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Abstract

We analyze a model of political campaigns, where a challenger

aims to unseat an incumbent. The challenger and the incumbent

differ in their quality. All voters want to elect the candidate

with higher quality. The challenger chooses the level of precision

of campaign messages to affect his probability of being elected.

More precise campaigns are more costly for the challenger. We

characterize the equilibria when voters observe both the mes-

sage and the precision. We show that only two-step non-trivial

equilibira are possible. This framework allows us to investigate

whether limits on campaign spending may be welfare-enhancing.
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1 Introduction

The objective of our research is to investigate information transmission

during political campaigns. In political campaigns, candidates spend

much effort and money on increasing their exposure to potential voters.

It is often the case that they saturate airwaves and mailboxes with cam-

paign advertisements and make frequent appearances at rallies, town-

hall meetings, and TV programs. Though political candidates carefully

manage their “message,” a fully rational voter will not be fooled by their

spins. However, being frequently seen and heard has the effect of pro-

voking the interests of voters, who may choose to further investigate the

candidates.

In this paper, we construct a model where candidates can choose the

precision of communication, in the form of affecting the variance/precision

of the signal that voters receive about their quality. Voters are fully ra-

tional and choose the candidate with higher expected quality, based on

the candidate’s precision of communication and the actual message they

receive. We abstract from the issue of negative campaigns or heteroge-

neous voter preferences. One of the distinct features of our research is

that we allow the level of precision to be observable to the voters. There-

fore, precision of communication may be used as a signal of quality by

candidates.

In papers by Austen-Smith [1] and Landi [6] voters are risk averse

and uncertain about the policy positions of candidates, higher variance

implies lower utility for voters. Candidates affect variance by campaign

advertising. In his model, Austen-Smith also considers the presence of

interest groups and the possibility for candidates to change policy stands

to attract contributions. However, voters are not fully rational because

in equilibrium policy should be perfectly known and there is no reason

why voters should be uncertain. Landi assumes that candidates have

a fixed campaign budget to be allocated between positive and negative

advertising. Positive advertising reduces the own variance of policy and

negative advertising increases the opponent’ s variance.

In both of these papers, voters’ risk aversion drives candidates’ behaviour–

ceteris paribus, candidates want to decrease their own variance and in-
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crease their opponent’s variance. However, low variance is not necessar-

ily beneficial to the candidate as voters are risk neutral in our model. A

lower-quality candidate would prefer to have a higher variance, but since

precision is observed by the voters, the candidate has to be sufficiently

precise in order to have a chance to be elected at all. In this paper we

want to focus on information transmission of political campaign in a con-

text with common value, that is, all voters value quality and there is no

conflict of interest among voters. Political campaign affects the precision

of the signal and is used by voters to update beliefs about candidates.

In our paper, political campaigns transmit information both directly

and indirectly. This is in contrast to the previous work, where cam-

paign advertising is assumed to be either directly informative, as by

Coate [2] [3] and Degan [4], or indirectly informative (“money-burning”),

as by Prat [8] [9]. A closely related paper is by Li and Li [7]. In their

model, candidates may control the informativeness and the tone of cam-

paigns. In other words, they can choose between a precise campaign and

an imprecise one, and between a positive campaign and a negative one.

They adopt a discrete setup and analyze the effect of competing cam-

paigns. A key difference between our setup and theirs is that we adopt

a continuous setup, which also allows a welfare analysis of campaign

spending and voter choice.

2 Model

There is an election with an incumbent candidate running against a

challenger. Candidates are characterized by their quality, which can be

thought of as the candidate’s ability to run the office, for example, the

ability to gather information, the ability to build consensus, the ability to

influence public opinion, and so on. For simplicity, and since voters have

observed the incumbent behaviour during his past mandate, we assume

that the incumbent quality, θI > 0, is commonly known. In contrast,

before any campaign takes place, voters only know the distribution of

the challenger’s quality. In particular, from the voters’ perspective a

challenger’s quality is a random variable Θ, which is normally distributed

with mean 0 and variance σ2
θ . The challenger’s realized quality, θ ∈ R,
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is his private information.

Before the election, voters observe a signal on the challenger’s quality

through the challenger’s campaign:

s = θ + σhε, (1)

where ε is a random error term distributed according to the standard

normal distribution N(0, 1) and σh ≥ 0 is the standard deviation of the

signal when the challenger chooses precision h. Therefore, σh is lower if

the challenger chooses higher precision. We assume σh goes to zero as h

becomes arbitrarily large, and goes to infinity as h approaches zero.

We make two fundamental assumptions: (i) the candidate has con-

trol over precision h and (ii) voters observe the candidate’s precision of

message, h. One may interpret h as the effort put in by the candidate

to articulate his quality as a candidate, through stump speeches, media

appearances, campaign ads, and so on.

In other words, although voters observe whether a candidate is vague

and clear during a campaign, they may rationally infer only imperfectly

his type. Affecting the precision of the signal is costly, as it requires effort

and campaign funding. The cost of a level of precision h is represented

by the increasing function C(h). In the basic setting we assume that

this cost is independent of a candidate’s type. With a slight abuse of

notation, we also use C(σh) to denote the cost of inducing a signal of

variance σh. We make the following assumptions about the function

C(·).

