citizens are risk-averse, the median voter�s ideal policy minimizes the

maximum disutility experienced by any citizen, and so may maximize a utilitarian social

welfare function. In this context, by contrast, citizens unanimously prefer (ex post) a more

extreme policy; the zero policy is optimal only when no information is available beyond the

common prior. In this setting, then, the median voter theorem represents a complete failure

to utilize citizens�private information.

The result that candidate platforms converge in equilibrium has sometimes been viewed

as an empirical failing of rational voting models, both because candidate platforms di¤er in

real-world elections, and because if candidates did adopt identical platforms then citizens
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would have no incentive to vote. As in previous literature, however, the prediction here of

platform convergence depends on candidate motivation; in the following section, equilibrium

candidate platforms do not coincide.

3.3 Platform Commitment and Policy Motivation

In this section, candidates are assumed to be ordinary citizens, choosing policy platforms

to maximize the expectation of (1). The optimal policy for such a candidate is his expec-

tation of the state, conditional on available information. Though candidate j must commit

to a policy platform before observing the election outcome, he can condition his expectation

on the eventW = j in which he wins the election, since only then will his platform policy be

implemented. Theorem 2 now states that equilibrium exists, and that equilibrium voting

is informative, implying that candidates anticipate learning di¤erent pieces of information

upon winning the election, and that policy platforms diverge accordingly. In particular, an

equilibrium exists in which voting is also sincere.

Theorem 2 (Policy divergence) If policy platform commitments are binding and candi-

dates are policy-motivated, and if there is a unique equilibrium threshold T � (xA; xB) in the

stage-game for every pair xA 6= xB of candidate platforms, then (��; x�A; x
�
B) is a perfect

symmetric Bayesian equilibrium only if �� is the belief threshold strategy �T �(x�A;x�B) and

x�A = ẑA (�
�; x�A; x

�
B) < ẑB (�

�; x�A; x
�
B) = x�B, where ẑj (�; xA; xB) � E (ZjW = j;�; xA; xB).

Furthermore, such an equilibrium exists, with T � = 0.

Proof. See Appendix.
The reason that candidates adopt di¤erent policy platforms in Theorem 2 is that they

learn di¤erent information from voters: candidate A is more likely to be elected in state

�1 and candidate B is more likely to be elected in state 1. Conditional on being elected,

therefore, A�s expectation of Z is lower than B�s. It may be, however, that voting conveys

more information than merely the identity of the election winner. For example, with infor-

mative voting, if candidate B wins the election in state �1 it will likely be by only a few
votes, whereas in state 1 he may win by a landslide. Put di¤erently, the election winner is

determined by the sign of the di¤erence NB�NA in vote totals for the two candidates; it may
be the case that the magnitude jNB �NAj of this di¤erence carries informational content as
well. If this is the case, a candidate who observes vote totals may wish to deviate from the

campaign policy platform that he committed to before the election. In this section, such

deviations are prohibited. In real-world elections, however, pre-election commitments may

be quite di¢ cult or even impossible to enforce. Accordingly, the next section relaxes the

assumption that campaign commitments are binding.

11



3.4 Responsive Candidates

In this section, as in Section 2, candidates are policy-motivated, seeking to maximize

the expectation of (1), just like ordinary citizens. Unlike Section 2, however, a winning

candidate is no longer required to implement the platform policy that he adopted before the

election.11 As Lemma 2 now states, this leads a candidate to implement his expectation of

Z. Because policy is implemented after vote totals are observed, a candidate conditions his

expectations on this information.

Lemma 2 If candidates are responsive then candidate j�s best response to vote totals NA = a

and NB = b, given the voting pro�le �, is

y�j (a; b;�) = E (ZjNA = a;NB = b;�) � ẑa;b (�) .

Proof. For any set 
 of information, expected utility

Eu (x; Zj
) =
X
z=1;�1

� (x� z)2 Pr (zj
)

is strictly concave in x, and is uniquely maximized at x� = E (Zj
). Letting 
 = fNA; NBg
yields the desired result.

Because candidates are not required to implement their platform policies, campaign

promises lack credibility. Voters no longer choose between candidates�platforms, there-

fore; instead, they anticipate candidates� choices in the �nal subgame in which policy is

implemented, as given by Lemma 2. If citizens vote according to a belief threshold strategy,

as in the equilibrium of Sections 3.1 through 3.3, then the impact on policy of a single vote is

described by Lemma 3: essentially, every A vote pushes the winning candidate�s expectation

to the left, and every B vote pushes his expectation to the right.

Lemma 3 If �T is a belief threshold strategy (with �1 < T < 1) then ẑa+1;b (�T ) <

ẑa;b (�T ) < ẑa;b+1 (�T ) for all a; b 2 Z+.

Proof. See Appendix.
When her fellow-citizens vote according to a belief threshold strategy, Lemma 3 im-

plies that a citizen must choose between pushing the winning candidate�s expectations� and

therefore, by Lemma 2, the ultimate policy outcome� to the left or to the right. An indi-

vidual whose private expectation of Z is low will therefore vote A, and an individual whose

private expectation of Z is high will vote B. In other words, the best response to a belief

11Since policy-motivated candidate behavior is optimal from voters�perspective, an o¢ ce-motivated can-

didate would wish to mimic the same behavior.

12



threshold strategy is another belief threshold strategy. Accordingly, Theorem 3 identi�es a

perfect symmetric Bayesian equilibrium, in which citizens vote according to the sincere belief

threshold strategy �0, sincerely reporting their private signals, and candidates respond by

implementing their expectations of Z, given vote totals, as in Lemma 2. Platform policies

do not matter, since platform commitments are not credible.

Theorem 3 (Signaling) If candidates are responsive then the best voting response to a
belief threshold voting strategy is another belief threshold strategy. Furthermore, if T � = 0

and y�j (a; b;�) = ẑa;b (�) is the policy choice described in Lemma 2 for j = A;B, then

(x�A; x
�
B; �T � ; y

�
A; y

�
B) is a perfect symmetric Bayesian equilibrium for any pair x

�
A; x

�
B 2 [�1; 1]

of policy platforms.

Proof. See Appendix.
In Sections 3.1 through 3.3, as in standard voting models, an individual vote has in�uence

only in the extremely unlikely event that it either makes or breaks a tie. In the equilibrium

of Theorem 3, however, voting follows a belief threshold strategy; according to Lemma 3,

therefore, every vote in�uences the ultimate policy outcome, by pushing the policy-maker�s

expectations one way or the other. Thus, the popular mantra that "every vote counts" in

public elections can, in this setting, be taken quite literally.

The assumption that candidate platforms lack credibility implies that platforms have no

role to play in the equilibrium of Theorem 3. If candidates nevertheless adopted platforms

as in Theorem 2 of Section 3.3, however� that is, based on the expectation of Z conditional

only on winning the election� then deviations from pre-election commitments would be

predictable in the following way: a candidate who won the election by more than the expected

number of votes would implement a more extreme policy than his campaign platform, and a

candidate who won the election by fewer than the expected number of votes would implement

a more moderate policy than his campaign platform.12

Propositions 1 and 2 illustrate the equilibrium identi�ed in Theorem 3 with simple exam-

ples, assuming N to be �xed and known, and F to be uniform. The electorate in Proposition

1 consists of only two citizens. In equilibrium, candidates �rst propose platform policies

x�A = �0:5 and x�B = 0:5. If both citizens vote for A or for B, the winning candidate then
implements �0:8 or 0:8, respectively, instead of the platform policy; if the election is tied,

the winning candidate implements 0 instead.

12Since equilibrium voting follows a belief threshold strategy whether platform commitments are binding

(as in Theorem 2 of Section 3.3) or not (as in Theorem 3 of this section), adopting the policy platform

prescribed by Theorem 2 might be optimal in a hybrid model in which candidate platforms are "sticky"

(e.g. commitments are binding with some probability, or deviations from platforms are costly), though such

a model is beyond the scope of this paper.
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Proposition 1 Let F be a uniform distribution and let N = 2. If candidates are responsive

then there exists an equilibrium (x�A; x
�
B; �

�; y�A; y
�
B) such that candidate platforms are x

�
B =

�x�A = 0:5, voting �� = �0 is sincere, and policy outcomes are as follows: y�A (1; 1) =

y�B (1; 1) = 0 and y
�
B (0; 2) = �y�A (2; 0) = 0:8.

Proof. With sincere voting, a citizen votes B if Si = 1 and votes A otherwise, so vote proba-
bilities reduce from (4) to p (Bj � 1) =

R 1
0
1
2
(1� q) dq = 1

4
and p (Bj1) =

R 1
0
1
2
(1 + q) dq = 3

4
,

and expectations are given by ẑ0;2 =
� 1
2
(1=4)2+ 1

2
(3=4)2

1
2
(1=4)2+ 1

2
(3=4)2

= 0:8 and ẑ1;1 =
� 1
2
[2(1=4)(3=4)]+ 1

2
[2(1=4)(3=4)]

1
2
[2(1=4)(3=4)]+ 1

2
[2(1=4)(3=4)]

=

0. Candidate B can win the election either by receiving both citizens�votes or by receiving

one vote and winning the tie-breaking coin toss. Conditional only on winning the election,

therefore, his expectation of Z is given by ẑB =
� 1
2 [(1=4)

2+:5�2(1=4)(3=4)]+ 1
2 [(3=4)

2+:5�2(1=4)(3=4)]
1
2 [(1=4)

2+:5�2(1=4)(3=4)]+ 1
2 [(3=4)

2+:5�2(1=4)(3=4)]
=

0:5. Probabilities and expectations for candidate A are determined symmetrically. That

�� = �0, x�j = ẑj, and y�j (a; b) = ẑa;b together constitute an equilibrium follows from Theorem

3.

Proposition 2 illustrates the same basic behavior, but with three citizens instead of two

(therefore avoiding the possibility of a tie). In equilibrium, candidates propose platform

policies �0:57 but then implement �0:5 or �0:93.

Proposition 2 Let F be a uniform distribution and let N = 3. If candidates are responsive

then there exists an equilibrium (x�A; x
�
B; �

�; y�A; y
�
B) such that candidate platforms are x

�
B =

�x�A � 0:5652, voting �� = �0 is sincere, and policy outcomes are as follows: y�B (1; 2) =

�y�A (2; 1) = 0:5 and y�B (0; 3) = �y�A (3; 0) � :9286.

Proof. As in Proposition 1, sincere voting produces vote probabilities

p (Aj � 1) = p (Bj1) = 3

4

p (Aj1) = p (Bj � 1) = 1

4
.

Upon winning, therefore, candidate B�s expectation of Z is either

ẑ1;2 =
� 1
2 [3(3=4)(1=4)

2]+ 1
2 [3(1=4)(3=4)

2]
1
2 [3(3=4)(1=4)

2]+ 1
2 [3(1=4)(3=4)

2]
= 0:5 or ẑ0;3 =

� 1
2
(1=4)3+ 1

2
(3=4)3

1
2
(1=4)3+ 1

2
(3=4)3

= 26
28
� :9286. Condi-

tional only on candidate B winning the election, the expectation of Z is given by ẑB =
� 1
2 [3(3=4)(1=4)

2+(1=4)3]+ 1
2 [3(1=4)(3=4)

2+(3=4)3]
1
2 [3(3=4)(1=4)

2+(1=4)3]+ 1
2 [3(1=4)(3=4)

2+(3=4)3]
= 26

46
� 0:5652. Probabilities and expectations for

candidate A are determined symmetrically. That �� = �0, x�j = ẑj, and y�j (a; b) = ẑa;b

together constitute an equilibrium follows from Theorem 3.

