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Abstract

Battigalli-Siniscalchi [7, 2002] formalize the idea of forward induction reasoning as �ratio-

nality and common strong belief of rationality� (RCSBR). Here, we study the behavioral

implications of RCSBR across all type structures� we argue that, in so doing, we study the be-

havioral implications of context-dependent forward induction. Formally, we show that RCSBR

is characterized by a solution concept we call Extensive Form Best Response Sets (EFBRS�s). It

turns out that the EFBRS concept is equivalent to a concept already proposed in the literature,

namely Directed Rationalizability [8, 2003]. We conclude by applying the EFBRS concept to

games of interest.

1 Introduction

Forward induction is a basic concept in game theory. It re�ects the idea that players rationalize

their opponents�behavior, whenever possible. In particular, players form an assessment about the

future play of the game, given the information about the past play and the presumption that their

opponents are strategic. This a¤ects the players�choices.

Formalizing forward induction reasoning requires an epistemic apparatus: To express the idea

that a player rationalizes their opponents�past behavior, we need a language that explicitly describes

what a player believes about the strategies her opponents play and the beliefs they hold, at each

information set. An (extensive-form based) epistemic type structure gives such a language.

Within this framework, Battigalli-Siniscalchi [7, 2002] formalize forward induction reasoning

using the idea of �strong belief.� (See also Stalnaker [28, 1998].) A player strongly believes an
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event E if he assigns probability one to E, so long as E is consistent with the information set he has

reached. With this, the conditions that each player is rational, strongly believes that �each (other)

player is rational,�strongly believes �each (other) player is rational and strongly believes others are

rational,� etc. formally capture the idea of forward induction reasoning. The collection of these

assumptions is called rationality and common strong belief of rationality (RCSBR).
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Figure 1.1

To illustrate the concept, consider the game of Battle of the Sexes (BoS) with an Outside Option

(between Bob and Ann), as in Figure 1.1. Append to it a �largest�type structure, i.e., a structure

that contains all possible extensive-form systems of beliefs. In this structure, the strategy In-Right

is consistent with rationality� there is a type of Bob that assigns probability greater than 2
3 to

Ann�s playing Down and, for such a type, In-Right is a sequential best response (i.e., it is optimal at

each information set). On the other hand, the strategy In-Left is inconsistent with rationality� the

strategy Out dominates In-Left at the beginning of the tree.1 So, if Ann strongly believes Bob is

rational, she must assign probability one to Bob playing In-Right, if her information set is reached.

With this, she should play Down. Now, if Bob begins the game understanding that Ann is rational

and rationalizes past behavior� i.e., that Ann is rational and strongly believes Bob is rational� Bob

should begin the game assigning probability one to Down and should indeed play In-Right. This

is what is viewed as the standard forward-induction outcome. This argument is in the spirit of

Kohlberg-Mertens [20, 1986].2

1Note, we often con�ate a strategy with its associated plan of action. No confusion should result.
2See, e.g., Hillas-Kohlberg [18, 2002; Section 11], Cho-Kreps [14, 1987], Govindan-Wilson [16, 2008], Man [21,

2009]. These papers analyze and/or de�ne forward induction, so that it is a re�nement of the Nash equilibrium
concept. We instead follow Battigalli-Siniscalchi [7, 2002] and use the epistemic approach. This approach explicitly
speci�es what Ann believes about Bob�s beliefs about her play� as such, it provides an explicit language within which
we can specify the idea that a player rationalizes past play. See [7, 2002], [8, 2003], and [9, 2007] on the relationship
between the two approaches.
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Note, RCSBR (and so forward induction reasoning) depends, in somewhat subtle ways, on the

particular (extensive-form) epistemic type structure studied. (See Section 3.4 in [7, 2002].) To

see this, let�s again consider BoS with an Outside Option, now played in a society that has come

to form a �lady�s choice convention.�Loosely: Everyone in society thinks that, if the lady gets to

move in a BoS-like situation, she makes choices that can lead to her �best payo¤,� i.e., she will

play Up, hoping to get a payo¤ of 4. And, moreover, it is �transparent� that everyone thinks

this. That is, this convention restricts the players� beliefs� it restricts what beliefs players do

vs. do not consider possible. (There is no explicit restriction on which strategies players can vs.

cannot play.) In particular, the convention corresponds to a type structure, where each type of Bob

assigns probability one to Ann�s playing Up. (In Section 3, we formally describe the type structure

corresponding to the lady�s choice convention.)

Under this convention, a rational Bob plays Out, thinking that Ann will play Up. Now, if

Ann is given the opportunity to move, she can no longer rationalize Bob�s behavior� after all, it is

transparent that Bob believes she would play Up and, given this, a rational Bob should have played

Out. Thus, conditional upon her information set being reached, Ann must forgo the hypothesis that

Bob is rational and so may very well think that Bob is playing In-Right. In this case, she may make

the choice that allows her �best payo¤.� That is, she may indeed choose to play Up over Down.

A formal treatment of RCSBR under the lady�s choice convention will be given in Section 4. For

now we note that the lady�s choice convention leads us to study an epistemic type structure that does

not contain all possible beliefs. The key is that, because Ann does not consider the possibility that

�Bob thinks she may not go for her best outcome,�Ann cannot rationalize Bob�s past behavior when

her information set is reached. As a result, the RCSBR analysis based on this smaller structure

can lead to an outcome that is precluded by the RCSBR analysis on a larger structure.

This shows that the RCSBR analysis of the largest structure does not su¢ ce to capture the

predictions of forward induction reasoning that hold across all type structures. We must perform

a separate forward induction analysis for di¤erent type structures. Is it of interest to do so? Put

di¤erently, is it of interest to study the implications of forward induction reasoning on some arbitrary

structure that need not contain all conceivable beliefs?

We would argue yes� that the application may drive the analyst to study such a type structure

(as it did in the case of the lady�s choice convention). We take a Savage small worlds [27, 1972]

view of games: In practice, we study a snapshot of the strategic situation. As a result, there is a

context to the strategic situation studied� e.g., players come to the game with social conventions,

a history, etc. . . � and this context in�uences what beliefs players do vs. do not consider possible.

(For instance, in the US, it may be transparent that �drivers think that all others drive on the

right side of the road, irrespective of whether they are driving north or south.�) If this is the

case, it may be of interest to study a given game relative to di¤erent type structures, depending

on the context within which the game is played. (For instance, it may be of interest to study a

driving-coordination game under di¤erent contexts depending on �who the drivers are,�i.e., if they
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are US drivers, UK drivers, or a mix.) That is, di¤erent type structures re�ect di¤erent contexts.

The implication is that� because forward induction reasoning is type structure-dependent� forward

induction is context-dependent.

Given a game and an epistemic type structure, we (the analysts) can identify the strategies

consistent with RCSBR. But, often times, the analyst does not know the particular beliefs that the

players�do vs. do not consider possible. That is, often times the analyst does not know the players�

type structure. In this case, a question arises: Are there observable implications of RCSBR that

hold across all type structures? The answer will be yes if we can identify the strategies consistent

with context-dependent forward induction reasoning (across all contexts), by looking only at the

game tree. This is the main question we ask here: Can we identify the sets of strategies consistent

with RCSBR (across all type structures)?

We show that RCSBR is captured by a solution concept we call extensive-form best response
set (EFBRS). (See Theorem 5.1.) The extensive-form rationalizable strategy set (Pearce [24,

1984]) is one EFBRS. But, in general, there may be other EFBRS�s for a given game. Which

EFBRS obtains depends on the given type structure (i.e., the given context). While the EFBRS

de�nition is new, we will see that it is equivalent to one already proposed in the literature, namely,

the Directed Rationalizability concept. This solution concept is due to Battigalli-Siniscalchi [8,

2003], who refer to it as �-rationalizability. We will discuss the connection in Section 9a below. We

will see that, in some ways, the questions raised here can be viewed as a follow-up to the questions

raised in [8, 2003].

To sum up: We began with the observation that the behavior allowed by forward induction

reasoning depends on the type structure within which it is analyzed. Our interpretation of this

fact is that forward induction reasoning is context dependent. We characterize forward induction

reasoning across all type structures� this gives the EFBRS concept. In practice, the analyst should

apply the EFBRS concept, if he is interested in studying the implications of forward induction

reasoning but does not know the context within which the players are playing the game, i.e., does

not know what beliefs players do vs. do not consider possible. (Contrast this with extensive-

form rationalizability: The analyst should apply the extensive-form rationalizability concept, if he

is interested in forward induction reasoning and understands that the players consider all possible

beliefs. This is the implication of Proposition 6 in [7, 2002].)

The paper proceeds as follows. The game and epistemic structure are de�ned in Sections 2-

3. Rationality and strong belief are de�ned in Section 4. Section 5 gives the main theorem, a

characterization of RCSBR in terms of EFBRSs. Section 6 gives an alternate characterization

theorem, in terms of Directed Rationalizability. We then turn to applications, in Sections 7-8.

Finally, in Section 9, we conclude by discussing certain conceptual and technical aspects of the

paper.
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2 The Game

We consider �nite extensive form games of perfect recall. We write � for such a game. The

de�nition we consider is similar to that in Osborne-Rubinstein [23, 1994; De�nition 200.1]. In

particular, it allows for simultaneous moves.3

There are two players, namely a (Ann) and b (Bob).4 Let Ca and Cb be choice or action sets
for Ann and Bob. A history for the game consists of (possibly empty) sequences of simultaneous

choices for Ann and Bob. More formally, a history is either (i) the empty sequence, written �,
or (ii) a sequence of choice pairs

�
c1; : : : ; cK

�
, where ck = (cka; c

k
b ) 2 Ca � Cb. Histories have the

property that, if
�
c1; : : : ; cK

�
is a history, then so is

�
c1; : : : ; cL

�
for each L � K. Each history can

be viewed as a node in the tree and so we will interchangeably use the terms �node�and �history.�

Write x for a history of the game and let C (x) = fc 2 Ca�Cb : (x; c) is a history for the gameg.
Write Ca (x) = projCa C (x) and Cb (x) = projCb C (x). By assumption, these sets have the property

that C (x) = Ca (x)� Cb (x). The interpretation is that Ca (x) is the set of choices available to
a at history x. If jCa (x)j � 2, say a moves at history x or a is active at x. (If jCa (x)j � 1, a
is inactive at history x.) Call x a terminal history of the game if C (x) = ;. (Terminal histories
can be viewed either as terminal nodes or paths for the game.)
Let Ha (resp. Hb) be a partition of the set of all nodes at which a (resp. b) is active plus the

initial node �. The partition Ha (resp. Hb) has the property that if x, x0 are contained in the same

partition member, viz. h in Ha (resp. Hb), then Ca (x) = Ca (x
0) (resp. Cb (x) = Cb (x

0)). The

interpretation is that Ha (resp. Hb) is the family of information sets for a (resp. b). (Notice that
f�g 2 Ha\Hb. Perfect recall imposes further requirements on Ha and Hb. See Osborne-Rubinstein
[23, 1994; De�nition 203.3].) Write H = Ha [Hb.
Let Z be the set of terminal histories of the game, and let z be an arbitrary element of Z.

Extensive-form payo¤ functions are given by �a : Z ! R and �b : Z ! R.
We abuse notation and write Ca (h) for the set of choices available to a at information set h 2 Ha.

With this, the set of strategies for player a is given by Sa =
Q
h2Ha

Ca (h). De�ne Sb analogously.

Each pair of strategies (sa; sb) induces a path through the tree. Let � : Sa � Sb ! Z map each

strategy pro�le into the induced path. Strategic-form payo¤ functions are given by �a = �a ��
and �b = �b � �. Given a pro�le (sa; sb), write � (sa; sb) = (�a (sa; sb) ; �b (sa; sb)) and refer to this
payo¤ vector as an outcome of the game. Two strategy pro�les, (sa; sb) and (ra; rb), are outcome
equivalent if � (sa; sb) = � (ra; rb). (Of course, if (sa; sb) and (ra; rb) induce the same path (i.e., if
� (sa; sb) = � (ra; rb)), they are outcome equivalent. But, they may be outcome equivalent even if

they do not.)

For each information set h 2 H, write Sa (h) (resp. Sb (h)) for the set of strategies for a (resp.
b) that allow h. (That is, sa 2 Sa (h) if there is some sb 2 Sb so that the path induced by (sa; sb)
passes through h.) Let Sa (resp. Sb) be the collection of all Sa (h) (resp. Sb (h)) for h 2 Hb (resp.

3This de�nition incorporates repeated games. Our analysis does not depend on the speci�c de�nition used.
4The analysis extends to n-player games, up to issues of correlation. See Section 9b.
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h 2 Ha). Thus, Sa represents the information structure of b about the strategy of a. In particular,
at each of b�s information sets, he will have a belief about a that assigns probability one to the set

of a�s strategies consistent with the information set being reached.

3 The Type Structure

This section de�nes an epistemic type structure. There are two ingredients: First, for each player,

there are type sets Ta and Tb. Informally, each player �knows�his own type, but faces uncertainty

about the strategy the other player will choose and the type of the other player. So, each type

ta 2 Ta is associated with a belief on Sb � Tb. Of course, we want to specify a belief at each

information set. Therefore, we map each type into a conditional probability system (CPS) on

Sb � Tb, where the conditioning events correspond to the information sets in the game-tree. That

is, for each type, there is an array of probability measures on Sb � Tb, one for each information set,
and this array satis�es the rules of conditional probability when possible.

We now give the formal de�nitions. These closely follow the de�nitions in Battigalli-Siniscalchi

[7, 2002]. Throughout, let 
 be a separable metrizable space and let B (
) the Borel �-algebra on

. We endow the product of separable metrizable spaces with the product topology, and a subset of

a separable metrizable space with the relative topology. Write P (
) for the set of Borel probability
measures on 
, and endow P (
) with the topology of weak convergence.

De�nition 3.1 (Renyi [26, 1955]) Fix a separable metrizable space 
 and a non-empty collection
of events E � B (
). A conditional probability system (CPS) on (
; E) is a mapping � (�j�) :
B (
)� E ! [0; 1] such that, for any E 2 B (
) and F;G 2 E,

(i) � (F jF ) = 1,

(ii) � (�jF ) 2 P (
), and

(iii) E � F � G implies � (EjG) = � (EjF )� (F jG).

Call E, with ; 6= E � B (
), a collection of conditioning events for 
.