Assumption 1. The cost function satisfies:

1. C ′(σh) < 0 for all σh ∈ (0,∞);

2. limσh→0C(σh) =∞;

3. limσh→∞C(σh) = 0.

Voters only care about the quality of the elected politicians. All vot-

ers have common value preferences and observe the same information.1

Therefore, we can just consider a representative voter.

1We may allow differences in voters’ political preferences. If the candidates’ polit-

ical positions are commonly known, and a voter’s utility derived from a candidate’s
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The assumption that voters only receive signals from the challenger

is, in our model, without loss of generality. In fact, since the incumbent’s

quality is known, and quality is the only thing that the voter cares about,

there is no scope for him to exert effort during the political campaign. In

reality, incumbents do spend as much, if not more, on political campaign

as challengers. This could be incorporated in the model by assuming that

the match between the candidates’ qualities and the state of the economy

can change over time, that the incumbent quality is only observed with

noise also during his mandate, or that the candidates can engage in

negative campaigns about their opponent’s quality.

The timing is as follows. The challenger exerts campaign effort (h).

The voter observes h and the signal s, uses them to update the expec-

tations on the challenger’s quality, and then vote. The candidate who is

elected enjoys the benefit from being in office, which we normalize to 1,

and the voter enjoys the elected politician’s quality.

The problem can be solved backward. Given the voter’s beliefs on

the challenger’s type, conditional on the observed precision of political

campaign h and the signal s, P e(θ|h, s), the voter must choose whether

to reelect the incumbent (v = 1) or the challenger (v = 0) in order to

maximize the expected utility from the electoral outcome

max
v∈{0,1}

U = vθI + (1− v)E[θ|s, h],

where the expectation is taken with respect to the probability distribu-

tion of the challenger’s quality induced by the belief P e(θ|h, s).
The solution of the voter’s problem consists of re-electing the incum-

bent if his quality is better than the expected quality of the challenger,

i.e. if θI ≥ E[θ|s, h], and of voting for the challenger otherwise. Implic-

itly, we have assumed that the voter votes for the incumbent in case of

indifference.

Let π(θ, h) be the probability that the challenger wins the election

when the challenger’s quality is θ, and his campaign precision is h. The

political position and that from his quality is additively separable, then we can rede-

fine the incumbent’s quality as the sum of his quality and the incumbent’s positional

(dis)advantage over the challenger for the median voter.
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problem for the challenger consists of choosing h in order to maximize

his expected net benefits from office:

max
h≥0

V (θ) = max
h≥0

π(θ, h)− C(h)

The above description defines a game with incomplete information

between the representative voter and the challenger. A strategy for the

challenger is the signal precision h : R → R+. A pure strategy for a

voter is a re-election rule v : R×R+ → {0, 1}. The solution concept we

adopt is Perfect Bayesian Equilibrium.

Definition 1. A Perfect Bayesian Equilibrium of the campaign game

consists of a challenger’s strategy, h(θ), a the voter’s strategy, v(s, h),

together with the system of beliefs P e(θ|h, s) such that

(i) v(s, h) maximizes U given beliefs P e(θ|h, s);
(ii) h(θ) maximizes V given the voter’s strategy v(s, h)

(iii) Beliefs are calculated using Bayes rule (whenever applicable) and

are consistent with the challenger’s strategy:

P e(θ = x|h, s) =
p(s|h, x)p(x|h)

p(s|h)
=
p(s|h(x), x)p(x|h)

p(s|h(x))

where p() denotes the density function.

We are interested in characterizing the equilibria of this game and in

seeing whether there are equilibria in which information about the chal-

lenger quality is transmitted to voters through the candidate campaign.

We will call an equilibrium informative if the voter is equilibrium

uses the information contained in the signal, besides the information (if

any) contained in the observed precision.

3 Equilibrium

The context described in a previous section constitutes a signalling game,

where the sender is the challenger, the signal is the precision h, and the

receiver is the representative voter. The difference between this game
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and a “pure” signalling game is that the voter makes his inference based

not only on the the level of precision, but also on the random message

generated with the level of precision. We analyze in this section the

existence and characterization of separating, pooling, or semi-pooling

equilibria as well as their informational content. We focus on monotone

equilibria, in which the challenger’s precision is nondecreasing in his

quality.

Separating equilibria

Let us consider first separating equilibria. In a separating equilibrium,

each challenger type chooses a different level of precision. Let ĥ = h(θ̂)

be the precision chosen by type θ̂.

Proposition 1. There is no fully separating equilibrium of this game.

Proof. See the Appendix.

A fully separating equilibrium is impossible because in such an equi-

librium, voters will perfectly infer the quality of the challenger from his

precision alone. Therefore, the challenger is elected if and only if his

quality is higher than the incumbent’s quality. But this means that a

challenger should not spend any effort at all to increase his precision if

his quality is lower than the incumbent’s quality.

Pooling equilibria

In a pooling equilibrium h(θ) = h∗, ∀θ for some h∗ ≥ 0. The proposition

below shows that the only pooling equilibrium is one that requires each

type of candidate to not campaign at all.

Proposition 2. There exists a unique fully pooling equilibrium in which

h∗ = 0.