Propositions 1 and 2 illustrate basic equilibrium behavior for an electorate with responsive

candidates. They also demonstrate how the announcement of an election outcome might

alter a candidate�s beliefs about the true state of the world. This behavior is consistent
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with popular assessment of actual candidate behavior in real-world elections. Observers have

long noted an empirical tendency for winning candidates to moderate their political stances

(relative to campaign platforms) after close-shave elections, and to move toward extreme

policy options after landslide victories, interpreting such as "mandates" from voters. In this

setting, the notion of a mandate can be interpreted quite literally: large margins of victory

communicate strong evidence in favor of extreme policy moves.

4 Abstention

The analysis of Section 3 assumes that every citizen must vote. Most democracies

allow abstention, however, and abstention rates tend to be fairly high. In this section,

citizens are allowed to vote for either candidate or to abstain from voting. With this

modi�cation, Lemma 4 repeats the voting stage-game analysis of Section 3.1, treating policy

outcomes yA < yB as exogenous. As before, citizens who strongly believe the state to be

high or low will have strong preferences for yB or yA, respectively. Now, however, a belief

threshold strategy �T1;T2, can be rede�ned using two thresholds instead of one, to allow for the

possibility that citizens who are almost indi¤erent between the two policy outcomes prefer

to abstain altogether from voting.

De�nition 2 The symmetric voting strategy pro�le �T1;T2 is a belief threshold strategy, with
belief thresholds T1 � T2, if

�T1;T2 (q; s) =

8><>:
A if qs � T1

0 if T1 < qs < T2

B if qs � T2

.

�T1;T2 is a symmetric belief threshold strategy if T2 = �T1.

Since voting is costless, and since each citizen�s private signal induces a strict preference

ordering over the two policy outcomes, it may seem unlikely that allowing abstention will

alter equilibrium behavior. However, as Lemma 1 states, T1 < T2 in equilibrium, implying

positive abstention. The logic behind this result is the swing voter�s curse (Feddersen and

Pesendorfer, 1996): because citizens�opinions are correlated with the truth, and voting is

informative, the candidate with the superior policy is more likely to win the election by one

vote than to lose by one vote. A vote for the inferior candidate is therefore more likely

to be pivotal than is a vote for the superior candidate, so a citizen who is indi¤erent� or,

by continuity, almost indi¤erent� between voting for the two candidates strictly prefers to

abstain.
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Lemma 4 (Swing voter�s curse) If policy outcomes yA < yB are exogenous and absten-

tion is allowed then the best response to any voting strategy � is a belief threshold strategy

�T1;T2. Such a strategy is a symmetric Bayesian (partial) equilibrium only if T1 < T2. Fur-

thermore, there exist belief thresholds T �1 < T �2 such that �T �1 ;T �2 is a symmetric Bayesian

(partial) equilibrium. If yB = �yA then there exists a threshold T � > 0 such that ��T �;T � is
a symmetric Bayesian (partial) equilibrium.

Proof. See Appendix.
The last part of Lemma 4 points out that if policy outcomes are symmetric around the

zero policy then equilibrium voting behavior may exhibit the same symmetry. In that case,

whether a citizen votes or not depends only on her whether her information qualityQi exceeds

the threshold T �. Like Lemma 1, Lemma 4 characterizes equilibrium responses to exogenous

policy outcomes. Proposition 3 now treats the case in which policy outcomes are determined

by campaign platforms, which are chosen by policy-motivated (i.e. citizen) candidates before

the election. Like Theorem 2, Proposition 3 predicts that campaign platforms will diverge

in equilibrium. Partial equilibrium voting behavior is given by Lemma 4, implying positive

abstention in equilibrium. As in Lemma 4, equilibrium voting behavior and candidate

platforms may be symmetric around the zero policy.

Proposition 3 If policy platform commitments are binding, candidates are policy-motivated
and abstention is allowed, and if there is a unique equilibrium voting response �� (xA; xB)

in the stage-game for every pair xA 6= xB of candidate platforms, then there exists a thresh-

old T � such that (��T �;T � ; x�A; x
�
B) is a perfect Bayesian equilibrium, where x

�
B = �x�A =

ẑB (��T �;T �).

Proof. See Appendix.
Like Theorem 2, Proposition 3 predicts that candidate platforms will diverge in equilib-

rium, as candidates learn di¤erent information upon winning the election. Other than the

fact of winning the election, however, a candidate can infer no information about vote totals

because he must choose his platform policy before voting takes place. Once vote totals

are announced, a candidate may therefore wish to implement some policy other than his

campaign platform. This possibility is allowed in Theorem 4.

By allowing the winning candidate to implement any policy of his choice, Theorem 4

resembles Theorem 3. Like that theorem, Theorem 4 predicts that candidates respond

identically to vote totals. This implies, however, that a citizen do not actually care who

wins the election, and therefore no longer restricts her attention to the rare case in which

her vote changes the identity of the election winner. The logic of the swing voter�s curse,

therefore, no longer applies.
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Since voting is costless and pivotal votes are no longer of concern, it may seem unlikely

that citizens will abstain from voting in equilibrium� even a minimally informed citizen�s

signal, after all, is more likely to be Z than �Z. To the contrary, however, Theorem 4

states that equilibrium belief thresholds diverge, implying positive abstention. The logic

of this result is as follows: in equilibrium, the winning candidate interprets vote totals as

indicative of voters�private information. Each A vote, therefore, lowers his expectation of

Z, while each B vote raises his expectation of Z. Since individual signals are correlated

with the truth and voting is informative, the winning candidate�s policy expectations will

likely be pushed in the true direction of Z. An additional vote in the proper direction,

therefore, has less marginal impact than an additional vote in the wrong direction. This

makes a perfectly uninformed citizen� and, by continuity, a poorly informed citizen� prefer

to abstain. Perhaps more intuitively, a perfectly uninformed citizen prefers, given her fellow-

citizens�vote totals a and b, to implement the policy E (Zja; b;��) � ẑa;b. Since (by Lemma

2) this is precisely the choice made by the winning candidate, the uninformed citizen achieves

her optimum by abstaining.13

Theorem 4 (Signaling voter�s curse) If candidates are policy-motivated and responsive
to vote totals and voter abstention is allowed then the best response to any belief threshold

strategy �T1;T2 is another belief threshold strategy �T �1 (�T1;T2);T �2 (�T1;T2)
, where T �1 (�T1;T2) <

T �2 (�T1;T2); furthermore, a threshold T
� exists such that�

��T �;T � ; xA; xB; y
�
a;b

�
is a perfect Bayesian equilibrium for any candidate platform pair (xA; xB),

where y�a;b is the candidate response function described in Lemma 2.

Proof. See Appendix.
Proposition 4 provides a simplistic, but illustrative, example of the equilibrium identi�ed

in Theorem 4. Information quality is distributed uniformly, and there are only two citizens.

In this simple example, because of the signaling voter�s curse, equilibrium voter turnout is

only 42%! If campaign platforms re�ect candidates�expectations of the state conditional

only on winning, as in Section 3.3, then they will diverge (to �0:5242), as in Theorem 2.

Once election results are known, policy will then adjust, as in Theorem 3. A tie will cause

either candidate to moderate his policy choice (to 0), while a slight majority will push his

policy choice in the opposite direction (to �0:7907), and a large majority will make the
policy even more extreme (�0:9730). More often than not (i.e. with probability 0:63), then,
the ultimate policy outcome that is implemented is more extreme than either candidate�s

campaign platform policy.

13By voting, a citizen shifts the policy response to either ẑa+1;b or ẑa;b+1.
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Proposition 4 Let N = 2 be known and let F be uniform on [0; 1]. If candidates are re-

sponsive then (x�A; x
�
B; ��T �;T � ; y

�
A; y

�
B) is a perfect Bayesian equilibrium, where x

�
B = �x�A �

0:5242, y�B (0; 0) = y�A (0; 0) = 0, y
�
B (0; 1) = �y�A (1; 0) � 0:7907, and y�B (0; 2) = �y�A (2; 0) �

0:9730, and where ��T �;T � is a symmetric belief threshold strategy with T � � 0:5814. In this
equilibrium, expected turnout is approximately 42%.

Proof. See Appendix.
Proposition 5 next demonstrates that the logic of voter abstention applies even to an

"electorate" comprised of only a single citizen (i.e. N = 1). As the sole voter, this citizen

has complete control over the voting outcome. Nevertheless, she abstains in equilibrium with

0:33 probability. Before the election, candidates adopt platforms at �0:44; if she abstains,
they implement the 0 policy instead; if she votes, they respond by implementing �0:67.

Proposition 5 Let N = 1 be known and let F be uniform on [0; 1]. If candidates are respon-

sive then there is a unique belief threshold strategy ��T �;T � such that (x�A; x
�
B; ��T �;T � ; y

�
A; y

�
B)

is a perfect symmetric Bayesian equilibrium. In this equilibrium, T � = 1
3
, x�B = �x�A � 0:44,

y�j (0; 0) = 0, and y
�
j (0; 1) = �y�j (1; 0) � 0:67, and expected turnout is approximately 67%.

Proof. See Appendix.
This exaggerated example elucidates the logic behind the signaling voter�s curse: because

the winning candidate does not know the citizen�s type, he interprets her vote as though

her information quality is average. When it is below average, therefore, she anticipates

that the candidate will overreact to her vote, implementing a policy more extreme than her

information merits. By abstaining, she achieves a more moderate policy outcome.

The results of this section exhibit the same behavioral prediction: whether policy out-

comes are exogenous (as in Lemma 4), determined by binding platform commitments (as

in Proposition 3), or chosen ex post by the winning candidate (as in Theorem 4) informed

citizens vote in equilibrium and uninformed citizens abstain. This prediction is consistent

with the empirical evidence, reviewed in Section ??, that voter turnout is correlated with in-
formation variables such as education, and age. As Feddersen and Pesendorfer (1996) point

out, it also provides an explanation for voter abstention when voting is costless, such as

roll-o¤. Since equilibrium belief thresholds depend implicitly on the underlying distribution

of information, these results are also consistent with evidence in McMurray (2010b), that

the empirical importance of information is relative, rather than absolute. Turnout is also

highest among those with extreme policy preferences, consistent with evidence from Palfrey

and Poole (1987).
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5 Welfare

The Condorcet (1785) jury theorem states that, as an electorate grows large, the majority

decision identi�es the better of two alternatives with probability approaching one. As

originally stated, this result assumed sincere voting with no abstention; in this model, voting

is instead strategic. Nevertheless, the same result is obtained in Theorem 5, for each of the

above speci�cations of the model.

Theorem 5 (Jury theorem) Let f�kg
1
k=1 be a sequence of population size parameters with

limk!1 �k =1. Then the following are true:
1. If yA and yB are exogenous then

(a) for any k, the symmetric voting strategy ���k that maximizes expected utility is a

symmetric Bayesian (partial) equilibrium, and

(b) p limk!1 Y
�
�k
=

(
yA if Z = �1
yB if Z = 1

.

2. If policy platform commitments are binding and candidates are policy-motivated then

(a) for any k, the voting strategy ���k and platform pair
�
x�A�k ; x

�
B�k

�
that together

maximize expected utility constitute a perfect Bayesian equilibrium, and

(b) p limk!1 Y
�
�k
= Z.

3. If policy-motivated candidates choose policy responses yA; yB to vote totals (NA; NB)

then

(a) for any k, the voting strategy ���k and policy responses
�
y�A�k ; y

�
B�k

�
that to-

gether maximize expected utility, together with any platform pair (xA; xB), constitute a perfect

Bayesian equilibrium, and

(b) p limk!1 Y
�
�k
= Z.

