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Abstract. Under weak assumptions on the solution concept, I construct an
invariant selection across all finite type spaces, in which the types with identical
information play the same action. Along the way, I establish an interesting
lattice structure for finite type spaces and construct an equilibrium on the space
of all finite types.
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1. Introduction

In Game Theory, incomplete information is modeled using a type in a Bayesian
game. Unfortunately, the representation is not unique: a given piece of information
can be modeled using many distinct types, coming from distinct Bayesian games.
It is desirable the solution to be invariant to alternative representations of the
same information, in that the types that represent the same information all take
the same action according to the solutions to the games they come from. In this
note, I explore the implications of such an invariance condition.

To be more precise, consider a researcher. Given any type ti of any player i in
any Bayesian game G, she thinks that the relevant information of ti is hi (ti, G).
If there is another type t0i from a game G0 with hi (ti, G) = hi (t

0
i, G

0), then she
considers (ti, G) and (t0i, G

0) as two alternative representations of the same relevant
information. Hence, she requires that types ti and t0i play the same action according
to the solutions of games G and G0, respectively. If she selects a solution to each
game satisfying her requirement, then she obtains an invariant selection from
her solution concept. Such a selection is needed to study the solutions that are
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invariant to alternative representations of the same relevant information. Can she
find such a selection? Can she ensure that her solutions to the games of her interest
are part of an invariant selection without analyzing other hypothetical situations?
I answer these questions affirmatively in this note.

There are many candidates for h in the literature, such as the infinite hierarchy
of beliefs in Harsanyi (1967), Mertens and Zamir (1985), and Brandenburger and
Dekel (1993). I do not take a position on what h should be because the definition
of what information is relevant in a given application is best left to the researchers
who model the specific application. I only note that under the canonical notions of
relevance, the same piece of information can be modeled by an uncountable number
of types, coming from Bayesian games with complicated interconnections that are
difficult to foresee. Hence, invariance is a strong restriction on selections, requiring
that the actions of all these types to be equal. Moreover, given the complicated
interconnections between these games, construction of an invariant selection is a
difficult task, as it involves equalizing the actions of all these types and doing this
for all games at the same time.

I do not take a position on the solution concept, either. I only assume that the
solution concept has the following two properties. Given any game G, construct a
new gameGh by representing each type ti inG by its relevant information hi (ti, G).
The first property is that for every solution σ of Gh, the strategy profile σ ◦ h, in
which each ti plays σi (hi (ti, G)), is a solution to G. The second property is that
given any finite type space T and any invariant selection for its proper subspaces,
there exists a solution on T that extends the selection to T . Both properties are
exhibited by canonical solution concepts, such as Bayesian Nash equilibrium and
rationalizability. Hence, the results below apply to all such solution concepts.

My main contribution is to construct an invariant selection. I further show that
any invariant selection within a class of games can be extended to the set of all
games with finite type spaces, maintaining the invariace condition throughout.
Conceptually, this shows that the invariance requirement does not impose any
extra restrictions on the solutions of individual games or on the selections for
subfamilies. Pragmatically, it ensures that if a researcher is only interested in the
behavior in a class of games, she can focus on constructing an invariant selection for
that class without worrying about the invariance across all games. In particular,
if she is interested only in a specific game, she can analyze the game in isolation
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without analyzing the other possibly hypothetical strategic situations. All she
needs to do is to make sure that the types with identical relevant information play
the same action in the specific game. In contrast, if she is interested in behavior
across a family of games (as in the analysis of comparative statics), then she needs
to analyze invariant selections for the family, and invariance imposes many more
conditions on such selections than on the solutions to individual games.

There is a one-to-one correspondence between the invariant selections and the
equilibria on the subspaces of the universal type space. The above results then lead
to equilibrium existence results on that space. First, since there is an invariant
equilibrium selection for all games with finite type spaces, there exists an equilib-
rium on the space of all finite types, which is the subspace of the universal type
space that consists of the images of all types from all finite type spaces. This fills
an important gap in the literature, in which very little is known on the existence
of equilibria in the prominent subspaces of the universal type space. Second, any
equilibrium within a subspace can be extended to the space of all finite types. This
result is quite useful in equilibrium analysis on such spaces. In such an analysis, one
is often interested in the behavior of types within a small class. This result ensures
that one can simply focus on the class without worrying about the construction
of equilibrium in the entire space, which is often the main difficulty. Third, as a
special case of the second result, an equilibrium of a game can be extended to the
space of all finite types as long as the types with identical information play the
same action in the equilibrium. This result is important for robustness analysis.
In such an analysis, one considers an equilibrium in the universal type space and
explores its sensitivity to information (see for example Weinstein and Yildiz (2007,
2008)). This result shows that such an analysis is not vacuous and the robustness
of any equilibrium as above can be analyzed within this methodology.

In order to construct an invariant selection, I first show that, when the finite
type spaces are embedded in a universal type space using the mapping h, they
exhibit an interesting and useful lattice structure. With the inclusion of the empty
set, the set of all such type spaces is a lattice under the set inclusion, and it is
closed under arbitrary number of intersections. In particular, for each type, there
is a unique minimal type space that contains the type. (It is the intersection of all
type spaces that contain the type.) This structure allows one to rank finite type
spaces according to the length of the longest chain of its subspaces under the strict
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set inclusion. Note that, for a given type, which is in the form of hi (ti, G), the
minimal type space is the smallest type space in which the information hi (ti, G)

can be expressed, and its rank is strictly lower than any other type space that
contains hi (ti, G).