When it is clear that � (�j�) is a CPS on (
; E), we omit reference to its arguments simply writing �
instead of � (�j�).
Write C (
; E) for the set of conditional probability systems on (
; E). Note, C (
; E) can be

viewed as a subset of [P (
)]jEj. We endow [P (
)]jEj with the product topology and, then, C (
; E)
with the relative topology. When E is countable, C (
; E) is separable metrizable. When it is clear
from the context what the set of conditioning events are, we omit reference to E , simply writing
C (
).
We will often be interested in product sets. We adopt the convention that if 
1 � 
2 = ; then

both 
1 = ; and 
2 = ;. Fix some E � B (
1), and write E 
 
2 for the set of all E � 
2 where
E 2 E . Of course, E 
 
2 � B (
1 � 
2).
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Consider a CPS � (�j�) on (
1�
2; E 

2), where E � B (
1). De�ne � (�j�) : B (
1)�E ! [0; 1]

so that � (EjF ) = � (E � 
2jF � 
2) for all E 2 B (
1) and F 2 E . Then � is a conditional

probability system on (
1; E). When � (�j�) is de�ned in this way, write � (�j�) = marg
1 � (�j�). No
confusion should result.

De�nition 3.2 Fix an extensive-form game �. A �-based type structure is a collection

hSa; Sb;Sa;Sb;Ta; Tb;�a; �bi ,

where Ta (resp. Tb) is a nonempty separable metrizable space and �a : Ta ! C (Sb � Tb;Sb 
 Tb)
(resp. �b : Tb ! C (Sa � Ta;Sa 
 Ta)) is a measurable belief map. Members of Ta (resp. Tb) are
called types. Members of Sa � Ta � Sb � Tb are called states.

Let�s use this framework to model the lady�s choice convention, based on the game in Figure 1.1.

Example 3.1 The lady�s choice convention is modelled by a type structure hSa; Sb;Sa;Sb;Ta; Tb;�a; �bi
based on the game in Figure 1.1. The type structure satis�es the following conditions: For each CPS

on Sb�Tb, there is a type of Ann, viz. ta, so that �a (ta) is exactly that CPS. (That is, �a is onto.)
Each type tb of Bob is mapped to a CPS on Sa � Ta that assigns probability one to fUpg � Ta at
each information set. Moreover, for each such CPS, there is a type of Bob, viz. tb, so that �b (tb)

is exactly that CPS. (See [3, 2009] on how to construct such a structure.)

Why does the type structure in Example 3.1 capture the lady�s choice convention? Note, at

each information set, each type of Bob assigns probability one to the event �Ann plays Up,�i.e., to

Ann trying to achieve her �best payo¤.�Likewise, at each information set, each type of Ann assigns

probability one to the event �at each information set, Bob assigns probability one to the event �Ann

plays Up.��And so on. In this sense, it is �transparent�that Bob thinks that, if Ann gets to move,

she will play Up.

4 Rationality and Strong Belief

We now turn to the main epistemic de�nitions, all of which have counterparts with a and b reversed.

Begin by extending �a (�; �) to Sa�P (Sb) in the usual way, i.e., �a (sa; $a) =
P

sb2Sb �a (sa; sb)$a (sb).

Since the measure $a on Sb re�ects a belief by a about b, we write $a 2 P (Sb).

De�nition 4.1 Fix Xa � Sa and sa 2 Xa. Say sa is optimal under $a 2 P (Sb) given Xa if
�a (sa; $a) � �a (ra; $a) for all ra 2 Xa.

De�nition 4.2 Say sa 2 Sa is sequentially optimal under �a (�j�) : B (Sb) � Sb ! [0; 1] if, for

all h with sa 2 Sa (h), sa is optimal under �a (�jSb (h)) given Sa (h). Say sa 2 Sa is sequentially
justi�able if there exists �a (�j�) : B (Sb) � Sb ! [0; 1] so that sa is sequentially optimal under

�a (�j�).
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De�nition 4.3 Say (sa; ta) is rational if sa is sequentially optimal under margSb �a (ta).

Let Ra be the set of strategy-type pairs, viz. (sa; ta), at which a is rational.

De�nition 4.4 (Battigalli-Siniscalchi [7, 2002]) Fix a CPS � (�j�) : B (
) � E ! [0; 1] and an

event E 2 B (
). Say � strongly believes E if

(i) there exists F 2 E so that E \ F 6= ;, and

(ii) for each F 2 E, E \ F 6= ; implies � (EjF ) = 1.

If a CPS � strongly believes E and 
 2 E , then � (Ej
) = 1. In our application, we will, in

general, have 
 2 E . Now, we point out two general properties about strong belief.

Property 4.1 (Conjunction) Fix a CPS on (
; E), viz. �, and a �nite or countable collection of
events E1; E2; : : :. If � strongly believes E1; E2; : : : then � strongly believes

T
mEm.

Property 4.2 (Marginalization) Fix a CPS � on (
1 � 
2; E 
 
2), where E � B (
1). If �

strongly believes E 2 B (
1 � 
2) and proj
1 E is Borel, then marg
1 � strongly believes proj
1 E.

De�nition 4.5 Say ta 2 Ta strongly believes Eb 2 B (Sb � Tb) if �a (ta) strongly believes Eb.

Let SBa (Eb) be the set of strategy-types pairs (sa; ta) such that ta strongly believe event Eb.

That is, SBa(Eb) is the event that �Ann strongly believes Eb.�

Now, we inductively de�ne the set of states at which there is rationality and mth-order strong

belief of rationality. Set R1a = Ra (resp. R1b = Rb). The event that Ann is rational and Ann

strongly believes �Bob is rational�is then

R2a = R
1
a \ SBa

�
R1b
�
.

And, the event that Ann is rational, Ann strongly believes �Bob is rational,�and strongly believes

�Bob is rational and strongly believes �I am rational��is

R3a = Ra \ SBa (Rb) \ SBa(Rb \ SBb (Ra)) = R2a \ SBa
�
R2b
�
.

More generally, de�ne Rma (resp. Rmb ), so that R
m+1
a = Rma \ SBa (Rmb ) (resp. R

m+1
b = Rmb \

SBb (R
m
a )).

De�nition 4.6 Say there is rationality and common strong belief of rationality (RCSBR)
at state (sa; ta; sb; tb) if (sa; ta; sb; tb) 2

T
mR

m
a �

T
mR

m
b .

Notice, for a given type structure, it may well be the case that
T
mR

m
a = ; and

T
mR

m
b = ;.

For example, in a structure where each type of Ann initially assigns positive probability to a strictly
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dominated strategy of Bob, we have SBa
�
R1b
�
= ;, hence R2a = ;. It follows that SBb(R2a) = ;,

hence R3b = ;.
Refer to Figure 4.1. There Qa � Qb is the set of strategies played under RCSBR, i.e., the

projection of
T
mR

m
a �

T
mR

m
b on Sa � Sb. This is the prediction of RCSBR for a given game and

epistemic type structure.

Ta

Sa

Tb

Sb

Qa Qb

 ∩m Ra
m

Ra
1

Ra
2

Ra
3

 ∩m Rb
m

Rb
1

Rb
2

Rb
3

Figure 4.1

Example 4.1 Return to Example 3.1, i.e., the BoS with an outside option game and the type
structure associated with the lady�s choice convention. For each m, projSa R

m
a � projSb R

m
b is

fUp;Downg � fOutg.

We are interested in characterizing the strategies played under RCSBR across all type structures�

i.e., to obtain, for each type structure, sets of the form Qa�Qb as in Figure 4.1. This is the subject
of the next two sections.

5 Characterization Theorem: EFBRS�s

We now turn to characterizing RCSBR. For this it will be useful to introduce a best reply cor-
respondence, viz. �a : C (Sb) ! 2Sa , where �a (�a) is the set of strategies that are sequentially

optimal under �a. We begin with extensive-form best response sets.

De�nition 5.1 Call Qa�Qb � Sa�Sb an extensive-form best response set (EFBRS) if, for
each sa 2 Qa there is a CPS �a 2 C (Sb) so that:

(i) sa 2 �a (�a),

(ii) �a strongly believes Qb, and
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(iii) �a (�a) � Qa.

And similarly with a and b reversed.

Example 5.1 Return to BoS with the outside option, in Figure 1.1. There are three EFBRS�s:

fUp;Downg � fOutg, fUpg � fOutg, and fDowng � fIn-Rightg. The �rst of these is the set of

strategies consistent with RCSBR when we append to the game the type structure associated with the

lady�s choice convention. (See Example 4.1.) The latter of these is the set of strategies consistent

with RCSBR when we append to the game a type structure that contains all beliefs, i.e., where �a
and �b are onto. (See Proposition 6 in [7, 2002].)

Why is the EFBRS de�nition �right� for characterizing RCSBR? To see this, refer back to

Figure 4.1. Fix some (sa; ta) 2
T
Rma . We can immediately identify the �rst two properties of

De�nition 5.1. For the �rst: Recall, sa is optimal under the CPS associated with ta, namely �a (ta).

It follows that sa is optimal under the marginal of �a (ta) on Sb (a CPS on Bob�s strategies). For the

second: Recall, ta strongly believes the events R1b , R
2
b , R

3
b , etc. So, by the conjunction property of

strong belief, ta strongly believes the event
T
Rmb . It then follows from a marginalization property

of strong belief that the marginal of �a (ta) on Sb strongly believes Qb (i.e., the projection of
T
Rmb

onto Sb). Thus, Qa �Qb satis�es both conditions (i)-(ii) of an EFBRS for (sa; �a), where we take
�a to be the marginal of �a (ta) on Sb.

But, conditions (i)-(ii) do not su¢ ce to characterize RCSBR: We can have a set Qa � Qb that
satis�es conditions (i)-(ii) but which is inconsistent with RCSBR (for every type structure). This

is illustrated by the next example.

b

1

1

6

1

U

M

L C

a

a

In

Out4
∗

7

0

2

0

­2

0
D

­1

1

3

­1

0

­2

R

­3

­3

Figure 5.1

Example 5.2 Consider the game in Figure 5.1, and the set Qa�Qb = fOutg�fLeft; Centerg. We
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will see: The set Qa �Qb satis�es conditions (i)-(ii) of De�nition 5.1. But, for each type structure,
projSa

T
mR

m
a \ fOutg = ;. That is, for each type structure, Out is inconsistent with RCSBR.

To see that Qa � Qb satis�es conditions (i)-(ii) of De�nition 5.1: Begin with Ann and consider
the CPS that assigns probability 1

2 :
1
2 to Left : Center, at each information set. The strategy

Out is sequentially optimal under this CPS. Of course, this CPS strongly believes Qb. Turning to

Bob, consider a CPS that assigns probability one to Out at the initial node and probability 1
4 :

1
4 :

1
2

to In-Up : In-Middle : In-Down conditional upon Bob�s subgame being reached. The strategies

Left and Center are sequentially optimal under this CPS and this CPS strongly believes Qa. So,

conditions (i)-(ii) are satis�ed for Qa �Qb.
To see that, for each type structure, projSa

T
mR

m
a \ fOutg = ;: Suppose, contra hypothesis,

that there exists some type structure and some type ta so that (Out; ta) 2
T
mR

m
a . Certainly,

(Out,ta) is rational, and ta strongly believes each Rmb . Since each pair in fRightg�Tb is irrational
and ta strongly believes �Bob is rational,� the type ta is associated with a CPS that (at each node)

assigns probability one to fLeft; Centerg�Tb. Now, since (Out, ta) is rational, the CPS associated
with ta must assign probability 1

2 :
1
2 to fLeftg � Tb : fCenterg � Tb, at each node. With this,

(In-Up, ta) and (In-Middle, ta) are also rational. Indeed, since ta strongly believes each of the

Rmb sets, both (In-Up, ta) and (In-Middle, ta) must be contained in
T
mR

m
a . Now, consider some

(sb; tb) 2
T
mR

m
b . Conditional upon Bob�s information set being reached, tb must assign probability

one to fIn-Up; In-Middleg � Ta. (To see this, note that this event contains rational strategy-type

pairs, while the event fIn-Downg � Ta does not contain any rational strategy-type pairs.) Since

(sb; tb) is rational, sb = Center. Thus,
T
mR

m
b � fCenterg � Tb. But, now notice that the CPS

associated with ta does not strongly believe the event
T
mR

m
b . By the conjunction property of strong

belief, this implies that ta does not strongly believe some Rbm, a contradiction.

What went wrong in this example? We began with a set Qa � Qb satisfying conditions (i)-
(ii). In particular, we had a strategy sa 2 Qa for which there was a unique CPS �a (sa), so that
sa and �a (sa) satisfy conditions (i)-(ii). But, there was also a strategy ra 2 SanQa that was
sequentially optimal under �a (sa). (Actually, there were two such strategies.) As a result, if

(sa; ta) is consistent with RCSBR, then (ra; ta) must also be consistent with RCSBR. Thus, Qa
may exclude some strategy of Ann consistent with RCSBR. If so we may be able to �nd an sb and

a CPS �b (sb) (on Sa) so that sb and �b (sb) satisfy conditions (i)-(ii), despite the fact that sb is not

optimal under any CPS (on Sa�Ta) that strongly believes the RCSBR strategy-type pairs for Ann.
This suggests that we need to add a maximality criterion to conditions (i)-(ii) of De�nition 5.1.

Indeed, this is what condition (iii) achieves.

Theorem 5.1 Fix an extensive-form game �.

(i) For any �-based type structure, projSa
T
mR

m
a � projSb

T
mR

m
b is an EFBRS.

(ii) Fix a nonempty EFBRS Qa �Qb. There exists a �-based type structure, so that Qa �Qb =
projSa

T
mR

m
a � projSb

T
mR

m
b .

11



Proof. Begin by showing part (i) of the theorem. Fix a �-based type structure. If
T
mR

m
a �T

mR
m
b = ; then the result is immediate. So, suppose

T
mR

m
a �

T
mR

m
b 6= ;.

Fix (sa; sb) 2 projSa
T
mR

m
a � projSb

T
mR

m
b . Then there exists (ta; tb) such that

(sa; ta; sb; tb) 2
T
mR

m
a �

T
mR

m
b :

We will show that the CPS margSb �a (ta) satis�es conditions (i)-(iii) of an EFBRS, for the strategy

sa. A similar argument holds for sb.

First note,

(sa; ta) 2 �a(margSb �a (ta))� ftag � Ra:

Now use the fact that ta strongly believes each Rmb to get that

�a(margSb �a (ta))� ftag �
T
mR

m
a :

So, sa 2 �a(margSb �a (ta)) � projSa
T
mR

m
a , establishing conditions (i) and (iii) of an EFBRS.

Next note that, using the Conjunction Property of strong belief (Property 4.1), �a (ta) strongly be-

lieves
T
mR

m
b . Using the Marginalization Property (Property 4.2), margSa �a (ta) strongly believes

projSb
T
mR

m
b . This establishes condition (ii) of an EFBRS.

