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Abstract

We study a formulation of correlated equilibrium in which every player conditions

his actions on his hierarchies of beliefs about the play of the game (belief on what other

players will do, on what other players believe others will do, etc.). Our formulation

can be thought of as a purification requirement based on hierarchies of beliefs. For

any finite, complete information game, we are able to exactly characterize the strategic

implications of correlated equilibria, both subjective and objective, in which players

condition their actions on their hierarchies of beliefs. The characterizations are inde-

pendent of type space and rely on a novel iterated deletion procedure. We show that

“most” (objective) correlated equilibrium distributions can be obtained conditioning

on hierarchies of beliefs; but interestingly, for generic two-person games, any non-

degenerate mixed-strategy Nash equilibrium cannot be obtained. Therefore, we can

purify “most” public randomizations, but not private randomizations, via hierarchies

of beliefs.
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1 Introduction

There are two views on correlation in non-cooperative game theory. The classical view

introduced by Aumann (1974) relies on external, payoff irrelevant signals: players display

correlated behavior because they condition their strategies on correlated signals.

Recently, Brandenburger and Friedenberg (2008) introduced an intrinsic view of correla-

tion based on players’ hierarchies of beliefs (belief, belief on others’ belief, and so on) about

the play of the game. According to this view, a player has correlated belief about strategies

of the other players because he has a hierarchy of belief which expresses correlation over

other players’ hierarchies of beliefs. This view of correlation is intrinsic, because according

to epistemic game theory, hierarchies of beliefs are an intrinsic part of the description of the

game.

It seems quite natural that correlation can arise out of players’ intertwined hierarchies

of beliefs (I believe that you believe that I believe that . . .). The hierarchies of beliefs may

come from the players’ previous interactions, or the players may simply be very imaginative

people. Moreover, intrinsic correlation is in a sense more primitive than extrinsic correlation:

extrinsic correlation can be “embedded” in the game by expanding strategy sets and adjust-

ing the payoffs to explicitly account for players’ conditioning on the relevant signals; but

then players might display further correlated behaviors in the expanded strategies because

of their correlated hierarchies of beliefs (about the play in the expanded strategies).

Brandenburger and Friedenberg formalized intrinsic correlation with two epistemic con-

ditions (sufficiency and conditional independence) in type spaces; their solution concept is

the combined implications of these two conditions together with the condition rationality

and common belief of rationality. A drawback of their approach is that it is dependent on

the type space. Since a type space specifies every player’s (potentially infinite) hierarchy

of beliefs about the play of the game, it might be cumbersome or difficult to construct in

applications and thus to apply Brandenburger and Friedenberg’s solution concept. In fact,

Brandenburger and Friedenberg posed a type-free characterization of their solution concept

(i.e., a characterization solely in terms of strategies and payoffs of the game) as an open

question.

In this paper we introduce a new formulation to study intrinsic correlation and related

phenomena, and obtain an exact characterization that is independent of type space. Bran-

denburger and Friedenberg rely on rationality and common belief of rationality, which lead to

a rationalizability-like solution concept. In contrast, we propose an equilibrium solution con-
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cept, consistent with Aumann (1974)’s correlated equilibrium, that players condition their

(pure) actions on their hierarchies of beliefs about the play of the game, i.e., for player i’s

pure strategy σi that maps types to actions,

types ti and t′i have the same hierarchy of

beliefs about the play of the game
=⇒ σi(ti) = σi(t

′
i). (∗)

We study the combined implication of condition (∗) and the rationality condition that

every player chooses the optimal action given his belief about the play of the game. A

conventional correlated equilibrium is one in which players condition their actions on types

while satisfying the rationality condition, but condition (∗) does not apply; there, types are

external signals or sunspots. By condition (∗), types on which players condition their actions

are exactly hierarchies of beliefs (on the play of the game), which are variables “inside” the

game. Thus, we call our solution concept intrinsic correlated equilibrium.

Hierarchies of beliefs in condition (∗) may or may not be consistent with a common prior.

We analyze both cases; the characterizations in the two cases turn out to be closely related.

When players’ hierarchies of beliefs come from some previous interaction, they are likely to

be consistent with a common prior. For example, if Ann stole money from Bob and Clare in

their previous business venture, then for the present interaction Bob’s beliefs about Ann’s

play (say cooperate or defect) would probably be very consistent with Clare’s beliefs about

Ann’s play, and so on. On the other hand, if players’ hierarchies of beliefs come from mere

introspection, then they are likely to be subjective, not necessarily consistent with a common

prior.

Since we insist on every player playing a pure action conditional on his hierarchy of be-

liefs, condition (∗) in fact goes beyond requiring intrinsic correlation. It says that for a fixed

equilibrium, conditional on a hierarchy of beliefs, a deterministic action of the player will

be played, and this is commonly believed by the players and is reflected in their hierarchies

of beliefs. In particular, players do no use private randomization, unless the randomization

is written explicitly as an action in the game. Thus, not only correlation, but every strate-

gic uncertainty in the game is traced back to players’ hierarchies of beliefs about the play

of the game. Player i is uncertain about the other players’ actions, because he is uncer-

tain about their hierarchies of beliefs; each uncertainty (i.e., a non-degenerate belief) about

other players’ hierarchies of beliefs is exactly one of player i’s hierarchies of beliefs. This

is obviously a strong restriction, yet we show that “most” of the conventional (objective)

correlated equilibrium distributions are consistent with this restriction. And while players
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not using private randomization is a reasonable assumption in many settings, e.g. when play-

ing one-shot games, we do examine what happens when private randomization is allowed in

Section 5.2.

Moreover, condition (∗) can be seen as a purification condition. The purification literature

(following Harsanyi (1973)) assumes that there are vanishing payoff shocks, and each player

conditions his pure actions on his shocks (i.e., on his realized payoffs). In contrast, we assume

no payoff shocks and assume that each player conditions his pure actions on his hierarchies of

beliefs about the play of the game. While we are able to obtain “most” correlated equilibrium

distributions in this fashion, for generic two-person games we cannot obtain non-degenerate

mixed-strategy Nash equilibria, i.e. they are non-purifiable. In contrast, Harsanyi (1973)

proved that for this generic class of games all mixed-strategy Nash equilibria are purifiable

via payoff shocks. We interpret this difference as showing that to purify mixed-strategy Nash

equilibrium one must go “outside” of the game, either by introducing private randomization

or via vanishing payoff shocks.

In relation to Brandenburger and Friedenberg (2008), our solution concept, in the sub-

jective case, is a refinement of theirs. Therefore, we obtain a new sufficient condition (semi-

injective best-response set; cf. Definition 3.1) that is independent of type space for intrinsic

correlation. A contemporaneous and independent paper by Peysakhovich (2009) provides

another type-free sufficient condition: any action in the support of a (objective) correlated

equilibrium distribution is consistent with intrinsic correlation. Incidentally, Peysakhovich’s

result has a natural interpretation in our formulation when we allow for private randomiza-

tion.

The paper proceeds as follows. In the next section we formally specify our set-up. Sec-

tion 3 studies the strategic implications of condition (∗) when the hierarchies of beliefs of

players are subjective, i.e., not necessarily consistent with a common prior. Section 4 studies

the analogous implications when the hierarchies of beliefs are required to be consistent with

a common prior. Section 5.1 discusses the relationship to Brandenburger and Friedenberg

(2008) and shows a private-randomization extension of our result based on Peysakhovich

(2009). Section 6 concludes the paper.
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2 Set-up

2.1 Notations

We use the following standard notations:

For product set X =
∏

i∈N Xi, let X−j =
∏

i 6=j Xi. Likewise, for x ∈ X, let x−i = (xj)j 6=i.

And for fi : Xi → Yi, i ∈ N , we write f−i(x−i) = (fj(xj))j 6=i.

Let ∆(Z) be the set of Borel probability measures on topological space Z; if Z is count-

able, we endow Z with the discrete topology, so every subset is Borel measurable.

For µ ∈ ∆(X) where X =
∏

i∈N Xi is countable, let µ(xi) = µ({xi} × X−i). For

µ(xi) > 0, let µ(·|xi) ∈ ∆(X−i) be µ conditional on the event {xi}×X−i, and let µ(xj|xi) =

µ({xj} ×
∏

k 6∈{i,j}Xk |xi); likewise, let µ(xj, xi) = µ({xj} × {xi} ×
∏

k 6∈{i,j}Xk).

We write x 6= y ∈ X to mean that x ∈ X, y ∈ X and x 6= y.

Throughout this paper we identify a Nash equilibrium with its uniquely induced (corre-

lated equilibrium) distribution on action profiles. And we abbreviate best-response set (cf.

Definition 2.3) to BRS and correlated equilibrium distribution (cf. Equation (3)) to CED.

2.2 Set-up

We fix a (arbitrary) finite, complete information game: (u,A,N), where N is a finite set of

players (|N | ≥ 2), A =
∏

i∈N Ai a (non-empty) finite set of action profiles, and u = (ui)i∈N ,

ui : A→ R for each i ∈ N , the payoffs.

We work with type space that captures players’ strategic uncertainty in (u,A,N). For-

mally, let ((λi)i∈N , T ), where T =
∏

i∈N Ti is a (non-empty) finite or countably infinite1

set of type profiles, and λi : Ti → ∆(T−i) is player i’s belief (i.e., a probability measure),

contingent on his type, about types of other players.

Every player i plays a pure action contingent on his type: σi : Ti → Ai, which is his pure

strategy. We write σ = (σi)i∈N .

The equilibrium condition (incentive compatibility) is that for every i ∈ N , ti ∈ Ti and

ai ∈ Ai: ∑
t−i∈T−i

ui(σi(ti), σ−i(t−i))λi(ti)(t−i) ≥
∑

t−i∈T−i

ui(ai, σ−i(t−i))λi(ti)(t−i) (1)

1This assumption is for the convenience of avoiding measurability issues. Since the game is finite, nothing
significant changes when we let Ti be a general measurable space and require λi and σi to be measurable.
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Definition 2.1. ((λi)i∈N , T, σ) is an a posteriori equilibrium if (1) is satisfied.

(λ, T, σ) is a correlated equilibrium if λ ∈ ∆(T ) is such that λ(ti) > 0 for all i ∈ N and

ti ∈ Ti, and (1) is satisfied for λi(ti) := λ(·|ti).

Correlated equilibrium differs from a posteriori equilibrium only in that the beliefs of

correlated equilibrium come from a common prior; the requirement that λ(ti) > 0 is simply

to get a well-defined conditional and is without loss of generality: we can throw aways type

ti such that λ(ti) = 0.

For any ((λi)i∈N , T, σ), we can define an extended type space that consolidates informa-

tion contained in σi and λi. For each i ∈ N , let λ̃i : Ti → ∆(T−i × A−i) be such that

λ̃i(ti)(t−i, a−i) =

λi(ti)(t−i) if σ−i(t−i) = a−i

0 otherwise
(2)

for every t−i ∈ T−i and a−i ∈ A−i.