Using the above structure, I construct an invariant selection across all games
with finite type spaces as follows. It suffices to find a selection for the type spaces
within the universal type space, as one can select the solutions of the other games
by using the solutions for their images in the universal type space–thanks to the
first property of the solution concept. In the construction within the universal
type space, I first consider the type spaces of the first rank. These type spaces do
not have any subspace. In particular, they are disjoint because the intersection
would be a subspace by the lattice structure. I select a solution from each of these
type spaces, which have solutions by the second property of the solution concept.
Since they are disjoint, the selection is invariant. Next, I consider the type spaces
of the second rank. These type spaces contain only subspaces of the first rank,
for which the solution has been selected already. By the second property, each of
them has a solution that extends the existing selection for the proper subspaces
to the type space itself. I select such a solution from each of these type spaces.
Since these type spaces intersect each other, this could have led to a violation of
invariance. That is, a type in the intersection could have played different actions
according to the solutions of the distinct type spaces. This is not the case. Any
such intersection is of the first rank, for which actions have been determined in the
previous round. Hence, all of the selected solutions prescribe the same action for
any type in the intersection. Iterating this argument, I select a solution for every
type space of third rank, fourth rank, and so on. Since each type space has a finite
rank, this leads to a selection for every type space.

There are two difficulties in constructing an invariant selection (or constructing
an equilibrium on the space of all finite types). First, there are typically uncount-
able number of type spaces in which the same piece of information is modeled.
Hence, in any construction, at some stage, one needs to select the solutions for
an uncountable number of such type spaces simultaneously without violating the
invariance condition. In the above construction, this is accomplished by fixing the
action of any type ti in any game G at the earliest round at which hi (ti, G) is
available, and at that round the minimal type space for hi (ti, G) is the only type
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space that contains hi (ti, G). When the solution to G is selected at a later round,
one may need to select solutions to uncountable number of type spaces that con-
tain hi (ti, G), but the solutions will all assign the same fixed action to hi (ti, G).
The second difficulty is that the space of all finite types (and other interesting
type spaces) cannot be partitioned into smaller subspaces. This prevents one from
using more straightforward techniques or the existing existence results. For exam-
ple, if the space could be partitioned into countable subspaces, one could obtain
an invariant selection in each subspace, by simply selecting a solution from each of
the type spaces one-by-one in the order given by counting the type spaces within
the subspace. This would have led to an invariant selection in the entire space.
If that were the case, one could also use the existence result of Simon (2003) for
finitely generated type spaces.

I study invariance condition of solutions with respect to the alternative repre-
sentations of incomplete information. More broadly, one wants the solution to be
invariant to the alternative representation of the strategic situation. Within this
larger context, a number of authors, such as Kohlberg and Mertens (1986) and
Govindan and Wilson (2006, 2009a, 2009b), have studied other invariance condi-
tions, such as invariance with respect to the introduction of mixed strategies as
pure strategies and the “small worlds” condition, which requires that embedding
a game into a larger game with additional players does not affect the solutions in-
duced on the original game. Consistency differs from the above conditions in two
ways. First, it focuses on incomplete information. Second, it is a condition on how
the solution changes across games rather than being a condition on the solution
sets. Indeed, it does not restrict the set of solutions to the individual games with
no redundant types at all.

After presenting the basic definitions in the next section, I study the lattice
structure of finite type spaces in Section 3, invariant selections in Section 4, in-
variant equilibrium selections in Section 5, and equilibria of universal type space
in Section 6. Section 7 concludes. The omitted proofs are in the Appendix.
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2. Model

Fix a set N = {1, 2, . . . , n} of players i, a set A = A1×· · ·×An of action profiles
a,1 and a set Θ∗ of payoff parameters θ. For each i ∈ N , fix also a utility function
ui : Θ

∗×A→ R. A finite type space is a triplet (Θ, T, κ) where Θ ⊆ Θ∗ is a finite
set of parameters, T = T1 × · · · × Tn is a finite set of type profiles t, and κti is
a probability distribution on Θ × T−i, representing the belief of ti, for each type
ti ∈ Ti. A Bayesian game is a list G = (N,A, u,Θ, T, κ). The set of all Bayesian
games with varying finite type spaces is denoted by G. Throughout G, (N,A, u) is
fixed for clarity.

For any game G = (N,A, u,Θ, T, κ) ∈ G and any player i, a strategy of i for G
is a mapping σi : Ti → ∆ (Ai), and a strategy profile for G is a list (σ1, . . . , σn)
of strategies. A solution concept is any correspondence Σ on G that picks a set
Σ (G) of strategy profiles for each game G ∈ G. Given any solution concept Σ and
any G0 ⊆ G, by a selection from Σ for G0, I mean a family σG, G ∈ G0, such that
σG ∈ Σ (G) for each G ∈ G0. A selection for G is simply called a selection.