The pooling equilibrium with zero precision is sustained by the vot-

ers’ belief that any positive precision must be from a challenger with

quality lower than the incumbent’s quality. In this equilibrium, since

the signal is completely uninformative, the representative voter must

make his decision based on his prior. As we assume the challenger’s
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expected quality is lower than that of the incumbent, the challenger will

not be elected.

There does not exist a pooling equilibrium with a positive precision.

This is because for any precision, if the challenger’s quality is low enough,

his probability of being elected approaches zero, which means that he

would rather choose zero precision.

Semi-pooling equilibria

The only other type of equilibrium is semi-pooling equilibrium, which

takes the “two-step” form, a challenger whose quality is below a thresh-

old θ̃ chooses zero precision, while one whose quality is above θ̃ chooses

a common level of positive precision.

Proposition 3. In any equilibrium, there is at most one positive level of

precision. Furthermore, if a challenger of quality θ chooses positive pre-

cision, then a challenger of quality θ′ > θ also chooses positive precision.

This implies that all semi-pooling equilibria must be two-step equilibria.

We only offer an intuitive argument, in place of a formal proof. First,

if a challenger of quality θ prefers a level of positive precision to zero

precision, then one of quality θ′ > θ should also prefer the same level of

positive precision level to zero precision, because quality θ′ has a weakly

higher chance of being elected than θ, given the same precision level.

This implies that, in equilibrium, a challenger chooses zero precision if

and only if his quality is below a threshold, θ̃. Second, there cannot

be two different levels of positive precision, h and h′, where h < h′. If

there were, for precision level h, there must exist quality values above

θI such that the challenger chooses each level. Otherwise, the voters

would infer that the quality of the challenger is below θI and would

not elect the challenger, and the challenger would be better off choosing

zero precision. However, in a monotone equilibrium, this means that

the higher precision is chosen only by quality levels above θI . Unless the

precision is so high that the cost of precision is equal to 1, the challenger’s

payoff from winning office, a low-quality challenger who is supposed to

choose zero precision would want to deviate and choose h′ instead. But

this means a high-quality challenger who is supposed to choose h′ and
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earn zero payoff would strictly prefer to choose h instead. Therefore,

there could not be two different levels of precision in equilibrium.

Given the above proposition, we may conclude further that there are

two types of semi-pooling equilibria: uninformative, in which the level

of precision alone is instrumental to the voters’ decision; informative, in

which both the level of precision and the signal are useful.

Proposition 4. For each θ̃ > θI , there exists a 2-interval (uninforma-

tive) semi-pooling equilibrium of the following form:

h(θ) =

{
h̃ > 0 if θ ≥ θ̃,

0 if θ < θ̃,

where

h̃ : 1− C(h̃) = 0,

v(s, h) = v(h) =

{
0 if h = h̃

1 if h 6= h̃
,

and the beliefs substaining such equilibrium are, among others, P e(θ|h ≥
h̃) = φ(θ|θ ≥ θ̃), P e(θ|h < h̃) = φ(θ|θ < θ̃).

In the above equilibrium, only relatively high quality levels will choose

a positive precision of the signal transmitted by political campaigns.

Since high types pool, they will choose by definition the same level of

precision. This is indeed an equilibrium under any beliefs that assign

zero probability to relatively high types when an out-of-equilibrium pre-

cision is observed. The equilibrium precision level is determined by the

indifference of type θ̃ between choosing precision h̃ (in which case he

is elected with probability 1) and 0. Clearly, this is an equilibrium, as

no low type challenger has an incentive to chose a positive precision, as

he will not be elected but he would incur the cost. Similarly, no type

higher than θ̃ has an incentive to deviate, as he is already elected with

probability 1 and by deviating he would not get elected.

In this equilibrium, the possibility of campaigns increases the possi-

bility of electing challengers who are better than the incumbent. In fact,

very bad challengers (θ < θ̃) never gets elected. And in the case in which

θ̃ = θI information is aggregated efficiently because types better than
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the incumbents are always elected and types worse than the incumbent

are never elected. However, this equilibrium is “uninformative” in the

sense that, paradoxically, the specific campaign message is irrelevant to

the voter, who only needs to observe whether the campaign is more or

less precise. Therefore, this equilibrium is qualitatively equivalent to a

money burning equilibrium in a standard signalling game. Campaign

advertising does not transmit any useful information above the one con-

tained in the signal precision. In addition, the payoff of challengers is

the same across types and equals zero. So this equilibrium is not strong,

as although nobody has incentive to deviate they do not have any strong

incentive to follow the equilibrium strategy either.

Proposition 5. For each θ̃ that satisfies θ̃ < θI and H(θ̃) > θI , there

exists a unique two-interval (informative) semi-pooling equilibria of the

following form:

h(θ) =

{
h̃ > 0 if θ ≥ θ̃,

0 if θ < θ̃,

and

h̃ : Pr
s|θ̃

[E(Θ|s, h̃) ≥ θI ]− C(h̃) = 0,

v(s, h) = v(h) =

{
1{E(Θ|s, h̃) ≥ θI} if h = h̃

0 if h 6= h̃
,

and (unconditional) beliefs substaining such equilibrium are P e(θ|h ≥
h̃) = φ(θ|θ ≥ θ̃), P e(θ|h < h̃) = φ(θ|θ < θ̃) and conditional beliefs are

calculated according to Bayes’ rule.