Now turn to part (ii) of the Theorem. Fix an EFBRS Qa�Qb 6= ;. Let Ta = Qa and Tb = Qb.
Fix a type ta 2 Ta = Qa. There is a CPS �a (ta) 2 C (Sb) satisfying conditions (i)-(iii) of an
EFBRS. Now construct a CPS �a (ta) 2 C (Sb � Tb;Sb 
 Tb) as follows. If Qb \ Sb (h) 6= ;, set
�a (ta) ((tb; tb) jSb (h)� Tb) = �a (ta) (tbjSb (h)) for each tb 2 Qb = Tb. Next, �x some arbitrary

element t�b 2 Tb. If Qb \ Sb (h) = ;, set �a (ta) ((sb; t�b) jSb (h)� Tb) = �a (ta) (sbjSb (h)) for each
sb 2 Sb. (Note, t�b is the same for each information set with Qb \ Sb (h) = ;.)
Indeed, each �a (ta) is a CPS on Sb
Tb. Note that conditions (i)-(ii) of a CPS are immediate. For

condition (iii), �x an event Eb and two information sets h; i 2 Ha with Eb � Sb (h)�Tb � Sb (i)�Tb.
First, consider the case where Qb \ Sb (h) 6= ;. In this case, Qb \ Sb (i) 6= ;. So,

�a (ta) (EbjSb (i)� Tb) = �a (ta) (ftb 2 Qb : (tb; tb) 2 Ebg jSb (i))

= �a (ta) (ftb 2 Qb : (tb; tb) 2 Ebg jSb (h))� �a (ta) (Sb (h) jSb (i))

= �a (ta) (ftb 2 Qb : (tb; tb) 2 Ebg jSb (h))� �a (ta) (Qb \ Sb (h) jSb (i))

= �a (ta) (EbjSb (h)� Tb)� �a (ta) (Sb (h)� TbjSb (i)� Tb) ;

where the �rst and fourth lines follow from the construction, the second follows from the fact

that �a (ta) is a CPS, and the third line follows from the fact that �a (ta) (QbjSb (h)) = 1 (since

Qb \ Sb (h) 6= ; and �a (ta) strongly believes Qb). This establishes condition (iii) of a CPS when

Qb \ Sb (h) 6= ;. So, suppose Qb \ Sb (h) = ; and recall Eb � Sb (h) � Tb. If Qb \ Sb (i) 6=
;, then �a (ta)

�
projSb EbjSb (i)

�
= 0 and �a (ta) (Sb (h) jSb (i)) = 0. (This uses the fact that

12



�a (ta) (QbjSb (i)) = 1, which follows from strong belief.) So, here too,

�a (ta) (EbjSb (i)� Tb) = �a (ta) (EbjSb (h)� Tb)� �a (ta) (Sb (h)� TbjSb (i)� Tb)

= 0.

Finally, suppose Qb \ Sb (i) = ;. Here,

�a (ta) (EbjSb (i)� Tb) = �a (ta) (fsb : (sb; t�b) 2 Ebg jSb (i))

= �a (ta) (fsb : (sb; t�b) 2 Ebg jSb (h))� �a (ta) (Sb (h) jSb (i))

= �a (ta) (EbjSb (h)� Tb)� �a (ta) (Sb (h)� ft�bgjSb (i)� Tb)

= �a (ta) (EbjSb (h)� Tb)� �a (ta) (Sb (h)� TbjSb (i)� Tb) ;

as required.

We will conclude the proof by showing

Qa =
S
ta2Ta [�a

�
margSb �a (ta)

�
] (5.1)

Rma =
S
ta2Ta [�a

�
margSb �a (ta)

�
� ftag] for each m; (5.2)

and likewise with a and b interchanged. Taken together, they give the desired result.

To show Equation 5.1: Recall, for each ta 2 Ta = Qa , �a(ta) = margSb �a (ta). So, it is

immediate from the construction that Qa �
S
ta2Ta �a

�
margSb �a (ta)

�
. Conversely, �x any strategy

sa in
S
ta2Ta �a

�
margSb �a (ta)

�
. Then, there is a type ta 2 Ta = Qa so that sa is sequentially

optimal under �a (ta) (�j�). It follows from part (iii) of the de�nition of an EFBRS that sa 2 Qa.
To show Equation 5.2: The proof is by induction on m. The Equation is immediate for m = 1.

Assume the result holds for m. In order to show that it holds for m+1, it su¢ ces to show that each

ta 2 Ta strongly believes Rmb . For this, �x an information set h such that Rmb \ [Sb (h)� Tb] 6= ;.
Observe that

[projSb R
m
b ] \ Sb (h) = [

S
tb2Tb �b

�
margSa �b (tb)

�
] \ Sb (h)

= Qb \ Sb (h) .

(The �rst equality follows from the induction hypothesis for b. The second equality follows

from Equation 5.1.) Since Rmb \ [Sb (h)� Tb] 6= ;, it follows that Qb \ Sb (h) 6= ;, and so
�a (ta) (QbjSb (h)) = 1. (Here, we use part (ii) of the de�nition of an EFBRS.) So, by construction,
�a (ta) (R

m
b jSb (h)� Tb) = 1, as required.

Part (i) of Theorem 5.1 says that the projection of the RCSBR event on Sa � Sb is an EFBRS.
But, this may form an empty EFBRS. That said, there is a non-empty EFBRS.
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Remark 5.1 For any game, there exists a non-empty EFBRS� namely, the set of extensive-form
rationalizable strategy pro�les.

Proposition 6 in Battigalli-Siniscalchi [7, 2002] implies that there exists some type structure (one

that contains all possible beliefs) so that the projection of the RCSBR event onto Sa � Sb is the set
of extensive-form rationalizable strategies. So, using Theorem 5.1(i), this set is an EFBRS. The

fact that it is non-empty is shown as Corollary 1 in Battigalli [2, 1997].

6 Alternate Characterization Theorem: Directed Rationaliz-

ability

Return to the �lady�s choice convention�example� i.e., Figure 1.1 plus the type structure in Example

3.1. There, each type of Bob was associated with some CPS that assigned probability one to

fUpg� Ta. This gives a restriction on Bob�s �rst-order beliefs, i.e., his beliefs about what Ann will
choose. Let �b represent this restriction on �rst-order beliefs. So, �b is a subset of the CPS�s on

Sa and, in our example, �b only contains the CPS that assigns probability one to Up. We did not

have a restriction on Ann�s �rst-order beliefs. So, we will write �a for the set of all CPS�s on Sb.

With � = �a��b in hand, we can take an iterative approach to analyzing the game tree� much
like a �typical rationalizability�procedure. On round one, we eliminate In-Left and In-Right for

Bob, since these strategies are not sequentially optimal under the CPS in �b. We do not eliminate

any of Ann�s strategies, since they are each sequentially optimal under some CPS (in �a). So,

on round one, we are left with the set fUp;Downg � fOutg. Turning to round two, Out is

sequentially optimal under the CPS in �b and that CPS strongly believes fUp;Downg. Thus, we
cannot eliminate Out on round two. Likewise, Up (resp. Down) is sequentially optimal under

a CPS that assigns probability one to Out at the initial node, and probability one to Left (resp.

Right) at Bob�s subgame. This CPS is contained in �a and strongly believes fOutg. So, we

also get fUp;Downg � fOutg on round two. Indeed, a standard induction argument gives that

fUp;Downg�fOutg is the outcome of the procedure. Of course, this was the EFBRS we identi�ed
in Section 4.

The procedure used above is called �-rationalizability, due to Battigalli-Siniscalchi [8, 2003].5

More generally, let �a (resp. �b) be a non-empty subset of C (Sb) (resp. C (Sa)), i.e. a set of
�rst-order beliefs of Ann (resp. Bob). Call � = �a � �b a set of �rst-order beliefs. Set

S�;0a = Sa and S
�;0
b = Sb. Inductively de�ne S�;ma and S�;mb as follows: Let S�;m+1a be the set of

all sa 2 S�;ma so that, there is some CPS �a 2 �a with (i) sa 2 �a (�a) and (ii) �a strongly believes
S�;mb . And, likewise, with a and b interchanged.

5Battigalli-Sinsicalchi [8, 2003] introduced the concept to study a di¤erent problem from the one studied here. In
their problem, the set � is given to the analyst. In our problem, � may be unknown to the analyst and we obtain a
characterization across all ��s. See Section 9a.
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De�nition 6.1 (Battigalli-Siniscalchi [8, 2003]) Call S�a =
T
m�0 S

�;m
a (resp. S�b =

T
m�0 S

�;m
b )

the �-rationalizable strategies of Ann (resp. Bob). Call S�a � S�b the �-rationalizable
strategy set.

Since the sets S�;ma �S�;mb form a decreasing sequence and Sa�Sb is �nite, there is some (�nite)
M so that S�a � S�b = S�;Ma � S�;Mb .

Note, there may be many �-rationalizable sets� each of which is obtained by beginning the

procedure with a di¤erent set of �rst-order beliefs � = �a � �b. We use the phrase Directed
Rationalizability to refer to the set of all S�a � S�b . So, for a given game �, the Directed

Rationalizability concept gives fS�a � S�b : � = �a ��b � C(Sb)� C(Sb)g.
Beginning from the lady�s choice example, we can use the type structure to construct an as-

sociated set of �rst-order beliefs � and this set of �rst-order beliefs � can be used to perform

�-rationalizability. The output is the EFBRS we identi�ed earlier. But, the lady�s choice conven-

tion had a particular feature: it was a restriction on �rst-order beliefs and a requirement that the

restriction be �transparent� to the players. So, the only restriction on second-order beliefs (i.e.,

beliefs about the �rst-order beliefs and strategy the other player chooses) was the requirement that,

at each information set, Ann must believe that Bob believes she will play Up. And so on. It was

this transparency of (only) �rst-order restrictions that allowed us to directly compute the associated

Directed Rationalizability set.

More generally, when we begin from a give type structure, we impose substantive assumptions

about which beliefs players do versus do not consider possible. These assumptions may correspond

to restrictions (only) on players� �rst-order beliefs which are transparent to the players. But,

they need not� they may involve further restrictions on higher-order beliefs. And, if they do, the

procedure outlined above fails. To see this, let�s take an example.
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Example 6.1 Figure 6.1 is a game of Battle of the Sexes preceded by an observed �money burning�
move by Bob. (See Ben Porath-Dekel [11, 1992].) Here, Ann and Bob are playing a BoS game.

However, prior to the game, Bob has the option of burning (B) or not burning (NB) $2.

Let hSa; Sb;Sa;Sb;Ta; Tb;�a; �bi be a type structure based on Figure 6.1. Now, �b is onto but �a
is not. Formally: Write [Up]a for the event �Ann plays Up, if Bob does not burn,�i.e., [Up]a = fUp-
down;Up-upg � Ta, and write [NB]b for the event �Bob does not burn,� i.e., [NB]b = fNB-
Left;NB-Rightg � Tb. Let Ub be the set of types tb 2 Tb with �b (tb) ([Up]ajSa � Ta) = 1, i.e., the
set of types of Bob that assign probability one to the event �Ann plays Up, when Bob chooses not to

burn.�Then, for each type ta 2 Ta,

�a(ta)(Sb � Ubj [NB]b) = 1,

i.e., conditional upon Bob choosing not to burn, each type of Ann assigns probability one to the event

that �Bob believes that �Ann plays Up, when Bob does not burn.�� For any belief �a of Ann with

�a(Sb � Ubj [NB]b) = 1, there is a type ta so that �a (ta) = �a.6

This type structure models a modi�ed version of the lady�s choice convention. Now, there are

no restrictions on players��rst-order beliefs. (So, in particular, there are types of Bob that think

Ann does not go for her best payo¤.) But, there is a restriction on Ann�s second-order beliefs.

Speci�cally, conditional upon observing so-called �normal� behavior, i.e., a decision to not burn,

Ann thinks that Bob thinks she goes for her best payo¤ and chooses Up. (There is no restriction

on Ann�s second-order belief conditional upon observing �strange� behavior, i.e., upon observing a

decision to burn. Likewise, there are no restrictions on Bob�s second-order beliefs.)

The set of �rst-order beliefs induced by this type structure is � = C (Sb) � C (Sa). The �-

rationalizable set is f(Down-down;NB-Right)g. (This is also the set of extensive form rationalizable
strategies.) It is obtained as follows:

S�;1a � S�;1b = Sa � fNB-Left;NB-Right;B-rightg

S�;2a � S�;2b = fUp-down;Down-downg � S�;1b

S�;3a � S�;3b = S�;2a � fNB-Right;B-rightg

S�;4a � S�;4b = fDown-downg � S�;3b

S�;5a � S�;5b = fDown-downg � fNB-Rightg.

But, the projection of event RCSBR onto Sa�Sb is f(Up-down;B-right)g. It is obtained as follows:

projSa R
1
a � projSb R

1
b = Sa � fNB-Left;NB-Right;B-rightg

projSa R
2
a � projSb R

2
b = fUp-downg � projSb R

1
b

projSa R
3
a � projSb R

3
b = fUp-downg � fB-rightg

6See Appendix A in [3, 2009] on how to construct such a type structure.
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Why the di¤erence?

We began with an epistemic structure and used the structure itself to form the set of �rst-order

beliefs � = C (Sb) � C (Sa). (So, for each �a 2 �a = C (Sb) there is type ta 2 Ta such that

the marginal of �a (ta) on Sb is �a; and likewise for b.) With this set of �rst-order beliefs, the

strategies that survive one round of �-rationalizability are exactly the strategies that are consistent

with rationality. But, on the next round, we lose the equivalence: If �a (ta) strongly believes R
1
b ,

then the marginal of �a (ta) must strongly believe S
1
b = projSb R

1
b . (Here, we use the marginalization

property of strong belief.) Thus projSa R
2
a � S2a. But, the converse does not hold. We have Down-

down 2 S2a, but Down-down =2 projSa R
2
a. The reason is that, conditional upon Bob choosing NB,

each �a (ta) assigns probability one to the event �Bob assigns probability one to [Up]a.� So, if Bob

does not burn, Ann can only maintain a hypothesis that Bob is rational, if she assigns probability

one to Bob�s playing NB-Left, in which case the choice Down is not a best response. With this,

S2a = fUp-down, Down-downg and projSa R
2
a = fUp-downg. As a result, S3b = fNB-Right,

B-rightg and projSb R
3
b = fB-rightg. It follows that S4a = fDown-downg, despite the fact that

projSa R
4
a = fUp-downg. The key to this last step is that Up-down is optimal under a CPS that

strongly believes projSb R
3
b ( S3b , but not optimal under a CPS that strongly believes S3b . This can

occur because strong belief fails a monotonicity requirement.

In Example 6.1, we began with an epistemic structure and used the structure itself to form a set

of �rst-order beliefs �a ��b = C (Sb) � C (Sa). We saw that this �a ��b-rationalizable outcome
is di¤erent from the RCSBR outcome in the given structure.