Relevant Information and Invariance. For every game G ∈ G and every type
ti of a player i in G, let hi (ti, G) be the relevant information of ti (according to
a researcher). Given that all the relevant information is contained in hi (ti, G), if
hi (ti, G) = hi (t

0
i, G

0) for some types ti and t0i from games G and G0, respectively,
then (ti, G) and (t0i, G

0) are just alternative representations of the same informa-
tion. One may then desire the solution to be independent of the representation,
requiring that ti and t0i play the same action according to the solutions at G and
G0, respectively. The next definition formalizes this idea.

Definition 1. A selection σG, G ∈ G0, is said to be h-invariant iff

(C) hi (ti, G) = hi (t
0
i, G

0) =⇒ σGi (ti) = σG
0

i (t
0
i)

for all games G,G0 ∈ G0 and for all types ti and t0i in G and G0, respectively.
Likewise, for any G ∈ G, a strategy profile σ in G is said to be h-invariant iff for

1Notation: For any list X1, . . . ,Xn of sets, X denotes X1 × · · · × Xn and X−i denotesQ
j 6=iXj . For any x1, . . . , xn, write x = (x1, . . . , xn) ∈ X, x−i = (xj)j 6=i ∈ X−i, and

(x0i, x−i) = (x1, . . . , xi−1, x
0
i, xi+1, . . . , xn). For any family of functions fj : Xj → Yj , write

f (x) = (fj (xj))j∈N and f−i (x−i) = (fj (xj))j 6=i. The set of all probability distributions on a

set X is denoted by ∆ (X).
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all types ti and t0i in G,

(C’) hi (ti, G) = hi (t
0
i, G) =⇒ σi (ti) = σi (t

0
i) .

Consistency of selections is a condition on how the solution varies across games,
rather than restricting the set of solutions at a given game. On the other hand,
invariance of a strategy profile is a condition on the solution of a game, requiring
that the types with identical relevant information play the same action. Of course,
the latter is the special case of invariance of a selection for G0 = {G}.

I will now describe three notions of relevant information, hi, as examples. The
first and most canonical notion is the infinite hierarchy of beliefs considered by
Harsanyi (1967), Mertens and Zamir (1985) and Brandenburger and Dekel (1993).
Given any game G, every type ti has a belief h1i (ti, G) about θ, a belief h

2
i (ti, G)

about
¡
θ, h1−i (θ,G)

¢
, and so on. According to this notion, one takes the infinite

hierarchy hi (ti, G) = hMZ
i (ti, G) ≡ (h1i (ti, G) , h2i (ti, G) , . . .) of beliefs about θ as

the relevant information. Ely and Peski (2006) propose a second notion of rele-
vant information: the information used by interim independent rationalizability.
According to this notion, one takes hi (ti, G) as the infinite hierarchy of beliefs re-
garding not only θ but also about how the players would have updated their beliefs
about θ if they learned the other players’ types. A third notion finds everything
relevant: hi (ti, G) = (ti, G) for all ti and G. (This can be taken as an extreme
interpretation of Friedenberg and Meier (2008), who propose to use the type space
as a way to model the “context” in which the players play the game.)

Universal Type Space. For every notion h of relevant information, there is an
abstract universal type space in which each situation is represented by a type that
simply describes the relevant information in that situation. Consistent selections
are closely related to the strategies in this space. Hence, I embed all games G ∈ G
to the universal type space as follows.

Definition 2. By the space of all finite types, I mean the tuple
¡
Θ∗, T u,h, κu,h

¢
where T u,h = T u,h

1 × · · · × T u,h
n with

(2.1) T u,h
i = {hi (ti, G) |ti ∈ Ti for some G = (N,A,Θ, T, κ, u) ∈ G}
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for each i ∈ N , and κu,h is defined by

(2.2) κu,hhi(ti,G)
(θ, h−i (t−i, G)) =

X
t0−i∈T−i∩h

−1
−i (h−i(t−i,G),G)

κti
¡
θ, t0−i

¢
for all i, all G = (N,A,Θ, T, κ, u) ∈ G, and all (θ, ti, t−i) ∈ Θ× T .

Here,
¡
Θ∗, T u,h, κu,h

¢
is a type space because for each type t̂i ∈ T u,h

i , which is in
the form of hi (ti, G), (2.2) yields a probability distribution κ

u,h

t̂i
on Θ∗×T u,h

−i . It is

the probability distribution on Θ∗×T u,h
−i induced by the probability distribution κti

on Θ×T−i and the mapping (θ, t−i) 7→ (θ, h−i (t−i, G)) from Θ×T−i into Θ∗×T u,h
−i .

I will assume that κu,h is well-defined. In general, the type space
¡
Θ∗, T u,h, κu,h

¢
is uncountable. Note that (2.2) ensures that embedding yields a belief morphism
in the sense of Mertens and Zamir (1985), preserving the beliefs. To simplify the
notation, I will suppress the notation h unless it is needed for clarity, e.g., by
writing T u instead of T u,h and κu instead of κu,h.