The above proposition characterizes the “informative” two-step equi-

libria. A challenger whose quality is below a threshold, θ̃, chooses zero

precision and will not be elected at all. If the challenger’s quality is

above the threshold, then he chooses positive precision. This precision

level is determined by the threshold θ̃. Given the threshold, for each

level of precision, there exists a corresponding cutoff, s̄, such that the

representative voter prefers the challenger to the incumbent if the sig-

nal he observes about the challenger’s quality is above s̄ ∈ R. Hence,
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the signal the voter observes is instrumental in the electoral decision he

makes, that is, the signal is informative.

The probability of winning the election for a challenger who chooses

positive precision is the probability that the voter observes a signal

higher than s̄. In equilibrium, at the threshold quality, θ̃, the challenger

is indifferent between precision h̃ and zero precision, as his probability

of winning is exactly equal to the cost of creating the precision h̃. The

challenger’s winning probability at θ̃ decreases with precision, but the

campaign cost increases with precision. As the cost increases from zero

to infinity when the precision goes from minimum to maximum, the

threshold quality’s probability of winning decreases from one to zero.

Therefore, there is a unique level of precision in equilibrium for each θ̃.

Outline of the Proof of Proposition 5. By properties of the normal dis-

tribution, the conditional distribution of Θ given h and s is

Θ|(s, h) ∼ N(µ, σ2),

where

1

σ2
≡ 1

σ2
θ

+
1

σ2
h

, µ ≡ (1− λ)s, λ ≡ σ2
h

σ2
θ + σ2

h

.

Therefore,

E(Θ|s, h) =σH

(
θ̃ − (1− λ)s

σ

)
+ (1− λ)s, (2)

or

E(Θ|s, h) =σH

(
θ̃ − µ
σ

)
+ µ, (3)

where H(t) is the conditional mean of the standard normal distribution

when truncated to the right at t. The above formula simply evaluates the

mean of the conditional distribution of Θ given signal s, when truncated

to the right at θ̃.

Step 1. Given θ̃ and σh, there exists a unique s̄, which satisfies

σH

(
θ̃ − (1− λ)s

σ

)
+ (1− λ)s= θI . (4)
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To see this, note that σH
(
θ̃−(1−λ)s

σ

)
+(1−λ)s is continuous and increas-

ing in s, converges to θ̃ when s→ −∞, and converges to ∞ as s→∞,

which can shown by using Lemma 1 below.

Step 2. Now, given the signalling strategy of the challenger above,

a challenger of quality θ wins the election with probability

W (θ, θ̃, σh) = 1− Φ

(
s̄− θ
σh

)
(5)

So for each θ̃, the equilibrium can be characterized by (4) and the fol-

lowing condition:

W (θ̃, θ̃, σh) = 1− Φ

(
s̄− θ̃
σh

)
=C(σh), (6)

where we have abused notation slightly and turned C into a function of

σh, the noise of the challenger’s message.

The proof is complete if we can show that for each θ̃, there exists a

σh which satisfies the above equation.

When σh ↓ 0, we have C(σh) ↑ ∞ by Assumption 1, and W (θ̃, θ̃, σh)

goes to 0 for any θ̃ < θI as s̄ goes to θI .

When σh ↑ ∞, C(σh) ↓ 0 by Assumption 1. On the other hand,

E(Θ|s, h) converges to E(Θ|Θ ≥ θ̃) = H(θ̃) for all s ∈ R. Therefore,

W (θ̃, θ̃, σh) goes to 0 if H(θ̃) < θI and goes to 1 if H(θ̃) > θI .

In the case of H(θ̃) < θI , the existence of a semi-pooling equilibrium

is not assured. It exists if there exists σh such that W (θ̃, θ̃, σh) ≥ C(σh).

In the case of E(Θ|Θ ≥ θ̃) = H(θ̃) > θI , the proof is done in the rest

of this section: it suffices to show that W (θ̃, θ̃, σh) is increasing in σh,

which we state as Lemma 5.

In the discussion that follows, without loss of generality,2 we assume

σθ = 1. Thus,

λ =
σ2
h

σ2
θ + σ2

h

=
1

1/σ2
h + 1

=
1

1/σ2
h + 1/σ2

θ

= σ2.

2We may normalize both the quality and the signal by a common factor so that

the variance of the quality distribution becomes unity. Our analysis remains the

same as long as we perform the corresponding monotonic transformation of the cost

function, without violating Assumption 1.
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Note that σ strictly increases with σh from 0 to 1, as the latter increases

from 0 to ∞.

As a convention for notation, we use barred symbols to indicate equi-

librium values of the variables. As we have defined, s̄ is the level of signal

s such that (4) holds. That is, the voter elects the challenger if and only

if the he receives a more optimistic signal than s̄. Using (3), condition (4)

can be rewritten

σH

(
θ̃ − µ
σ

)
+ µ= θI . (7)

We denote the µ that solves this equation by µ̄.