Each type ti induces through λ̃i a hierarchy of beliefs, of which the basic uncertainty for

player i is A−i, the actions of other players. The hierarchy of beliefs is player i’s belief about

other players’ actions (first order belief), his belief about their beliefs about others’ actions

(second order belief), his belief about others’ beliefs about others’ beliefs (third order belief),

and so on. The following formulation of hierarchy of beliefs is standard: see for example

Siniscalchi (2007) and Brandenburger and Friedenberg (2008). The set of all hierarchies of

beliefs forms an universal type space in which every player i has basic uncertainty A−i
2.

For each i ∈ N , let T 1
i = ∆(A−i) be the set of player i’s first order beliefs. And define

δ1
i : Ti → T 1

i , ti 7→ margA−i
λ̃i(ti). Therefore, the first order belief at type ti is simply player

i’s belief on other players’ actions. If player i is rational at type ti, then his action σi(ti)

must be a best response for this first order belief.

A second order belief is a joint probability over other players’ actions and other players’

first order beliefs. Notice that we can obtain first order belief from second order belief by

“integrating” out in the second order belief other players’ first order beliefs; thus, a second

order belief contains strictly more information than first order belief. And in general, a l-th

order belief is a joint probability over other players’ actions and other players’ (l − 1)-th

order beliefs.

2In a “usual” universal type space (Mertens and Zamir (1985)), the basic uncertainty of every player is Θ,
the set of “fundamentals” of the game that affect payoffs; in this paper the payoffs of the game are common
knowledge among players (i.e., Θ is a singleton), so the only uncertainty is actions of players.
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Formally, for l ≥ 2 and i ∈ N , let T l
i = ∆(T l−1

−i × A−i) be the set of player i’s l-th

order beliefs. Define δl
i : Ti → T l

i such that δl
i(ti) is the image measure of λ̃i(ti) under

map (δl−1
j , idAj

)j 6=i, where idAj
: Aj → Aj is the identity function (idAj

(aj) = aj), and

(δl−1
j , idAj

)j 6=i : T−i × A−i → T l−1
−i × A−i is the product map, i.e., (δl−1

j , idAj
)j 6=i(t−i, a−i) =

(δl−1
j (tj), idAj

(aj))j 6=i. That is, for any Borel measurable B ⊆ T l−1
−i × A−i, δ

l
i(ti)(B) =

λ̃i(ti)((δ
l−1
j , idAj

)−1
j 6=i(B)).

(δ1
i (ti), δ

2
i (ti), δ

3
i (ti), . . .) is the hierarchy of beliefs (or belief hierarchy) of type ti. The hi-

erarchy of beliefs is a complete and canonical description of player i’s state of mind (regarding

actions played in the game) at type ti; it is canonical in the sense that it is independent of

any type space.

Types with the same hierarchy of beliefs are called redundant.

Before moving on, let us illustrate redundant types with an example.

Example 2.1. Consider a symmetric (that is, λ1 = λ2) type space with two players: i ∈
{1, 2}, Ti = {α, α′, β, γ}, Ai = {A,B}; and σi(α) = σi(α

′) = A, σi(β) = σi(γ) = B; and

λi is as follows (each row is a probability distribution over the other player’s types, e.g.

λi(α) = 0.5α + 0.5γ, that is, with probability 0.5 the other player’s type is α, and with

probability 0.5 it is γ):

α α′ β γ

α 0.5 0 0 0.5

α′ 0.2 0.3 0 0.5

β 0.25 0.25 0.3 0.2

γ 0 0 0 1

The first order beliefs of α, α′ and β are the same: 0.5A+ 0.5B (i.e. with probability 0.5

that the other player will do A, and with probability 0.5 that the other player will do B); the

first-order belief of γ is B (i.e. with probability 1 that the other player will do B).

β is distinguished from α and α′ by second-order belief (δ2
i (β) 6= δ2

i (α)), because they

have different beliefs about the other player’s first order belief: α and α′ believes that with

probability 0.5 the other player’s first order belief is 0.5A + 0.5B, and with probability 0.5

the other player’s first order belief is B; while β believes that with probability 0.8 the other

player’s first order belief is 0.5A+0.5B, and with probability 0.2 the other player’s first order

belief is B.

On the other hand, α and α′ are not distinguished by any order of belief, so they are

redundant, having the same belief hierarchy.
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We now come to the objectives of the paper:

Definition 2.2. ((λi)i∈N , T, σ) is an intrinsic a posteriori equilibrium if it is an a posteriori

equilibrium, and for every i ∈ N , for any two types ti, t
′
i ∈ Ti with the same hierarchy of

beliefs (i.e. δl
i(ti) = δl

i(t
′
i) for all l ≥ 1), we have σi(ti) = σi(t

′
i).

(λ, T, σ) is an intrinsic correlated equilibrium if it is a correlated equilibrium, and for

every i ∈ N , for any two types ti, t
′
i ∈ Ti with the same hierarchy of beliefs, we have σi(ti) =

σi(t
′
i); where the δl

i’s are defined with respect to λi(ti) := λ(·|ti).

In other words, “intrinsicness” in the above definition rules out player i in an equilibrium

playing different actions at types that have the same hierarchy of beliefs; such types must

be extrinsic, because player i cannot distinguish them by thinking “inside” the game, i.e.,

thinking about other players’ actions, about what others think about others’ actions, about

what others think about what others think, and so on.

Notice that the redundant types α and α′ in Example 2.1 will not cause any problem for

the solution concepts in Definition 2.2, because σi assigns the same action at α and α′.

For intrinsic a posteriori equilibrium ((λi)i∈N , T, σ), we are interested in action profiles

played under the equilibrium, i.e. the product set
∏

i∈N σi(Ti). And for intrinsic correlated

equilibrium (λ, T, σ), we are interested in the distribution of action profiles obtained from

the equilibrium, i.e., µ ∈ ∆(A) such that µ(a) = λ({t ∈ T : σ(t) = a}) for every a ∈ A.

We call µ ∈ ∆(A) an intrinsic correlated equilibrium distribution (respectively, a correlated

equilibrium distribution) if µ is obtained from an intrinsic correlated equilibrium (respec-

tively, a correlated equilibrium) (λ, T, σ). We abbreviate correlated equilibrium distribution

to CED.

Our goal is to understand the strategic implications of the “intrinsicness” in Definition 2.2.

Therefore, we need to review the implications of the equilibrium when it is not required to be

intrinsic. In the next two sections we will work out in strategic terms the exact strengthening

added by “intrinsicness.”

Bernheim (1984) and Pearce (1984) in their studies of rationalizability introduced the

concept of best-response set (BRS):

Definition 2.3. A set of action profiles Q =
∏

i∈N Qi is a best response set (BRS) if it is

non-empty, and for every i ∈ N and ai ∈ Qi, there exists a belief µ ∈ ∆(Q−i) such that ai is

optimal in Ai for player i under µ.

It is well-known (Brandenburger and Dekel, 1987) that for any set of action profiles
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Q =
∏

i∈N Qi, there exists an a posteriori equilibrium ((λi)i∈N , T, σ) under which Q is played

(Qi = σi(Ti) for every i ∈ N) if and only if Q is a BRS.

It is also well-known that µ ∈ ∆(A) is a correlated equilibrium distribution (CED) if and

only if ∑
a−i∈A−i

ui(ai, a−i)µ(ai, a−i) ≥
∑

a−i∈A−i

ui(a
′
i, a−i)µ(ai, a−i) (3)

holds for every i ∈ N and ai, a
′
i ∈ Ai.

3 Intrinsic A Posteriori Equilibrium

3.1 Characterization

In this section we characterize the set of action profiles played under an intrinsic a posteriori

equilibrium.

For a non-empty set of action profiles Q =
∏

i∈N Qi, let

βQ
i (ai) = {µ ∈ ∆(Q−i) : ai is optimal in Ai for player i under µ}, (4)

for every i ∈ N and ai ∈ Qi. For any µ in βQ
i (ai), we say that µ is a supporting belief of

action ai in Q−i and that µ supports ai.

It’s easy to see that βQ
i (ai) is a convex set (polytope, in fact); this simple property turns

out to be crucial to our characterization theorems.

Clearly, Q =
∏

i∈N Qi is a best-response set (BRS) if and only if for every i ∈ N and

ai ∈ Qi we have βQ
i (ai) 6= ∅.

If βQ
i (ai) = {µ}, then we simply write βQ

i (ai) for µ.

For each i ∈ N , let

W 1
i = {ai ∈ Qi : |βQ

i (ai)| = 1}, (5)

W l
i = {ai ∈ W 1

i : βQ
i (ai)(W

l−1
−i ) = 1}, l ≥ 2,

Wi =
⋂
l≥1

W l
i .

Notice that W l
i ’s are defined with respect to a fixed Q. We write Wi(Q) and W l

i (Q) when

it is necessary to emphasize the dependence on Q.

W 1
i is the set of actions in Qi that have a unique supporting belief in Q−i. W 2

i is the
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subset of W 1
i for which the unique supporting belief has support contained in W 1

−i; in general,

W l
i is the subset of W 1

i for which the unique supporting belief has support contained in W l−1
−i .

Notice that W =
∏

i∈N Wi is the largest BRS contained in W 1 =
∏

i∈N W
1
i .

Definition 3.1. A best-response set (BRS) Q =
∏

i∈N Qi is a semi-injective BRS if for

every i ∈ N and any two distinct actions ai and a′i in Wi, we have βQ
i (ai) 6= βQ

i (a′i). It is

an injective BRS if for every i ∈ N and any two distinct actions ai and a′i in W 1
i , we have

βQ
i (ai) 6= βQ

i (a′i).

Semi-injectivity is weaker than injectivity, because semi-injectivity means that βQ
i is

injective over a smaller set — Wi, instead of W 1
i .

The concept of injective BRS is due to Brandenburger and Friedenberg; their original

definition defines injective BRS as a BRS Q =
∏

i∈N Qi such that for every player i, we

can find for every action in Qi a distinct supporting belief in Q−i (to which the action is

optimal). Clearly, this is equivalent to our definition.

Brandenburger and Friedenberg (Proposition H.2) proved that (in our language) for any

injective BRS Q =
∏

i∈N Qi, there exists an intrinsic a posteriori equilibrium ((λi)i∈N , T, σ)

such that Qi = σi(Ti) for every i ∈ N . Here is our generalization, which is the main result

of Section 3:

Theorem 1. For any set of action profiles Q =
∏

i∈N Qi, there exist an intrinsic a posteriori

equilibrium ((λi)i∈N , T, σ) under which Q is played (i.e. Qi = σi(Ti) for every i ∈ N), if and

only if Q is a semi-injective BRS.

Theorem 1 has the following finite-level version. When l = 1, (6) is Brandenburger

and Friedenberg’s injectivity condition; when l = ∞ (and let W∞
i = Wi), (6) is our semi-

injectivity condition.