4. Claims 1 through 3 remain true if voter abstention is allowed.

Proof. See Appendix.
Theorem 5 has a number of implications for institutional design. For example, the lack

of credibility underlying campaign promises is often bemoaned for introducing uncertainty

about candidates�future behavior. Part 3 of Theorem 5 implies, however, that responsive

candidates will utilize information gleaned from electoral results to implement the socially

optimal policy; policies that bind candidates to campaign platform policies will therefore

only inhibit welfare.

A related implication of Theorem 5 is that, when campaign platform commitments are

binding, welfare is higher when candidates are policy-motivated than when they are o¢ ce-

motivated. Speci�cally, Lemma 1 implies identical voter behavior regardless of candidate

motivation; given this behavior, Part 2 of Theorem 5 implies that the policy platforms
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adopted by policy-motivated candidates (which di¤er in equilibrium from those adopted by

o¢ ce-motivated candidates, by Theorems 1 and 2) are socially optimal. This result may

have relevance for determining optimal �nancial rewards for o¢ ce holders.

The result that large electorates do well at selecting good policies might motivate popular

"get out the vote" e¤orts to encourage voter participation. Some nations have gone as

far as to make voting mandatory, levying �nes on non-voters. Similar policies have been

recommended for the United States (e.g. Lijphart, 1997). In an environment such as this,

such policies might seem particularly useful, since every citizen possesses valuable private

information; by allowing abstention, a voluntary election fails to utilize this information.

On the other hand, it is also sometimes argued that voters who lack information should be

prohibited from voting.

An implication of Theorem 5, however, is that equilibrium voter abstention is socially

optimal. Speci�cally, Part 4 of Theorem 5 states that, allowing voter abstention in each

version of the model, the optimal combination of voter and candidate behavior constitutes

a Bayesian equilibrium. As discussed in Section 4, any such equilibrium involves voter

abstention. One way to understand this result is that, as McMurray (2010b) points out, an

optimal election mechanism would place greater weight on the votes of citizens with high-

quality information than on those of poorly informed citizens; allowing abstention is a crude

way of accomplishing this. With responsive candidates, an alternative intuition comes from

viewing voters and candidates as senders and receivers in a "cheap talk" game (a la Crawford

and Sobel, 1982). Within that framework, allowing abstention amounts to expanding the

size of the message space from two messages to three. This interpretation is immediately

evident in Proposition 5, where the single citizen divides her type space into three equal

segments, voting according to �� 1
3
; 1
3
in equilibrium.

6 Multiple Candidates

In this section, the set fA;B;C;Dg of candidates is expanded from two to four. As in

Section 3.4, candidates are responsive; as in Section 4, abstention is allowed. De�nition 3

rede�nes the concept of a belief threshold strategy for this setting, using four belief thresh-

olds instead of two. Under such a strategy, citizens with strong private opinions vote for

candidates A or D, citizens with moderate opinions vote for candidates B or C, and citizens

with only weak opinions abstain.
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De�nition 3 �TAB ;TA0;T0B ;TCD is a belief threshold strategy with abstention if

�TAB ;TB0;T0C ;TCD (q; s) =

8>>>>>><>>>>>>:

A if qs 2 (�1; TAB)
B if qs 2 (TAB; TB0)
0 if qs 2 (TB0; T0C)
C if qs 2 (T0C ; TCD)
D if qs 2 (TCD; 1)

.

If T0B = �TA0 � T1 and TCD = �TAB � T2 then ��T2;�T1;T1;T2 is a symmetric belief threshold

strategy.

Theorem 6 now states the existence of a perfect Bayesian equilibrium, characterized by

belief threshold voting. As prescribed by Lemma 2, the winning candidate implements his

expectation of the state, conditional on vote totals; as in Lemma 3, the e¤ect of a single vote

is to push the policy outcome in one direction or another. Because more extreme citizen

types vote for candidates A and D than B and C, votes for these two candidates have a

greater impact on the winning candidate�s beliefs. Thus, voting for an extreme candidate

pushes policy by more than voting for a moderate candidate.

Theorem 6 If candidates A, B, C, and D are responsive and abstention is allowed then

there exist quality thresholds 0 < T �1 < T �2 < 1 such that�
x�; ��T �2 ;�T �1 ;T �1 ;T �2 ; y

�� is a perfect Bayesian equilibrium if y� =
�
y�j
�
j2fA;B;C;Dg is the vector

of policy response functions de�ned by

y�j (a; b; c; d) = ẑa;b;c;d � E
�
ZjNA = a;NB = b;NC = c;ND = d;��T �2 ;�T �1 ;T �1 ;T �2

�
for any vot-

ing outcome (a; b; c; d) 2 Z4+ and x� =
�
x�j
�
j2fA;B;C;Dg is any vector of candidate platforms.

Proof. See Appendix.
Similar to Proposition 5 in Section 3.4, Proposition 6 illustrates the equilibrium identi�ed

in Theorem 6 for the electorate comprised of only a single citizen. In that equilibrium, all

candidates expect a positive vote share, and the citizen also abstains with positive probability

(expected turnout is 80%).

Proposition 6 Let N = 1 be known, and let F be uniform on [0; 1]. If candidates A, B,

C, and D are responsive then (x�; ��; y�) is a perfect Bayesian equilibrium for the symmetric

belief threshold voting strategy �� = ��:6;�:2;:2;:6, the vector y� =
�
y�j
�
j2fA;B;C;Dg of policy

responses de�ned by y�j (0; 0; 0; 1) = �y�j (1; 0; 0; 0) = 0:8, y�j (0; 0; 1; 0) = �y�j (0; 1; 0; 0) =
0:4, y�j (0; 0; 0; 0) = 0, and any vector x

� =
�
x�j
�
j2fA;B;C;Dg of candidate platforms. In this

equilibrium, expected voter turnout is 80%.
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Proof. See Appendix.
Voting behavior in Proposition 6 is similar to that in Proposition 5, in that the type

space is divided in equilibrium into equal segments� this time �ve instead of three. Applied

here, the logic of Theorem 5 suggests that this addition of candidates improves welfare.

One noteworthy comparative static result from this section is that the intensity of a

citizen�s political preference is positively related to her information quality. That is, citizens

with poor information quality tend not to support extreme candidates. This is despite the

modeling assumption that the ideal policy is commonly known to lie at one of the extremes

of the policy spectrum: if information were perfect, every citizen would be an extremist. In

essence, the same "signaling voter�s curse" that in Section 4 caused citizens with the poorest

information to abstain altogether from voting causes moderately informed citizens to vote

for a moderate rather than an extreme candidate.

7 Conclusion

In generalizing the Condorcet (1785) environment, this paper begins to bridge the gap

between models of con�icting interests and con�icting information. For example, asymmet-

ric information provides a novel explanation for single-peaked preferences; consistent with

empirical evidence from Palfrey and Poole (1987), citizens with the most information favor

the most extreme policies, and are the most likely to vote. If candidates commit to imple-

ment campaign platform policies, o¢ ce motivation yields a standard median voter theorem,

while policy motivation yields an equilibrium with divergent platforms. If pre-election policy

commitments are nonbinding, the candidate who wins o¢ ce can utilize information re�ected

in vote totals when implementing policy. This gives rise to the popular notion of electoral

mandates� by which large vote margins prompt more extreme policy movements. Similarly,

narrow victories lead candidates to moderate their policy stances. Votes for extreme candi-

dates impact the eventual policy outcome more strongly than votes for moderate candidates,

providing a possible rationale for candidates who are unlikely to win o¢ ce but nevertheless

campaign, and do receive some votes. The possibility of extreme policy outcomes is desir-

able here, underscoring the importance of reevaluating standard models, in which extreme

policies represent a failure to compromise between competing interests.14

When platform commitments are binding, the swing voter�s curse dissuades uninformed

citizens from voting, even though voting is costless� an unsurprising result, given the similar-

ity between this model and the models of McMurray (2010b) and Feddersen and Pesendorfer

14Even relaxing the assumption that the ideal policy lies at one of the two extremes, movements away

from the center would likely re�ect welfare improvements.
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(1996). The logic of the swing voter�s curse, however, stems from the observation that a

citizen�s vote only in�uences her payo¤ when it changes the election outcome, so that a

citizen should condition her behavior on this rare but informative event. With responsive

candidates, a citizen�s vote always in�uences the policy outcome; in fact, the identity of the

election winner is irrelevant to her decision. The result that uninformed citizens continue

to abstain, therefore, may be surprising. Abstention is commonly viewed as a threat to

democracy, but improves welfare here� contrary to the intuition that nonvoters fail to con-

tribute socially valuable information� by enriching voters�message space. The comparative

static result that a citizen�s information quality (relative to others in her electorate) makes

her more likely to vote is also important for explaining phenomena such roll-o¤, as well as

the empirical correlations between information and voting discussed by McMurray (2010a).

As noted above, one justi�cation for the common-value model is its ability to explain results

such as these, which are di¢ cult to accommodate in a standard framework.

A natural extension of this model would be to endogenize entry. In that context, a

multidimensional policy space would be particularly interesting: just as the vote shares

of two candidates identify the optimal policy in one dimension, the vote shares of k + 1

candidates (with linearly independent platforms) would likely identify the optimal policy

in k dimensions. If so, candidates may continue to enter a costly campaign, in e¤orts

to draw attention to neglected policy dimensions and enrich the menu of messages that

voters can send. An important component for such an analysis might be some sort of cost

for deviating from policy platforms: when platforms are completely non-credible, candidates

are perfectly responsive, implying that the identity of the winning candidate actually doesn�t

matter, and entry always has bene�t; if platform commitments instead limited a candidate�s

responsiveness, then the identity of the winning candidate would matter, and an entrant

would risk splitting the vote share of the most attractive candidate, upsetting the election

in favor of an inferior opponent.

It is worth noting that nothing about this signaling mechanism of elections need limit

its interpretation to the candidates of a given election; electoral results could just as easily

send a "message" to other elected o¢ cials. For example, a recent victory by Republican

Scott Brown in a 2010 special Massachusetts election to �ll the senate seat vacated by

the passing of Democratic senator Ted Kennedy, who had held the seat for decades, was

popularly interpreted as a call for moderation in health care reform and other policies under

consideration by a Democratic congress and Democratic president Barack Obama.15 For

15Cooper, Michael (2010, January 10). G.O.P. Victory Stuns Democrats. The New York

Times, http://www.nytimes.com/2010/01/21/us/politics/21elect.html?scp=9&sq=Scott%20Brown&st=cse

(accessed 6 February 2010).
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that matter, similar motivations may in�uence other political activities, such as writing

letters to public o¢ cials and participating in protests, or even public opinion surveys. This

model could also be reinterpreted an informational model of proportional rule elections, in

which the vote share that one party receives determines its fraction of seats in parliament.

A Appendix: Proofs

Lemma 1 If yA; yB are �xed exogenously then the best response to any symmetric voting
strategy � is a belief threshold strategy �T . Furthermore, there exists a belief threshold T �

such that �T � is a symmetric Bayesian (partial) equilibrium. �0 is such an equilibrium if

and only if policy outcomes yB = �yA are symmetric around zero.