To facilitate our analysis, we collect some properties of the function

H in the following lemma.3

Lemma 1. Let Θ be a random variable with the standard Normal distri-

bution. Let φ and Φ be respectively its density and distribution functions.

Let H(t) be the conditional mean of the standard Normal distribution,

when truncated to the right of t, and let M(t) = H(t) − t. Then, the

following properties hold:

1. The conditional mean of the standard normal distribution when

truncated to the right of t is equal to the conditional density of the

truncated standard Normal distribution at t:

H(t) =
φ(t)

1− Φ(t)
;

2. The function H is increasing and strictly convex and M is decreas-

ing and strictly convex, and satisfy

M(t) > 0, limt→−∞M(t) = +∞, limt→+∞M(t) = 0;

H ′(t) = H(t)[H(t)− t] = M(t)[M(t) + t] = M ′(t) + 1 ∈ (0, 1);

limt→−∞H
′(t) = 0, limt→+∞H

′(t) = 1;

limt→−∞M
′(t) = −1, limt→+∞M

′(t) = 0;

M ′′(t) = H ′′(t) > 0;

V ar(Θ|Θ ≥ t) = 1−H ′(t) = −M ′(t).

3The inverse of H is often called the Mills’ Ratio in the statistics literature. Please

see [5] for a proof of the facts in the lemma.
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The following two lemmas are needed in the proof of Lemma 5.

Lemma 2.

lim
t→∞

M ′(t)

M(t)
= 0.

Proof. See the Appendix.

An immediate corollary is that

lim
t→∞

(
M ′(t)

M(t)

)k
= 0,

for all k > 0.

Lemma 3. The expression M(t)M ′′(t)/M ′(t)2 is in (0, 2), and

lim
t→−∞

M(t)M ′′(t)

M ′(t)2
= 0;

lim
t→∞

M(t)M ′′(t)

M ′(t)2
= 2.

Proof. See the Appendix.

Now, to investigate how s̄ depends on σ, we make use of the Implicit

Function Theorem. Let us define the expression on the left-hand side

of (4) as F , a function of σ and s (note that λ = σ2). Thus,

∂F

∂s
= (1− λ)[1−H ′(t)] > 0,

∂F

∂σ
=H(t) + σH ′(t)

∂t

∂σ
+ σH ′(t)

∂t

∂µ
· ∂µ
∂σ

+
∂µ

∂σ

= [H(t)−H ′(t)t]− 2σs[1−H ′(t)],

where t refers to the argument of H in (4), that is,

t=
θ̃ − µ
σ

. (8)

The effect of an increase in σ affects the truncated conditional mean of

Θ in two ways: first, it increases the conditional variance of Θ given s,
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which results in an increase in the truncated conditional mean, which is

reflected in the first term of ∂F/∂σ; second, it shifts the conditional mean

of the pre-truncation distribution of Θ towards 0, hence the direction of

the shift is opposite to the sign of s. As a result of the Implicit Function

Theorem,

Lemma 4. Fixing a cutoff θ̃, the equilibrium values, t̄ and µ̄, satisfy

1. t̄ is strictly increasing in σ;

2. µ̄ is strictly decreasing and strictly concave in σ.

Proof. 1. From (7) and (8), we obtain

σ[H(t̄)− t̄] = θI − θ̃, (9)

which by the Implicit Function Theorem implies

dt̄

dσ
=− H(t̄)− t̄

σ[H ′(t̄)− 1]
= − M(t̄)

σM ′(t̄)
> 0. (10)

2. With a slight abuse of notation, we continue to refer to the expres-

sion on the left-hand side of (7) as F , with the understanding that

it is now a function of µ and σ.

∂F

∂µ
= 1−H ′(t) > 0;

∂F

∂σ
=H(t) + σH ′(t)

∂t

∂σ
= H(t)−H ′(t)t > 0.

By the Implicit Function Theorem, we have

dµ̄

dσ
=−H(t̄)−H ′(t̄)t̄

1−H ′(t̄)
< 0, (11)

d2µ̄

dσ2
=−H

′′(t̄)[H(t̄)− t̄]
[1−H ′(t̄)]2

· dt̄
dσ

< 0, (12)

where we have used Lemma 1 and the fact that dt̄/dσ > 0.

Lemma 5. If H(θ̃) > θI , then the probability that the cutoff quality wins

the election, W (θ̃, θ̃, σh), is strictly increasing in σh.
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Proof. For the cutoff quality θ̃, the probability of winning the election

is

W (θ̃, θ̃, σh) = 1− Φ

(
s̄− θ̃
σh

)
.

Note that

s̄− θ̃
σh

=
θ̃−σt̄
1−λ − θ̃
σh

=
λθ̃ − σt̄

(1− λ)σh
.

Using the facts

λ

1− λ
= σh

2 and λ = σ2,

the probability of winning can be rewritten

W (θ̃, θ̃, σh) = 1− Φ

(
σhθ̃ −

σht̄

σ

)
.