Theorem 1 (Finite-level version). Fix a l ≥ 1 and a BRS Q =
∏

i∈N Qi. If for every player

i, we have

ai, a
′
i ∈ W l

i , ai 6= a′i =⇒ βQ
i (ai) 6= βQ

i (a′i), (6)

then there exists an a posteriori equilibrium ((λi)i∈N , T, σ) in which players condition

their actions on their l-th order beliefs (i.e., δl
i(ti) = δl

i(t
′
i) ⇒ σi(ti) = σi(t

′
i))), and under

which Q is played (i.e., Qi = σi(Ti) for every player i).

Conversely, if players condition their actions on their l-th order beliefs in an a posteriori

equilibrium, and Q is played under the equilibrium, then (6) holds for every player i.
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The theorem implies that if the iterated deletions in (5) end in k rounds (i.e., W k
i = Wi

for all i ∈ N) for a semi-injective BRS Q, then players need to reason to at most k-th order

beliefs in a corresponding intrinsic a posteriori equilibrium.

Before moving on to the proof, we discuss the underlying idea. Notice that the W l
i ’s

constructed in Equation (5) partition Qi into sets Qi \W 1
i , W 1

i \W 2
i , W 2

i \W 3
i , W 3

i \W 4
i ,

. . . , and Wi. By construction, each action in Qi \W 1
i is supported by an infinite number of

first order beliefs, each action in W 1
i \W 2

i is supported by an infinite number of second order

beliefs and by a unique first order beliefs, each action in W 2
i \W 3

i is supported by an infinite

number of third order beliefs and by a unique second order beliefs, and so on. Note that if

an action is supported by an infinite number of l-th order belief, then it is supported by an

infinite number of hierarchies of beliefs. Since Qi is finite, we will never have any trouble

finding distinct hierarchies of beliefs to support actions in Qi \Wi.

On the other hand, each action ai in Wi is supported by a unique l-th order belief, for

every l ≥ 1 (for l = 1, ai is supported by the unique first order belief βQ
i (ai)); therefore ai

is supported by a unique hierarchy of beliefs. Therefore, the requirement that every player

conditions his actions on his hierarchies of beliefs translates into the requirement that each

action ai in Wi has a distinct supporting belief βQ
i (ai).

Proof of Theorem 1. Only If:

Fix an intrinsic a posteriori equilibrium ((λi)i∈N , T, σ); let Qi = σi(Ti) for each i ∈ N ,

and let λ̃i be obtained from λi and σ by (2).

Q =
∏

i∈N Qi is clearly a BRS.

If Wi = ∅ for every i ∈ N , then there is nothing else to prove. Thus, suppose otherwise;

note that this implies that Wi 6= ∅ for all i ∈ N .

The following lemma, which is essentially Proposition 11.1 in Brandenburger and Frieden-

berg (2008), demonstrates the connection between the set W l
i and player i’s l-th order beliefs.

Lemma 3.1. For any l ≥ 1, i ∈ N and ai ∈ W l
i , there is exactly one l-th order belief in Ti

mapped by σi to ai; that is, if σi(ti) = σi(t
′
i) = ai, then δl

i(ti) = δl
i(t
′
i).

Proof. If σi(ti) = ai ∈ W 1
i , ti ∈ Ti, then clearly margA−i

λ̃i(ti) = βQ
i (ai). Thus the lemma is

true when l = 1.

Now suppose l ≥ 2, and that the lemma is true for l − 1. Let σi(ti) = σi(t
′
i) = ai ∈

W l
i , ti, t

′
i ∈ Ti. Then, margA−i

λ̃i(ti) = margA−i
λ̃i(t

′
i) = βQ

i (ai) because ai ∈ W 1
i . If

βQ
i (ai)(a−i) > 0, λ̃(ti)(t−i, a−i) > 0 and λ̃(t′i)(t

′
−i, a−i) > 0 , then we must have σ−i(t−i) =
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σ−i(t
′
−i) = a−i; and a−i ∈ W l−1

−i by the construction of W l
i . By the induction hypothesis,

δl−1
j (tj) = δl−1

j (t′j) for every j 6= i. Thus, δl
i(ti) = δl

i(t
′
i).

Corollary 3.2. For every i ∈ N and µ ∈ ∆(W−i), there can be at most one belief hierarchy

in Ti having first order belief µ, i.e. if margA−i
λ̃i(ti) = µ = margA−i

λ̃i(t
′
i), then δl

i(ti) = δl
i(t
′
i)

for every l ≥ 1.

Proof. Suppose µ ∈ ∆(W−i) and margA−i
λ̃i(ti) = µ = margA−i

λ̃i(t
′
i), ti, t

′
i ∈ Ti. If µ(a−i) >

0, λ̃(ti)(t−i, a−i) > 0 and λ̃(t′i)(t
′
−i, a−i) > 0, we must have σ−i(t−i) = σ−i(t

′
−i) = a−i ∈ W−i,

and by the previous lemma δl
j(tj) = δl

j(t
′
j) for every j 6= i and l ≥ 1. Thus, δl

i(ti) = δl
i(t
′
i) for

every l ≥ 1.

Now, for each i ∈ N and ai 6= a′i ∈ Wi, by the assumption of Qi = σi(Ti), there exists

ti, t
′
i ∈ Ti such that σi(ti) = ai and σi(t

′
i) = a′i; furthermore, ti and t′i have distinct belief

hierarchies, by the “intrinsicness” of ((λi)i∈N , T, σ). We have margA−i
λ̃i(ti) = βQ

i (ai) and

margA−i
λ̃i(t

′
i) = βQ

i (a′i); and clearly βQ
i (ai)(W−i) = βQ

i (a′i)(W−i) = 1. Then βQ
i (ai) 6=

βQ
i (a′i), for otherwise the corollary above would imply that ti and t′i have the same hierarchy

of beliefs.

If:

We prove this direction by construction.

Let Q =
∏

i∈N Qi be a semi-injective BRS. Let W l
i and Wi be as defined in (5).

For each i ∈ N , let

Ti = {ai(k) : ai ∈ Qi \Wi, k ∈ {1, 2}} ∪Wi

where ai(1) and ai(2) are two distinct copies of ai.

We define the strategy σi : Ti → Ai as follows. For every i ∈ N , let σi(ai(1)) = σi(ai(2)) =

ai for each ai ∈ Qi \Wi; and let σi(ai) = ai, ai ∈ Wi.

For every i ∈ N , let t(ai) = ai(1) if ai ∈ Qi \Wi; and let t(ai) = ai if ai ∈ Wi.

For every i ∈ N , define the belief λi : Ti → ∆(T−i) as follows.

Step 1:

For each ai ∈ Qi \W 1
i , fix ν(ai, 1) 6= ν(ai, 2) ∈ βQ

i (ai) \ βQ
i (W 1

i ) such that

|{ν(ai, k) : ai ∈ Qi \W 1
i , k ∈ {1, 2}}| = 2|Qi \W 1

i |.
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This is possible because Qi \W 1
i and βQ

i (W 1
i ) are finite sets, but βQ

i (ai) is infinite for any

ai ∈ Qi \W 1
i (recall that βQ

i (ai) is a convex set).

For ai ∈ Qi \W 1
i and k ∈ {1, 2}, let

λi(ai(k))(t−i) =

ν(ai, k)(a−i) tj = t(aj) for every j 6= i

0 otherwise

for every t−i ∈ T−i.

Clearly, each ai(k), ai ∈ Qi \W 1
i and k ∈ {1, 2}, induces through λi a distinct first order

belief.

Step l: (2 ≤ l ≤ L = min{l ≥ 1 : W l = W})
For each ai ∈ W l−1

i \W l
i , choose a c(ai) ∈ W l−2

m \W l−1
m , m 6= i, (where W 0

m = Qm) such

that βQ
i (ai)(c(ai)) > 0; such c(ai) exists by constructions of W l

i ’s, and c(ai)’s can be chosen

so that βQ
i (ai) = βQ

i (a′i)⇒ c(ai) = c(a′i). And choose κ(ai, 1) 6= κ(ai, 2) ∈ [0, 1] such that for

any ai 6= a′i ∈ W l−1
i \W l

i with βQ
i (ai) = βQ

i (a′i), we have that κ(ai, 1), κ(a′i, 1), κ(ai, 2) and

κ(a′i, 2) are all distinct.

For ai ∈ W l−1
i \W l

i and k ∈ {1, 2}, let

λi(ai(k))(t−i) =



βQ
i (ai)(a−i) tj = t(aj), j 6= i, and am 6= c(ai)

κ(ai, k)βQ
i (ai)(a−i) tj = t(aj), j 6∈ {i,m}, and tm = c(ai)(1)

(1− κ(ai, k))βQ
i (ai)(a−i) tj = t(aj), j 6∈ {i,m}, and tm = c(ai)(2)

0 otherwise

for every t−i ∈ T−i.

By induction on l, it’s easy to see that each ai(k), ai ∈ W l−1
i \W l

i and k ∈ {1, 2}, induces

through λi a distinct l-th order belief.

Step L+ 1:

Finally, for ai ∈ Wi, let

λi(ai)(t−i) =

β
Q
i (ai)(a−i) tj = t(aj) for every j 6= i

0 otherwise

for every t−i ∈ T−i.

By assumption, each ai ∈ Wi, has a distinct first order belief.
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Example 3.1. Consider the following symmetric two-person game, where player 1 chooses

the row and player 2 chooses the column:

A B C D

A 1, 1 3, 3 0, 0 0, 4

B 3, 3 1, 1 0, 4 0, 0

C 0, 0 4, 0 1, 1 1, 1

D 4, 0 0, 0 1, 1 1, 1

First, note that {A,B,C,D} × {A,B,C,D} is a BRS, so all actions can be played under a

single a posteriori equilibrium.

Let Q1 = Q2 = {A,B,C,D}. Then βQ
1 (A) = βQ

1 (B) = βQ
2 (A) = βQ

2 (B) = {1/2A +

1/2B}, where 1/2A + 1/2B is the belief that assigns probability 1/2 to A and 1/2 to B.

Clearly, W1 = W2 = {A,B}, and Q = Q1×Q2 is not a semi-injective BRS. In fact, it’s easy

to see that for any C1 × C2 ⊆ {A,B,C,D} × {A,B,C,D}, if A ∈ Ci or B ∈ Ci for some

i ∈ {1, 2}, then C1 × C2 is either not a BRS, or not a semi-injective BRS.

Thus, by Theorem 1, A or B cannot be played by either player under any intrinsic

a posteriori equilibrium. In particular, intrinsic a posteriori equilibrium refines away the

Nash equilibrium (1/2A+ 1/2B, 1/2A+ 1/2B); notice that both actions A and B are weakly

dominated.

Example 3.2 (A semi-injective BRS that is not injective). Now consider the following

modification of the previous game:

X Y Z W

A 1, 0 3, 0 0, 1 0, 1

B 3, 0 1, 0 0, 1 0, 1

C 0, 1 4, 3 1, 4 1, 0

D 4, 3 0, 1 1, 0 1, 4

The payoffs of player 1 are unchanged while the payoffs of player 2 are “permuted.”