Proof. For a citizen of information quality q 2 [0; 1] and signal s 2 f�1; 1g, the di¤erence
�AB (q; s;�) in expected utility from voting for candidate B instead of candidate A (given

opponent voting strategy �) is given by the following:

�AB (q; s;�) =
X
z=1;�1

[u (yB; z)� u (yA; z)] [Pr (pivBjz)� Pr (pivAjz)]
1

2
(1 + zqs)

= 2 (yB � yA) (1� �y)
�
P1 � ~P1

� 1
2
(1 + qs)

+2 (yB � yA) (�1� �y)
�
~P�1 � P�1

� 1
2
(1� qs)

= (yB � yA)

8>>>>>><>>>>>>:

24 qs�y
�
~P1 + ~P�1 � P1 � P�1

�
+
�
~P�1 + P1 � ~P1 � P�1

� 35
�

24 �y
�
~P�1 + P1 � ~P1 � P�1

�
+
�
~P�1 + P�1 � P1 � ~P1

� 35

9>>>>>>=>>>>>>;
.

When yA 6= yB, this bene�t is positive if and only if qs exceeds a belief threshold TAB (�),

de�ned by (9) below.

TAB (�) =
�y
�
~P1 + P1 + ~P�1 + P�1

�
+
�
~P1 + P1 � ~P�1 � P�1

�
�y
�
~P1 + P1 � ~P�1 � P�1

�
+
�
~P1 + P1 + ~P�1 + P�1

� . (9)

Thus, the best response to any voting strategy � is a belief threshold strategy �TAB(�). In

particular, the best response to a belief threshold strategy �T is another belief threshold strat-

egy �TAB(�). The best-response threshold function TAB (�T ) is thus a continuous function

from the compact set [�1; 1] into itself, so a �xed point T � = TAB (�T �) exists by Brouwer�s
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theorem, and the corresponding belief threshold strategy �T � is a symmetric Bayesian (par-

tial) equilibrium. Citizens have no incentive to deviate from �T � when yA = yB because in

that case voting has no in�uence on policy.

A threshold at T = 0 is special because voting probabilities are symmetric in that case:

p (Aj1;�0) = p (Bj � 1;�0), p (Aj � 1;�0) = p (Bj1;�0) and  (a; bjz) =  (b; aj � z). This

implies symmetric pivot probabilities �0�0 (z) = �0�0 (�z), �A�0 (z) = �B�0 (�z), P1 = P�1, and
~P1 = ~P�1, in turn reducing (9) to TAB (�0) = �y. Thus T � = 0 is a �xed point of (9) if and

only if �y = 0 or, equivalently, if policy outcomes yB = �yA are symmetric around zero.

Theorem 1 (Median Voter Theorem) If policy platform commitments are binding and

candidates are o¢ ce-motivated, and if there is a unique equilibrium threshold T � (xA; xB) in

the stage-game associated with every pair xA 6= xB of candidate platforms, then (��; x�A; x
�
B)

is a perfect symmetric Bayesian equilibrium if and only if �� is the belief threshold strategy

�T � and x�A = x�B = 0.

Proof. The voting stage-game equilibrium condition that �� be a belief threshold strategy

is stated in Lemma 1. Rewriting the best response threshold (9) in terms of the probabilities

A1 = ~P1 + P1 and A2 = ~P�1 + P�1 of being pivotal in states 1 and �1 yields the following:

TAB (�) =
�y (A1 + A2) + (A1 � A2)

�y (A1 � A2) + (A1 + A2)
.

This best response threshold is increasing in �y = yA+yB
2

= xA+xB
2
, and therefore in xA and in

xB:

d

d�y
TAB (�)

=
(A1 + A2) [�y (A1 � A2) + (A1 + A2)]� [�y (A1 + A2) + (A1 � A2)] (A1 � A2)

[�y (A1 � A2) + (A1 + A2)]
2

=
4A1A2

[�y (A1 � A2) + (A1 + A2)]
2 > 0.

If T � (xA; xB) is unique for every pair xA 6= xB of candidate platforms then this implies that

T � also increases in xA and xB.16

Citizens are more likely to vote candidate B than for candidate A if and only if T � < 0.

The two candidates expect equal vote shares if and only if T � = 0. As Lemma 1 states,

this occurs in equilibrium only if yA+yB
2

= xA+xB
2

= 0 or, in other words, if xB = �xA. The
16If there are mutliple partial equilibrium thresholds T � (xA; xB) in response to candidate platforms xA 6=

xB then the result that T (�) increases with �y =
yA+yB

2 = xA+xB
2 implies that both the minimum and the

maximum partial equilibrium thresholds increase with xA and xB .
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result that T � increases with �x therefore implies that T � > 0 whenever xB > �xA and that
T � < 0 whenever xB < �xA. In other words, the candidate whose platform is closer to zero
receives a larger (expected) share of votes. Thus no pair (xA; xB) of candidate platforms

other than (0; 0) can be sustained in equilibrium.

Theorem 2 (Policy Divergence) If policy platform commitments are binding and can-

didates are policy-motivated, and if there is a unique equilibrium threshold T � (xA; xB) in

the stage-game for every pair xA 6= xB of candidate platforms, then (��; x�A; x
�
B) is a per-

fect symmetric Bayesian equilibrium only if �� is the belief threshold strategy �T �(x�A;x�B) and

x�A = ẑA (�
�; x�A; x

�
B) < ẑB (�

�; x�A; x
�
B) = x�B, where ẑj (�; xA; xB) � E (ZjW = j;�; xA; xB).

Furthermore, such an equilibrium exists, with T � = 0.

Proof. McLennan (1998) shows, for common interest games, that the strategy that max-
imizes the common objective function is an equilibrium� since no player can pro�t by

deviating� and that the symmetric strategy that maximizes the common objective func-

tion is a symmetric equilibrium. In the context of this model, the latter of these two results

implies that the optimal voting response �� (xA; xB) to candidate platforms xA and xB is an

equilibrium in the voting stage-game, and therefore (by Lemma 1) can be characterized by

a belief threshold T �. If there is a unique equilibrium strategy in each voting stage-game,

therefore, then that strategy is an optimal response to xA and xB (i.e. maximizes Eu (Z; Y )).

Policy-motivated candidates, like voters, seek to maximize Eu (Z; Y ). Taking optimal

voter responses as given, McLennan�s (1998) �rst result therefore implies that the platform

pair (x�A; x
�
B) that maximizes Eu (Z; Y ) is an equilibrium in a reduced game between the

two candidates. The strategy combination (��; x�A; x
�
B) that maximizes Eu (Z; Y ) generally,

then, is a perfect Bayesian equilibrium in the original game. Such an optimal strategy

combination exists by the Weierstrass theorem, since Eu (Z; Y ;�; xA; xB) is continuous in

(�; xA; xB) on the compact set [�1; 1]2 � �.
For any set 
 of information, expected utility

Eu (x; Zj
) =
X
z=1;�1

� (x� z)2 Pr (zj
)

is strictly concave in x, and is uniquely maximized at x� = E (Zj
). If voting behavior

were �xed as � (xA; xB) for an arbitrary pair (xA; xB) of candidate platforms, therefore, then

candidate j could increase Eu (Z; Y jW = j) by deviating to xj = ẑj (�; xA; xB). Allowing

voters next to replace their previous voting strategy with the stage-game equilibrium response

to the new platform pair would only increase Eu (Z; Y ) further, by the above logic of optimal

voting. By these two steps, therefore, candidates can improve upon any pair (x�A; x
�
B) of
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candidate platforms unless, for the stage-game equilibrium voting strategy �� = �T �(x�A;x�B)
,

it is the case that x�j = ẑj (�
�; x�A; x

�
B). That ẑA < ẑB follows because �� is a belief threshold

strategy, so W = A is more likely when Z = �1 and W = B is more likely when Z = 1,

because a high proportion of citizens receive negative and positive signals, respectively,

in the two states. That �0 together with ẑA (�0; ẑA; ẑB) and ẑB (�0; ẑA; ẑB) constitute an

equilibrium follows from the last part of Lemma 1, because ẑB (�0; ẑA; ẑB) = �ẑA (�0; ẑA; ẑB).

Lemma 3 If �T is a belief threshold strategy (with �1 < T < 1) then ẑa+1;b (�T ) <

ẑa;b (�T ) < ẑa;b+1 (�T ) for all a; b 2 Z+.

Proof. If 0 � T < 1 then 4 simpli�es as follows,

p�T (Aj � 1) = F (T ) +
R 1
T
1
2
(1 + q) dF (q) p�T (Bj � 1) =

R 1
T
1
2
(1� q) dF (q)

p�T (Aj1) = F (T ) +
R 1
T
1
2
(1� q) dF (q) p�T (Bj � 1) =

R 1
T
1
2
(1 + q) dF (q),

so p�T (Aj � 1) > p�T (Aj1) and p�T (Bj1) > p�T (Bj � 1). If �1 < T < 0 then 4 reduces

similarly, yielding the same inequalities. From (5) it can be seen that  �T (a; b+ 1jz) =
�p�T (Bjz)

b+1
 �T (a; bjz) and  �T (a+ 1; bjz) =

�p�T (Ajz)
b+1

 �T (a; bjz). The expectation of Z given
NA = a and NB = b+ 1 is therefore

ẑa;b+1 (�T ) =
 �T (a; b+ 1jZ = 1)�  �T (a; b+ 1jZ = �1)
 �T (a; b+ 1jZ = 1) +  �T (a; b+ 1jZ = �1)

=
p�T (BjZ = 1) �T (a; bjZ = 1)� p�T (BjZ = �1) �T (a; bjZ = �1)
p�T (BjZ = 1) �T (a; bjZ = 1) + p�T (BjZ = �1) �T (a; bjZ = �1)

>
p�T (BjZ = 1) �T (a; bjZ = 1)� p�T (BjZ = 1) �T (a; bjZ = �1)
p�T (BjZ = 1) �T (a; bjZ = 1) + p�T (BjZ = 1) �T (a; bjZ = �1)

= ẑa;b (�T ) .

That ẑa+1;b (�) < ẑa;b (�) follows from similar reasoning.

Theorem 3 (Signaling) If candidates are responsive then the best voting response to a
belief threshold voting strategy is another belief threshold strategy. Furthermore, if T � = 0

and y�j (a; b;�) = ẑa;b (�) is the policy choice described in Lemma 2 for j = A;B, then

(x�A; x
�
B; �T � ; y

�
A; y

�
B) is a perfect symmetric Bayesian equilibrium for any pair x

�
A; x

�
B 2 [�1; 1]

of policy platforms.

Proof. Given that a responsive candidate will implement y�a;b (�) in response to vote totals a
and b and voting strategy �, the bene�t �AB (�) to an individual citizen of voting B instead
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of A is given simply by the following:

�AB =
X
z=1;�1

1X
a=0

1X
b=0

h
�
�
y�a;b+1 � z

�2
+
�
y�a+1;b � z

�2i
 � (a; bjz)

1

2
(1 + zqs)

=
X
z=1;�1

1X
a=0

1X
b=0

[
�
y�a;b+1 � y�a+1;b

�
��

z �
y�a+1;b + y�a;b+1

2

�
 � (a; bjz) (1 + zqs) . (10)

If � is a belief threshold strategy then y�a;b+1 (�) = ẑa;b+1 (�) > ẑa+1;b (�) = y�a+1;b (�), as

pointed out by Lemma 3. Since ẑa;b+1 and ẑa+1;b are bounded between �1 and 1, �AB is

strictly increasing in qs:

d�AB

d (qs)
=

X
z=1;�1

1X
a=0

1X
b=0

�
y�a;b+1 � y�a+1;b

��
z �

y�a+1;b + y�a;b+1
2

�
 � (a; bjz) z

=
1X
a=0

1X
b=0

(ẑa;b+1 � ẑa+1;b)

�
1� ẑa+1;b + ẑa;b+1

2

�
 � (a; bjZ = 1)

�
1X
a=0

1X
b=0

(ẑa;b+1 � ẑa+1;b)

�
�1� ẑa+1;b + ẑa;b+1

2

�
 � (a; bjZ = �1)

> 0.