Now, we consider how W depends on σh. Observe that

∂W

∂σh
=−φ

(
σhθ̃ −

σht̄

σ

)
·
[
θ̃ − dσh/σ

dσh
· t̄− σh

σ
· dt̄
dσh

]
,

=−φ
(
σhθ̃ −

σht̄

σ

)
·
[
θ̃ − σt̄− σh

σ
· dσ
dσh
· H(t̄)− t̄
σ[1−H ′(t̄)]

]
,

=−φ
(
σhθ̃ −

σht̄

σ

)
·
[
µ̄− σ

σh2
· H(t̄)− t̄

1−H ′(t̄)

]
,

=−φ
(
σhθ̃ −

σht̄

σ

)
·
[
µ̄+

(
1

σ
− σ

)
M(t̄)

M ′(t̄)

]
,

Now, we show that the expression µ̄+
(

1
σ
− σ

) M(t̄)
M ′(t̄)

is always negative.

We prove the claim in two steps. First, we show that in the limit

(σ → 0 or 1) the expression is nonpositive. Then, we show that the

expression is monotonically increasing in σ.

Step 1. Note that when σ → 0,

µ̄→ θI ,

t̄→ −∞, hence M(t̄)/M ′(t̄)→ −∞,
1

σ
− σ → +∞,
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which implies

lim
σ→0

µ̄+

(
1

σ
− σ

)
M(t̄)

M ′(t̄)
=−∞.

On the other hand, when σ = 1,

µ̄ < 0,

t̄ is finite, hence M(t̄)/M ′(t̄) is finite,
1

σ
− σ = 0,

which implies

lim
σ→1

µ̄+

(
1

σ
− σ

)
M(t̄)

M ′(t̄)
< 0.

Step 2. Now, we show that the expression µ̄+
(

1
σ
− σ

) M(t̄)
M ′(t̄)

is strictly

increasing in σ. Taking its derivative with respect to σ, we obtain

M(t̄)

M ′(t̄)
− t̄+

(
− 1

σ2
− 1

)
M(t̄)

M ′(t̄)
+

(
1

σ
− σ

)
dM(t̄)/M ′(t̄)

dt
· dt̄
dσ
,

=−t̄+
1

σ

dt̄

dσ
+

(
1

σ
− σ

)
dM(t̄)/M ′(t̄)

dt
· dt̄
dσ
, [by (10)]

=σ
dt̄

dσ
− t̄+

(
1

σ
− σ

)(
dM(t̄)/M ′(t̄)

dt
+ 1

)
dt̄

dσ
,

where we have used
dµ̄

dσ
=− H(t̄)− t̄

1−H ′(t̄)
− t̄ =

M(t̄)

M ′(t̄)
− t̄,

as implied by (11). To show the derivative is positive, it suffices to show

A ≡ σ
dt̄

dσ
− t̄ > 0;

B ≡ dM(t̄)/M ′(t̄)

dt
+ 1> 0.

First, we show A > 0.

A=σ · M(t̄)

−σM ′(t̄)
− t̄,

=σ · M(t̄) +M ′(t̄)t̄

−M ′(t̄)
,

>
M(t̄)(1 +M ′(t̄)) +M ′(t̄)(M(t̄) + t̄)

−M ′(t̄)
,

=
M ′′(t̄)

−M ′(t̄)
,

> 0,
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where we have repeatedly used the facts M(t̄) > 0 and M ′(t̄) < 0.

To show B > 0, observe that

B=
M ′(t̄)2 −M(t̄)M ′′(t̄)

M ′(t̄)2
+ 1,

= 2− MM ′′

M ′2 .

Thus, B > 0, is implied by Lemma 3.

Now we have shown both A > 0 and B > 0. Therefore, the claim is

proved.

4 Equilibrium Properties and Welfare Analysis

In this section, we investigate properties of the equilibria and perform

welfare analysis. Note that in the previous section, we have shown that

there exist two types of equilibria: uninformative, where the act of cam-

paigning alone indicates that the challenger is better than the incum-

bent, and informative, where both the act of campaigning and the signal

generated by campaigning are used by the voters to make their choice.

From Proposition 4, in the former, the challenger chooses the level of

campaigning that costs him as much as the benefit from winning the

election. As long as the cutoff for campaigning, θ̃, is above the incum-

bent’s quality, θI , the level of campaigning in equilibrium is the same.

However, from Proposition 5, in the latter, the level of campaigning

depends on the cutoff, θ̃.

Corollary 1. In an informative equilibrium, the level of campaigning by

the challenger, is increasing in the cutoff, θ̃.

The intuition for this result is as follows. In an informative equi-

librium, if the cutoff for campaigning is higher, then the quality of a

challenger who campaigns is higher. This implies that the voter de-

mands a lower minimum signal to elect the challenger, which makes the

challenger at the cutoff quality level easier to be elected. The equilib-

rium condition then requires that a higher level of precision must prevail

in equilibrium.
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Now, we analyze how social welfare varies with the cutoff θ̃. As a

starting point, we take social welfare to be the sum of the voter’s ex-

pected payoff, the challenger’s expected utility, the incumbent’s expected

utility, minus the cost of campaigning. Therefore,

SW =

∫ θ̃

−∞
θIφ(θ)dθ +

∫ ∞
θ̃

[θI(1−W (θ)) + θW (θ)]φ(θ)dθ

+1− C(σh)[1− Φ(θ̃)], (13)

where we have used W (θ) as a shorthand for W (θ, θ̃, σh). The term 1

is the sum of the challenger’s and the incumbent’s utility from holding

office. The last term is the expected cost of the political campaign. Note

that by (6), we may replace C(σh) with W (θ̃, θ̃, σh), or W (θ̃) in short,

evaluated at the equilibrium value of σh. Thus, we may rewrite the

expression for social welfare as

SW =

∫ ∞
θ̃

[(θ − θI)W (θ)−W (θ̃)]φ(θ)dθ + θI + 1, (14)

where the first term in the integral measures the gain from electing the

challenger, while the second term measures the cost of campaigning.