Let Q1 = {A,B,C,D} and Q2 = {X, Y, Z,W}. As before, Q = Q1 × Q2 is a BRS, but

it’s not injective because A and B are uniquely supported by the same 1/2X+1/2Y ; likewise,

X and Y are uniquely supported by the same 1/2C + 1/2D. However, W 2
2 = ∅, because the
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unique supporting belief of X and Y places positive probability on C which is not in W 1
1 ; and

W 2
2 = ∅ implies that W 3

2 = ∅. Thus, Q is a semi-injective BRS.

Finally, notice that if player 1 has the same payoff as here, while player 2 has generic

payoffs, then Q is a semi-injective BRS that is not injective.

3.2 Weak Domination

Example 3.1 alludes to a connection, of which we will now show, between intrinsic a posteriori

equilibrium and weakly dominated actions.

Recall the result of Brandenburger and Dekel (1987): for any set of action profiles Q =∏
i∈N Qi, there exists an a posteriori equilibrium ((λi)i∈N , T, σ) under which Q is played (i.e.,

Qi = σi(Ti) for every i ∈ N) if and only if Q is a BRS.

Therefore, if action profiles Q =
∏

i∈N Qi is not played under any a posteriori equilibrium

(i.e. is not a BRS), then there exist i ∈ N and ai ∈ Qi such that ai is strictly dominated in

Q−i; that is, there exists αi ∈ ∆(Ai) such that ui(ai, a−i) < ui(αi, a−i) for every a−i ∈ Q−i.

This is because there must exist i ∈ N and ai ∈ Qi such that ai is not a best response of

player i to any µ ∈ ∆(Q−i) (for otherwise Q would be a BRS), which is equivalent to the

statement that ai is strictly dominated in Qi (Lemma 3 in Appendix B of Pearce (1984)).

We now show an analogous result with intrinsic a posteriori equilibrium and weak dom-

ination. For a player i and B ⊆ A−i, we say that i’s action ai is weaked dominated in B

if there exists αi ∈ ∆(Ai) such that ui(ai, a−i) ≤ ui(αi, a−i) for every a−i ∈ B, with strict

inequality for some a−i ∈ B
Recall that Wi ⊆ Qi is defined with respect to Q =

∏
i∈N Qi by Equation (5).

Proposition 3.3. Suppose that a BRS Q =
∏

i∈N Qi is not played under any intrinsic a

posteriori equilibrium (i.e., is not semi-injective), and that Wj ( Qj for some j ∈ N . Then,

for every i 6= j, every ai ∈ Wi 6= ∅ is weakly dominated in Q−i.

Proof. We have W =
∏

i∈N Wi 6= ∅, for otherwise Q would be semi-injective. Take any

i 6= j and ai ∈ Wi, the unique belief in Q−i to which ai is optimal has support contained

in W−i ( Q−i. Thus, ai is weakly dominated in Q−i, because of the equivalence between

being weakly dominated and not a best response to any belief with full support (Lemma 4

in Appendix B of Pearce (1984)).

The next proposition shows that if Q is the set of correlated rationalizable action profiles

(the largest BRS), then we can dispense with the assumption of Wj ( Qj.
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Proposition 3.4. Suppose that the set of correlated rationalizable action profiles Q =∏
i∈N Qi is not played under any intrinsic a posteriori equilibrium (i.e., is not a semi-injective

BRS). Then, for every i ∈ N , every ai ∈ Wi 6= ∅ is weakly dominated in Q−i. Furthermore,

ai ∈ Wi cannot survive iterated deletion of weakly dominated actions in A =
∏

i∈N Ai.

Proof. In light of the previous proposition, we will show that Wi ( Qi for all i ∈ N . This

follows from the following claim:

Claim. For any i ∈ N and any Xj ⊆ Aj, j 6= i, such that |X−i| ≥ 2, there exists an āi ∈ Ai

such that āi is player i’s best response to two distinct beliefs on X−i.

Proof. By the definition of β
Ai×X−i

i (cf. Equation (4)), we have δ(X−i) =
⋃

ai∈Ai
β

Ai×X−i

i (ai).

Since δ(X−i) is infinite, there exists āi ∈ Ai such that β
Ai×X−i

i (ai) is infinite.

First, notice that |Q| > 1, for otherwise Q would be a semi-injective BRS. Therefore,

there exists j ∈ N such that |Qj| > 1.

For each i 6= j, apply the claim to get an āi ∈ Ai that is player i’s best response to two

distinct beliefs on Q−i. Clearly, āi ∈ Qi because Q is the set of correlated rationalizable

action profiles. Therefore, āi 6∈ W 1
i . This implies that Wi ⊆ W 1

i ( Qi. Since Wi 6= ∅, this

also means that |Qi| > 1.

Now, apply the same reasoning to j to conclude that Wj ⊆ W 1
j ( Qj as well.

Therefore, by the previous proposition, for every i ∈ N , every ai ∈ Wi 6= ∅ is weakly

dominated in Q−i. Notice that any action ai 6∈ Qi does not survive iterative deletion of

strictly dominated actions in A =
∏

i∈N Ai. Therefore, ai ∈ Wi cannot survive iterative

deletion of weakly dominated actions in A =
∏

i∈N Ai.

3.3 Existence

A natural question is whether semi-injective BRS exists in every finite game. Recall that an

injective BRS is semi-injective; Brandenburger and Friedenberg (2008) proved in Proposition

H.3 that for generic games, the set of correlated rationalizable action profiles, which is the

largest BRS and is always non-empty, is an injective BRS. It’s not clear if their method of

proof can be extended to handle non-generic games. Moreover, the conventional argument

to pass from generic existence of a solution to everywhere existence relies on the upper-hemi

continuity of the solution correspondence (e.g., Cho (1987)); it’s tricky to apply here, because

the solution concept, injective BRS, is set-valued, so the solution correspondence is a set of

sets for every game.
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Nevertheless, when we think about injective BRS in terms of its W 1
i (cf. Equation 5),

there is a natural constructive proof of existence for injective BRS (thus for semi-injective

BRS as well).

Proposition 3.5. In every finite game, an injective BRS exists.

The ideas of the construction are as follows: start out with the set of correlated ratio-

nalizable action profiles (call it R1 =
∏

i∈N R
1
i ), (1) find its W 1

i (R1) for each player i (cf.

Equation 5). And (2) delete from R1 (in an arbitrary manner) actions in W 1
i (R1) so that

every action remaining in W 1
i (R1) has a distinct supporting belief. Then, (3) find the largest

BRS contained in the remaining actions of R1 (call it R2) and go back to (1) with R1 being

replaced by R2, and so on.

Recall that a BRS Q is injective if and only if each action in W 1
i (Q) has a distinct

(unique) supporting belief. The deletions in step (2) force this condition. But the remaining

actions might not be a BRS, so we need to delete further actions so that it is a BRS; this is

step (3). Now the BRS might not be injective, so we go back to step (1).

Clearly, step (2) always gives a non-empty set (some actions in W 1
i will survive the

deletions). Furthermore, it can be seen that the largest BRS given in step (3) is always

non-empty as well. Therefore, we have a sequence of decreasing and non-empty sets; it then

follows that their intersection, the limit of the sequence, is a (non-empty) injective BRS.

The details of the proof can be found in Appendix A.

4 Intrinsic Correlated Equilibrium

4.1 Characterization

We now turn our attention to characterizing the set of intrinsic correlated equilibrium dis-

tributions (CED).

For a µ ∈ ∆(A), let Qi be the support of margAi
µ for each i ∈ N , and let Q =

∏
i∈N Qi.

Clearly, µ is a CED if and only if for every i ∈ N and ai ∈ Qi we have µ(·|ai) ∈ βQ
i (ai),

where βQ
i (ai), defined in (4), is the set of beliefs supporting ai in Q−i.

For each i ∈ N , define



Correlated Equilibrium via Hierarchies of Beliefs 18

Y 1
i = {ai ∈ Qi : µ(·|ai) is an extreme point of βQ

i (ai)}, (7)

Y l
i = {ai ∈ Y 1

i : µ(Y l−1
−i |ai) = 1}, l ≥ 2,

Yi =
⋂
l≥1

Y l
i ,

Notice that Y l
i ’s are defined with respect to a fixed µ. We write Yi(µ) and Y l

i (µ) when it

is necessary to emphasize the dependence on µ.

We now state the main result of Section 4.

Theorem 2. A CED µ ∈ ∆(A) is intrinsic if and only if for every i ∈ N , for any two

distinct actions ai and a′i in Yi, we have µ(·|ai) 6= µ(·|a′i).

The theorem is completely analogous to Theorem 1 for intrinsic a posteriori equilibrium.

To see why Y 1
i makes reference to extreme points of βQ

i (ai), we sketch the proof of the

following Lemma 4.1, which is the analogue of Lemma 3.1. In essence, posterior µ(·|ai) that

is a non-extreme point of βQ
i (ai) can be “split” into two distinct beliefs in βQ

i (ai), so action

ai can be supported by these two beliefs; this is analogous to the a posteriori equilibrium

case where when βQ
i (ai) is not a singleton, ai can be supported by any two distinct beliefs

in βQ
i (ai). The difference is of course that for correlated equilibrium beliefs must come from

a common prior, so not any two beliefs in βQ
i (ai) can support ai—they must be two beliefs

whose convex combination is equal to µ(·|ai).

Lemma 4.1. Fix an intrinsic correlated equilibrium (λ, T, σ), and suppose that µ ∈ ∆(A)

is obtained from (λ, T, σ) (i.e., µ(a) = λ({t ∈ T : σ(t) = a})). For any l ≥ 1, i ∈ N

and ai ∈ Y l
i , there is exactly one l-th order belief in Ti mapped by σi to ai; that is, if

σi(ti) = σi(t
′
i) = ai, then δl

i(ti) = δl
i(t
′
i).

Proof. Suppose l = 1. Fix i ∈ N and ai ∈ Y 1
i . If there exist ti, t

′
i ∈ Ti such that δ1

i (ti) 6= δ1
i (t′i)

but σi(ti) = σi(t
′
i) = ai (and without loss of generality, assume that σ−1

i (ai) = {ti, t′i}), then

because we have common prior, µ(·|ai) must be a strict convex combination of δ1
i (ti) and

δ1
i (t′i). This contradicts µ(·|ai) being an extreme point of βQ

i (ai), because the optimality

condition for correlated equilibrium (condition (1)) implies that δ1
i (ti) and δ1

i (t′i) are in βQ
i (ai).

The inductive step is same as that in Lemma 3.1 and does not use common prior.

The proof the only if of Theorem 2 then follows from the above lemma exactly as the

proof of the only if in Theorem 1 follows from Lemma 3.1; it also does not use common prior.
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For the if direction of Theorem 2, we also follow the strategy of proof for Theorem 1.