But there is another route. Instead of using the type structure to form a set of �rst-order

beliefs, we can use the EFBRS properties. Refer back to Example 6.1 and consider the EFBRS

fUp-downg � fB-rightg. Note, there is a CPS �b that satis�es conditions (i)-(ii)-(iii) of De�nition
5.1 for B-right, i.e., the CPS that assigns probability one to Up-down at each information set. Take

�b to be the singleton that contains this CPS. Construct �a similarly. With this � = �a ��b,
we do have an equivalence between the RCSBR strategies and the �-rationalizable strategies.

This procedure can be done more generally. We can use the EFBRS properties to construct

some set of �rst-order beliefs so that the associated �-rationalizable strategy set �gives back� the

original EFBRS. With this, we get an equivalence between the EFBRS concept and Directed

Rationalizability.

Proposition 6.1 Fix an extensive-form game �.

(i) Given an EFBRS, viz. Qa �Qb, there exists a set of �rst-order beliefs, viz. � = �a ��b, so
that S�a � S�b = Qa �Qb.

(ii) Given a set of �rst-order beliefs, viz. � = �a ��b, S�a � S�b is an EFBRS.

Thus, in conjunction with Theorem 5.1, we have the following alternate Characterization Theo-

rem.
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Corollary 6.1 Fix an extensive-form game �.

(i) For any �-based type structure, there exists a set of �rst-order beliefs, viz. � = �a ��b, so
that S�a � S�b = projSa

T
mR

m
a � projSb

T
mR

m
b .

(ii) Fix a set of �rst-order beliefs, viz. �a � �b. Then there exists a �-based structure, so that

S�a � S�b = projSa
T
mR

m
a � projSb

T
mR

m
b .

Proof of Proposition 6.1. Begin with part (i). Fix an EFBRS set Qa � Qb. For each

sa 2 Qa, there exists a corresponding CPS �a (sa) 2 C (Sb) satisfying conditions (i)-(iii) of an
EFBRS for Qa�Qb. Take �a so that, for each sa 2 Qa, �a contains exactly one such CPS �a (sa).
There are no other CPS�s in �a. De�ne �b analogously. We will show that, for each m � 1,

S�;ma � S�;mb = Qa �Qb. This will establish the result.
The proof is by induction. Begin with m = 1. Certainly Qa � S�;1a . Fix sa 2 S�;1a . Then

there exists some �a 2 �a so that sa is sequentially optimal under �a. This CPS �a is associated
with some ra 2 Qa, i.e., so that ra and �a jointly satisfy conditions (i)-(iii) of an EFBRS. Now
apply condition (iii) of an EFBRS to get that sa 2 Qa. And, likewise, for b.
Now assume S�;ma � S�;mb = Qa � Qb for m � 2. We will show it also holds for m + 1.

Fix sa 2 Qa = S�;ma . Then, using the construction of �a, there exists some �a 2 �a satisfying
conditions (i)-(ii) of an EFBRS for Qa�Qb, so that sa 2 �a (�a) and �a strongly believes Qb = S

�;m
b .

So, certainly, Qa � S�;m+1a . Conversely, �x some sa 2 S�;m+1a . Then, there exists a CPS �a 2 �a
so that sa 2 �a (�a) and �a strongly believes S

�;m
b . Again, since each element of �a satis�es

conditions (i)-(iii) of an EFBRS for some ra 2 Qa, it follows that �a (�a) � Qa, and so sa 2 Qa.
Now turn to part (ii) of the proposition. Fix some set of �rst-order beliefs, viz. � = �a ��b.

There exists some M with S�a � S�b = S�;Ma � S�;Mb . Fix sa 2 S�a � S�b . By Lemma B1 in

Appendix B, we can �nd a CPS �a so that sa 2 �a (�a) and �a strongly believes each S
�;m
b for

m � M . Thus, sa satis�es conditions (i)-(ii) of an EFBRS for Qa � Qb = S�a � S�b . Moreover,

if ra 2 �a (�a), then ra is optimal under a CPS that strongly believes each S
�;m
b , for m � M . As

such, ra 2 S�;ma for each m �M , establishing that ra 2 S�a . Therefore condition (iii) of an EFBRS
is also satis�ed. A similar argument applies to b. Therefore S�a � S�b is an EFBRS.

The proof of Proposition 6.1 gives an ancillary result: Begin with some �nite set of �rst-order

beliefs, viz. � = �a ��b. Proposition 6.1(ii) says that S�a � S�b is an EFBRS. Conversely, begin

with some EFBRS. The proof of Proposition 6.1(i) says that we can �nd a �nite set of �rst-order

beliefs, viz. � = �a ��b, so that S�a � S�b is this EFBRS.

Remark 6.1 Fix a game tree �. The Directed Rationalizability set is

fS�a � S�b : � = �a ��b � C(Sb)� C(Sb)g = fS�a � S�b : � = �a ��b is �niteg.

Thus, using the EFBRS properties, we can see that we only need to compute the �-rationalizable

sets for �nite sets of �rst-order beliefs. Of course, much as is the case with EFBRS�s, the �-
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rationalizable strategy set may be empty. When � = C (Sa)�C (Sb), S�a �S�b is the extensive-form
rationalizable strategy set. So, in keeping with Remark 5.1, there always exists a non-empty �-

rationalizable strategy set.

While the EFBRS and Directed Rationalizability concepts are equivalent, it will often be useful

to focus on the former de�nition. The reason is that properties (i), (ii), and (iii) of an EFBRS give

some immediate implications in terms of behavior. In Sections 7-8, we will discuss the consequences

of context-dependent forward reasoning for some speci�c games. There, the EFBRS properties

will play an important role, much in the same way that the properties of a self-admissible set

(Brandenburger-Friedenberg-Keisler [13, 2008]) play an important role in analyzing games. Indeed,

we will see that these properties help to analyze games such as centipede, the �nitely repeated

prisoner�s dilemma, and perfect information games.

7 Analyzing Games

In Section 5, we used the EFBRS concept to analyze Battle of the Sexes with an Outside Option.

Now, we turn to analyze what the EFBRS does vs. does not give in games of interest. The approach

will be to make use of Properties (i)-(iii) of the EFBRS de�nition, and not the equivalent Directed

Rationalizability de�nition.

Example 7.1 Consider the three-legged Centipede game, given in Figure 7.1 below.

a b

1
4

2
1

3
6

Out Out

In In a

4
3

Down

Across

Figure 7.1

Here, the EFBRS�s are fOutg � fDowng and fOutg � fDown;Acrossg. In particular, there is
no EFBRS where Ann plays In at the �rst node. To see this, suppose otherwise, i.e., there exists

an EFBRS Qa�Qb and a strategy sa 2 Qa where sa plays In at the �rst node. By condition (i) of
an EFBRS, we must have that Qa � fOut; In-Downg, so that sa = In-Down. Now, �x sb 2 Qb
and recall that sb must be sequentially optimal under a CPS that strongly believes Qa. Then, at

Bob�s information set, this CPS must assign probability one to In-Down. Since sb is sequentially

optimal under this CPS, sb = Down. So, we have that Qb = fDowng. But, then, In-Down cannot
simultaneously satisfy conditions (i)-(ii) of an EFBRS.
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The argument we have presented for the three-legged Centipede is more general. In particular,

�x an EFBRS for an n-legged Centipede game. Under the EFBRS, the �rst player chooses Out.

This will be a consequence of Proposition 8.1(i) to come.

Example 7.2 Figure 7.2 gives the Prisoner�s Dilemma. Consider the 3-repeated version of the

game.

b

c

c

e

d

d

e

0

0

C

D

C D

a

d > c > 0 > e

Figure 7.2

Let Qa � Qb be a nonempty EFBRS. Then each (sa; sb) 2 Qa � Qb results in the Defect-Defect
path.7

Let us give an intuition: By condition (i) of an EFBRS, each strategy sa 2 Qa (resp. sb 2 Qb)
is sequentially justi�able. As such, sa (resp. sb) plays Defect in the last period, at each history

allowed by sa (resp. sb). Now, consider a second period information set h, where sa 2 Sa (h) and
Qb \ Sb (h) 6= ;. By conditions (i)-(ii) of an EFBRS, sa must be sequentially optimal under a CPS
�a (sa) with �a (sa) (QbjSb (h)) = 1. Then, conditional on h, �a (sa) assigns probability one to Bob
defecting in the third period, irrespective of Ann�s play. As such, sa plays D at h. And, likewise,

with a and b reversed.

Turn to the �rst period, and suppose, contra hypothesis, there is some sa 2 Qa so that sa initially
chooses C. For each sa 2 Qb, (sa; sb) results in the Defect-Defect path in periods two and three.
So, Ann�s expected payo¤s from sa corresponds to her �rst period expected payo¤s from playing sa.

With this, the Defect-always strategy yields a strictly higher expected payo¤ in the �rst period and

an expected payo¤ of at least zero in subsequent periods. This contradicts sa being optimal under

�a (sa) (�jSb).

An analogous result holds for the N -repeated Prisoner�s Dilemma, for N �nite. The proof is

given in Appendix C.

Let us take stock of the examples above. First, in Battle of the Sexes with the Outside Option,

we get that either (i) Bob plays Out or (ii) Bob plays In-Right and Ann plays Down. Each of these

were subgame perfect paths of play. In Centipede, we get the backward induction path (but not

7 In the once or twice repeated Prisoner�s Dilemma we have a stronger result: If (sa; sb) is contained in an EFBRS,
then each of sa and sb specify Defect at each information set.
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necessarily the backward induction strategies). And, likewise, in the Finitely Repeated Prisoner�s

Dilemma, we get the unique Nash (and so subgame perfect) path, where each player Defects in all

periods.

In each of these cases, the outcomes allowed by an EFBRS coincide with the outcomes allowed by

some subgame perfect equilibrium (SPE). This raises the question: what is the relationship between

the EFBRS concept and the SPE concept? Are the two concepts equivalent? If so, then we have a

good idea what the EFBRS concept delivers (in games of interest), since we have a good idea about

what SPE delivers.

We will see that, in a particular class of games, any pure-strategy SPE corresponds to some

EFBRS. Each of the examples we mentioned is contained in this class of games. But the EFBRS

and SPE concepts are not equivalent.

De�nition 7.1 Say a game � has observable actions if each information set is a singleton.

Given distinct terminal (histories) nodes z and z0, we can write z =
�
x; c1; : : : ; cK

�
and z0 =�

x; d1; : : : ; dL
�
, where x is the last common predecessor of z and z0, i.e., c1 6= d1. (Recall, ck =�

cka; c
k
b

�
and dl =

�
dla; d

l
b

�
.) Now:

De�nition 7.2 Fix two distinct terminal nodes z =
�
x; c1; : : : ; cK

�
and z0 =

�
x; d1; : : : ; dL

�
. Say

a is decisive for (z; z0) if a moves at x, c1a 6= d1a, and c
1
b = d1b . And, likewise, with a and b

interchanged.

De�nition 7.3 (Battigalli [2, 1997]) A game satis�es no relevant ties (NRT) if whenever a
(resp. b) is decisive for (z; z0), �a (z) 6= �a (z0).

A game with no ties satis�es NRT, but the converse does not hold. Reny�s [25, 1993; Figure 1]

Take-It-Or-Leave-It game is one such example.

Fix a strategy sa and write [sa] for the set of all ra that induce the same plan of action as sa,

i.e., the set of all ra so that � (ra; �) = � (sa; �). And, likewise, de�ne [sb].

Proposition 7.1 Fix a game � with observable actions and a pure-strategy SPE, viz. (sa; sb).

(i) There is an EFBRS, viz. Qa �Qb, so that [sa]� [sb] � Qa �Qb.

(ii) If � satis�es NRT, then [sa]� [sb] is an EFBRS.

Appendix C proves a result somewhat more general than Proposition 7.1. Note, each of the

examples we have seen satis�es both observable actions and NRT. In each of these examples, any

pure-strategy subgame perfect equilibrium (sa; sb) belongs to an EFBRS, where the EFBRS only

allows the terminal node � (sa; sb). This �ts with part (ii) of the Proposition. Part (i) says that,

even if the game fails NRT, (sa; sb) will still be contained in some EFBRS. Example C1 in Appendix

C shows that, if the game fails NRT, an EFBRS that contains (sa; sb) may also allow other paths.
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It is important to note that Proposition 7.1 does not say that the pure-strategy SPE concept and

the EFBRS concept are equivalent. For a given game, there may be a pure-strategy subgame perfect

equilibrium whose outcome is precluded by any EFBRS. (Of course, per Proposition 7.1, this can

only occur in games that do not have observable actions.) And, conversely, a given EFBRS may

allow outcomes which are precluded by any (even randomized) subgame perfect equilibrium. (This

can happen even in a game with observable actions and NRT.) The next examples demonstrate these

points.

Example 7.3 The game in Figure 7.3 satis�es NRT but fails the observable actions condition. It

is obtained from the game in Figure 5.1 by two transformations. First, the simultaneous move

subgame is transformed into one where Ann moves �rst and then Bob moves not knowing Ann�s

choice. Second, two of Ann�s decision nodes are coalesced.

b

aOut4
*

U M D

L C R

7
0

1
1

3
­1

2
0

6
1

0
­2

­1
1

­2
0

­3
­3

L C R L C R

Figure 7.3

Here, (Out;Right) is a pure strategy subgame perfect equilibrium. But, applying the argument

in Section 5, Out is not contained in any EFBRS.8

Example 7.4 The game in Figure 7.4 satis�es both NRT and the observable actions condition.

a b

1
1

2
2

3
3

Out Out

In In a

0
0

Down

Across

Figure 7.4

8Unlike the subgame perfect concept, the EFBRS concept is invariant to coalescing decision nodes.
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The unique subgame perfect equilibrium is (In-Across;Across), which results in the (3; 3) outcome.

Indeed, this pro�le induces an EFBRS, viz. fIn-Acrossg� fAcrossg. But, there are two EFBRS�s
that give the (2; 2) outcome, namely fOutg � fDowng and fOutg � fDown;Acrossg.

Taken together with the Main Theorem (Theorem 5.1), Example 7.4 says that a non-backward

induction outcome, namely (2; 2), is consistent with RCSBR. To understand this better, notice that

Out is the unique best response for Ann, under a CPS that assigns probability one to the event �Bob

plays Down.� So, if each type of Ann assigns probability one to fDowng � Tb, then conditional
upon Bob�s node being reached, he must conclude that Ann is irrational. In this case, Bob may

very well believe that Ann is playing In-Down; if so, Down is a unique (sequential) best response

for Bob.