Proposition 6. In the uninformative equilibrium, social welfare is max-

imized at θ̃ = θI +1. Furthermore, the maximum social welfare is always

higher than that under the pooling equilibrium.

In the uninformative equilibrium, the challenger always wins the elec-

tion if he campaigns at all. The cost of campaigning is equal to the ben-

efit of winning the election. From the perspective of social welfare, it is

only efficient for the challenger to campaign when the challenger’s qual-

ity exceeds that of the incumbent by the cost of campaigning. Hence,

the threshold that maximizes social welfare is equal to the incumbent’s

quality plus the benefit of winning the office.

The welfare analysis for the informative equilibrium is more involved,

which we hope to deal with in future research.

5 Conclusion and discussions

In this paper, we have constructed a model in which a candidate may af-

fect the precision of his message through costly campaigning effort. The
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voters observe the level of precision, as well as the campaign message

itself. We characterize three types of equilibria of the game: pooling,

uninformative, and informative. We show that the uninformative equi-

libria, in which campaigning is pure money burning and the signal is

not useful in the voter’s decision making, generate higher social welfare

than the pooling equilibrium.

Our model can be extended in a number of ways. First, we may

consider the scenario in which the incumbent’s quality is not perfectly

observed. Second, we may assume voters are heterogenous in terms

of their preferences for the candidates. Finally, we may consider the

scenario where candidates differ in both their quality and positions.

6 Appendix: Proofs

Proof of Proposition 1. In a separating equilibrium, by observing h the

voter can perfectly infer the challenger’s type. , then P e(θ̂|ĥ, s) = 1,

and P e(θ̃|ĥ, s) = 0,∀.s, θ̃ 6= θ̂. In this context the signal s is therefore

irrelevant, that is π(θ̂, s) = π(θ̂) ∀s. In particular, the probability that a

challenger with quality θ̂ is elected π(θ̂) is 1 if θ̂ > θI and 0 otherwise.

The payoff function of a challenger of type θ̂, is

V (θ̂) = 1{θ̂ > θI} − C(h(θ̂))

where 1{·} is an indicator function taking the value 1 when the ex-

pression inside the brakets is true. Clearly, this cannot be an equilibrium

because all challengers with θ̂ < θI would profitably deviate by setting

h(θ̂) = 0.

Proof of Proposition 2. The pooling equilibrium with h∗ = 0 is sus-

tained by beliefs that any h∗ > 0 comes from a bad types (θ < θI).

In this case, any effort will not be rewarded by a positive probability of

winning and, as a result, no type finds it optimal to exert any positive

effort.

Now, we show that there does not exist any fully pooling equilibrium

with h∗ > 0. Suppose all candidate types choose h∗ > 0. The equilib-

rium probability that a challenger of quality θ is elected is π(θ, h∗) =

Prs|θ[EP e [Θ|s, h∗] > θI ], where EP e [Θ|s, h∗] is the posterior expectation
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about the challenger quality given signal s and precision h∗, where the

expectation is taken with respect to the posterior distribution P e(·|s, h∗),
which in this case is just the prior distribution of the challenger quality.

The probability of election π(θ, h∗) is the integral of this posterior expec-

tation with respect to hte distribution of the signal conditional induced

by a challenger with quality θ. Using the properties of the normal dis-

tribution we have that EP e [Θ|s, h∗] = λ∗s, where λ∗ =
σ2
θ

σ2
θ+(σ∗)2

and σ∗ =

1/
√
h∗. Rearranging, one obtains that π(θI , θ, h

∗) = Prs|θ[(λ
∗s > θI)].

Since s = θ+ εσ∗, conditional on the quality θ and the equilibrium pre-

cision h∗ the signal is distributed according to N(θ, σ∗2) and π(θ, h∗) =

Prs|θ[(s− θ)/σ∗ > (θI −λ∗θ)/(λ∗σ∗)] = Φ((λ∗θ− θI)/(λ∗σ∗)). This prob-

ability tends to 0 when θ goes to minus infinity, it tends to 1 when

θ goes towards plus infinity and it is increasing in θ. Hence, for any

given h∗, there exists a type θ∗ such that π(θ∗, h∗) − C(h∗) = 0, and

when θ < (>)θ∗, π(θI , θ
∗, h∗)B − C(h∗) < (>)0. It follows that chal-

lengers of types θ̂ < θ∗ prefer to deviate to ĥ < h∗ independent of the

off-equilibrium beliefs.