However, significant complications arise because we need to ensure that the belief hierarchies

constructed come from a common prior, and that the common prior obtains µ, the CED

under consideration; we leave details of the construction to the Appendix. In Example 4.3

we give a concrete example of the construction.

As with Theorem 1, we have the following finite-level version of Theorem 2.

Theorem 2 (Finite-level version). Fix a l ≥ 1 and a CED µ ∈ ∆(A). If for every player i,

ai, a
′
i ∈ Y l

i , ai 6= a′i =⇒ µ(·|ai) 6= µ(·|a′i), (8)

then there exists an a correlated equilibrium (λ, T, σ) that obtains µ in which players

condition their actions on their l-th order beliefs (i.e., δl
i(ti) = δl

i(t
′
i)⇒ σi(ti) = σi(t

′
i)).

Conversely, if players condition their actions on their l-th order beliefs in a correlated

equilibrium that obtains µ, then (8) holds for every player i.

Before moving on to examples, we give an easy sufficient condition for a CED to be in-

trinsic. Brandenburger and Friedenberg in Appendix H observed that strict incentives imply

injectivity in beliefs, which implies “intrinsicness”. Here is an example of this implication

for correlated equilibrium:

CED µ ∈ ∆(A) has strict incentives on the support if:

∑
a−i∈Ai

ui(ai, a−i)µ(ai, a−i) >
∑

a−i∈Ai

ui(a
′
i, a−i)µ(ai, a−i), (9)

for every i ∈ N , ai ∈ Qi = supp(margA−i
µ) and a′i ∈ Qi \ {ai}.

Myerson (1997) calls µ’s incentives elementary if (9) is satisfied for every pair of distinct

ai and a′i in Ai.

Proposition 4.2. A CED with strict incentives on the support is intrinsic.

The proof of the proposition is as follows: if incentives of a CED µ are strict on the

support, then µ(·|ai) as a function of ai must be injective on the support (but not vice

versa), thus µ must be intrinsic.

Example 4.1 (Coordination game).

A B

A 10, 10 0, 0

B 0, 0 10, 10
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The Nash equilibrium (1/2A+ 1/2B, 1/2A+ 1/2B) is not an intrinsic CED:

Let Q1 = Q2 = {A,B}, then βQ
i (A) = {pA + (1 − p)B : 1/2 ≤ p ≤ 1} and βQ

i (B) =

{pA+ (1− p)B : 0 ≤ p ≤ 1/2} for each i ∈ {1, 2}. Thus, 1/2A+ 1/2B is an extreme point

of both βQ
i (A) and βQ

i (B), and Y 1
i = Yi = {A,B}; but conditional beliefs of A and B in

(1/2A+ 1/2B, 1/2A+ 1/2B) are the same: 1/2A+ 1/2B.

On the other hand, it’s clear that (A,A) and (B,B) are intrinsic CED.

More generally in this game, a CED with full marginal support (i.e., the marginal distri-

butions have full support, which includes all correlated equilibria except (A,A) and (B,B))

can be represented as (where p is the probability of (A,A) being played, etc.)

A B

A p q

B r s

with incentive inequalities p/(p+r) ≥ 1/2, p/(p+q) ≥ 1/2, s/(s+q) ≥ 1/2, s/(s+r) ≥ 1/2;

and p + q + s + r = 1. Using previous characterizations of βQ
i (A) and βQ

i (B), we see that

p = q = r = s = 1/4 is the only CED that is not intrinsic.

Note that p = q = r = 1/5 and s = 2/5 is an intrinsic CED with Y 1
1 = Y 1

2 = {A}; on

the other hand, Y 2
i = Yi = ∅ for both i. Thus, it is an example where Y 2

i makes a difference.

Therefore, the set of intrinsic CED’s in this game consists of all correlated equilibrium

distribution except the fully mixed Nash equilibrium; note that this set is not closed.

Example 4.2 (Matching pennies, non-existence of intrinsic correlated equilibrium).

A B

A 1, -1 -1, 1

B -1, 1 1, -1

The Nash equilibrium (1/2A+ 1/2B, 1/2A+ 1/2B) here again is not an intrinsic CED;

the same reasoning from the previous example applies. Proposition 4.6 shows that this is a

general phenomenon in two-person games: a non-degenerate mixed Nash equilibrium cannot

be an intrinsic correlated equilibrium in generic two-person games.

But (1/2A+ 1/2B, 1/2A+ 1/2B) is the unique CED of this game. Thus, this game has

no intrinsic correlated equilibrium.

Here is a direct argument for the non-existence. For the sake of contradiction suppose

that (1/2A + 1/2B, 1/2A + 1/2B) can be obtained from an intrinsic correlated equilibrium.

Then, at every type in the equilibrium each player must believe that he gets the minmax
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value of the game, which is 0; this is a general property of correlated equilibrium in zero-sum

games and is proved in Aumann (1974). Then, every type of player 1 must have first order

belief 1/2 A + 1/2 B, because this is the unique belief that gives an expected payoff 0 (given

either A or B played by player 1). Likewise, every type of player 2 must have first order

belief 1/2 A + 1/2 B. Then, a simple induction argument shows that every type of player 1

(respectively, of player 2) have the same k-th order belief, for any k ≥ 1. Therefore, there

is a unique hierarchy of belief for player 1. By the “intrinsicness” requirement, player 1

can only play one action in the unique hierarchy of belief, but two actions are played in the

equilibrium, thus a contradiction.

Example 4.3 (Matching pennies with explicit randomization by one player, mixed Nash

equilibrium being intrinsic).

A B

A 1, -1 -1, 1

B -1, 1 1, -1

C 0, 0 0, 0

The mixed Nash equilibrium (1/4A+ 1/4B + 1/2C, 1/2A+ 1/2B) is an intrinsic CED:

Y 1
1 = {A,B,C} as before. But Y 1

2 = ∅ because 1/4A + 1/4B + 1/2C can be written

as a convex combination of 1/6A + 1/6B + 2/3C and 1/2A + 1/2B, to each of which A

(respectively, B) is a best response of player 2. Thus, Y 2
i = Yi = ∅ for any i ∈ {1, 2}.

Conceptually, (1/4A + 1/4B + 1/2C, 1/2A + 1/2B) is an intrinsic CED because the

presence of player 1’s explicit randomization C introduces variations in player 2’s supporting

first order beliefs, which lead to variations in player 1’s supporting second order beliefs that

are used to purify player 1’s mixed strategy.

Here is an explicitly written intrinsic correlated equilibrium (λ, T, σ) that obtains (1/4A+

1/4B + 1/2C, 1/2A+ 1/2B):

T1 = {A(1), A(2), B(1), B(2), C}, T2 = {A(1), A(2), B}, σ1(A(1)) = σ1(A(2)) = σ2(A(1)) =

σ2(A(2)) = A, σ1(B(1)) = σ1(B(2)) = σ2(B) = B, σ1(C) = C, and λ ∈ ∆(T1 × T2) is as

follows:
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A(1) A(2) B

A(1) 1/128 7/128 1/16

A(2) 7/128 1/128 1/16

B(1) 2/128 6/128 1/16

B(2) 6/128 2/128 1/16

C 1/4 0 1/4

Notice that the first order belief of player 2 at type A(1) is 1/6A + 1/6B + 2/3C, at

type A(2) it is 1/2A + 1/2B, and at type B it is 1/4A + 1/4B + 1/2C. Therefore, all

types of player 2 are distinguished by first order beliefs. And clearly, all types of player 1

are distinguished by second order beliefs, while they all have first order belief 1/2A + 1/2B.

Therefore, (λ, T, σ) is an intrinsic correlated equilibrium. And one can easily check that

(λ, T, σ) obtains (1/4A+ 1/4B + 1/2C, 1/2A+ 1/2B).

Example 4.4 (A non-intrinsic CED that is not Nash).

The symmetric two-person game is as follows:

A B C

A 1, 1 0, 0 0, 0

B 0, 0 1, 1 0, 0

C 0, 0 0, 0 1, 1

Consider the (asymmetric) CED of the game:

A B C

A 1/7 1/7 0

B 1/7 1/7 0

C 1/7 1/7 1/7

Q1 = Q2 = {A,B,C}. For each i ∈ {1, 2}, βQ
i (A) is the convex hull spanned by extreme

points A, 1/2A+ 1/2B, 1/2A+ 1/2C and 1/3A+ 1/3B+ 1/3C; and likewise for βQ
i (B) and

βQ
i (C) (actions A, B and C are completely symmetric).

Therefore, we have that Y1 = Y2 = {A,B,C}, and µ(·|ai) is not injective on Yi (for either

i). Thus, this CED is not intrinsic. One can check that it is an extreme point in the set of

CED’s (see Proposition 4.3).
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4.2 Geometric Properties

It turns out that intrinsic correlated distributions have nice geometric structure. The fol-

lowing proposition (Proposition 4.3) shows that intrinsic correlated equilibrium is related to

a notion of irreducibility (analogous to that of Markov chains) and to extreme point in the

set of CED’s. As a by-product, it shows in a precise sense that “most” of the CED’s are

intrinsic. In addition, the geometry of intrinsic CED’s enables us to prove that for a generic

two-person game, any non-degenerate mixed-strategy Nash equilibrium is not an intrinsic

CED (Proposition 4.6).

For a fixed CED µ ∈ ∆(A), with Qi = supp(margAi
µ) for i ∈ N , let S =

⋃
i∈N Qi.

Two actions a1 and ak in S communicate (with each other) if a1 ∈ Qi1 , a
k ∈ Qik , and

there exists am ∈ Qim , 2 ≤ m ≤ k − 1, such that im 6= im−1 ∈ N and µ(am|am−1) > 0 for

each 2 ≤ m ≤ k. Verbally, two actions communicate if they are connected by a sequence

of intermediate actions in which µ places positive probability for every consecutive pair

of actions. One can think of such consecutive pair of actions as a link; then two actions

communicate if they are connected by a series of intermediate links.

It is readily checked that communication is an equivalence relation. Therefore, communi-

cation partitions S into equivalence classes (communication classes): S =
⋃

1≤k≤n S
k, where

every Sk =
⋃

i∈N Q
k
i and ∅ 6= Qk

i ⊆ Qi. We say that the CED µ is irreducible if n = 1. For

each 1 ≤ k ≤ n, let µk(a) = µ(a)/µ(
∏

i∈N Q
k
i ) for each a ∈

∏
i∈N Q

k
i . It is clear that each

µk is an irreducible CED, and µ can be written uniquely as convex combination of µk’s. We

say that µk is an irreducible sub-distribution of µ.

µ can be thought of as obtained from a public randomization over sub-distributions

µk, 1 ≤ k ≤ n.

As a concrete illustration, the CED below (where {A,B,C,D} are actions for each of

the two players) has three irreducible sub-distributions: AA, BB, and 1/4CC + 3/8CD +

1/8DC + 1/4DD.