Thus the bene�t �AB to voting B is positive if and only if qs exceeds the belief threshold

T � (�T ), so the best response to �T , given responsive candidates, is another belief threshold

strategy �T �(�T ).

If T = 0 then voting is symmetric with respect to the two candidates (i.e. p (Ajz) =
p (Bj � z),  (a; bjz) =  (b; ajz) for z = �1; 1 and a; b 2 Z+) and candidates�policy re-
sponses are likewise symmetric (i.e. y�a;b (�) = ẑa;b (�) = �ẑb;a (�) = �y�b;a (�) for a; b 2 Z+),
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so �AB reduces from (10) to the following:

�AB

=
X
z=1;�1

1X
a=0

1X
b=a+1

�
y�a;b+1 � y�a+1;b

��
z �

y�a+1;b + y�a;b+1
2

�
 � (a; bjz) (1 + zqs)

+
X
z=1;�1

1X
b=0

1X
a=b+1

�
�y�b+1;a + y�b;a+1

��
z �

�y�b;a+1 � y�b+1;a
2

�
 � (b; aj � z) (1 + zqs)

=
X
z=1;�1

1X
a=0

1X
b=a+1

�
y�a;b+1 � y�a+1;b

��
z �

y�a+1;b + y�a;b+1
2

�
 � (a; bjz) (1 + zqs)

+
X
z=1;�1

1X
a=0

1X
b=a+1

�
�y�a+1;b + y�a;b+1

��
z �

�y�a;b+1 � y�a+1;b
2

�
 � (a; bj � z) (1 + zqs)

=
X
z=1;�1

1X
a=0

1X
b=a+1

�
y�a;b+1 � y�a+1;b

��
z �

y�a+1;b + y�a;b+1
2

�
 � (a; bjz) (1 + zqs)

+
X
z=�1;1

1X
a=0

1X
b=a+1

�
y�a;b+1 � y�a+1;b

��
�z +

y�a+1;b + y�a;b+1
2

�
 � (a; bjz) (1� zqs) .

This expression is equal to zero if qs = 0, which is the case for a citizen right at the threshold

T = 0. Thus �� = �0, together with the policy functions y�a;b de�ned by Lemma 2, constitute

a perfect Bayesian equilibrium.

Lemma 4 (Swing Voter�s Curse) If policy outcomes yA < yB are exogenous and absten-

tion is allowed then the best response to any voting strategy � is a belief threshold strategy

�T1;T2. Such a strategy is a symmetric Bayesian (partial) equilibrium only if T1 < T2. Fur-

thermore, there exist belief thresholds T �1 < T �2 such that �T �1 ;T �2 is a symmetric Bayesian

(partial) equilibrium. If yB = �yA then there exists a threshold T � > 0 such that ��T �;T � is
a symmetric Bayesian (partial) equilibrium.

Proof. For a citizen of information quality q 2 [0; 1] and signal s 2 f�1; 1g, the di¤erence
�0B (q; s;�) in expected utility between voting for candidate B and abstaining in response

to policy outcomes yA; yB and voting strategy � is given by the following, where �y =
yA+yB
2
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denotes the midpoint between the two policy outcomes, as before:

�0B (q; s;�) =
X
z=1;�1

[u (yB; z)� u (yA; z)] Pr (pivBjz)
1

2
(1 + zqs)

= 2 (yB � yA) (1� �y)P1
1

2
(1 + qs)

+2 (yB � yA) (�1� �y) ~P�1
1

2
(1� qs)

= (yB � yA) f
h
qs�y

�
~P�1 � P1

�
+
�
~P�1 + P1

�i
�
h
�y
�
~P�1 + P1

�
+
�
~P�1 � P1

�i
g.

A citizen prefers voting B to abstaining if and only if this bene�t is positive. When yA 6= yB,

�0B is positive if and only if qs exceeds a belief threshold T0B (�), de�ned by (12) below.

Similarly, a citizen prefers voting A to abstaining if and only if qs is below the threshold

TA0 (�), as de�ned in (11). Also, just as in Lemma 1, a citizen again prefers voting B to

voting A if and only if qs exceeds TAB (�), de�ned above in (9) and rewritten here as (13).

TA0 (�) =
�y
�
~P1 + P�1

�
�
�
~P1 � P�1

�
��y
�
~P1 � P�1

�
+
�
~P1 + P�1

� (11)

T0B (�) =
�y
�
~P�1 + P1

�
+
�
~P�1 � P1

�
�y
�
~P�1 � P1

�
+
�
~P�1 + P1

� (12)

TAB (�) =
�y
�
~P1 + P1 + ~P�1 + P�1

�
+
�
~P1 + P1 � ~P�1 � P�1

�
�y
�
~P1 + P1 � ~P�1 � P�1

�
+
�
~P1 + P1 + ~P�1 + P�1

� (13)

Setting T1 = min fTA0 (�) ; TBA (�)g and T2 � max fT0B (�) ; TBA (�)g therefore de�nes a
belief threshold strategy �T1;T2 that is a best response to �.

The belief threshold strategy �T1;T2 is not an equilibrium if T1 = T2 = T because the best

response thresholds to �T;T do not coincide: TA0 (�T;T ) < T0B (�T;T ). To see this, consider

the case in which T � 0. In that case, a citizen votes for B (i.e. qs � T ) only if she receives

a high-quality positive signal; citizens with low-quality or negative signals all vote for A (i.e.

qs < T ). Voting probabilities therefore reduce from (4) to the following,

p� (Ajz) = F (TB) +
1

2

Z 1

TB

(1� zq) f (q) dq

p� (Bjz) =
1

2

Z 1

TB

(1 + zq) f (q) dq,

30



yielding the following inequalities:

p� (Aj � 1) p� (Bj1) > p� (Aj1) p� (Bj � 1) (14)

p� (Aj � 1) > F (TB) + p� (Bj � 1) (15)

F (TB) + p� (Bj1) > p� (Aj1) (16)

p� (Aj1) p� (Bj1) > p� (Aj � 1) p� (Bj � 1) . (17)

These imply that ~P1 ~P�1 > P1P�1, which is algebraically equivalent to TA0 (�T;T ) < T0B (�T;T ).

This can be seen as follows,

~P�1 ~P1 � P�1P1

=
1

2

�
�0� (�1) + �B� (�1)

� 1
2

�
�0� (1) + �A� (1)

�
�1
2

�
�0� (�1) + �A� (�1)

� 1
2

�
�0� (1) + �B� (1)

�
=

1

4

1X
j=0

1X
k=0

 � (j; jj � 1) � (k; kj1)
�
1 +

�p� (Aj � 1)
j + 1

� �
1 +

�p� (Bj1)
k + 1

�

�1
4

1X
j=0

1X
k=0

 � (j; jj � 1) � (k; kj1)
�
1 +

�p� (Bj � 1)
j + 1

� �
1 +

�p� (Aj1)
k + 1

�

>
1

4

1X
j=0

1X
k=0

 � (j; jj � 1) � (k; kj1)
�
�F (TB)

j + 1
� �F (TB)

k + 1

�

=
1X
j=0

1X
k=j+1

F (TB) e
���2j+2k+1

4 (j + 1)! (k + 1)!
pj� (Aj � 1) pj� (Bj � 1) pk� (Aj1) pk� (Bj1) [k � j]

�
1X
k=0

1X
j=k+1

F (TB) e
���2j+2k+1

4 (j + 1)! (k + 1)!
pj� (Aj � 1) pj� (Bj � 1) pk� (Aj1) pk� (Bj1) [j � k]

=
1X
j=0

1X
k=j+1

F (TB) e
���2j+2k+1

4 (j + 1)! (k + 1)!
pj� (Aj � 1) pj� (Bj � 1) pj� (Aj1) pj� (Bj1)��

pk�j� (Aj1) pk�j� (Bj1)� pk�j� (Aj � 1) pk�j� (Bj � 1)
�
(k � j)

> 0,

where the �rst inequality follows from (14) through (16) and the �nal inequality follows from

(17). Similar reasoning applies if TA0 = T0B = T < 0.

Since the best response to a threshold strategy is another threshold strategy, the best

response threshold functions TA0 (�TA;TB) < T0B (�TA;TB) can together be thought of as a

single continuous function from the set f(T1; T2) : 0 � T1 � T2 � 1g of voting thresholds into
itself. Since this set is compact, a �xed point (T �1 ; T

�
2 ) exists by Brouwer�s theorem; the
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corresponding threshold strategy �T �1 ;T �2 is therefore a symmetric Bayesian (partial) equilib-

rium.

Symmetric voting thresholds T2 = �T1 = T produce symmetric vote probabilities

p��T;T (Ajz) = p��T;T (Bj � z), symmetric outcome probabilities  ��T;T (a; bjz) =  ��T;T (b; aj � z),

and symmetric pivot probabilities �A��T;T (z) = �B��T;T (�z), ~P1 = ~P�1 � ~P , and P1 = P�1 �
P . Symmetric platforms yB = �yA imply that �y = 0, so that best response thresholds

T0B (��T;T ) = �TA0 (��T;T ) =
~P�P
P+ ~P

> 0 are symmetric as well. In that case, the best

response function T0B (��T;T ), is a continuous function from the compact interval [0; 1] into

itself, again implying by Brouwer�s theorem the existence of a �xed point T � such that

T0B (��T �;T �) = �TA0 (��T �;T �) = T � > 0; the corresponding threshold strategy ��T �;T � is a

symmetric Bayesian (partial) equilibrium.

Proposition 3 If policy platform commitments are binding, candidates are policy-motivated
and abstention is allowed, and if there is a unique equilibrium voting response �� (xA; xB)

in the stage-game for every pair xA 6= xB of candidate platforms, then there exists a thresh-

old T � such that (��T �;T � ; x�A; x
�
B) is a perfect Bayesian equilibrium, where x

�
B = �x�A =

ẑB (��T �;T �).

Proof. McLennan (1998) shows, for common interest games, that the strategy that max-
imizes the common objective function is an equilibrium� since no player can pro�t by

deviating� and that the symmetric strategy that maximizes the common objective func-

tion is a symmetric equilibrium. In the context of this model, the latter of these two results

implies that the optimal voting response �� (xA; xB) to candidate platforms xA and xB is an

equilibrium in the voting stage-game, and therefore (by Lemma 4) can be characterized as a

belief threshold strategy �T �1 ;T �2 , with T
�
1 < T �2 . If there is a unique stage-game equilibrium

voting strategy, therefore, then that strategy is necessarily an optimal response to xA and

xB (i.e. maximizes Eu (Z; Y )).