Models. A subset T = T1 × · · · × Tn ⊂ T u is said to be a belief-closed subspace if
(Θ, T, κu) is a type space for someΘ ⊆ Θ∗. That is, for each ti ∈ Ti, κuti (Θ× T−i) =

1. A belief-closed subspace T is said to be finite if Θ and T above are finite. Finite
belief-closed subspaces are simply called models. I will include the empty set to
the set of models and write

M = {T ⊂ T u| T is a finite belief-closed subspace} ∪ {∅} .

Given any two models T, T 0 ∈ M , define the collage of T and T 0 as T ∨ T 0 ≡
(T1 ∪ T 01)× · · · × (Tn ∪ T 0n), which is clearly also a model.

Note that, by (2.2), the image h (T,G) of any game G is a model:

(2.3) h (T,G) ∈M (∀G = (N,A, u,Θ, T, κ) ∈ G) .

Indeed, T u is simply the collage of the images of games with finite type spaces,
and it can be written as the collage of all models in T u.

Properties of h. I make two assumptions on h. First, I assume that h is such that
(2.2) leads to a well-defined belief map κu,h. That is, for any (ti, G) and (t0i, G

0)

with hi (ti, G) = hi (t
0
i, G

0), we have κu,hhi(ti,G)
= κu,h

hi(t0i,G0)
:X

t0−i∈h
−1
−i (h−i(t−i,G),G)

κti
¡
θ, t0−i

¢
=

X
t0−i∈h

−1
−i (h−i(t−i,G

0),G0)

κt0i
¡
θ, t0−i

¢
.
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This condition is necessary for embedding all finite type spaces in a universal
type space by representing the types with their relevant information, directly. Of
course, this assumption holds for the examples above. Second, in order to simplify
the exposition, I assume that for any T ∈M and any ti ∈ Ti,

(2.4) hi
¡
ti, G

T
¢
= ti

where GT ∈ G is the Bayesian game with type space T . That is, h becomes the
identity mapping on T u,h. This is a natural restriction on h. It formalizes the idea
that hi represents the relevant information. If hi (Ti, G) represents the relevant in-
formation in the situation described by some (ti, G), then the relevant information
represented by hi (Ti, G) must also be hi (Ti, G), as stated by the assumption. This
assumption is without loss of generality because even if it does not hold, one can
modify h by setting it to the identity on T u,h and on its belief-closed subspaces.
Since these spaces are auxiliary constructs, the modification does not affect the
actual results; it just complicates the exposition.

Invariant Selections and T u. There is a one-to-one correspondence between in-
variant selections and the strategy profiles on belief-closed subspaces of T u. If
a selection σG, G ∈ G0, is h-invariant, then the actions prescribed by the selec-
tion yields a well-defined strategy profile σ∗ on T G

0 ≡
W

G=(N,A,Θ,T,κ,u)∈G0 h (T,G),
defined by

(2.5) σ∗i (hi (ti, G)) = σGi (ti) (∀G = (N,A,Θ, T, κ, u) ∈ G0, i ∈ N, ti ∈ Ti) .

Conversely, for any strategy profile σ∗ on T G
0
, (2.5) yields an h-invariant selection

σG, G ∈ G0. In order to explore invariant selections, I will first establish a useful
and interesting structure for finite belief-closed subspaces of T u.

3. Lattice Structure of Models

In this section, I show that models form a lattice under the set inclusion, ex-
hibiting many useful properties. In particular, one can rank the models depending
on how far they are removed from the empty set.

Proposition 1. (M,⊇) is a lattice with T ∨ T 0 ∈ M and T ∧ T 0 ≡ T ∩ T 0 ∈ M

for all T, T 0 ∈ M . Moreover, (M,⊇) is a complete meet-semilattice, i.e., for any
M 0 ⊆M , ∩T∈M 0T ∈M .
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Proof. That T ∨ T 0 ∈M is immediate. Fixing any M 0 ⊆M , I will show that T̄ ≡
∩T∈M 0T ∈M . If T̄ = ∅, T̄ ∈M by definition. Assume that T̄ 6= ∅. By definition,
for each T ∈M 0, there exists a finite set ΘT , such that κuti

¡
ΘT × T−i

¢
= 1 for each

ti ∈ Ti. Define Θ̄ = ∩T∈M 0ΘT . In order to show that T̄ is a finite belief-closed
subspace, it suffices to show that κuti

¡
Θ̄× T̄−i

¢
= 1 for every i ∈ N and ti ∈ T̄i. To

this end, take any ti ∈ T̄i and (θ, t−i) with κuti (θ, t−i) > 0. Then, (θ, t−i) ∈ ΘT×T−i
for each T ∈ M 0, as ti ∈ Ti. Hence, (θ, t−i) ∈ ∩T∈M 0

¡
ΘT × T−i

¢
= Θ̄× T̄−i. This

shows that κuti
¡
θ0, t0−i

¢
= 0 for every (θ, t−i) 6∈ Θ̄ × T̄−i. Since κuti has a finite

support, this further shows that κuti
¡
Θ̄× T̄−i

¢
= 1. ¤

Proposition 1 shows that M is a lattice under the set inclusion, with join ∨ and
meet ∧ are defined as above. Moreover, it is a complete meet-semilattice, as it is
closed under all intersections. It is not a complete lattice because infinite collages
of finite models are not necessarily finite. In particular, T u 6∈M .