A B C D

A 1/4 0 0 0

B 0 1/4 0 0

C 0 0 1/8 3/16

D 0 0 1/16 1/8

Proposition 4.3. Suppose that a correlated equilibrium distribution µ has irreducible sub-

distributions µk, 1 ≤ k ≤ n, and let Qk
i = supp(margAi

µk) for each i ∈ N and 1 ≤ k ≤ n.
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Then,

1. For each 1 ≤ k ≤ n, we either have Yi(µ
k) = Qk

i for all i ∈ N , or Yi(µ
k) = ∅ for all

i ∈ N . And for each i ∈ N , Yi(µ) =
⋃

1≤k≤n Yi(µ
k).

2. If Yi(µ
k) = Qk

i for all i ∈ N (e.g., when µk is not intrinsic), then µk is an extreme

point in the set of CED’s.

3. µ is intrinsic if and only if µk is intrinsic for every 1 ≤ k ≤ n.

Proof. 1 and 3 are immediate, given the iterated construction of Y l
i in Equation (7).

For 2, suppose µ is an irreducible CED, and Yi(µ) = Qi = supp(margAi
µ) for each i ∈ N .

We will show that µ is an extreme point in the set of CED’s.

Suppose µ1 and µ2 are two CED’s such that µ = µ1/2 + µ2/2 and suppµ1 = suppµ2 =

suppµ. Because Yi(µ) = Qi, we must have µ1(·|ai) = µ2(·|ai) = µ(·|ai) for every i ∈ N and

ai ∈ Qi.

Suppose that µ1 6= µ2, then there exists a ∈ Q =
∏

i∈N Qi such that µ1(a) 6= µ2(a).

Without loss of generality, suppose µ1(a) < µ2(a). Because µ1(·|ai) = µ2(·|ai) for every

i ∈ N , we have that µ1(b−i, ai) > 0⇒ µ1(b−i, ai) < µ2(b−i, ai) for every i ∈ N and b−i ∈ Q−i.

Because µ is irreducible, so are µ1 and µ2, and this together with the last sentence imply

that µ1(b) > 0 ⇒ µ1(b) < µ2(b) for every b ∈ Q, which clearly cannot be. Thus, we must

have µ1 = µ2.

Therefore, µ is an extreme point in the set of CED’s.

Corollary 4.4. An irreducible and non-extreme CED is intrinsic.

Any CED is a natural sum of irreducible CED’s that are its sub-distributions, just like

any graph is a natural sum of sub-graphs that are its connected components. Whenever

analyzing an CED in the interim stage (i.e., when types are realized), it’s without loss of

generality to restrict to irreducible CED. Furthermore, by Point 3 of Proposition 4.3, to

check if a CED is intrinsic, it is necessary and sufficient to check if each of its irreducible

sub-distributions is intrinsic.

When restricting to irreducible CED, Corollary 4.4 tells us that “most” of the CED’s

are intrinsic, in the sense that “most” of the points in a convex set are not extreme points.

For any finite game, the number of irreducible and non-intrinsic CED’s is finite, because the

set of CED’s is a polytope, so it has a finite number of extreme points; and in general the

number of irreducible CED’s is infinite.
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Moreover, if two distinct irreducible CED’s µ1 and µ2 (not necessarily themselves intrin-

sic) place positive probability on a same action (i.e., there exist i ∈ N and ai ∈ Ai such that

µ1(ai) > 0 and µ2(ai) > 0), then γµ1 + (1 − γ)µ2 is an intrinsic correlated equilibrium for

any γ ∈ (0, 1).

This suggests that intrinsic CED’s have convexity property. This is indeed the case; the

proof can be found in Appendix C.

Proposition 4.5. The set of intrinsic CED’s is convex.

Although it is convex, the set of intrinsic CED’s is not necessarily closed; see Example 4.1.

This should not be surprising, since intrinsic CED is analogous to CED with strict incentive

inequalities (cf. Proposition 4.2).

Finally, the geometry of intrinsic CED’s enables us to show that for a generic two-

person game, any non-degenerate mixed-strategy Nash equilibrium is not an intrinsic CED.

Geometrically, this is because for generic two-person games, Nash equilibria are extreme

points in the set of CED’s. This, however, is not enough, because being an extreme point is

only a necessarily condition for being non-intrinsic, when the CED is irreducible (clearly a

Nash equilibrium is irreducible).

Conceptually, a Nash equilibrium does not have any variation in belief about the other

players’ actions (for any given player), i.e., no variation in first order belief, which leads to

the lack of variation in any higher order belief; on the other hand, the “intrinsicness” requires

the presence of different hierarchies of beliefs to purify the mixed strategy — the source of

mixing is the belief hierarchies. Thus, non-degenerate mixed Nash equilibrium cannot be

intrinsic.

We say that a two-person game (u,A = A1×A2, N = {1, 2}) is generic if for any i ∈ {1, 2}
and x ∈ ∆(Ai), we have |BRj(x)| ≤ | supp(x)|, where j 6= i, supp(x) = {ai ∈ Ai : x(ai) >

0} and BRj(x) = {aj ∈ Aj : uj(aj, x) ≥ uj(a
′
j, x) for all a′j ∈ Aj}. This is a well-known

genericity class of two-person games, and a good reference on it is von Stengel (2002).

Harsanyi (1973) proved that for these generic games, any mixed-strategy Nash equilib-

rium can be purified via vanishing payoff shocks that are independent across players. As

mentioned in the introduction, we interpret this difference as showing that to purify mixed-

strategy Nash equilibrium one must go “outside” of the game, either by introducing private

randomization or via vanishing payoff shocks.

Proposition 4.6. Fix a generic two-person game. Suppose (x, y) ∈ ∆(A1) × ∆(A2) is a

non-degenerate mixed Nash equilibrium. Then (x, y) is not an intrinsic CED.
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Proof of Proposition 4.6. Since (x, y) is a Nash equilibrium, we have supp(x) ⊆ BR1(y) and

supp(y) ⊆ BR2(x). Thus, | supp(x)| + | supp(y)| ≤ |BR1(y)| + |BR2(x)|. By the genericity

of the game, we have | supp(x)| = |BR2(x)| and | supp(y)| = |BR1(y)|.
Theorem 2.10 of von Stengel (2002) (which again uses the genericity condition) implies

that the convex set C = {z ∈ ∆(A1) : supp(z) = supp(x) and BR2(z) = BR2(x)} is of

dimension 0, i.e. C = {x} 3. Fix any a2 ∈ supp(y), we claim that x is an extreme point of

βA
2 (a2).

Suppose otherwise, i.e. there exist z1 6= z2 ∈ βA
2 (a2) such that z1/2 + z2/2 = x; we can

choose z1 and z2 such that supp(z1) = supp(x) = supp(z2). And we have that x ∈ βA
2 (a′2)

implies that z1, z2 ∈ βA
2 (a′2): if z1 6∈ βA

2 (a′2), then we have

u2(x, a
′
2) = u2(z1, a

′
2)/2 + u2(z2, a

′
2)/2 < u2(z1, a2)/2 + u2(z2, a2)/2 = u2(x, a2)

which means x 6∈ βA
2 (a′2).

Thus, we have BR2(x) ⊆ BR2(z1) ∩ BR2(z2); this means that BR2(x) = BR2(z1) =

BR2(z2), because |BR2(z1)| ≤ | supp(z1)| = | supp(x)| = |BR1(x)| and likewise for z2. Thus

we have z1 ∈ C and z2 ∈ C, which contradicts C being a singleton.

Likewise, y is an extreme point of βA
1 (a1) for every a1 ∈ supp(x). Our desired conclusion

then follows from the characterization of intrinsic CED’s in Theorem 2.

5 Related Literature and Extension

5.1 Relation to Brandenburger and Friedenberg (2008)

Brandenburger and Friedenberg study rationalizability in complete information game with

correlation resulting from hierarchies of beliefs (intrinsic correlation). They work with type

space4 ((λ̃i)i∈N , T ), where λ̃i : Ti → ∆(T−i × A−i) for each i ∈ N , that is not necessarily

obtained from Equation (2). Let l-th order belief map δl
i : Ti → T l

i be defined as before, and

let δi(ti) = (δ1
i (ti), δ

2
i (ti), . . .) be the whole hierarchy of beliefs induced at type ti.

Brandenburger and Friedenberg define intrinsic correlation of players’ actions in a type

space with the following notions of conditional independence and sufficiency.

3More generally, Theorem 2.10 of von Stengel (2002) says that the convex set {z ∈ ∆(A1) : supp(z) =
supp(x) and BR2(z) = BR2(x)} is of dimension m − n for any x ∈ ∆(A1), where m = | supp(x)| and
n = |BR2(x)|.

4As before, we assume that each Ti is (non-empty) finite or countably infinite to avoid measurability
issues.
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In a type space ((λ̃i)i∈N , T ), type ti ∈ Ti satisfies conditional independence (CI) if his

belief about actions of other players is independent conditional on their hierarchies of beliefs;

that is,

λ̃i(ti)(a−i|{δ−i(t−i) = x−i}) =
∏
j 6=i

λ̃i(ti)(aj|{δ−i(t−i) = x−i})

for every actions a−i ∈ A−i and hierarchies of beliefs x−i ∈
∏

j 6=i δj(Tj) such that λ̃i(ti)({δ−i(t−i) =

x−i}) > 0. Note that we abbreviate {t−i ∈ T−i : δ−i(t−i) = x−i} as {δ−i(t−i) = x−i}.
And type ti ∈ Ti satisfies sufficiency (SUFF) if he believes that player j’s action (j 6= i)

is influenced only by player j’s belief hierarchy (and not influenced by belief hierarchies of

other players); that is,

λ̃i(ti)(aj|{δj(tj) = xj}) = λ̃i(ti)(aj|{δ−i(t−i) = x−i})

for every actions aj ∈ Aj and hierarchies of beliefs x−i ∈
∏

k 6=i δk(Tk) such that λ̃i(ti)({δ−i(t−i) =

x−i}) > 0.

Therefore, if both CI and SUFF hold at ti ∈ Ti, then we have

λ̃i(ti)(a−i|{δ−i(t−i) = x−i}) =
∏
j 6=i

λ̃i(ti)(aj|{δj(tj) = xj})

for every actions a−i ∈ A−i and hierarchies of beliefs x−i ∈
∏

j 6=i δj(Tj) such that λ̃i(ti)({δ−i(t−i) =

x−i}) > 0.

Going back to our formulation: ((λi)i∈N , T, σ), where λi : Ti → ∆(T−i) and σi : Ti → Ai

for each i ∈ N , it’s clear that if λ̃i is defined from λi and (σj)j 6=i via (2), and if condition (∗)
holds, then at every ti ∈ Ti of every player i, CI and SUFF hold. In particular, we have

λ̃i(ti)(a−i|{δ−i(t−i) = x−i}) =
∏
j 6=i

1(aj = σj(xj))

for every actions a−i ∈ A−i and hierarchies of beliefs x−i ∈
∏

j 6=i δj(Tj) such that λi(ti)({δ−i(t−i) =

x−i}) > 0, where 1(·) is the indicator function, and σj(xj) := σj(tj) where δj(tj) = xj.