Policy-motivated candidates, like voters, seek to maximize Eu (Z; Y ). Taking optimal

voter responses as given, McLennan�s (1998) �rst result therefore implies that the platform

pair (x�A; x
�
B) that maximizes Eu (Z; Y ) is an equilibrium in a reduced game between the

two candidates. The strategy combination (��; x�A; x
�
B) that maximizes Eu (Z; Y ) generally,

then, is a perfect Bayesian equilibrium in the original game. Such an optimal strategy

combination exists by the Weierstrass theorem, since Eu (Z; Y ;�; xA; xB) is continuous in

(�; xA; xB) on the compact set �� [�1; 1]2.
For any information set 
, the policy that maximizes E

�
� (x� Z)2 j


�
is simply x =

E (Zj
). If voting behavior were �xed as � (xA; xB) for an arbitrary pair (xA; xB) of

candidate platforms, therefore, then candidate j could increase Eu (Z; Y jW = j) by de-

viating to xj = ẑj (�; xA; xB). Allowing voters next to replace their previous voting
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strategy with the stage-game equilibrium response to the new platform pair would only

increase Eu (Z; Y ) further, by the above logic of optimal voting. By these two steps, there-

fore, candidates can improve upon any pair (x�A; x
�
B) of candidate platforms unless, for the

stage-game equilibrium voting strategy ��, it is the case that x�j = ẑj (�
�; x�A; x

�
B). That

ẑA (�
�; x�A; x

�
B) < ẑB (�

�; x�A; x
�
B) follows because �

� is a belief threshold strategy, soW = A is

more likely when Z = �1 and W = B is more likely when Z = 1, because a high proportion

of citizens receive negative and positive signals, respectively, in the two states.

Symmetric voting thresholds T2 = �T1 = T produce symmetric vote probabilities

p��T;T (Ajz) = p��T;T (Bj � z), symmetric outcome probabilities  ��T;T (a; bjz) =  ��T;T (b; aj � z),

and symmetric pivot probabilities �A��T;T (z) = �B��T;T (�z), ~P1 = ~P�1 � ~P , and P1 =

P�1 � P , and lead to symmetric expectations ẑB (��T;T ) = �ẑA (��T;T ). This implies

symmetric platforms x�B = �x�A in equilibrium, implying that best response thresholds

T0B (��T;T ) = �TA0 (��T;T ) =
~P�P
P+ ~P

> 0 are symmetric as well. In that case, Lemma 4

demonstrates the existence of an equilibrium threshold T � such that (��T �;T � ; x�A; x
�
B) is a

perfect Bayesian equilibrium for x�j = ẑj (��T �;T �).

Theorem 4 (Signaling Voter�s Curse) If candidates are policy-motivated and responsive
to vote totals and voter abstention is allowed then the best response to any belief threshold

strategy �T1;T2 is another belief threshold strategy �T �1 (�T1;T2);T �2 (�T1;T2)
, where T �1 (�T1;T2) <

T �2 (�T1;T2); furthermore, a threshold T
� exists such that�

��T �;T � ; xA; xB; y
�
a;b

�
is a perfect Bayesian equilibrium for any candidate platform pair (xA; xB),

where y�a;b is the candidate response function described in Lemma 2.

Proof. Given that a responsive candidate will implement y�a;b (�) in response to vote totals
a and b and voting strategy �, as Lemma 2 prescribes, the bene�t �0B (�) to an individual

citizen of type qs of voting B instead of abstaining is given simply by the following:

�0B =
X
z=1;�1

1X
a=0

1X
b=0

h
�
�
y�a;b+1 � z

�2
+
�
y�a;b � z

�2i
 � (a; bjz)

1

2
(1 + zqs)

=
X
z=1;�1

1X
a=0

1X
b=0

�
y�a;b+1 � y�a;b

��
z �

y�a;b + y�a;b+1
2

�
 � (a; bjz) (1 + zqs) .

For a belief threshold strategy �T1;T2, Lemma 3 points out that y
�
a;b+1 (�T1;T2) = ẑa;b+1 (�T1;T2) >

ẑa;b (�T1;T2) = y�a;b (�T1;T2). Since ẑa;b+1 and ẑa;b are bounded between�1 and 1,�0B is strictly
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increasing in qs,

d�0B

d (qs)
=

X
z=1;�1

1X
a=0

1X
b=0

�
y�a;b+1 � y�a;b

��
z �

y�a;b + y�a;b+1
2

�
 � (a; bjz) z

=
1X
a=0

1X
b=0

�
y�a;b+1 � y�a;b

��
1�

y�a;b + y�a;b+1
2

�
 � (a; bjZ = 1)

�
1X
a=0

1X
b=0

�
y�a;b+1 � y�a;b

��
�1�

y�a;b + y�a;b+1
2

�
 � (a; bjZ = �1)

> 0,

implying the existence of a threshold T0B (�T1;T2) such that a citizen prefers voting for B to

abstaining if and only if qs � T0B (�T1;T2). The bene�t �AB of voting B instead of A and

the bene�t �A0 of abstaining instead of voting A are likewise increasing in qs, implying the

existence of thresholds TAB (�T1;T2) and TA0 (�T1;T2) above which citizens prefer to vote B

and abstain, respectively, and below which citizens prefer to vote A. Setting T �1 (�T1;T2) =

min fTAB (�T1;T2) ; TA0 (�T1;T2)g and T �2 (�T1;T2) = max fTAB (�T1;T2) ; T0B (�T1;T2)g de�nes a
belief threshold strategy �T �1 (�T1;T2);T �2 (�T1;T2)

that is a best response to �T1;T2.

It remains to show that TA (�) < TB (�). To do so I show that perfectly uninformed

(i.e. Qi = 0) individuals� and therefore, by continuity, su¢ ciently uninformed individuals�

strictly prefer to abstain from voting. Given candidate behavior as described in Lemma 2, a

citizen essentially chooses between three policy functions: by voting A, B, or 0, respectively,

she can cause the winning candidate to implement y (a; b) 2
�
y�a+1;b; y

�
a;b+1; y

�
a;b

	
. Which

action is optimal therefore depends on which of these policy functions maximizes the ex-

pectation of u (y (a; b) ; Z) with respect to the state Z, vote totals a and b, and her private

information (q; s). Since a perfectly uninformed citizen�s posterior beliefs about Z are the

same as her prior beliefs, however, her expectation reduces to

EZ (Ea;b fu [y (a; b) ; Z] jZg jq; s) = EZ (Ea;b fu [y (a; b) ; Z] jZg)
= Ea;b (EZ fu [y (a; b) ; Z] ja; bg) .

The inner component EZ fu [y (a; b) ; Z] ja; bg of this expression is identical to candidates�
objective function; by Lemma 2, it is uniquely maximized at y�a;b = ẑa;b. Therefore

EZ fu [y (a; b) ; Z] ja; bg is greater for y (a; b) = y�a;b than for y (a; b) = y�a+1;b or y (a; b) =

y�a;b+1. Since this is true for any voting outcome (a; b), it is true for the expectation

Ea;b (EZ fu [y (a; b) ; Z] ja; bg), as well. Thus, the perfectly uninformed citizen prefers the

policy function y�a;b to either y
�
a+1;b or y

�
a;b+1, and therefore prefers to abstain.

If thresholds T2 = �T1 = T are symmetric around zero then voting probabilities are

symmetric with respect to the state (i.e. p (Ajz) = p (Bj � z),  (a; bjz) =  (b; ajz) for

34



z = �1; 1 and a; b 2 Z+), prompting symmetric policy responses from candidates:

y�a;b = E (Zja; b;�) =  � (a; bjZ = 1)�  � (a; bjZ = �1)
 � (a; bjZ = 1) +  � (a; bjZ = �1)

=
� � (b; ajZ = �1) +  � (b; ajZ = 1)
� � (b; ajZ = �1)�  � (b; ajZ = 1)

= �E (Zjb; a;�) = �y�b;a.

As in the proof of Theorem 3, therefore, a perfectly-uninformed individual is indi¤erent

between voting for A and B (i.e. q = 0 implies �AB = 0). Furthermore, the bene�t �0B of

voting B instead of abstaining and the bene�t ��A0 of voting A instead of abstaining are

the same, for individuals who receive opposite signals:

�0B (q;�s) =
X
z=1;�1

1X
a=0

1X
b=0

h
�
�
y�a;b+1 � z

�2
+
�
y�a;b � z

�2i
 � (a; bjz)

1

2
(1� zsq)

=
X
~z=�1;1

1X
a=0

1X
b=0

h
�
�
�y�b+1;a + ~z

�2
+
�
�y�b;a + ~z

�2i�
 � (b; aj~z)

1

2
(1 + ~zsq)

=
X
~z=�1;1

1X
b=0

1X
a=0

h
�
�
y�a+1;b � ~z

�2
+
�
y�a;b � ~z

�2i
 � (a; bj~z)

1

2
(1 + ~zsq)

= �A0 (q; s) .

This implies that best response thresholds T �2 (��T;T ) = �T �1 (��T;T ) are symmetric as well.
T �2 (��T;T ) is therefore a continuous function from the compact interval [0; 1] into itself;

by Brouwer�s theorem, a �xed point T � exists (where T � > 0 by the logic above). The

corresponding symmetric belief threshold strategy ��T �;T �, together with the policy response

functions y�a;b identi�ed in Lemma 2 and any pair (xA; xB) of policy platforms, constitute a

perfect Bayesian equilibrium.

Proposition 4 Let N = 2 be known and let F be uniform on [0; 1]. If candidates are re-

sponsive then (x�A; x
�
B; ��T �;T � ; y

�
A; y

�
B) is a perfect Bayesian equilibrium, where x

�
B = �x�A �

0:5242, y�B (0; 0) = y�A (0; 0) = 0, y
�
B (0; 1) = �y�A (1; 0) � 0:7907, and y�B (0; 2) = �y�A (2; 0) �

0:9730, and where ��T �;T � is a symmetric belief threshold strategy with T � � 0:5814. In this
equilibrium, expected turnout is approximately 42%.

Proof. Given a symmetric belief threshold ��T;T and conditional on the state, an individual
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votes with the following probabilities,

p��T;T (Aj � 1) = p��T;T (Bj1) =
Z 1

T

1

2
(1 + q) dq

=
1

2

�
1� T +

1� T 2

2

�
=
1

4
(1� T ) (T + 3)

and

p��T;T (Aj1) = p��T;T (Bj � 1) =
Z 1

T

1

2
(1� q) dq

=
1

2

�
1� T � 1� T 2

2

�
=
1

4
(1� T )2 ,

and abstains with probability p��T;T (0jz) =
R T
0
dq = T . Given any voting outcome (a; b),

these probabilities determine the winning candidate�s expectation ẑa;b of Z. As Lemma 2

states, ẑa;b is the winning candidate�s optimal policy response to (a; b).

If no one votes, or if the two citizens vote for opposite candidates, then the election

winner is determined by a coin toss, and implements the zero policy:

ẑ00 =
�p2��T;T (0j � 1) + p

2
��T;T

(0j1)
p2��T;T (0j � 1) + p2��T;T (0j1)

= 0

ẑ11 =
�2p��T;T (Aj � 1) p��T;T (Bj � 1) + 2p��T;T (Aj1) p��T;T (Bj1)
2p��T;T (Aj � 1) p��T;T (Bj � 1) + 2p��T;T (Aj1) p��T;T (Bj1)

= 0.

If both citizens vote B then candidate B wins the election and implements

ẑ02 =
�p2��T;T (Bj � 1) + p

2
��T;T

(Bj1)
p2��T;T (Bj � 1) + p2��T;T (Bj1)

=
� 1
16
(1� T )4 + 1

16
(1� T )2 (T + 3)2

1
16
(1� T )4 + 1

16
(1� T )2 (T + 3)2

=
4T + 4

T 2 + 2T + 5
;

if one citizen votes B while the other abstains then candidate B wins and implements

ẑ01 =
�2p��T;T (0j � 1) p��T;T (Bj � 1) + 2p��T;T (0j1) p��T;T (Bj1)
2p��T;T (0j � 1) p��T;T (Bj � 1) + 2p��T;T (0j1) p��T;T (Bj1)

=
�p��T;T (Bj � 1) + p��T;T (Bj1)
p��T;T (Bj � 1) + p��T;T (Bj1)

=
� (1� T )2 + (1� T ) (T + 3)

(1� T )2 + (1� T ) (T + 3)
=
T + 1

2
.