8 Perfect Information Games

Example 7.3 shows that, in games without observable actions, the SPE concept allows for outcomes

excluded by every EFBRS. On the other hand, Proposition 7.1 and Example 7.4 show that, in games

with observable actions, the SPE concept is a strict re�nement of the EFBRS concept. Thus, even

in these games, we cannot use the SPE concept to analyze the consequences of context-dependent

forward induction reasoning.

Now we turn to a particular class of games with observable actions� namely, perfect information

games (i.e., games with observable actions and with at most one active player at each information

set). We�ve seen some examples of perfect-information games, e.g., Examples 7.1 and 7.4. In

the former case, each EFBRS yields the backward induction path (and so the backward induction

outcome). Of course, for that game, the Nash and backward induction paths coincide. On the

other hand, in Example 7.4, one EFBRS corresponds to backward induction, but others do not.

However, there we do get that the EFBRS paths correspond (exactly) to the Nash paths (and so

Nash outcomes) of the game.

The examples suggest there may be a connection between EFBRS�s and Nash outcomes, at least

for perfect-information (PI) games. (Of course, for non-PI games, an EFBRS may give non-Nash

outcomes.) Indeed, there will be a connection, for PI games satisfying a �no ties�condition.

De�nition 8.1 (Marx-Swinkels [22, 1997]) A game satis�es transference of decision-maker
indi¤ erence (TDI) if �a (sa; sb) = �a (ra; sb) implies �b (sa; sb) = �b (ra; sb); and likewise with a
and b interchanged.

If a game satis�es NRT, it also satis�es TDI. Yet, many games of interest satisfy TDI, but fail

NRT. For example, zero sum games satisfy TDI but may fail NRT.

Proposition 8.1
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(i) Fix a PI game � satisfying TDI. If Qa � Qb is an EFBRS then, there exists a pure-strategy
Nash equilibrium, viz. (sa; sb), so that each pro�le in Qa�Qb is outcome equivalent to (sa; sb).

(ii) Fix a PI game � satisfying NRT. If (sa; sb) is a pure-strategy Nash equilibrium in sequentially

justi�able strategies, then there is an EFBRS, viz. Qa �Qb, so that (sa; sb) 2 Qa �Qb.

The proof can be found in Appendix D. Taken together Theorem 5.1 and Proposition 8.1 give:

Corollary 8.1

(i) Fix a PI game � satisfying TDI, and an epistemic type structure. If there is RCSBR at the

state (sa; ta; sb; tb), then (sa; sb) is outcome equivalent to a pure-strategy Nash equilibrium.

(ii) Fix a PI game � satisfying NRT, and a pure-strategy Nash equilibrium, viz. (sa; sb), in se-

quentially justi�able strategies. Then, there exists an epistemic structure and a state thereof,

viz. (ra; ta; rb; tb), at which there is RCSBR and (ra; rb) = (sa; sb).

Why the connection between EFBRS�s and Nash equilibria? Recall, if each player is �rational�

(i.e., maximizes subjective expected utility) and places probability one on the actual strategy choices

by the other player, then the strategy choices constitute a Nash equilibrium. In a PI game satisfying

TDI, RCSBR imposes a form of correct beliefs about the actual outcomes that will obtain. Let us

recast this at the level of the solution concept: In a PI game satisfying TDI, each strategy pro�le

in a given EFBRS is outcome equivalent. (This will be Lemma D2 in Appendix D.) So, along

the path of play, the associated CPS(�s) must assign probability one to a particular outcome� the

outcome associated with the EFBRS, i.e., the �correct� outcome. (This uses condition (ii) of an

EFBRS.) With this, we get a Nash outcome (but not necessarily the Nash strategies).9

This was the intuition for part (i) of Corollary 8.1. The proof follows the proof of Proposition

6.1a in Brandenburger-Friedenberg [12, 2010], though now making use of the EFBRS properties.

(The proof in [12, 2010] makes use of properties of self-admissible sets. See 9c below.) Indeed, we

only use properties (i)-(ii) of De�nition 5.1.

The converse, i.e., part (ii), is novel. (In particular, both the �no ties� condition and the

proof are quite di¤erent from the analysis in [12, 2010].) A Nash equilibrium in sequentially

justi�able strategies will, in general, satisfy conditions (i)-(ii) of an EFBRS. However, it may fail

the maximality criterion. Indeed, the proof makes use of all three properties of De�nition 5.1. See

Appendix D.

The no ties conditions are important for both directions of Proposition 8.1. Appendix D explains

why, by way of examples. Also, notice that there is a gap between parts (i)-(ii) of Proposition 8.1.

In particular, part (i) says that starting from an EFBRS we can get a pure Nash outcome, while

part (ii) says that starting from a sequentially justi�able pure-strategy Nash equilibrium, we can get

an EFBRS.
9Ben Porath [10, 1997] is another epistemic analysis of perfect information games. His analysis is based on

�rationality and common initial belief of rationality�plus a grain of truth assumption. It also gives Nash outcomes.
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We cannot improve part (ii) to say that, starting from any pure Nash equilibrium, we get an

EFBRS. (This is because a Nash equilibrium may not be sequentially justi�able. See Appendix

D.) We do not know if we can improve part (i) to say that, starting from an EFBRS, we get a

pure-strategy Nash equilibrium in sequentially justi�able strategies. (Appendix D elaborates on

the issue.) However, we will see that, starting from an EFBRS, we can get a mixed-strategy Nash

equilibrium that satis�es a �sequential justi�ability�condition. (We�ll make the condition precise

below.)

Consider a pure strategy pro�le (sa; sb) and a mixed strategy pro�le ($a; $b) 2 P (Sa)�P (Sb).
Call (sa; sb) and ($a; $b) outcome equivalent if � (sa; sb) = � ($a; $b). Likewise, call Qa�Qb �
Sa�Sb and ($a; $b) 2 P (Sa)�P (Sb) outcome equivalent if each (sa; sb) 2 Qa�Qb is outcome
equivalent to ($a; $b). Then:

Proposition 8.2 Fix a PI game satisfying TDI. If Qa � Qb is an EFBRS, then there exists a
mixed-strategy Nash equilibrium, viz. (�a; �b), so that:

(i) Qa �Qb is outcome equivalent to (�a; �b), and

(ii) each sa 2 Supp�a (resp. sb 2 Supp�b) is sequentially justi�able.

Proposition 8.2 gives that, if we begin with an EFBRS, we can construct an equivalent mixed-

strategy Nash equilibrium. The Nash equilibrium has the property that each strategy in its support

is sequentially justi�able. But, it is important to note that this does not necessarily give that the

mixed-strategy itself is sequentially justi�able.10 More to the point: Given a PI game satisfying

TDI and some mixed-strategy Nash equilibrium, viz. (�a; �b), does there exist some pure-strategy

Nash equilibrium, viz. (sa; sb), so that sa (resp. sb) is contained in the support of �a (resp. �b)?

If so, using Proposition 8.2, we get that starting from an EFBRS, there is a pure-strategy Nash

equilibrium in sequentially justi�able strategies. But, this too is not known.

9 Discussion

In this section, we discuss some conceptual aspects of the paper, as well as some extensions.

a. Context-Dependent Forward Induction: We characterized the behavioral implications of

forward induction reasoning across all type structures. In Section 1, we explained the desire to

have such a characterization theorem. In particular, our view is that there may be a context to

the particular strategic situation studied and this context may lead to restrictions on players�beliefs

that are �transparent�to the players. But, the analyst himself may not know the context, i.e., may

10 In non-PI games, we can construct a mixed-strategy Nash equilibrium, viz. (�a; �b), where each strategy in the
support of �a and �b is sequentially justi�able, but �a is itself not sequentially justi�able. The question remains
whether or not the same can occur in PI games.
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not know which beliefs are vs. are not �transparent�to the players. If this is the case, the analyst

will want to understand the behavioral implications of forward induction reasoning across all type

structures.

Notice that we have implicitly equated analyzing forward induction reasoning across all �trans-

parent restrictions on players beliefs� with analyzing forward induction reasoning across all type

structures. We can make this step precise: First, formalize the idea that certain (events about) be-

liefs are �transparent�to the players. For this, begin with Battigalli-Siniscalchi�s [6, 1999] canonical

construction of a type structure; this type structure contains all hierarchies of conditional beliefs

(satisfying coherency and common belief of coherency).11 Let us look at the self-evident events

within this structure. Loosely, we look at events Sa�Ea�Sb�Eb 2 B (Sa � Ta � Sb � Tb), where
E = Sa �Ea � Sb �Eb obtains and, at each information set, each player assigns probability one to
E, each player assigns probability one to the other player assigning probability one to E, etc. These

self-evident events represent �transparent�restrictions on players�beliefs: Each type structure can

be mapped into the canonical construction and, in a certain sense, each type structure forms a

self-evident event in the canonical construction, i.e., under this mapping.12 Furthermore, each such

self-evident event in the canonical type structure corresponds to a �smaller�type structure. Forward

induction reasoning is preserved under these mappings. (See [3, 2009] for the formal statement.)

There is a special type of �transparent�restriction on beliefs: those generated only by restrictions

on �rst-order beliefs. (For instance, in the lady�s choice convention, we restricted Bob�s �rst-order

beliefs requiring that he assign probability one to Ann playing Up. The only restriction on Ann�s

second-order beliefs is to require that Ann assigns probability one to the event that �Bob assigns

probability one to Ann playing Up.�) These restrictions on �rst-order beliefs, viz. �, generate a

particular type of self-evident event. Here, analyzing RCSBR within the associated type structure

leads to the �-rationalizable strategy set. Indeed, this is related to Battigalli-Siniscalchi�s [8, 2003]

motivation in de�ning Directed Rationalizability.13

In light of the above discussion, it is not conceptually di¢ cult to see that each �-rationalizable

strategy set is an EFBRS and so each�-rationalizable strategy set is consistent with RCSBR in some

structure. Although, we note, the proof is not trivial. The converse is conceptually challenging.

Referring back to Section 6, if we begin with an arbitrary structure and take � to be the set of

�rst-order beliefs induced by that structure, the �-rationalizable strategy set may be distinct from

the strategies consistent with RCSBR. Nonetheless, we have seen that we can �nd some other set of

�rst-order beliefs, viz. ��, so that the ��-rationalizable strategy set is the set of strategies consistent

with RCSBR. This step is not obvious ex ante, but it is easy to prove building on Theorem 5.1, i.e.,

11Note, Battigalli-Siniscalchi�s [6, 1999] canonical construction is a type structure in the sense of De�nition 3.2.
Speci�cally, in the case of a game tree, the basic conditioning events are clopen and so [6, 1999] get Ta and Tb to be
Polish, as an output. Here, we don�t require Polishness.

12This statement presumes that the image of the type set (under the mapping to the canonical construction) is
measurable.

13The treatment here is due to Battigalli-Prestipino [4, 2009]. It is related to, by somewhat di¤erent from, the
motivation in Battigalli-Siniscalchi [8, 2003]-[9, 2007].
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once we already have the de�nition of an EFBRS in hand.

b. Two vs. Three Player Games: Here, we have focused on two player games. The main

results (Theorem 5.1 and Corollary 6.1) extend to games with three or more players, up to issues

of correlation. Speci�cally, if we allow for correlated assessments in De�nition 4.6, then we must

also allow for correlated assessments in De�nition 5.1. A similar statement holds for the case of

independence� though, of course, care is needed in de�ning independence for CPS�s. The central

issue is that Charlie�s belief about Bob should not change after Charlie learns information only about

Ann. (The idea dates back to Hammond [17, 1987] and is related to the �do not signal what you

do not know�condition of Fudenberg-Tirole [15, 1991]. See Battigalli [1, 1996] for a formalization

of the idea and a discussion of [15, 1991].)

There is an additional issue that arises in the three player case: Should we require that Ann

strongly believes �Bob and Charlie are rational�? Or should we instead require that Ann strongly

believes �Bob is rational� and strongly believes �Charlie is rational�? Arguably, in the case of

independence, we should require the latter.

a b

1
1
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2
2
2

3
3
3

Out Out

In In c

0
0
0

Down

Across

Figure 9.1

How does this a¤ect our analysis of games? Amend Figure 7.4, so that it is a three-player game,

as in Figure 9.1. Consider a state at which there is RCSBR in the sense explained above (i.e.,

Bob has an independent assessment and strongly believes both �Ann is rational� and �Charlie is

rational�). Let�s ask which strategies can be played. Of course, using rationality, Charlie must play

Across (at this state). Next, we require that a type of Bob strongly believe �Ann is rational�and

also �Charlie is rational.�So, conditional upon Bob�s information set being reached, this type must

maintain a hypothesis that Charlie is rational, and so that Charlie plays Across. In this case, Bob�s

unique best response is to play In. Turning to Ann, we see that under an RCSBR analysis she

will choose In. So, we only get the backward induction outcome. (Battigalli-Siniscalchi [5, 1999]

provide a �context free�epistemic analysis of this notion of independent rationalization.)

This example also shows that, in the case of independence, Proposition 8.1(ii) does not hold. If

we instead consider the case of correlation, then it may also be natural to instead require that Bob
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strongly believe �Ann and Charlie are rational�(i.e., as opposed to strong belief of �Ann is rational�

and strong belief of �Charlie is rational�). Of course, it may be the case that, when Bob�s node is

reached, he must forgo the hypothesis that �Ann and Charlie are rational.� Thus, in this case, we

do have an analogue of Proposition 8.1(ii). Indeed, both parts (i)-(ii) of Proposition 8.1 hold for

the case of correlation.

c. Properties of EFBRS�s: Refer back to Sections 7-8. To analyze games of interest, we made

use of the three properties of an EFBRS. Many of these arguments drew from Brandenburger-

Friedenberg�s [12, 2010] analysis of self-admissible sets: They began with properties of self-admissible

sets (SAS�s) and, analogously, used these properties to draw implications in terms of behavior in

games.

While there is a close connection between the EFBRS properties and the SAS properties, there

are also important points of di¤erence. Indeed, the concepts are distinct. For an SAS, viz. Qa�Qb,
each sa 2 Qa must be admissible (i.e., not weakly dominated) in both the matrices Sa � Sb and
Sa �Qb. For an EFBRS, we only require that each sa 2 Qa must be sequentially optimal under a
CPS that strongly believes Qb. If sa meets the former criterion, it meets the latter criterion, but

the converse need not hold. So, in this sense, it is harder to meet the SAS criterion vs. the EFBRS

criterion. On the other hand, SAS also has a maximality criterion, and it is easier to meet the SAS

maximality criterion vs. the EFBRS maximality criterion.
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Putting these considerations together, we can have an EFBRS that is not an SAS, and an SAS

that is not an EFBRS. To see that an EFBRS need not be an SAS, refer to Figure 9.2. There,

fOutg � fLeft;Rightg is an EFBRS, but the only SAS is fIn-Downg � fRightg. (Here, we use

the admissibility criteria of SAS�s.) To see that an SAS need not be an EFBRS, refer to Figure

5.1. There, fOutg � fLeft; Centerg is an SAS, but the only EFBRS is fIn-Middleg � fCenterg.
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(Here, we use the fact that it is easier to meet the maximality criteria for SAS�s vs. EFBRS�s.)