Following Tan and Werlang (1988), one defines the set of states (types and actions) of
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player i at which rationality and l-th order belief of rationality hold:

Rat1i (λ̃) = {(ti, ai) ∈ Ti × Ai : ai is optimal for player i under margA−i
λ̃i(ti)},

Ratli(λ̃) = {(ti, ai) ∈ Rat1i (λ̃) : λ̃i(ti)(Rat
l−1
−i (λ̃)) = 1}, l ≥ 2,

Rati(λ̃) =
⋂
l≥1

Ratli(λ̃)

Rati(λ̃) is the set of states of player i at which rationality and common belief of rationality

(RCBR) hold. Notice that Ratli(λ̃) and Rati(λ̃) are defined with respect to the type space

((λ̃i)i∈N , T ).

Brandenburger and Friedenberg are interested in the set of actions that are consistent

with epistemic conditions RCBR, CI and SUFF:

Ci = {ai ∈ Ai : there exist ((λ̃i)i∈N , T ) and ti ∈ Ti such that

(ai, ti) ∈ Rati(λ̃) and at at ti CI and SUFF hold }

It is easy to check that if ((λi)i∈N , T, σ) is an intrinsic a posteriori equilibrium, then

σi(Ti) ⊆ Ci for every i ∈ N .

Brandenburger and Friedenberg prove that C =
∏

i∈N Ci is contained in the set of cor-

related rationalizable action profiles, and C contains the set of independent rationalizable

action profiles. Furthermore, they show that there exist games in which C is strictly con-

tained in the set of correlated rationalizable action profiles.

A precise characterization of the set C, in terms of payoffs and strategies of the game and

without mentioning type space, is (and remains) an open question raised in Brandenburger

and Friedenberg. Our Theorem 1 provides a partial answer: if Q =
∏

i∈N Qi is a semi-

injective best-response set, then Q ⊆ C.

A contemporaneous and independent paper by Peysakhovich (2009) provides another

partial answer: if µ ∈ ∆(A) is a correlated equilibrium distribution, then actions of player i

with positive probability by µ must be in Ci, i.e. supp(margAi
µ) ⊆ Ci for every i ∈ N .

5.2 Private Randomization

We now relax our restriction to pure strategy.

As before that we have type space ((λi)i∈N , T ), where λi : Ti → ∆(T−i) for each i ∈ N .

Players are now allowed to use private randomization: σi : Ti → ∆(Ai).
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For common prior λ ∈ ∆(T ), let λi(ti) = λ(·|ti) if λ(ti) > 0.

The equilibrium condition (1) and Definition 2.1 of a posteriori and correlated equilibria

still apply without change.

For every player i and type ti ∈ Ti, the first order belief at ti is given by δ1
i (ti) ∈ ∆(A−i),

where for every a−i ∈ A−i,

δ1
i (ti)(a−i) =

∑
t−i∈T−i

λi(ti)(t−i)
∏
j 6=i

σj(tj)(aj).

The tuple (λ, T, σ) obtains a distribution µ ∈ ∆, where for every a ∈ A,

µ(a) =
∑
t∈T

λ(t)
∏
i∈N

σi(ti)(ai).

The following theorem is a reinterpretation of Peysakhovich (2009)’s main result; details

of the proof can be found in his paper.

Theorem (Peysakhovich). For any CED µ ∈ ∆(A), there exists a correlated equilibrium

(λ, T, σ) that obtains µ such that players condition their actions only on their first order

beliefs, i.e., δ1
i (ti) = δ1

i (t′i)⇒ σi(ti) = σi(t
′
i).

Therefore, we have an interesting trade-off between mixed strategy and higher order

beliefs. On the one hand, every CED can be obtained from a correlated equilibrium in which

every player plays randomized actions contingent on his first-order belief. On the other hand,

“most” CED’s (cf. Proposition 4.3) can be obtained from correlated equilibria in which every

player plays a pure action contingent on his whole hierarchy of beliefs; that is, the player

does not randomize, but he might have to rely on more refined information, i.e. his higher

order beliefs.

We leave the analogous result for a posteriori equilibrium to future works.

6 Conclusion

Even if players sit in separate rooms and do not communicate or observe any signal, they

might still display correlated equilibrium behaviors, because of their entangled beliefs of you

believe that I believe that you believe that . . .. This paper analyzes the theory of such kind

of correlated equilibrium.

APPENDIX
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A Proof of Proposition 3.5

We first formally specify the iterated deletion procedure.

Step 1: For each i ∈ N , let R1
i be the the set of player i’s correlated rationalizable

actions, or equivalently, the set of player i’s actions that survive iterated deletions of strictly

dominated actions.

Step l (l ≥ 2): Let a BRS Rl−1 =
∏

i∈N R
l−1
i be given from the previous step. Let

βl−1
i = βRl−1

i (cf. Equation (4)), and let W 1
i (l − 1) be the W 1

i (Rl−1), i.e., the W 1
i obtained

in Equation (5) when Q = Rl−1. And for each i ∈ N and γ ∈ βl−1
i (W 1

i (l − 1)), fix an

al−1(γ) ∈ W 1
i (l − 1) such that βl−1

i (al−1(γ)) = γ; note that if βl−1
i is injective on W 1

i (l − 1),

there is a unique choice of al−1(γ).

For each i ∈ N , let

Rl,1
i =

(
Rl−1

i \W 1
i (l − 1)

)
∪ {al−1(γ) : γ ∈ βl−1

i (W 1
i (l − 1))}, (10)

Rl,k
i = {ai ∈ Rl,1

i : ∃µ ∈ ∆(Rl,k−1
−i ) s.t. ai is optimal under µ}, k ≥ 2,

Rl
i =

⋂
k≥1

Rl,k
i .

Note that Rl =
∏

i∈N R
l
i is the largest BRS contained in Rl,1 =

∏
i∈N R

l,1
i .

Finally: Let Ri =
⋂

l≥1R
l
i for each i ∈ N .

By construction, for every i ∈ N we have that

R1
i ⊇ R2

i ⊇ R3
i ⊇ . . . ⊇ Ri.

Proposition A.1. R =
∏

i∈N Ri is a non-empty, injective BRS. And by some choice of

al−1(γ) for each l and γ in (10), we can obtain any maximal (in the set-inclusion partial

order) injective BRS as R.

Proof. We will first show that each Ri is non-empty; it’s clear that R is a semi-injective

BRS.

It is well-known that each R1
i is non-empty: there always exist actions that are correlated

rationalizable.

Now, fix a l ≥ 2, and suppose that each Rl−1
i is non-empty. Then Rl,1

i is non-empty

because it contains al−1(γ) where γ ∈ βl−1
i (W 1

i (l − 1)).

For any k ≥ 2, suppose each Rl,k−1
i is non-empty. Fix an i ∈ N and any µ ∈ ∆(Rl,k−1

−i ).

Let BRi(µ) = {ai ∈ Ai : ai is optimal for player i under µ}.
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Clearly, BRi(µ) ⊆ R1
i . And BRi(µ) ∩ R2,1

i 6= ∅ because if there exists ai ∈ R1
i \ R

2,1
i

such that ai ∈ BRi(µ), then we must have β1
i (ai) = µ, so by construction there exists an

a′i ∈ BRi(µ) ∩R2,1
i .

And we have BRi(µ) ∩ R2,1
i ⊆ R2,m

i for any m ≥ 2 (or 2 ≤ m ≤ k if l = 2) because

Rl,k−1
−i ⊆ R2,m−1

−i .

Repeating this argument, we conclude that ∅ 6= BRi(µ) ∩Rl,1
i ⊆ Rl,k

i , which implies that

Rl,k
i is non-empty.

Therefore, each Ri is non-empty.

For the second part of the proposition, fix a maximal injective BRS Q =
∏

i∈N Qi.

Clearly, we have Qi ⊆ R1
i for every i ∈ N . For any two distinct a′i 6= ai ∈ W 1

i (Q), we have

βQ
i (ai) 6= βQ

i (a′i); and notice that W 1
i (1) ∩ Qi ⊆ W 1

i (Q). Thus, so by some choices of a1(γ)

in Equation (10), we have Qi ⊆ R2,1
i . And Qi ⊆ R2

i because R2 is the largest BRS contained

in R2,1.

Continuing on with this reasoning, we conclude that by some choice of al−1(γ) for each l

and γ in (10), we have Qi ⊆ Ri. But this means that Qi = Ri since Q is a maximal injective

BRS.

B Proof of If in Theorem 2

The proof extensively uses the following lemma, whose proof we defer until the end of this

section.

Lemma B.1. Fix a finite and non-empty X =
∏

i∈N Xi and a µ ∈ ∆(X) such that µ(xi) > 0

for every i ∈ N and xi ∈ Xi. And fix (Zi)i∈N , where Zi ⊆ Xi, and {(ν(xi, 1), ν(xi, 2))}xi∈Zi,i∈N ,

where ν(xi, 1), ν(xi, 2) ∈ ∆(X−i), such that for every i ∈ N and xi ∈ Zi, we have µ(·|xi) =

κ(xi)ν(xi, 1) + (1− κ(xi))ν(xi, 2) for some κ(xi) ∈ (0, 1).

Let X̃ =
∏

i∈N X̃i, X̃i = {xi(k) : xi ∈ Zi, k ∈ {1, 2}} ∪ (Xi \ Zi) (where xi(1) and xi(2)

are two distinct copies of xi). Define fi : X̃i → Xi such that fi(xi) = xi for xi 6∈ Zi, and

fi(xi(1)) = fi(xi(2)) = xi for xi ∈ Zi; define f : X̃ → X and f−i : X̃−i → X−i in the obvious

way.

Then, there exists a µ̃ ∈ ∆(X̃) such that µ̃(f−1(x)) = µ(x) for each x ∈ X, and

µ̃(f−1
−i (x−i)|xi(k)) = ν(xi, k)(x−i) for every i ∈ N , xi ∈ Zi, k ∈ {1, 2} and x−i ∈ X−i.

Furthermore, if for every i ∈ N and xi ∈ Zi, ν(xi, 1) and ν(xi, 2) have the same support

as µ(·|xi), then for every i ∈ N , xi ∈ Zi and x−i ∈ X̃−i, µ̃(xi(1), x−i) > 0 if and only if

µ̃(xi(2), x−i) > 0 (if and only if µ(xi, f−i(x−i)) > 0).
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Suppose a correlated equilibrium µ ∈ ∆(A) is given such that for every i ∈ N and for

any two distinct ai 6= a′i ∈ Yi, we have that µ(·|ai) 6= µ(·|a′i). We will construct an intrinsic

correlated equilibrium (λ, T, σ) that obtains µ. For each i ∈ N let Qi be the support of

margAi
µ. Our construction is to split each action ai ∈ Qi \ Yi into two copies (and making

each copy a type with distinct belief hierarchy) using Lemma B.1; it works in opposite

direction to the “amalgamation” construction in Aumann and Dreze (2008).