Symmetrically, ẑ20 = �ẑ02 and ẑ10 = �ẑ01.
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Given these values, the bene�t �0B for an individual of type (q; s) is given by the follow-

ing,

�0B (q;��T;T ) = (ẑ11 � ẑ10)

" �
1� ẑ11+ẑ10

2

�
(1 + qs) p��T;T (Aj1)

+
�
�1� ẑ11+ẑ10

2

�
(1� qs) p��T;T (Aj � 1)

#

+(ẑ01 � ẑ00)

" �
1� ẑ01+ẑ00

2

�
(1 + qs) p��T;T (0j1)

+
�
�1� ẑ01+ẑ00

2

�
(1� qs) p��T;T (0j � 1)

#

+(ẑ02 � ẑ01)

" �
1� ẑ02+ẑ01

2

�
(1 + qs) p��T;T (Bj1)

+
�
�1� ẑ02+ẑ01

2

�
(1� qs) p��T;T (Bj1)

#
.

Solving �0B (T ;��T;T ) = 0 numerically yields T � � 0:58, implying that ��0:58;0:58 (together
with candidate platforms and y�j (a; b) = ẑa;b) is a perfect Bayesian equilibrium. Evaluating

the formulas above for T � � 0:58 yields ẑ01 = �ẑ10 � 0:7907, and ẑ02 = �ẑ20 � 0:9730.

Expected turnout is 1� T � � 0:42.
In this equilibrium, candidate B wins with probability

Pr (W = Bj � 1) =
h
p2��T�;T� (Bj � 1) + 2p��T�;T� (0j � 1) p��T�;T� (Bj � 1)

i
+
1

2

h
p2��T�;T� (0j � 1) + 2p��T�;T� (Aj � 1) p��T�;T� (Bj � 1)

i
=

1

16
(1� T �)4 + 2T �

1

4
(1� T �)2

+
1

2

�
T �2 + 2

1

4
(1� T �) (T � + 3)

1

4
(1� T �)2

�
� 0:2379

in state �1 and probability

Pr (W = Bj1) =
h
p2��T�;T� (Bj1) + 2p��T�;T� (0j1) p��T�;T� (Bj1)

i
+
1

2

h
p2��T�;T� (0j1) + 2p��T�;T� (Aj1) p��T�;T� (Bj1)

i
=

1

16
(1� T �)2 (T � + 3)2 + 2T �

1

4
(1� T �) (T � + 3)

+
1

2

�
T �2 + 2

1

4
(1� T �)2

1

4
(1� T �) (T � + 3)

�
� 0:7621

in state 1. Conditional only on winning, therefore, candidate B�s expectation of Z is given

by

ẑB =
�Pr (W = Bj � 1) + Pr (W = Bj1)
Pr (W = Bj � 1) + Pr (W = Bj1)

� 0:5242
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and candidate A�s expectation is symmetric ẑA = �ẑB.
In equilibrium, four out of �ve policy outcomes (i.e. �0:7907 and �0:9730, but not 0)

are more extreme than the campaign platforms x�j = ẑj � �0:5242. The probability of a tie
occurring in equilibrium is

1

2

h
p2��T;T (0j � 1) + 2p��T;T (Aj � 1) p��T;T (Bj � 1)

i
+
1

2

h
p2��T;T (0j1) + 2p��T;T (Aj1) p��T;T (Bj1)

i
=

1

2

�
T 2 + 2

1

4
(1� T ) (T + 3)

1

4
(1� T )2

�
+
1

2

�
T 2 + 2

1

4
(1� T )2

1

4
(1� T ) (T + 3)

�
= T 2 +

1

8
(T + 3) (1� T )3 � 0:3696.

Proposition 5 Let N = 1 be known and let F be uniform on [0; 1]. If candidates are respon-

sive then there is a unique belief threshold strategy ��T �;T � such that (x�A; x
�
B; ��T �;T � ; y

�
A; y

�
B)

is a perfect symmetric Bayesian equilibrium. In this equilibrium, T � = 1
3
, x�B = �x�A � 0:44,

y�j (0; 0) = 0, and y
�
j (0; 1) = �y�j (1; 0) � 0:67, and expected turnout is approximately 67%.

Proof. With only a single citizen, there are only three possible voting outcomes: (1; 0), (0; 0),
and (0; 1). As in Proposition 4, a symmetric belief threshold voting strategy ��T;T leads

the citizen to vote with probabilities p��T;T (Aj � 1) = p��T;T (Bj1) = 1
4
(1� T ) (T + 3) and

p��T;T (Aj1) = p��T;T (Bj � 1) = 1
4
(1� T )2, and to abstain with probability p��T;T (0j1) =

p��T;T (0j � 1) = F (T ) = T . The winning candidate�s expectation ẑa;b of Z is therefore

given by the following:

ẑ0;0 =
�T + T

T + T
= 0

ẑ0;1 = �ẑ1;0 =
�1
4
(1� T )2 + 1

4
(1� T ) (T + 3)

1
4
(1� T )2 + 1

4
(1� T ) (T + 3)

=
T + 1

2
.

Conditional only on winning, his expectation ẑj is given by

ẑB = �ẑA =
�
�
1
4
(1� T )2 + 1

2
T
�
+
�
1
4
(1� T ) (T + 3) + 1

2
T
��

1
4
(1� T )2 + 1

2
T
�
+
�
1
4
(1� T ) (T + 3) + 1

2
T
�

=
� (1� T )2 + (1� T ) (T + 3)

(1� T )2 + (1� T ) (T + 3) + 4T
=
1� T 2

2
.
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As Lemma 2 states, the winning candidate prefers to implement his expectation ẑa;b of

the state. Anticipating such a policy response, the citizen perceives the bene�t �0B (q; s)

of voting B rather than abstaining, given her type (q; s):

�0B (q; s) = (y0;1 � y0;0)

" �
1� y0;0+y0;1

2

�
(1 + qs)

+
�
�1� y0;0+y0;1

2

�
(1� qs)

#
= 2y0;1

�
qs� y0;1

2

�
,

which is positive if and only if qs � y0;1
2
. Thus, the optimal voting response to (y1;0; y0;0; y0;1)

is a quality threshold strategy with T = y0;1
2
. Solving T = y0;1

2
and y0;1 = T+1

2
simultaneously

yields a unique solution at T � = 1
3
, y�0;1 =

2
3
� 0:67 (and, by symmetry, y�1;0 = �2

3
), implying

that the citizen votes with probability 1�F (T �) = 1�T � = 2
3
� 0:67. If candidate platforms

re�ect ex ante expectations of the state, as in Lemma 2, then x�B = �x�A = 4
9
� 0:44.

In equilibrium, two out of three policy outcomes (i.e. �0:67, but not 0) are more extreme
than the campaign platforms (i.e. x�j = ẑj � �0:5242). The probability of a tie occurring

in equilibrium is 1
2
p��T;T (0j1) + 1

2
p��T;T (0j � 1) = T = 1

3
.

Theorem 5 (Jury Theorem) Let f�kg
1
k=1 be a sequence of population size parameters

with limk!1 �k =1. Then the following are true:
1. If yA and yB are exogenous then

(a) for any k, the symmetric voting strategy ���k that maximizes expected utility is a

symmetric Bayesian (partial) equilibrium, and

(b) p limk!1 Y
�
�k
=

(
yA if Z = �1
yB if Z = 1

.

2. If policy platform commitments are binding and candidates are policy-motivated then

(a) for any k, the voting strategy ���k and platform pair
�
x�A�k ; x

�
B�k

�
that together

maximize expected utility constitute a perfect Bayesian equilibrium, and

(b) p limk!1 Y
�
�k
= Z.

3. If policy-motivated candidates choose policy responses yA; yB to vote totals (NA; NB)

then

(a) for any k, the voting strategy ���k and policy responses
�
y�A�k ; y

�
B�k

�
that to-

gether maximize expected utility, together with any platform pair (xA; xB), constitute a perfect

Bayesian equilibrium, and

(b) p limk!1 Y
�
�k
= Z.

4. Claims 1 through 3 remain true if voter abstention is allowed.

Proof. Claims 1(a), 2(a), and 3(a) follow from an argument similar to that made by McLen-
nan (1998): consider the strategy combination that maximizes expected utility Eu (Y; Z).
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Since this is the objective function maximized by citizens and candidates alike, no citizen

or candidate has incentive to deviate when all are playing the social optimum. This is

true whether the relevant strategy space is a voting strategy alone, as in 1(a); a voting

strategy and platform pair, as in 2(a); or a voting strategy and policy function pair, as in

3(a); and whether abstention is allowed (as in claim 4) or not. Note that the existence

of a welfare-maximizing strategy combination is guaranteed in most of these cases by the

Weierstrass theorem, since (under the uniform topology) expected utility is continuous and

the (products of) strategy spaces �, � � [�1; 1]2, �0, and �0 � [�1; 1]2 are compact. The

set
�
y : Z2+ ! [�1; 1]

	
of policy response functions is not compact under the uniform topol-

ogy, but Lemma 2 states that the optimal policy response function given a particular voting

strategy � is ẑa;b (�); given this policy response function, an optimal voting strategy �� exists

because Eu (ẑNA;NB (�) ; Z;�) is continuous in � and � (and �
0) is compact. So a social

optimum exists in every case.

Let Y 0
�k
denote the policy outcome if citizens sincerely report their private information

(i.e. vote A if s = �1 and B if s = 1, with no abstention), as directed by the belief

threshold strategy �0 (i.e. �0;0, if abstention is allowed). Under this strategy, the expected

share of A votes in state �1 or B votes in state 1 is p (Aj � 1) = p (Bj1) = EQ, and

the expected share of A votes in state 1 or B votes in state �1 is p (Aj1) = p (Bj � 1) =
E (1�Q). The expected di¤erence E (NA �NB) between A and B votes, therefore, is

positive in state �1 and negative in state 1. By the law of large numbers, therefore,

limk!1 Pr
����Y 0

�k
� yA

��� jZ = �1� = limk!1 Pr
����Y 0

�k
� yB

��� jZ = 1� = 1. In general, �0
is inconsistent with equilibrium. The result that equilibrium strategy combinations are

optimal, however, implies that Eu
�
Y �
�k
; Z
�
> Eu

�
Y 0
�k
; Z
�
. In state �1, therefore, Y 0

�k
!p

yA implies Y �
�k
!p yA. Similarly, Y 0

�k
!p yB implies Y �

�k
!p yB in state 1. Together, these

establish 1(b).

If platforms commitments are binding, the above logic implies that equilibrium voting

elects candidate A in state �1 and candidate B in state 1, with probabilities approaching

1. As Proposition 2 states, policy-motivated candidates commit to platforms based on

their expectations of Z, conditional on winning the election. As the expected number �k
of citizens grows large, these expectations converge to Z (i.e. E (ZjW = A;�0; �k) ! �1
and E (ZjW = B;�0; �k) ! 1), implying that x0A�k !p �1 and x0B�k !p 1. Expected

utility therefore approaches zero (i.e. Eu
�
Y 0
�k
; Z
�
!p 0), even for non-equilibrium voting

�0; by the optimality argument above, the same must be true in equilibrium, so Y �
�k
!p Z,

establishing claim 2(b). Similarly, a responsive candidate implements his expectation of Z,

given vote totals NA and NB; the expectation of which is simply the state variable Z. As

a population grows large, therefore, the law of large numbers implies again that Y 0
�k
!p Z,

40



and the optimality of equilibrium again implies that Y �
�k
!p Z as well, establishing 3(b).