Appendix A Proofs for Section 4

Proof of Property 4.1. Fix an event F 2 E with F \
T
mEm 6= ;. Then F \ Em 6= ; for

all m. So, for each m, � (EmjF ) = 1. (This is because � strongly believes each Em.) But then

� (
T
mEmjF ) = 1.

Proof of Property 4.2. Fix an event F 2 E with F \ proj
1 E 6= ;. Then (F � 
2) \ E 6= ;.
Note that marg
1 �

�
proj
1 EjF

�
is well de�ned because proj
1 E is Borel by assumption. Since �

strongly believes E, � (EjF � 
2) = 1. Then (marg
1 �)
�
proj
1 EjF

�
= 1, as required.

Appendix B Proofs for Section 6

In what follows, we �x a set of �rst-order beliefs � = �a ��b, with �a � C (Sb), �b � C (Sa).

Lemma B1 Fix sa 2 S�;m+1a , for m � 0. There exists a CPS �a so that sa 2 �a (�a) and �a
strongly believes each S�;nb for n � m.

Proof. Fix sa 2 S�;m+1a . Then, for each n � m, there exists a CPS �na so that sa 2 �a (�na) and
�na strongly believes S

�;n
b . We will show that there exists a CPS �a so that sa 2 �a (�a) and �a

strongly believes each S�;nb for each n � m.
Begin by constructing a CPS �a: For each information set h 2 Ha, let n(h) = maxfn : Sb (h) \

S�;nb 6= ;g and set �a (�jSb (h)) = �
n(h)
a (�jSb (h)). To see that �a is indeed a CPS, �rst note that

conditions (i)-(ii) are immediate from the construction. For condition (iii), �x events E � Sb (h) �
Sb (i). Note that n(h) � n(i). We have to show that

�n(i)a (EjSb (i)) = �n(h)a (EjSb (h))�n(i)a (Sb (h) jSb (i)) : (B1)

First, suppose that Sb(h) \ S�;n(i)b 6= ;. Then n(h) = n(i), so (B1) follows from condition (iii)

for CPS �n(i)a . Next, suppose that Sb(h) \ S�;n(i)b = ;. Since �n(i)a strongly believes S�;n(i)b and

E � Sb(h),
�n(i)a (EjSb (i)) = �n(i)a (Sb (h) jSb (i)) = 0;

from which (B1) follows.

It is immediate from the construction that sa is sequentially optimal under �a. (Use the fact

that sa is sequentially optimal under each �na .) Moreover, �a strongly believes each S
�;n
b for n � m.

(Use the fact that �n(h)a (S�;nb jSb(h)) = 1 for each n � n(h), i.e. each n with S�;nb \ Sb(h) 6= ;.)
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Appendix C Examples and Proofs for Section 7

We begin by showing that, for the �nitely repeated Prisoner�s Dilemma, any EFBRS results in

the Defect-Defect path of play. To show this, we will need to make use of certain properties of

EFBRS�s. We will again make use of these properties in Appendix D. We begin with the best

response property.

De�nition C1 Say Qa �Qb � Sa � Sb satis�es the best response property if, for each sa 2 Qa
there is a CPS �a 2 C(Sb), so that sa 2 �a (�a) and �a strongly believes Qb. And similarly for b.

An EFBRS satis�es the best response property. But the converse need not hold, i.e., Qa �Qb
may satisfy the best response property, but fail to be an EFBRS because it violates the maximality

condition. (See the example in Section 5.)

Let us introduce some notation, to relate the whole game to its parts. Fix a game � and a subgame

�. Write H�
a for the set of information sets that are contained in �. We will abuse notation and

write Sa (�) for the set of strategies of � that allow �. We also write S�a =
Q
h2H�

a
Ca (h) for the set

of strategies of a in the subgame �. Note, each strategy s�a 2 S�a can be viewed as the projection of
a strategy sa 2 Sa (�) into S�a . Given a set Ea � Sa, write E�a for the set of strategies s�a 2 S�a so
that there is some sa 2 Ea\Sa (�) whose projection into S�a is s�a . We will write ��a and ��b for the
payo¤ functions associated with the subtree �. So, if (sa; sb) allows �, then ��

�
s�a ; s

�
b

�
= � (sa; sb).

Lemma C1 Fix a game � and a subgame �. If Qa � Qb satis�es the best response property for
the game �, then Q�a �Q�b satis�es the best response property for the subgame �.

Proof. If Q�a � Q�b = ; (if no pro�le in Qa � Qb allows �), then it is immediate that Q�a � Q�b
satis�es the best response property. So, we will suppose Q�a �Q�b 6= ;.
Fix a strategy s�a 2 Q�a . Then there exists a strategy sa 2 Qa \ Sa (�) whose projection intoQ

h2H�
a
Ca (h) is s�a . Since sa 2 Qa, we can �nd a CPS �a 2 C (Sb) so that sa 2 �a (�a) and �a

strongly believes Qb.

Let S�b be the set of all S�b (h) for h 2 H�
a . De�ne �

�
a (�j�) : B

�
S�b
�
� S�b ! [0; 1] so that, for

each event Eb � Sb and each S�b (h) 2 S�b , ��a
�
E�b jS�b (h)

�
= �a (EbjSb (h)). It is readily veri�ed

that ��a is indeed a CPS on
�
S�b ;S�b

�
.

Since sa allows � and sa is sequentially optimal under �a, it follows that s
�
a is sequentially

optimal under ��a . Fix some S�b (h) 2 S�b . If Q�b \ S�b (h) 6= ;, then Qb \ Sb (h) 6= ;. So, in this

case, ��a
�
Q�b jS�b (h)

�
= �a (QbjSb (h)) = 1. This establishes that ��a strongly believes Q�b .

Interchanging a and b establishes the result.

We use Lemma C1 to show:

Lemma C2 Consider the N -repeated Prisoner�s Dilemma, as given in Figure 6.2. If Qa � Qb
satis�es the best response property for this game, then each strategy pro�le in Qa�Qb results in the
Defect-Defect path.
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Proof. The proof very closely follows the proof of Example 3.2 in Brandenburger-Friedenberg [12,
2010]. It is by induction on N . For N = 1, the result is immediate. Assume the result holds for

some N and we will show it holds for N + 1.

Consider some Qa�Qb of the N+1 repeated Prisoner�s Dilemma that satis�es the best response
property. Suppose, there is a strategy sa 2 Qa that Cooperates in the �rst period. Fix a strategy
sb 2 Qb. If sb plays Cooperate (resp. Defect) in the �rst period, Ann gets c (resp. e) in the �rst

period. By Lemma C1 and the induction hypothesis, Ann gets a payo¤ of zero, in periods 2; : : : ; N .

So, for each sb in Qb, �a (sa; sb) = c if sb plays Cooperate in the �rst period, and �a (sa; sb) = e if

sb plays Defect in the �rst period.

Now, instead consider the strategy ra that plays Defect in every period, irrespective of the history.

Again, �x a strategy sb 2 Qb. If sb plays Cooperate in the �rst period, then �a (ra; sb) � d and, if
sb 2 Qb plays Defect in the �rst period, then �a (ra; sb) � 0.
Putting the above together: Under any CPS that strongly believes Qb, we must have that ra is

a strictly better response than sa 2 Qa, at the �rst information set. But this contradicts Qa �Qb
satisfying the best response property.

Corollary C1 Consider the N -repeated Prisoner�s Dilemma, as given in Figure 6.2. If Qa � Qb
is an EFBRS, then each strategy pro�le in Qa �Qb results in the Defect-Defect path.

Now we turn to Proposition 7.1. We will show the result for a somewhat more general set of

games� games where, in a sense, the information structure is determined by the subgames.

De�nition C2 Fix a game �. Say a subgame � is su¢ cient for an information set h 2 H if h

is contained in � and the set of strategy pro�les that allow � is exactly Sa (h)� Sb (h).

Note, there may be two subgames, viz. � and ��, that are su¢ cient for h.14 If so, either � is

a subgame of �� or �� is a subgame of �. When there are two subgames that are su¢ cient for h,

we will in typically be interested in the last subgame � su¢ cient for h� i.e., so that no proper
subgame of � is su¢ cient for h.

Also, notice that there may be no subgame that is su¢ cient for an information set h. Refer

to the game in Figure 7.3. There, the only subgame is the entire game. But this subgame is not

su¢ cient for the information set, viz. h, at which Bob moves. To see this, notice that the strategy

sa = Out (trivially) allows the subgame, but does not allow h.

De�nition C3 Say a game � is determined by its subgames if, for each information set h 2 H,
there is a subgame � that is su¢ cient for h.

The game in Figure 7.3 is not determined by its subgame; as we have seen, there is no subgame

that is su¢ cient for the information set at which Bob moves. Below, we will characterize De�nition

C3 in terms of primitives of the game (as opposed to a condition about strategies).

14This may happen if there is a node x where no player is active, i.e., Ca(x) and Cb(x) are singletons.

31



Throughout, we restrict attention to a game � determined by its subgames. Fix a pure-strategy

SPE, viz. (sa; sb), of �. Construct maps fa : H ! Sa and fb : H ! Sb that depend on this SPE.

To do so, �x some h 2 H, and let � be the last subgame su¢ cient for h. Write x for the root

of subgame � (which may be � itself). If � = �, set fa (h) = sa. If � is a proper subtree of

�, then we can write x = (c1; :::; cK). In this case, let fa(h) be the strategy that (i) chooses c1a
at f�g, (ii) chooses cka at an information set that contains (c1; :::; ck�1), i.e., an initial segment of
(c1; :::; cK), and (iii) makes the same choice as sa at all other information sets. So, if sa allows h,

then fa (h) = sa. Also, note, fa (h) is well-de�ned and allows h precisely because � is determined

by its subgames. (Again, refer to the game in Figure 7.3, and take h to be the information set at

which Bob moves. Consider the SPE (sa; sb) = (Out;Right). Then, fa (h) = Out, which precludes

h.)

Write S (h) for the set of strategy pro�les that allow an information set h. In games determined

by their subgames, there is a natural order on sets of the form S (h), for h 2 H. Speci�cally, for

any pair of information sets h and i (in H), either S (h) � S (i), S (i) � S (h), or S (h)\S (i) = ;.15

To see this, let �h (resp. �i) be su¢ cient for h (resp. i). Note, either �h is a subgame of �i, �i
is a subgame of �h, or they are disjoint subgames. With this, the order follows from the de�nition

of su¢ ciency. If S (h) � S (i), say h follows i. Say h and i are ordered if either h follows i or i
follows h. Say h and i are unordered otherwise, i.e., if S (h) \ S (i) = ;.
Let us record a couple of facts, to be used below. The �rst is immediate.

Lemma C3 Fix a game � that is determined by its subgames, and also �x some SPE (sa; sb).

Construct (fa; fb) as above. If fa (h) allows i and either h and i are unordered or i follows h, then

fa (i) = fa (h).

The next result is immediate from the de�nition of an SPE.

Lemma C4 Fix a game � that is determined by its subgames and some SPE (sa; sb). For each

h 2 Ha,
�a (fa (h) ; fb (h)) � �a (ra; fb (h)) for all ra 2 Sa (h).

The next result holds quite generally. Again, its proof is immediate.

Lemma C5 Fix some �a 2 C (Sb). If sa 2 �a (�a), then [sa] � �a (�a).

Proposition C1 Fix a game � that is determined by its subgames, and a pure-strategy SPE, viz.
(sa; sb).

(i) There is an EFBRS, viz. Qa �Qb, so that [sa]� [sb] � Qa �Qb.

(ii) If � satis�es NRT, then [sa]� [sb] is an EFBRS.
15Note, in all perfect recall games, whenever h; i 2 Ha, either S (h) � S (i), S (i) � S (h), or S (h) \ S (i) = ;.

Here, we have analogous statement, when h 2 Ha and i 2 Hb.
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Proof. Fix a pure-strategy SPE, viz. (sa; sb). Construct maps fa : H ! Sa and fb : H ! Sb,

as above. We use these maps to construct CPS�s �a 2 C (Sb) and �b 2 C (Sa). Speci�cally, set

�a (fb (h) jSb (h)) = 1 for each h 2 Ha. And likewise for a and b interchanged.
To see that �a is indeed a CPS: Note, it is immediate that �a satis�es conditions (i)-(ii) of

De�nition 3.1. For condition (iii), �x information sets h; i 2 Ha so that Sb (i) � Sb (h). If

fb (h) 2 Sb (i), then fb (i) = fb (h). (Lemma C3.) So, for each event E � Sb (i),

�a (EjSb (h)) = �a (EjSb (i))� 1 = �a (EjSb (i))�a (Sb (i) jSb (h)) .

If fb (h) =2 Sb (i), then for each event E � Sb (i),

�a (EjSb (h)) = 0 = �a (EjSb (i))� 0 = �a (EjSb (i))�a (Sb (h) jSb (i)) ,

as required. And, likewise, for b.

Now, let Qa = �a (�a), i.e., the set of all strategies ra that are sequentially optimal under �a.

And, likewise, set Qb = �b (�b). We will show that Qa �Qb is an EFBRS.
Fix some ra 2 Qa. We will show that ra and �a jointly satisfy conditions (i)-(iii) of an EFBRS.

In fact, it is immediate that Conditions (i) and (iii) are satis�ed. So, we will show condition (ii),

i.e., that �a strongly believes Qb.

Fix an information set h 2 Ha with Qb \ Sb (h) 6= ;. We will show that fb (h) 2 Qb, so that
�a (QbjSb (h)) = 1. To show that fb (h) 2 Qb, it su¢ ces to show that, for each information set

i 2 Hb allowed by fb (h),

�b (fa (i) ; fb (h)) � �b (fa (i) ; rb) for all rb 2 Sb (i). (C1)

Note, if either i follows h or h and i are unordered, then fb (h) = fb (i). In either case, we can apply

Lemma C4 to the information set i and get the desired result. So, we focus on the case where h

follows i.

Take S (h) � S (i). Since Qb \ Sb (h) 6= ;, there is a strategy rb 2 Qb \ Sb (h). For this

strategy rb, we have that �b (fa (i) ; rb) � �b (fa (i) ; fb (h)), because rb is sequentially optimal un-

der �b, �b (fa (i) jSa (i)) = 1, and fb (h) 2 Sb (h) � Sb (i). We will show that �b (fa (i) ; rb) =

�b (fa (i) ; fb (h)), establishing Equation C1.