Step 1:

For each i ∈ N and ai ∈ Qi \ Y 1
i , choose ν(ai, 1) 6= ν(ai, 2) ∈ βQ

i (ai) such that µ(·|ai) =

ν(ai, 1)/2 + ν(ai, 2)/2 and that ν(ai, 1) and ν(ai, 2) have the same support as µ(·|ai). This

is possible by construction of Y 1
i . Furthermore, we can choose ν(ai, k)’s in a way such that

for every i ∈ N :

|{ν(ai, k) : ai ∈ Qi \ Y 1
i , k ∈ {1, 2}}| = 2|Qi \ Y 1

i |

and

{ν(ai, k) : ai ∈ Qi \ Y 1
i , k ∈ {1, 2}} ∩ {µ(·|ai) : ai ∈ Y 1

i } = ∅.

Now, apply Lemma B.1 to µ, Q, (Qi \ Y 1
i )i∈N and {(ν(ai, 1), ν(ai, 2))}ai∈Qi\Y 1

i ,i∈N to

obtain T 1 =
∏

i∈N T
1
i (where T 1

i = {ai(k) : ai ∈ Qi \ Y 1
i , k ∈ {1, 2}} ∪ Y 1

i ), λ1 ∈ ∆(T 1) and

f 1
i : T 1

i → Qi, i ∈ N, with properties stated in the lemma. These properties implies that

(λ1, T 1, f 1) is a correlated equilibrium that obtains µ, and that each ai(j), ai ∈ Qi \ Y 1
i and

j ∈ {1, 2}, has a distinct first order belief through λ1.

Step l: (2 ≤ l ≤ L = min{l ≥ 1 : Y l = Y })
Suppose that T l−1 =

∏
i∈N T

l−1
i (where T l−1

i = {ai(k) : ai ∈ Qi\Y l−1
i , k ∈ {1, 2}}∪Y l−1

i ),

λl−1 ∈ ∆(T l−1) and f l−1
i : T l−1

i → T l−2
i , i ∈ N , (let T 0

i = Qi) are obtained from Lemma B.1

in the previous step.

For each i ∈ N and ai ∈ Y l−1
i \ Y l

i , choose a c(ai) ∈ Y l−2
j \ Y l−1

j , j 6= i, (let Y 0
j = Qj)

such that µ(c(ai)|ai) > 0; such c(ai) exists by construction of Y l
i ’s, and c(ai)’s can be chosen

so that µ(·|ai) = µ(·|a′i) ⇒ c(ai) = c(a′i). For each t−(i,j) ∈ T l−1
−(i,j) =

∏
k 6∈{i,j} T

l−1
k , we have

λl−1(t−(i,j), c(ai)(1), ai) > 0 if and only if λl−1(t−(i,j), c(ai)(2), ai) > 0 (by Lemma B.1); and

λl−1({c(ai)(1), c(ai)(2)} × {ai} × T l−1
−(i,j)) = µ(c(ai), ai) > 0. Let

ν(ai, 1)(t−i) =


λl−1(t−i|ai) λl−1(t−i|ai) = 0 or tj 6∈ {c(ai)(1), c(ai)(2)}

λl−1(t−(i,j), c(ai)(1)|ai)− κ(ai) λl−1(t−i|ai) > 0 and tj = c(ai)(1)

λl−1(t−(i,j), c(ai)(2)|ai) + κ(ai) λl−1(t−i|ai) > 0 and tj = c(ai)(2)

,
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and

ν(ai, 2)(t−i) =


λl−1(t−i|ai) λl−1(t−i|ai) = 0 or tj 6∈ {c(ai)(1), c(ai)(2)}

λl−1(t−(i,j), c(ai)(1)|ai) + κ(ai) λl−1(t−i|ai) > 0 and tj = c(ai)(1)

λl−1(t−(i,j), c(ai)(2)|ai)− κ(ai) λl−1(t−i|ai) > 0 and tj = c(ai)(2)

,

for every t−i ∈ T l−1
−i , where κ(ai) > 0 is sufficiently small so that ν(ai, 1) and ν(ai, 2) has the

same support as µl−1(·|ai). Notice that ν(ai, 1)/2 + ν(ai, 2)/2 = λl−1(·|ai). Furthermore, we

can choose the κ(ai)’s so that for any ai 6= a′i ∈ Y l−1
i \Y l

i such that µ(·|ai) = µ(·|a′i), we have

that ν(ai, 1), ν(ai, 2), ν(a′i, 1) and ν(a′i, 2) all differ from each other in their probabilities on

c(a1)(1).

Now, apply Lemma B.1 to λl−1, T l−1, (Y l−1
i \Y l

i )i∈N and {(ν(ai, 1), ν(ai, 2))}ai∈Y l−1
i \Y l

i ,i∈N

to obtain T l =
∏

i∈N T
l
i (where T l

i = {ai(k) : ai ∈ Qi \ Y l
i , k ∈ {1, 2}} ∪ Y l

i ), λl ∈ ∆(T l)

and f l
i : T l

i → T l−1
i , i ∈ N, with properties stated in the lemma. These properties imply

that (λl, T 2, f 1 ◦ · · · ◦ f l) is a correlated equilibrium that obtains µ, and that each ai(k),

ai ∈ Y l−1
i \ Y l

i and k ∈ {1, 2}, induces a distinct l-th order belief through λl.

Finally:

Let T = TL (Ti = TL
i = {ai(k) : ai ∈ Qi\Yi, k ∈ {1, 2}}∪Yi), λ = λL, and σi = f 1

i ◦. . .◦fL
i .

It’s easy to see that that (λ, T, σ) is an intrinsic correlated equilibrium that obtains µ.

Proof of Lemma B.1. Without loss of generality suppose that N = {1, . . . , n}.
Let µ1 ∈ ∆(X̃1 ×

∏
2≤i≤nXi) be such that

µ1(x1(1), x−1) = µ(x1)κ(x1)ν(x1, 1)(x−1)

and

µ1(x1(2), x−1) = µ(x1)(1− κ(x1))ν(x1, 2)(x−1),

where µ(·|x1) = κ(x1)ν(x1, 1) + (1− κ(x1))ν(x1, 2), for each x1 ∈ Z1 and x−1 ∈ X−1.

And let µ1(x1, x−1) = µ(x1, x−1) for every x1 6∈ Z1 and x−1 ∈ X−1.

In general, for 2 ≤ l ≤ n, let µl ∈ ∆(
∏

1≤j≤l X̃j ×
∏

l+1≤i≤nXi) be such that for every

xl ∈ Zl, (x1, . . . , xl−1) ∈
∏

1≤i≤l−1 X̃i and (xl+1, . . . , xn) ∈
∏

l+1≤i≤nXi:

µl(x1, . . . , xl−1, xl(1), x1+1, . . . , xn) =µ(xl)κ(xl)
µl−1(x1, . . . , xl−1, xl, . . . , xn)

µ(f1(x1), . . . , fl−1(xl−1), xl, . . . , xn)

× ν(xl, 1)(µ(f1(x1), . . . , fl−1(xl−1), xl+1, . . . , xn)
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and

µl(x1, . . . , xl−1, xl(2), x1+1, . . . , xn) =µ(xl)(1− κ(xl))
µl−1(x1, . . . , xl−1, xl, . . . , xn)

µ(f1(x1), . . . , fl−1(xl−1), xl, . . . , xn)

× ν(xl, 2)(µ(f1(x1), . . . , fl−1(xl−1), xl+1, . . . , xn),

if µ(f1(x1), . . . , fl−1(xl−1), xl, . . . , xn) > 0, and

µl(x1, . . . , xl−1, xl(1), x1+1, . . . , xn) = µl(x1, . . . , xl−1, xl(2), x1+1, . . . , xn) = 0

otherwise, where µ(·|xl) = κ(xl)ν(xl, 1) + (1− κ(xl))ν(xl, 2).

And let

µl(x1, . . . , xl−1, xl, x1+1, . . . , xn) = µl−1(x1, . . . , xl−1, xl, x1+1, . . . , xn)

for every xl 6∈ Zl, (x1, . . . , xl−1) ∈
∏

1≤i≤l−1 X̃i and (xl+1, . . . , xn) ∈
∏

l+1≤i≤nXi.

It is easy to verify that µ̃ = µn satisfies the desired properties.

C Proofs for Section 4.2

Proof of Proposition 4.5. Suppose that µ1, µ2 ∈ ∆(A) are two intrinsic CED’s; for γ ∈ (0, 1),

let µ = γµ1 + (1− γ)µ2.

For any i ∈ N , if µ1(ai) > 0, µ2(ai) > 0 and µ1(·|ai) 6= µ2(·|ai), then µ(·|ai) is a strict

convex combination of µ1(·|ai) and µ2(·|ai), so clearly ai 6∈ Y 1
i (µ). Therefore, if ai ∈ Y 1

i (µ),

and µ1(ai) > 0 (respectively, µ2(ai) > 0), then we have that µ(·|ai) = µ1(·|ai) (respectively,

µ(·|ai) = µ2(·|ai)).

Let Q1
i = supp(margAi

µ1) and Q2
i = supp(margAi

µ2) for every i ∈ N . We thus have

Y 1
i (µ)∩Q1

i ⊆ Y 1
i (µ1) and Y 1

i (µ)∩Q2
i ⊆ Y 1

i (µ2) for each i ∈ N . This implies that Yi(µ)∩Q1
i ⊆

Yi(µ
1) and Yi(µ) ∩Q2

i ⊆ Yi(µ
2).

If ai 6= a′i ∈ Yi(µ) ∩ Q1
i , then ai 6= a′i ∈ Yi(µ

1), and thus µ1(·|ai) 6= µ1(·|a′i). Therefore,

we have µ(·|ai) 6= µ(·|a′i), since µ1(·|ai) = µ(·|ai) and µ1(·|a′i) = µ(·|a′i). And likewise for

ai 6= a′i ∈ Yi(µ) ∩Q2
i .

Now, suppose ai 6= a′i ∈ Y 2
i (µ) such that ai ∈ Q1

i \Q2
i , a′i ∈ Q2

i \Q1
i and µ(·|ai) = µ(·|a′i).

Then we have µ1(·|ai) = µ2(·|a′i). For any aj ∈ Aj, j 6= i, such that µ1(aj|ai) = µ2(aj|a′i) > 0,
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we have aj ∈ Y 1
j (µ), which implies that µ(·|aj) = µ1(·|aj) = µ2(·|aj). But this implies that

µ1(ai|aj) = µ(ai|aj) = µ2(ai|aj) > 0, which contradicts ai ∈ Q1
i \Q2

i .

Thus, we have that for any i ∈ N and ai 6= a′i ∈ Yi(µ), µ(·|ai) 6= µ(·|a′i); i.e. µ is an

intrinsic CED.
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