By (2.3), each type ti ∈ T u
i is in a model T ∈ M , but usually there are many

such models. Proposition 1 implies that there is a unique minimal model T ti ∈M

that is included in all models that contain ti. Here,

(3.1) T ti =
\

T∈M,ti∈Ti

T.

T ti is the minimal type space in which ti can be expressed. Note that T ti 6= ∅
because (ti, t−i) ∈ T ti for each (θ, t−i) ∈ suppκuti.

I will next rank the models according to how far they are removed from the
empty set. Define R0 = {∅}. Define R1 as the set of models T ∈M\R0 for which
there is no model T 0 ∈ M\R0 with T 0 $ T . That is, T does not have any proper
belief-closed subspace other than the empty set. Note that every finite model is
either in R1 or contains a subspace that is in R1. Proceeding in the same fashion,
one can inductively define the sets Rk, k = 1, 2, . . ., by defining Rk as the set of
models T ∈M such that (i) T 6∈ Rk0 for any k0 < k, and (ii) for any model T 0 $ T ,
T 0 ∈ Rk0 for some k0 < k. I will say that a model T ∈ M has rank k iff T ∈ Rk.
The next lemma establishes some useful facts about the ranks of the models.

Lemma 1. The following are true.

(1) For every T ∈ M , T ∈ Rk iff k is the largest integer for which there exist
models T 0, . . . , T k ∈M with ∅ = T 0 $ · · · $ T k = T .



INVARIANCE 11

(2) Every T ∈M has a rank kT ≤ |T |.
(3) For any T, T 0 ∈M with T $ T 0, kT < kT 0.
(4) For any M 0 ⊆ M , T̄ ≡ ∩T∈M 0T has rank kT̄ such that kT̄ ≤ kT for each

T ∈M 0, with strict inequality whenever T 6= T̄ .

The first three properties above are shared by any lattice formed by a family of
finite sets under inclusion. The last property relies also on the fact that the meet is
the intersection and the lattice is closed under arbitrary intersections. The second
and fourth properties are the most crucial properties for this paper. The second
property states that every model has a rank, and the fourth property states that
intersection of any two models has a rank lower than the rank of either model.

4. Invariant Selections

In this section, I show that there exists an invariant selection from any solution
concept that satisfies two basic properties. I further show that any invariant selec-
tion in a subfamily can be extended to a larger family. In particular, invariance of
a selection has only one implication to the solutions of a given game: the solution
is invariant.

In order to state the properties, I introduce two auxiliary games. For any T ∈M ,
I write GT =

¡
N,A,Θ, T, κu,h, u

¢
∈ G for the Bayesian game with type space T .

For any game G = (N,A,Θ, T, κ, u) ∈ G, I write Gh =
¡
N,A,Θ, h (T,G) , κu,h, u

¢
for the image of G in the universal type space under h. The first property is that
the solution set Σ (G) to G includes all of the solutions to the image Gh of G in
universal type space:

Assumption 1. For all G ∈ G, Σ (G) ⊇ Σh (G) ≡
©
σ ◦ h (·, G) |σ ∈ Σ

¡
Gh
¢ª
.

Note that the solutions of the form σ ◦ h (·, G) do not use any irrelevant infor-
mation, in the sense that each type ti plays σi (hi (ti, G)). If an invariant selection
selects σ ∈ Σ

¡
Gh
¢
at Gh, it must also select σ ◦ h (·, G) at G. Hence, it is nec-

essary for invariant selection that some such solution is available at Σ (G), i.e.,
Σ (G) ∩ Σh (G) 6= ∅. Assumption 1 strengthens this necessary condition by re-
quiring that all such solutions are available at Σ (G). The necessary condition is
not enough because invariance imposes many similar conditions. Assumption 1
ensures that all such conditions are satisfied. Due to (2.2), Assumption 1 holds
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for canonical solution concepts such as Bayesian Nash equilibrium and interim
rationalizability.

The second property is a basic extension (and existence) property.

Assumption 2. For any T ∈ M and any invariant selection
¡
σT

0¢
from Σ for

games GT 0 with T 0 ∈ 2T ∩M\ {T}, there exists σ ∈ Σ
¡
GT
¢
such that for every

t ∈ T 0 ⊂ T , σ (t) = σT
0
(t).

That is, given a finite type space, the invariant solutions for its subspaces can be
extended to the type space. Canonical solution concepts, such as Bayesian Nash
equilibrium and interim rationalizability, have this property. The crucial restriction
in this property is that T is finite (or countable). Extension to uncountable type
spaces may not be possible (Friedenberg and Meier (2008)). It is necessary for
invariant selection that some invariant selections for the subspaces to be extendable
to T . Assumption 2 strengthens this necessary condition by requiring that all such
selections are extendable to T .

Towards constructing an invariant selection, I rank the games in G as follows.
Recall that for any game G ∈ G with type space T , h (T,G) ∈M by (2.3). Hence,
by Lemma 1, h (T,G) has some finite rank k, i.e., h (T,G) ∈ Rk for some finite
k ≥ 1. A game G is said to be of rank k if h (T,G) is of rank k. By (2.4), G and
Gh are of the same rank. Write Gk for the set of all games G ∈ G of rank k, and
write Ĝk = ∪l≤kGl. We are now ready to state and prove the main result:

Proposition 2. Under Assumptions 1 and 2, there exists an h-invariant selection
from Σ.