Suppose, contra hypothesis, that �b (fa (i) ; rb) > �b (fa (i) ; fb (h)). Consider the information set

j, so that the last common predecessor of (fa (i) ; rb) and (fa (i) ; fb (h)) is contained in j. Now, use

the fact that rb and fb (h) both allow h, to get that either j follows h or j and h are unordered. In

these cases, we have that �b (fa (j) ; fb (h)) � �b (fa (j) ; rb). (This was established in the previous
paragraph.) But now note that, since either j follows h or j and h are unordered, we also have that

either j follows i or j and i are unordered. In either case, using the fact that fa (i) allows j, we
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have fa (i) = fa (j). (Lemma C3.) So, putting the above facts together,

�b (fa (i) ; fb (h)) = �b (fa (j) ; fb (h))

� �b (fa (j) ; rb)

= �b (fa (i) ; rb) � �b (fa (i) ; fb (h)) .

But this contradicts the assumption that �b (fa (i) ; rb) > �b (fa (i) ; fb (h)).

We have established that Qa �Qb = �a (�a)� �b (�b) is an EFBRS. By construction, (sa; sb) 2
�a (�a) � �b (�b). So, using Lemma C5, [sa] � [sb] � Qa � Qb. Now, suppose the game tree has

NRT. We will show that, if (ra; rb) 2 Qa � Qb, then (ra; rb) 2 [sa] � [sb]. To see this, �x some

strategy ra =2 [sa]. Then, there exists some rb 2 Sb with � (sa; rb) 6= � (ra; rb). Consider the last

common predecessor of � (sa; rb) and � (ra; rb) and let h be the information set that contains this

node. Now, we have that �a (sa; fb (h)) � �a (ra; fb (h)), by the above analysis. NRT says that, in
fact, �a (sa; fb (h)) > �a (ra; fb (h)). This implies that ra =2 Qa, as required.

Lemma C6 If � has observable actions, then � is determined by its subgames.

Proof. Fix an information set h. Since � has observable actions, h = fxg for some node/history x.
Now, consider a node y that follows x. Then, by observable actions, y is contained in the information

set fyg. It follows that there is a subgame whose initial node is x, written �. Moreover, the set of
strategies that allow � is exactly Sa (h)� Sb (h). So, � is determined by its subgames.

Proof of Proposition 7.1. Immediate from Proposition C1 and Lemma C6.

Finally, we return to characterize the condition that � is determined by its subgames, in terms

of primitives of the game tree alone (i.e., without reference to strategies). For this, we will need

some notation: Given a set of nodes, viz.
�
x1; : : : ; xK

	
, write lcp(

�
x1; : : : ; xK

	
) for the last common

predecessor of these nodes.

Lemma C7 A game � is determined by its subgames if and only if, for each information set h 2 H,
the following holds:

(i) the last common predecessor of nodes in h, viz. lcp (h), is the root of a subgame, and

(ii) the set of terminal nodes allowed by lcp (h) is exactly the set of terminal nodes allowed by h.

Proof. Fix a game � and an information set h. First note that if conditions (i)-(ii) are satis�ed for
h, then there must be some subgame su¢ cient for h. To see this claim, take � to be the subgame

whose root is lcp (h). (Here we use condition (i).) Fix a strategy pro�le (sa; sb) that allows lcp (h).

Note that the terminal node � (sa; sb) is also allowed by h. (Here we use condition (ii).) So, (sa; sb)

must allow h. This establishes that � is su¢ cient for h.
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Now, we suppose that there is some subgame that is su¢ cient for h, viz. �. We will show that

conditions (i)-(ii) must be satis�ed. For this, we will make use of the fact that � must contain

lcp (h).

First, we show condition (i). Suppose, contra hypothesis, lcp (h) is contained in a non-singleton

information set� i.e., there is some x 6= lcp (h) so that x and lcp (h) are contained in the same

information set. Then, lcp(flcp (h) ; xg) is also contained in �. Moreover, there is some player who
is active at lcp(flcp (h) ; xg). This player has a strategy that allows �, but not h. This, contradicts
the presumption that � is su¢ cient for h.

Next is condition (ii). To see this, note that the set of terminal nodes allowed by h is contained

in the set of terminal nodes allowed by lcp (h). Fix a terminal node, viz. z, allowed by lcp (h).

Then, z is also allowed by � (since lcp (h) is contained in the subtree �). So, there is a strategy

pro�le (sa; sb) that allows � with � (sa; sb) = z. Note, since � is su¢ cient for h, (sa; sb) allows h.

It follows that z is allowed by h, as required.

Finally, we conclude by pointing out the need for NRT in Proposition C1(ii).

Example C1 Figure C1 gives a game that fails NRT. Since it is a perfect information game, it is
determined by its subgames. Here, (In;Across) is a pure-strategy SPE, but fIng�fAcrossg is not
an EFBRS.

a b

0
0

1
1

3
0

Out Down

In Across

Figure C1

There is an EFBRS, viz. Qa�Qb, with fIng�fAcrossg � Qa�Qb, e.g., fIng�fAcross;Downg.
(Of course, part (i) of Proposition 7.1 says there must be some such EFBRS.) But every EFBRS,

viz. Qa �Qb, must have Qb = fAcross;Downg. (Here we use condition (iii) of an EFBRS.) So,

fIng � fAcrossg is not an EFBRS.

Appendix D Examples and Proofs for Section 8

In this appendix, we prove Propositions 8.1-8.2. We also provide examples to better understand

the results.

35



I. No Ties and Proposition 8.1: Part (i) of Proposition 8.1 requires TDI and part (ii) of
Proposition 8.1 requires NRT. Example D1 explains why part (i) requires TDI.

Example D1 Return to Example C1, which fails TDI. There, we saw that (In;Down) is contained
in an EFBRS. But, it is not outcome equivalent to a pure-strategy Nash equilibrium.

Observe, when Bob moves, he is indi¤erent between In and Out. Now turn to a type of Ann

that strongly believes Bob is rational. This type has a correct belief about what Bob�s payo¤s will

be if she plays In. But, because the game fails TDI, she may have an incorrect belief about what

her own payo¤ will be if she plays In. As such, a Nash outcome need not obtain.

Example D2 explains why we cannot replace NRT with the (weaker) TDI condition, in part (ii)

of Proposition 8.1.

Example D2 Consider the game in Figure D1, which satis�es TDI, but violates NRT.

a b a b

2
2

2
2

0
0

4
4

6
1

Out

Across

DownOut Down

AcrossInIn

Figure D1

Here, (Out;Out) is a Nash equilibrium in sequentially justi�able strategies. But, if Qa � Qb is a
(nonempty) EFBRS, then Qa�Qb = fIn-Acrossg�fIn-Downg. To see this, let Qa�Qb 6= ; be an
EFBRS and note that Qa � fOut; In-Acrossg and Qb � fOut; In-Downg. (The strategy In-Down
for Ann is dominated at her second information set, and the strategy In-Across for Bob is dominated

at his second information set.) Note, too, that In-Across is a weakly dominant strategy for Ann.

So, condition (iii) of an EFBRS implies that In-Across 2 Qa. It follows that, if �b strongly believes
Qa, then �b must assign probability one to In-Across conditional on the event �Ann plays In.� So,

In-Down is Bob�s only strategy that is sequentially optimal given a CPS that strongly believes Qa.

This implies that Qb = fIn-Downg, and so Qa = fIn-Acrossg.

In the above example, f(Out;Out)g is disjoint from any EFBRS. While it satis�es conditions

(i)-(ii) of an EFBRS, it fails condition (iii): If (Out;Out) is played, Ann gets a payo¤ of 2. But,

by going In, she can also assure herself an expected payo¤ of at least 2. As such, condition (iii)

requires that we include In-Across.
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To better understand what is going on, let us recast this at the epistemic level: If (Out; ta) is

rational, so is (In-Across; ta). With this, if Bob strongly believes that Ann is rational, then, when

his �rst information set is reached, he must maintain a hypothesis that Ann is playing In-Across�

that is, he must maintain a hypothesis that Ann is playing a particular strategy that is not in

Qa = fOutg. As such, Out cannot be a best response for Bob.
The key is that the rationality of (Out; ta) has implications for Ann�s rationality at information

sets precluded by Out. Notice, this happens because Ann is indi¤erent between the terminal nodes

reached by (Out;Out) and (In-Across;Out). (If Ann�s payo¤s from (In-Across;Out) were strictly

less than 2, (Out; ta) can be rational without (In-Across; ta) being rational. Similarly, if Ann�s

payo¤s from (In-Across;Out) were strictly greater than 2, then (Out;Out) would not be a Nash

Equilibrium.) This is where the NRT condition comes in� it says that, if Ann is decisive between

two terminal nodes (as she is here), then she cannot be indi¤erent between those nodes.

II. Proof of Proposition 8.1(i): This will follow immediately from the following Lemma.

Lemma D1 Fix a perfect-information game satisfying TDI. If Qa �Qb satis�es the best response
property, then each (sa; sb) 2 Qa �Qb is outcome equivalent to a Nash Equilibrium.

The proof of this Lemma closely follows the proof of Proposition 6.1a in Brandenburger-Friedenberg

[12, 2004]. It is by induction on the length of the tree. Speci�cally, �x a game � and a subgame

�. The induction hypothesis states that if a set satis�es the best response property on � then it

is outcome equivalent to some Nash equilibrium. We saw that, if a set Qa � Qb satis�es the best
response property on �, it also satis�es the best response property on the subgame �. (This was

Lemma C1.) So, if we �x a set that satis�es the best response property on the whole tree, then, by

the induction hypothesis, it is outcome equivalent to a Nash equilibrium on each reached subgame.

The proof uses this fact to construct a pure strategy Nash equilibrium on the whole tree, that is

outcome equivalent to each pro�le in Qa �Qb.

De�nition D1 Call Qa � Qa � Sa � Sb a constant set if, for each (sa; sb), (ra; rb) 2 Qa � Qb,
� (sa; sb) = � (ra; rb).

Lemma D2 Fix a perfect-information game satisfying TDI. If Qa �Qb satis�es the best response
property, then Qa �Qb is a constant set.

Proof. The proof is by induction on the length of the tree.
First, �x a tree of length one and suppose Ann moves at the initial node. Then Bob�s strategy

set is a singleton. So, if Qa�Qb satis�es the best response property, then Ann is indi¤erent between
each (sa; sb) and (ra; sb) in Qa �Qb. By TDI, each pro�le in Qa �Qb is outcome equivalent.
Assume the result holds for any tree of length l or less. Fix a tree of of length l + 1 and a set

Qa � Qb satisfying the best response property. Suppose Ann moves at the initial node, and can
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choose amongst nodes n1; : : : ; nK . Each nk can be identi�ed with an information set and each is

associated with a subgame � = k.

In particular, �x some subgame k with Qka �Qkb 6= ;. Then Qka �Qkb satis�es the best response
property for the subgame k. (This is Lemma C1.) So, by the induction hypothesis, �k

�
ska; s

k
b

�
=

�k
�
rka ; r

k
b

�
, for each

�
ska; s

k
b

�
and

�
rka ; r

k
b

�
2 Qka � Qkb . Now, note that, for each sb 2 Qb, skb 2 Qkb .

(Here, we use the fact that Ann moves at the initial node.) Thus, given two strategies sa; ra 2
Qa \ Sa (�) and sb; rb 2 Qb, we have that � (sa; sb) = � (ra; rb).
Now, �x some (sa; sb) ; (ra; rb) 2 Qa �Qb, where sa 2 Sa (k) and ra 2 Sa (j). We have already

established that � (sa; sb) = � (ra; rb), for k = j. Suppose k 6= j. Since sa 2 Qa, sa is sequentially
optimal under some �a (�j�) that strongly believes Qb. So, in particular, sa is optimal under �a (�jSb)
with �a (QbjSb) = 1. With this,

�a (sa; sb) =
P

qb2Qb
�a (sa; qb)�a (qbjSb)

�
P

qb2Qb
�a (ra; qb)�a (qbjSb)

= �a (ra; rb) .

(The �rst equality follows from the fact that, for each qb 2 Qb, �a (sa; sb) = �a (sa; qb). This is a

consequence of the last line in the preceding paragraph. Likewise, for the last equality.) By an

analogous argument, �a (ra; rb) � �a (sa; sb). So, �a (ra; rb) = �a (sa; sb). By TDI, �b (ra; rb) =

�b (sa; sb).

Proof of Lemma D1. The proof is by induction on the length of the tree.

First, �x a tree of length one and suppose Ann moves at the initial node. Then Bob�s strategy

set is a singleton. The result follows from the fact that each sa 2 Qa is sequentially optimal under
a CPS.

Now assume the result holds for any tree of length l or less. Suppose Ann moves at the initial

node, and can choose among nodes n1; : : : ; nK . Each nk can be identi�ed with an information set

and each is associated with a subgame � = k.

Fix some (sa; sb) 2 Qa �Qb and suppose sa 2 Sa (1). Note, Q1a �Q1b satis�es the best response
property (Lemma C1). So, by the induction hypothesis, there is a Nash equilibrium of subgame 1,

viz.
�
r1a; r

1
b

�
, so that �

�
s1a; s

1
b

�
= �

�
r1a; r

1
b

�
. Consider a strategy ra 2 Sa (1) so that the projection

of ra onto
Q
h2H1

a
Ca (h) is r1a. We need to show that we can choose r

2
b ; : : : ; r

K
b 2 �Kk=2Skb so that,

for each qa 2 Qa and associated qka 2 Ska , �a
�
r1a; r

1
b

�
� �a

�
qka ; r

k
b

�
. The pro�le

�
ra;
�
r1b ; r

2
b ; : : : ; r

K
b

��
will then be a Nash Equilibrium of the game.

Since sa 2 Qa, there exists a CPS and an associated measure �a (�jSb) so thatX
sb2Sb

[�a (sa; sb)� �a (qa; sb)]�a (sbjSb) � 0,
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for all qa 2 Sa. Fix k from 2; : : : ;K. Using Lemma D2,

�a
�
r1a; r

1
b

�
= �a

�
s1a; s

1
b

�
�
P

skb2Sbk
�a
�
qka ; s

k
b

�
(margSkb � (�jSb))

�
skb
�
,

for any qka 2 Ska . Letting (qka; qkb ) 2 argmaxSka minSkb �a (�; �), we have in particular

�a
�
r1a; r

1
b

�
�
P

skb2Sbk
�a
�
qka; s

k
b

�
(margSbk � (�jSb))

�
skb
�
:

But �a(qka; q
k
b ) � �a(qka; qkb ) for any qkb 2 Skb , by de�nition. So

�a
�
r1a; r

1
b

�
�
P

skb2Sbk
�a(q

k
a; q

k
b )(margSkb � (�jSb))

�
skb
�
= �a(q

k
a; q

k
b ):

Set (qk
a
; qk
b
) 2 argminSkb maxSka �a (�; �). By the Minimax Theorem for PI games (see, e.g., Ben

Porath [10, 1997]), �a(qka; q
k
b ) = �a(q

k
a
; qk
b
). It follows that �a(r1a; r

1
b ) � �a

�
qka; q

k
b

�
= �a(q

k
a
; qk
b
).