Proof of Lemma 2. Let C represent the limit. For simplicity, we sup-

press the argument t from the expressions whenever there is no confu-

sion. Note that M and M ′ both go to 0 as t goes to −∞. By l’Hôpital’s

rule, we have

C = lim
t→∞

M ′′

M ′ ,

= lim
t→∞

M ′(M + t) +M(M ′ + 1)

M ′ ,

= lim
t→∞

(M + t) +
M(M ′ + 1)

M ′ ,

= lim
t→∞

t+ lim
t→∞

M

M ′ .

Note that M ′/M < 0 for all t, therefore C ≤ 0. If C < 0, then the above

equation gives

C − 1

C
=∞,

which is impossible. Therefore, C = 0.
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Proof of Lemma 3. Again, we suppress the argument t when there is no

confusion. Let E = MM ′′/M ′2.

First, we show that E converges to 0 as t goes to −∞. As t goes to

−∞, the following facts are true from Lemma 1:

M + t→ 0, M ′ → −1.

Using the fact

M ′′=M ′(M + t) +M(M ′ + 1),

we have

lim
t→−∞

E= lim
t→−∞

MM ′(M + t) +M2(M ′ + 1),

= lim
t→−∞

−M(M + t) +M2M(M + t),

= lim
t→−∞

(−M +M3)
φ(t)

1− Φ(t)
,

= lim
t→−∞

−(H − t)[1− (H − t)2]
φ(t)

1− Φ(t)
,

= 0,

where in the last equality we have used the fact H → 0 and tkφ(t)→ 0

for all k as t goes to −∞.

Now, we proceed to show the other statements. Observe that

E=
M [M ′(M + t) +M(M ′ + 1)]

M ′2 ,

=
(M ′ +M2)(M ′ + 1)

M ′2 ,

=
1 + M2

M ′

M ′

M ′+1

.

The derivatives of the denominator and numerator with respect to t

are respectively

d M ′

M ′+1

dt
=

M ′′

(M ′ + 1)2
> 0,

and

d(1 + M2

M ′
)

dt
=

2MM ′ ·M ′ −M2M ′′

M ′2 ,

=M(2− MM ′′

M ′2 ),

=M(2− E).
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Since E > 0 and M ′/(M ′ + 1) < 0, and therefore 1 + M2/M ′ < 0.

Now suppose E > 2, then

d(1 + M2

M ′
)

dt
< 0,

which then implies E ′ > 0. In other words, whenever there is a t0 such

that E(t0) ≥ 2, E(t) will always increase for t > t0. Given this, as long

as

lim
t→∞

E= 2,

there would be a contradiction. Hence,

lim
t→∞

E= 2,

implies that E ∈ (0, 2) for all t.

Now, we show

lim
t→∞

E= 2.

To show this, we consider the limits of M2/M ′ and M ′/M2 as t goes

to∞. Note that M2 and M ′ both go to 0 as t goes to∞. By l’Hopital’s

Rule, we have

lim
t→∞

M2

M ′ = lim
t→∞

2MM ′

M ′′ = lim
t→∞

2

E
· M

2

M ′ ,

lim
t→∞

M ′

M2
= lim

t→∞

M ′/M

M
= lim

t→∞

M ′′M−M ′2
M2

M ′ = lim
t→∞

(E − 1)
M ′

M2
.

From the first equation, either limt→∞E = 2 or limt→∞
M2

M ′
= 0. From

the second equation, either limt→∞E = 2 or limt→∞
M ′

M2 = 0. But,

limt→∞
M2

M ′
= 0 and limt→∞

M ′

M2 = 0 cannot both hold. Therefore, we

conclude

lim
t→∞

E= 2.

Proof of Corollary 1. From equilibrium condition (4), fixing any σ (hence

λ), an increase in θ̃ leads to a decrease in s̄, which in turn leads to an

increase in the cutoff type’s probability of winning, W (θ̃, θ̃, σh). By

equilibrium condition (6), this results in a decrease in the equilibrium

variance, σh, or an increase in the precision of the political campaign.
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Proof of Proposition 6. In the uninformative equilibrium, the challenger

always gets elected if he campaigns at all. From (14), we obtain

SW =

∫ ∞
θ̃

[θ − θI − 1]φ(θ)dθ + θI + 1,

which is clearly maximized at θ̃ = θI + 1.

In the pooling equilibrium, SW = θI + 1. However, when θ̃ = θI +

1, the integral is positive. Therefore, the uninformative equilibrium

dominates the pooling equilibrium in terms of social welfare.

Note that the result may hold even if θI < 0, which means that

the challenger gets elected in the pooling equilibrium, that is, SW =

E(Θ) + 1 = 1. In the uninformative equilibrium, if θ̃ = θI + 1, we have

SW =

∫ ∞
θ̃

θφ(θ)dθ +

∫ θ̃

−∞
(θI + 1)φ(θ)dθ,

=H(θ̃)[1− Φ(θ̃)] + (θI + 1)Φ(θ̃),

=φ(θI + 1) + (θI + 1)Φ(θI + 1).

Note that when θI = −1, SW = φ(0) < 1. When θI = 0, SW =

φ(1) + Φ(1) > 1. Also,

d[φ(θ) + θΦ(θ)]

dθ
= Φ(θ) > 0.

Therefore, there exists θ0
I ∈ (−1, 0) such that social welfare in the opti-

mal uninformative equilibrium is better than the pooling equilibrium if

and only if θI > θ0
I .
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