Claim 4 follows identically, since an equilibrium voting strategy with abstention is likewise

superior to �0;0.

Theorem 6 If candidates A, B, C, and D are responsive and abstention is allowed then

there exist quality thresholds 0 < T �1 < T �2 < 1 such that�
x�; ��T �2 ;�T �1 ;T �1 ;T �2 ; y

�� is a perfect Bayesian equilibrium if y� =
�
y�j
�
j2fA;B;C;Dg is the vector

of policy response functions de�ned by

y�j (a; b; c; d) = ẑa;b;c;d � E
�
ZjNA = a;NB = b;NC = c;ND = d;��T �2 ;�T �1 ;T �1 ;T �2

�
for any vot-

ing outcome (a; b; c; d) 2 Z4+ and x� =
�
x�j
�
j2fA;B;C;Dg is any vector of candidate platforms.

Proof. By logic identical to that used in Lemma 2, the winning candidate�s optimal policy
choice y�a;b;c;d = ẑa;b;c;d in response to any voting strategy � is to implement the conditional

expectation ẑa;b;c;d of Z in response to vote totals (a; b; c; d) 2 Z4+. If voting follows a

symmetric belief threshold strategy ��T2;�T1;T1;T2 then, by logic identical to that used in

Lemma 3, ẑa+1;b;c;d < ẑa;b+1;c;d < ẑa;b;c;d < ẑa;b;c+1;d < ẑa;b;c;d+1 for any (a; b; c; d) 2 Z4+. The

e¤ect of a single vote, therefore, is to push the ultimate policy outcome either to the left

or to the right, with A and D votes pushing policy further than B and C votes. Also, the

symmetry of vote probabilities

p��T2;�T1;T1;T2 (Ajz) = p��T2;�T1;T1;T2 (Dj � z)

p��T2;�T1;T1;T2 (Bjz) = p��T2;�T1;T1;T2 (Cj � z)

p��T2;�T1;T1;T2 (0jz) = p��T2;�T1;T1;T2 (0j � z)

 ��T2;�T1;T1;T2 (a; b; c; djz) =  ��T2;�T1;T1;T2 (d; c; b; aj � z)

generates symmetric expectations:

ẑd;c;b;a =
 ��T2;�T1;T1;T2 (d; c; b; aj1)�  ��T2;�T1;T1;T2 (d; c; b; aj � 1)
 ��T2;�T1;T1;T2 (d; c; b; aj1) +  ��T2;�T1;T1;T2 (d; c; b; aj � 1)

=
 ��T2;�T1;T1;T2 (a; b; c; dj � 1)�  ��T2;�T1;T1;T2 (a; b; c; dj1)
 ��T2;�T1;T1;T2 (a; b; c; dj � 1) +  ��T2;�T1;T1;T2 (a; b; c; dj1)

= �ẑa;b;c;d.

Given this response to ��T2;�T1;T1;T2, let �j1;j2 denote the expected bene�t of voting for

candidate j2 instead of candidate j1, where j1; j2 2 fA;B;C;D; 0g. For example, the bene�t
�CD of voting for candidate D instead of candidate C is given by

�CD (q; s) =
X
z=1;�1

X
(a;b;c;d)2Z4+

2 (ẑa;b;c;d+1 � ẑa;b;c+1;d)�

�
z � ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 ��T2;�T1;T1;T2 (a; b; c; djz)

1

2
(1 + zqs) ,
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for a citizen of type (q; s). Since ẑa;b;c;d is bounded between �1 and 1, �CD is increasing in

qs:

d�CD

d (qs)
=

X
(a;b;c;d)2Z4+

(ẑa;b;c;d+1 � ẑa;b;c+1;d)�

[

�
1� ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 ��T2;�T1;T1;T2 (a; b; c; dj1)

�
�
�1� ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 ��T2;�T1;T1;T2 (a; b; c; dj � 1)]

> 0.

By a similar derivation, �j1;j2 is increasing in qs whenever j1 precedes j2 in the ordering

fA;B; 0; C;Dg. This implies the existence of thresholds TAB � TB0 � T0C � TCD such that

the belief threshold strategy �TAB ;TA0;T0B ;TCD is a best response to ��T2;�T1;T1;T2.

The symmetry of ẑa;b;c;d implies that voting bene�ts are symmetric as well. For example,

�CD (q; s) =
X

(a;b;c;d)2Z4+

(ẑa;b;c;d+1 � ẑa;b;c+1;d)�

[

�
1� ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 �T1;T2 (a; b; c; dj1)

1

2
(1 + qs)

+

�
�1� ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 �T1;T2 (a; b; c; dj � 1)

1

2
(1� qs)]

=
X

(a;b;c;d)2Z4+

(�ẑd+1;c;b;a + ẑd;c+1;b;a)�

[

�
1� �ẑd+1;c;b;a � ẑd;c+1;b;a

2

�
 �T1;T2 (d; c; b; aj � 1)

1

2
(1 + qs)

+

�
�1� �ẑd;c+1;b;a � ẑd+1;c;b;a

2

�
 �T1;T2 (d; c; b; aj1)

1

2
(1� qs)]

=
X

(d;c;b;a)2Z4+

(ẑa;b+1;c;d � ẑa+1;b;c;d)�

[

�
1 +

ẑa+1;b;c;d + ẑa;b+1;c;d
2

�
 �T1;T2 (a; b; c; dj � 1)

1

2
(1 + qs)

+

�
�1 + ẑa+1;b;c;d + ẑa;b+1;c;d

2

�
 �T1;T2 (a; b; c; dj1)

1

2
(1� qs)]

= ��AB (q;�s) .

Similarly, �0C (q; s) = ��B0 (q;�s). This symmetry implies that belief thresholds T0C =

�TB0 � T1 and TCD = �TAB � T2 are symmetric around zero. Thus, the best response to

a symmetric belief threshold strategy is a symmetric belief threshold strategy.
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Since best response belief thresholds are a continuous function from the compact set

f(T1; T2) : 0 � T1 � T2 � 1g of possible thresholds into itself, Brouwer�s theorem guarantees

the existence of equilibrium thresholds T �1 � T �2 . Furthermore, it must be that T �2 < 1

in equilibrium because a perfectly-informed citizen prefers to vote for the most extreme

candidate available:

�CD (1; 1) =
X
z=1;�1

X
(a;b;c;d)2Z4+

2 (ẑa;b;c;d+1 � ẑa;b;c+1;d)�

�
z � ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 �T1;T2 (a; b; c; djz)

1

2
(1 + z)

=
X

(a;b;c;d)2Z4+

(ẑa;b;c;d+1 � ẑa;b;c+1;d)�

�
1� ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 �T1;T2 (a; b; c; dj1) (1 + 1)

> 0.

That T �1 > 0 in equilibrium follows by the same logic as in Theorem 4: given the vote

totals (a; b; c; d) of her fellow citizens and candidates�optimal responses, a citizen essentially

chooses y (a; b; c; d) 2 fẑa+1;b;c;d; ẑa;b+1;c;d; ẑa;b;c;d; ẑa;b;c+1;d; ẑa;b;c;d+1g from a menu of �ve policy
functions to maximize the expectation of u (Y; Z). Since a perfectly uninformed citizen�s

posterior beliefs about Z are the same as her prior beliefs, however, this expectation reduces

to

EZ (Ea;b;c;d fu [y (a; b; c; d) ; Z] jZg jq; s) = EZ (Ea;b;c;d fu [y (a; b; c; d) ; Z] jZg)
= Ea;b;c;d (EZ fu [y (a; b; c; d) ; Z] ja; b; c; dg) .

The inner component EZ fu [ya;b;c;d; Z] ja; b; c; dg of this expression is identical to candidates�
objective function, and is uniquely maximized at y�a;b;c;d = ẑa;b;c;d. Since this is true for any

voting outcome (a; b; c; d), it is true for the expectation

Ea;b;c;d (EZ fu [ya;b;c;d; Z] ja; b; c; dg), as well. The perfectly uninformed citizen� and, by con-
tinuity, a su¢ ciently poorly informed citizen� thus prefers the policy function y�a;b;c;d =

ẑa;b;c;d, and therefore prefers to abstain.

Proposition 5 Let N = 1 be known, and let F be uniform on [0; 1]. If candidates A, B,

C, and D are responsive then (x�; ��; y�) is a perfect Bayesian equilibrium for the symmetric

belief threshold voting strategy �� = ��:6;�:2;:2;:6, the vector y� =
�
y�j
�
j2fA;B;C;Dg of policy

responses de�ned by y�j (0; 0; 0; 1) = �y�j (1; 0; 0; 0) = 0:8, y�j (0; 0; 1; 0) = �y�j (0; 1; 0; 0) =
0:4, y�j (0; 0; 0; 0) = 0, and any vector x

� =
�
x�j
�
j2fA;B;C;Dg of candidate platforms. In this

equilibrium, expected voter turnout is 80%.
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Proof. According to Lemma 2, a responsive candidate�s optimal response to vote totals
(a; b; c; d) is to implement his expectation ẑa;b;c;d of Z. If the citizen votes according to the

symmetric belief threshold strategy ��T2;�T1;T1;T2 then the winning candidate�s expectations

are as follows:

ẑ1;0;0;0 = E (Zjqs 2 [�1;�T2]) = �
T1 + T2
2

ẑ0;1;0;0 = E (Zjqs 2 [�T2;�T1]) = �
T2 + 1

2
ẑ0;0;0;0 = E (Zjqs 2 [�T1; T1]) = 0

ẑ0;0;1;0 = E (Zjqs 2 [T1; T2]) =
T1 + T2
2

ẑ0;0;0;1 = E (Zjqs 2 [T2; 1]) =
T2 + 1

2
.

The bene�t �0C (q; s) to a citizen of type (q; s) of voting for C instead of abstaining is

therefore given by

�0C (q; s) =
X
z=1;�1

2 (ẑ0;0;1;0 � 0)
�
z � 0 + ẑ0;0;1;0

2

�
1

2
(1 + zqs)

= 2ẑ0;0;1;0

�
qs� ẑ0;0;1;0

2

�
,

which is positive if and only if qs � ẑ0;0;1;0
2

� T1 (��T2;�T1;T1;T2). Similarly, the bene�t

�CD (q; s) of voting D instead of C is given by

�CD (q; s) =
X
z=1;�1

2 (ẑ0;0;0;1 � ẑ0;0;1;0)

�
z � ẑ0;0;1;0 + ẑ0;0;0;1

2

�
1

2
(1 + zqs)

= (ẑ0;0;0;1 � ẑ0;0;1;0)

�
qs� ẑ0;0;1;0 + ẑ0;0;0;1

2

�
,

which is positive if and only if q � ẑ0;0;1;0+ẑ0;0;0;1
2

� T2 (��T2;�T1;T1;T2). Solving T1 =
ẑ0;0;1;0
2
,

T2 =
ẑ0;0;1;0+ẑ0;0;0;1

2
, ẑ0;0;1;0 = T1+T2

2
, and ẑ0;0;0;1 =

T2+1
2

simultaneously yields T �1 = 0:2,

T �2 = 0:6, ẑ0;0;1;0 = 0:4, ẑ0;0;0;1 = 0:8. Abstention is given by 1 � F (T �1 ) = T �1 = 0:2, so

turnout is 80%.
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