Proof. Using induction on the rank k, the proof constructs an invariant selection
σG, G ∈ G, from Σ, rank by rank. Take k = 1. For every model T ∈ R1 (with
rank k = 1), pick an arbitrary σG

T ∈ Σ
¡
GT
¢
. Here, Σ

¡
GT
¢
6= ∅ by Assumption

2. For any other G ∈ G1, pick σG = σG
h ◦ h. Note that, since σGh ∈ Σ

¡
Gh
¢
, by

Assumption 1, σG ∈ Σ (G). Note also that this constructs a selection σG, G ∈ G1,
from Σ for G1. The selection is invariant because the games in G1 have disjoint
images under h by the last part of Lemma 1.

Now consider any k > 1, and assume that an invariant selection σG, G ∈ Ĝk−1,
from Σ has been constructed. Consider any model T ∈ Rk (with rank k). By Part
3 of Lemma 1, each proper subspace T 0 of T is of rank k − 1 or lower. Hence, by
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the inductive hypothesis, an invariant selection σG
T 0
, T 0 ∈ 2T ∩M\ {T,∅}, from Σ

has been constructed already. Then, by Assumption 2, there exists σG
T ∈ Σ

¡
GT
¢

such that σG
T
(t) = σG

T 0
(t) for all t ∈ T 0 ∈ 2T ∩M\ {T,∅}. Pick σG

T
as the

solution at GT , and repeat this for every T ∈ Rk. For all other games G ∈ Gk
with rank k, pick σG = σG

h ◦ h, where σG ∈ Σ (G) by Assumption 1. (Note that
Gh = GT for some T ∈ Rk.) This constructs a selection from Σ for Ĝk.

In order to complete the inductive construction, check that the selection σG,
G ∈ Ĝk, is indeed invariant. To this end, take any distinct (ti, G) and (t0i, G0) with
hi (ti, G) = hi (t

0
i, G

0) where G = (N,A,Θ, T, κ, u) , G0 = (N,A,Θ, T, κ, u) ∈ Ĝk,
ti ∈ Ti and t0i ∈ T 0i . Note that, since G

h = Gh(T,k) is of rank k, by construction,
σG

T 00

i (t00i ) = σG
h

i (t00i ) for any t00i ∈ T 00i with T 00 ⊆ h (T,G). But, by definition,
hi (ti, G) ∈ T hi(ti,G) and T hi(ti,G) ⊆ h (T,G), where T hi(ti,G) is the unique minimal
model that contains hi (ti, G). Therefore,

(4.1) σG
T
hi(ti,G)

i (hi (ti, G)) = σG
h

i (hi (ti, G)) .

Likewise, σG
T
hi(t

0
i,G

0)

i (hi (t
0
i, G

0)) = σG
0h

i (hi (t
0
i, G

0)). Therefore,

σGi (ti) = σG
h

i (hi (ti, G))

= σG
T
hi(ti,G)

i (hi (ti, G))

= σG
T
hi(t

0
i,G

0)

i (h0i (t
0
i, G

0))

= σG
0h

i (hi (t
0
i, G

0)) = σG
0

i (t
0
i) ,

where the first and the last equalities are by construction, the second equality
by (4.1), and the third equality holds simply because hi (ti, G) = hi (t

0
i, G

0) and
T hi(ti,G) is unique.

Since each game has a finite rank (i.e., G = ∪kGk), this construction picks a
solution σG ∈ Σ (G) for each G ∈ G at some round k. In order to check that σG,
G ∈ G, is invariant, note that for any G,G0 ∈ G, since G,G0 ∈ Ĝk for some k,
σGi (ti) = σG

0
i (t

0
i) whenever hi (ti, G) = hi (t

0
i, G

0), as established in the previous
paragraph. ¤

Under Assumptions 1 and 2, Proposition 2 establishes that there exists an h-
invariant selection from Σ, and its proof explicitly constructs such a selection.
As discussed above, Assumptions 1 and 2 are strengthenings of basic necessary
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conditions for invariant selection. These are weak assumptions in that they hold
for canonical solution concepts, such as Bayesian Nash equilibrium and interim
rationalizability.

The straightforwardness of the construction in the proof of Proposition 2 may
be misleading, as it finesses the following inherent difficulty. The same piece of
relevant information can be modeled by types in uncountable number of games.
In order to construct an invariant selection, one then needs to select the solutions
for uncountable number of such games simultaneously and maintain invariance.
In the construction, such a difficult task is made possible by the lattice structure
established in the previous section, as follows.

Recall from the previous section that for any type ti in any game G ∈ G, there
exists a unique minimal type space T hi(ti,G) ∈M in which the relevant information
hi (ti, G) of ti can be modeled. This type space has the lowest rank kThi(ti,G) among
the type spaces that can model hi (ti, G). The action of all types t0i from games
G0 with hi (t

0
i, G

0) = hi (ti, G) is selected at round k
Thi(ti,G)

, which is the first time
it is possible to express hi (ti, G), using a solution for the minimal type space
T hi(ti,G), which is the only model that contains hi (ti, G) at that rank. Of course,
many of these games have higher ranks than k

Thi(ti,G)
, and the solution to these

games are selected in later rounds. In the construction, these selections respect
the specification of the action for hi (ti, G) that has been made at round k

Thi(ti,G)
.