But �a(qka; q
k
b
) � �a(q

k
a ; q

k
b
) for any qka 2 Ska , by de�nition. So �a(r1a; r

1
b ) � �a(q

k
a ; q

k
b
), for each

qka 2 Ska . Setting each rkb = qkb gives the desired pro�le.

III. Proof of Proposition 8.1(ii): Let us give the idea of the proof. We will start with a set

Qa �Qb = f(sa; sb)g, where (sa; sb) is a pure Nash equilibrium in sequentially justi�able strategies.

This set will satisfy the best response property. (See Lemma D4 below.) In particular, the set

Qa is associated with a single CPS �a, satisfying the conditions of the best response property. We

will look at the set Pa of all strategies ra that are sequentially optimal under �a. We use the fact

that �a strongly believes Qb (so assigns probability 1 to sb at the initial information set) to get that

Ann is indi¤erent between all outcomes associated with Pa �Qb. Indeed, by NRT, these strategy

pro�les must reach the same terminal node. Likewise, we de�ne Pb and, using standard properties

of a PI game tree, we get that all strategies in Pa � Pb reach the same terminal node.
So, what have we done: We began with a set Qa�Qb and we expanded it to a set Pa�Pb, with

(i) Qa �Qb � Pa � Pb, (ii) all the pro�les in Pa � Pb reach the same terminal node, and (iii) there
is a CPS �a (resp. �b) that strongly believes Qb (resp. Qa) and such that Pa (resp. Pb) is the set

of strategies that are sequentially optimal under �a (�j�) (resp. �b (�j�)). We would have succeeded

in constructing an EFBRS if the CPS �a (resp. �b) strongly believed Pb (resp. Pa) instead of Qb
(resp. Qa). The key will be that we can similarly expand Pa � Pb so that the new set satis�es

similar properties. Since the game is �nite, eventually, the expanded set must coincide with the

original set� that is, condition (i) must hold with equality. This gives the desired result.

Now we turn to the proof. First, we give a technical Lemma.

Lemma D3 Fix some (
; E) where 
 is �nite. Let � (�j�) be a CPS on (
; E) and let $ be a

measure on 
. Construct � (�j�) : B (
)�E ! [0; 1] as follows: If F 2 E with Supp$ \F 6= ; then
� (�jF ) = $ (�jF ). Otherwise, � (�jF ) = � (�jF ). Then � (�j�) is a CPS.
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Proof. Let �, $, and � be as in the statement of the Lemma. Conditions (i)-(ii) of a CPS are

immediate. Turn to condition (iii). For this, �x E 2 B (
) and F;G 2 E with E � F � G.
First suppose that Supp$ \ F 6= ;. Then

� (EjG) =
$ (E)

$ (G)

=
$ (E)

$ (F )

$ (F )

$ (G)
= � (EjF ) � (F jG) ;

where the �rst equality makes use of the fact that E � G and the last makes use of the fact that

E � F and F � G. Next suppose that Supp$ \G = ;. Then Supp$ \ F = ;, so that

� (EjG) = � (EjG)

= � (EjF )� (F jG) = � (EjF ) � (F jG) ;

as required. Finally, suppose that Supp$ \ F = ; but Supp$ \G 6= ;. Then

0 � � (EjG) � � (F jG) = $ (F jG) = 0;

where the last equality follows from the fact that Supp$ \ F = ;. Then

� (EjG) = 0

= � (EjF )$ (F jG) = � (EjF ) � (F jG) ;

as required.

Lemma D4 Let (sa; sb) be a Nash equilibrium in sequentially justi�able strategies. Then f(sa; sb)g
satis�es the best response property.

Proof. Let (sa; sb) be a Nash equilibrium in sequentially justi�able strategies. Then there exists

a CPS �a (�j�) so that sa is sequentially optimal under �a (�j�). Construct a CPS �b (�j�) so that
�b (sbjSb (h)) = 1 if sb 2 Sb (h), and �b (�jSb (h)) = �a (�jSb (h)) otherwise. By Lemma D3, �b (�j�)
is a CPS. It is immediate from the construction that sa is sequentially optimal under �b (�j�) and
�b (�j�) strongly believes fsbg. And, similarly, with a and b reversed.

De�nition D2 Fix a constant set Qa �Qa � Sa � Sb. Call Pa �Pa � Sa � Sb an expansion of
Qa �Qb if there exists a CPS �a 2 C(Sb) so that:

(i) Qa � Pa = �a (�a),

(ii) �a strongly believes Qb, and

(iii) if ra is optimal under �a (�jSb) then �a (ra; sb) = �a (sa; sb) for all (sa; sb) 2 Qa �Qb.
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And, likewise, with a and b reversed.

Notice, we only de�ne an expansion of a set Qa �Qb, if Qa �Qb is a constant set. Also, note,
if Pa � Pb is an expansion of Qa �Qb then there are CPS�s �a and �b satisfying conditions (i)-(iii)
of De�nition D2. We will refer to these as the associated CPS�s.

Lemma D5 Fix a PI game satisfying NRT. Suppose Pa � Pb is an expansion of Qa �Qb and �x
associated CPS�s �a and �b. Let Xa be the set of strategies that are optimal under �a (�jSb). And,
likewise, de�ne Xb. Then Xa �Xb is a constant set.

Proof. Since Pa�Pb is an expansion of Qa�Qb, Qa�Qb is a constant set. (This is by de�nition.)
It follows from condition (iii) of De�nition D2 that Xa �Qb and Qa �Xb are constant sets. Then,
using NRT, each pro�le in Xa�Qb reaches the same terminal node. And likewise for Qa�Xb. In
fact, the terminal node reached by Xa �Qb and Qa �Xb must be the same one, since (Xa �Qb) \
(Qa �Xb) = (Qa �Qb). Now �x a pro�le (sa; rb) 2 (XanQa) � (XbnQb). Note there is a pro�le

(sa; sb) 2 (XanQa) � Qb and a pro�le (ra; rb) 2 Qa � (XbnQb). These pro�les reach the same

terminal node and so (sa; rb) must also reach that terminal node. This establishes that Xa �Xb is
a constant set.

Corollary D1 Fix a PI game satisfying NRT. If Pa � Pb is an expansion of some Qa �Qb, then
Pa � Pb is constant.

The next result is standard, and so the proof is omitted.

Lemma D6 Fix a measure $a 2 P (Sb) so that sa is optimal under $a given Sa. Then, for any

information set h with sa 2 Sa (h) and $a (Sb (h)) > 0, sa is optimal under $a (�jSb (h)) given
Sa (h) :

Given a measure $ 2 P (
), we write Supp$ for the support of the measure.

Lemma D7 Fix a PI game satisfying NRT. If Pa � Pb is an expansion of Qa � Qb, then there
exists some Wa �Wb that is an expansion of Pa � Pb.

Proof. Begin with the fact that Pa�Pb is an expansion of Qa�Qb, and choose an associated CPS
�a (resp. �b) satisfying the conditions of De�nition D2. Let Xa (resp. Xb) be the set of strategies

that are optimal under �a (�jSb) (resp. �b (�jSa)). By Lemma D5, Xa �Xb is a constant set.
Construct a measure $a 2 P (Sb) as follows: Begin with a measure $a with Supp$a = Pb.

Construct $b so that, for each rb 2 Pb,

$a (rb) = (1� ")�a (rbjSb) + "$a (rb) ;

where " 2 (0; 1). Note that �a strongly believes Qb � Pb, Supp�a (�jSb) � Pb. With this and

the fact that Supp$ = Pb, we have Supp$a = Pb. Using the fact that Xa � Pb is a constant set,
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�a (sa; $a) = �a (ra; $a) for all sa; ra 2 Xa. Moreover, when " is su¢ ciently small, �a (sa; $a) >

�a (ra; $a) for all sa 2 Xa and ra 2 SanXa. So we can choose $a so that sa is optimal under $a

if and only if sa 2 Xa.
Now construct a CPS �a 2 C(Sb) as follows: If Pb \ Sb (h) 6= ;, let �a (�jSb (h)) = $a (�jSb (h)).

(This is well de�ned since, in this case, $a (Sb (h)) > 0.) If Pb \ Sb (h) = ;, let �a (�jSb (h)) =
�a (�jSb (h)). Lemma D3 establishes that �a (�j�) is a CPS. Construct a measure $b 2 P (Sa) and
a CPS �b 2 C(Sa) analogously.
Take Wa = �a(�a) and Wb = �b(�b). We will show that Wa �Wb is an expansion of Pa � Pb.
Begin with condition (i). Note, by de�nition,Wa = �a(�a). So, we only need show that Pa �Wa.

Fix some sa 2 Pa. By construction, sa is optimal under $a. Let h 2 Ha with sa 2 Sa (h). If

Pb \ Sb (h) 6= ; then $a (�jSb (h)) = �a (�jSb (h)) and sa is optimal under �a (�jSb (h)) among all
strategies in Sa (h). (See Lemma D6.) If Pb \ Sb (h) = ; then �a (�jSb (h)) = �a (�jSb (h)). So,

again, sa is optimal under �a (�jSb (h)) given all strategies in Sa (h). With this, sa 2 �a(�a (�j�)), as
required.

Next, turn to condition (ii). We need to show that �a strongly believes Pb. For this notice that

if Pb \ Sb (h) 6= ; then �a (PbjSb (h)) = $a (PbjSb (h)) = 1.
Finally, we show condition (iii). Suppose ra is optimal under �a (�jSb). We will show that

�a (ra; sb) = �a (sa; sb) for all (sa; sb) 2 Pa � Pb. To see this, recall, �a (�jSb) = $a. So, if ra is

optimal under �a (�jSb) then ra 2 Xa. The claim now follows from the fact that Xa�Xb is constant
that contains Pa � Pb.
Replacing b with a establishes that Wa �Wb is an expansion of Pa � Pb.

Lemma D8 Fix a PI game satisfying NRT. Let (sa; sb) be a Nash equilibrium in sequentially

justi�able strategies. Then there exists an EFBRS, viz. Qa �Qb, that contains (sa; sb).

Proof. Fix a Nash equilibrium in sequentially optimal strategies, viz. (sa; sb). Let Q0a � Q0b =
fsag � fsbg. By Lemma D4, Q0a �Q0b satis�es the best response property. So, there is a CPS �a
(resp. �b) that strongly believes fsbg (resp. fsag) and sa (resp. sb) is sequentially optimal under �a
(resp. �b). Let Q

1
a = �a (�a) (resp. Q

1
b = �b (�a)). Note that Q

1
a �Q1b is an expansion of Q0a �Q0b

(associated with the CPS�s �a and �b). Now, repeatedly apply Lemma D7 to get sets Q0a � Q0b ,
Q1a � Q1b , Q2a � Q2b , . . . , where each Qm+1a � Qm+1b is an expansion of Qma � Qmb . Since the game

is �nite, there is some M with Qma � Qmb = QMa � QMb for all m � M . The set QMa � QMb is an

EFBRS.

IV. Closing the Gap: In the text, we mentioned that there is a gap between parts (i)-(ii) of
Proposition 8.1.

We begin by pointing out that we cannot improve part (ii) to say that, starting from any pure

Nash equilibrium, we get an EFBRS. To see this, refer to Figure D2. There is a unique EFBRS,
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namely fIng � fAcrossg. That said, the pair (Out;Down) is a Nash equilibrium� of course, it is

not a Nash equilibrium in sequentially justi�able strategies.

a b

0
0

2
2

3
3

Out Down

In Across

Figure D2

We do not know if part (i) can be improved to read: IfQa�Qb satis�es the best response property,
then each (sa; sb) 2 Qa � Qb is outcome equivalent to a sequentially justi�able Nash Equilibrium.
Let us better understand the problem.

Return to Lemma D1 and the proof thereof. Suppose, we strengthened the induction hypothesis,

so that we can look at a sequentially justi�able Nash equilibrium of subgame 1, viz.
�
r1a; r

1
b

�
.

Following the proof, we use this, to construct a Nash equilibrium (ra; (r
1
b ; q

2
b
; : : : ; qK

b
)), where each

qk
b
is the minimax strategy on subtree k. But, now we need to show that the constructed equilibrium

is sequentially justi�able. Here is where the problem arises� the strategy qk
b
(on subtree k) may

not be a best response to any strategy on that subtree. Thus, the proof breaks down. Of course, it

may very well be that there is another method of proof.

In the text we mentioned a related result (Proposition 8.1) which speaks to the gap. To show

this result, it su¢ ces to show the following Lemma.

Lemma D9 Suppose Qa � Qb is a constant set satisfying the best response property. Then there

exists a mixed strategy Nash equilibrium, viz. (�a; �b), so that:

(i) Qa �Qb is outcome equivalent to (�a; �b), and

(ii) each sa 2 Supp�a (resp. sb 2 Supp�b) is sequentially justi�able.

Proof. Pick some (ra; rb) 2 Qa � Qb and let �a 2 C(Sb) be a CPS so that ra 2 �a (�a) and �a
strongly believes Qb. Set �b = �a (�jSb). Construct �a analogously.
First, notice that (�a; �b) is a mixed strategy Nash equilibrium: Begin by using the fact that

�b (QajSa) = 1 and �a (QbjSb) = 1. As such Supp�a � Supp�b � Qa � Qb. Since Qa � Qb is a
constant set, for each (sa; sb) 2 Supp�a�Supp�b, � (sa; sb) = � (ra; rb). So, for each sa 2 Supp�a
and each qa 2 Sa,

�a (sa; �b) = �a (ra; rb)

= �a (ra; �b) � �a (qa; �b) ;
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where the inequality holds because ra 2 �a (�a) and �a (�jSb) = �b. Applying an analogous argument
to b, establishes that (�a; �b) is indeed a Nash equilibrium.

Next, notice that Qa �Qb is outcome equivalent to (�a; �b): To see this, recall that Supp�a �
Supp�b � Qa�Qb andQa�Qb is a constant set. So, it is immediate that, for each (sa; sb) 2 Qa�Qb,
� (sa; sb) = � (�a; �b).

Lastly, notice that each sa 2 Supp�a is sequentially justi�able, and likewise for b: To see this,
recall that Supp�a�Supp�b � Qa�Qb. So, if sa 2 Supp�a, then sa 2 Qa, and so sa is sequentially
justi�able.

Proof of Proposition 8.1. Immediate from Lemmata D2-D9.
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