I will next explore the restrictions imposed by invariance requirement. I will first
establish that any invariant selection in a subfamily can be extended to all games.
Conceptually, this establishes that the invariance requirement on a larger family
of games does not impose any extra restriction on the subfamilies. Pragmatically,
it ensures that if one is only interested in the behavior in a class of games (e.g.
in the solution of a particular game), she can focus on constructing an invariant
selection for that class without worrying about the invariance across all games.

Proposition 3. Under Assumptions 1 and 2, for any G0 ⊆ G and any h-invariant
selection σG, G ∈ G0, from Σ for G0, there exists an h-invariant selection σ̂G,
G ∈ G, from Σ such that σ̂G = σG for every G ∈ G0.

Proof. I will construct a refinement Σ0 of Σ that satisfies Assumptions 1 and 2 and
such that Σ0 (G) =

©
σG
ª
for all G ∈ G0. Then, by by Proposition 2, there exists
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an invariant selection σ̂G, G ∈ G, from Σ0 as in the proposition. Since Σ0 is a
refinement of Σ, σ̂G, G ∈ G, is also a selection from Σ.

To define Σ0, note that, since σG, G ∈ G0, is h-invariant, σG = σG
h ◦ h for some

solution σG
h ∈ Σ

¡
Gh
¢
for each G ∈ G0. Write Ḡ0 = G0 ∪

©
Gh|G ∈ G0

ª
and set

Σ0 (G) =

⎧⎪⎨⎪⎩
{σG} if G ∈ Ḡ0,
{σGT |T 0} if G = GT 0, T 0 ⊂ T , GT ∈ Ḡ0,
Σ (G) otherwise,

where σG
T |T 0 is the restriction of σG

T
to T 0. Since σG, G ∈ G0, is invariant, Σ0 is

well-defined.

To check Assumption 1, note thatΣ0 (G) =
©
σ ◦ h (·, G) |σ ∈ Σ0

¡
Gh
¢ª
forG ∈ G0

by construction and forG ∈
©
GT |T ∈M

ª
by (2.4). For anyG 6∈ G0∪

©
GT |T ∈M

ª
,

Σ0 (G) = Σ (G) ⊇
©
σ ◦ h (·, G) |σ ∈ Σ

¡
Gh
¢ª
⊇
©
σ ◦ h (·, G) |σ ∈ Σ0

¡
Gh
¢ª

,

where the first equality is by construction of Σ0, the next inclusion is by Assumption
1 for Σ, and the last inclusion is due to the fact that Σ0 is a refinement of Σ.

To check Assumption 2, note first that when GT ∈ Ḡ0, Assumption 2 holds for
T and Σ0 by construction. Now consider any T ∈ M with GT 6∈ Ḡ0 and any
invariant selection

¡
σT

0¢
T 0∈2T∩M\{T} from Σ0. This is also an invariant selection

from Σ, and Σ
¡
GT
¢
= Σ0

¡
GT
¢
. Hence, by Assumption 2 for Σ, there exists

σ ∈ Σ
¡
GT
¢
= Σ0

¡
GT
¢
such that for every t ∈ T 0 ⊂ T , σ (t) = σT

0
(t). Therefore,

Assumption 2 holds for Σ0. ¤

I will next characterize the implications of invariance to the solutions of a given
game. As discussed before, invariance of a selection trivially implies that the
solution is invariant, i.e., the types with identical relevant information play the
same action. The next corollary establishes that this is the only implication of
invariance of selections to the set of solutions of a given game. In the sequel, given
a game G∗, a solution σ ∈ Σ (G∗) is said to be selected by σG, G ∈ G, iff σG

∗
= σ.

Corollary 1. Under Assumptions 1 and 2, for any G ∈ G and σ ∈ Σ (G), σ is
selected by an h-invariant selection from Σ if and only if σ is h-invariant.

Proof. The necessity immediately follows from the definition of invariance (applied
to the types in G). To prove the sufficiency, in Proposition 3, take G0 = {G} and
note that σ is an invariant selection for {G}. ¤
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Under Assumptions 1 and 2, the above results establish that there is always an
invariant selection and that invariance does not impose any extra restriction on the
solutions for the subfamilies of games. In particular, a solution of a game is selected
by an invariant selection if and only if the types with identical relevant information
play the same action according to the solution. Hence, if one is interested only
in behavior in a game G, then she can analyze G in isolation by focusing on h-
invariant solutions for G.

5. Invariant Equilibrium Selection

In this section, under the usual regularity conditions, I show that Bayesian Nash
equilibrium satisfies the sufficient conditions for invariant selection, and hence
the conclusions of the previous results are true for Bayesian Nash equilibrium:
there exists an invariant equilibrium selection and an equilibrium is selected by an
invariant equilibrium selection if and only if the equilibrium is invariant.

Given any game G = (N,A, u,Θ, T, κ), by a Bayesian Nash equilibrium of G,
I mean any strategy profile σ∗ = (σ∗1, . . . , σ

∗
n) such that σ

∗
i (ti) ∈ BRti

¡
σ∗−i|G

¢
for

each ti ∈ Ti, where BRti

¡
σ∗−i|G

¢
denotes the set of all mixed best replies of type

ti to σ∗−i in game G. I write BNE (G) for the set of Bayesian Nash equilibria of
G. By an equilibrium selection, I mean a selection from BNE. I will consider the
following regularity condition.

Assumption 3. The set Θ∗ of parameters is compact. For each i ∈ N , action set
Ai is a compact metric space, and each ui is continuous in a and measurable in θ.

Note that Assumption 3 holds in most games considered in Game Theory and
its applications, including finite games. It is made to ensure that Nash equilibrium
exists when types are considered as players. Under this weak assumption, the next
familiar result establishes that Bayesian Nash equilibria satisfies the sufficient con-
ditions for invariant selection. (There are similar results in the literature, including
an equilibrium extension result by Friedenberg and Meier (2008).)

Lemma 2. Under Assumption 3, Assumptions 1 and 2 hold for BNE and h.

Hence, the conclusions of the previous section apply to equilibrium selection:

Proposition 4. Under Assumption 3, the following are true.
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(1) For any G0 ⊆ G and any h-invariant equilibrium selection σG, G ∈ G0, there
exists an h-invariant equilibrium selection σ̂G, G ∈ G, such that σ̂G = σG

for every G ∈ G0.
(2) For any G ∈ G and any σ ∈ BNE (G), σ is selected by an h-invariant

equilibrium selection if and only if σ is h-invariant.
(3) There exists an h-invariant equilibrium selection.

Proof. Note that Part 1 implies both Part 2 (for G0 = {G}) and Part 3 (for G0 = ∅).
Part 1 immediately follows from Lemma 2 and Proposition 3. ¤

Under usual regularity conditions, Proposition 4 establishes that any invariant
equilibrium selection for a subset of games can be extended to all games with finite
type spaces. In particular, there is an invariant equilibrium selection for all such
games. It also implies that, beyond the basic restriction on the actions of types
with identical information, invariance does not lead to any equilibrium refinement;
it only restricts the way the solutions vary across games.

6. Equilibrium on T u

There is a one-to-one correspondence between the invariant equilibrium selec-
tions and the equilibria on T u, the universal space of finite types. In this section,
using this correspondence and the results of the previous section, I will show that
there exists an equilibrium on T u, and indeed, every equilibrium on its belief-closed
subspaces can be extended to T u.

For any player i, by strategy, I mean any function σi : T
u
i → ∆ (Ai). By a

Bayesian Nash equilibrium on T u, I mean any strategy profile σ∗ = (σ∗1, . . . , σ
∗
n)

such that σ∗i (ti) ∈ BRti

¡
σ∗−i
¢
for each ti ∈ T u

i where BRti

¡
σ∗−i
¢
is the set of best

replies for ti against σ∗−i. The strategies and equilibria on subspaces are defined
similarly. It is crucial here that I do not impose any measurability condition on the
strategies. Since strategies are conditioned on players’ types already, measurability
is not needed for players’ knowing their own actions. It is not needed for expec-
tations either because the types’ beliefs have finite support, yielding well-defined
beliefs on Θ∗ × A−i for each ti and each σ−i. Consequently, BRti

¡
σ∗−i
¢
is well-

defined. The following lemma establishes the one-to-one correspondence between
the invariant equilibrium selections and the equilibria on the subspaces of T u.
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Lemma 3. For any G0 ⊆ G, an equilibrium selection σG, G ∈ G0, is h-invariant if
and only if there exists a Bayesian Nash equilibrium σ∗ on T G

0 ≡
W

G=(N,A,Θ,T,κ,u)∈G0 h (T,G)

such that

(6.1) σ∗i (hi (ti, G)) = σGi (ti) (∀G = (N,A,Θ, T, κ, u) ∈ G0, i ∈ N, ti ∈ Ti) .

That is, invariant selections on G0 are precisely the selections obtained by re-
stricting the equilibria on T G

0
to its subspaces. Due to this correspondence, the

previous results on invariant equilibrium selection immediately yield the following
existence result for equilibrium on the space of all finite types. (See the appendix
for a detailed proof.)

Proposition 5. Under Assumption 3, the following are true.

(1) For any G0 ⊆ G and any h-invariant equilibrium selection σG, G ∈ G0, there
exists a Bayesian Nash equilibrium σ∗ on T u such that σ∗i (hi (ti, G)) =
σGi (ti) for every G ∈ G0 and every type ti in G.

(2) For anyM 0 ⊆M and any Bayesian Nash equilibrium σ on TM 0 ≡
W

T∈M 0 T ,
there exists a Bayesian Nash equilibrium σ∗ on T u such that σ∗ = σ on TM 0

.
(3) For any G ∈ G and any h-invariant σ ∈ BNE (G), there exists a Bayesian

Nash equilibrium σ∗ on T u such that σ∗i (hi (ti, G)) = σGi (ti) for all ti in G.
(4) There exists a Bayesian Nash equilibrium on T u.

Part 2 states that any equilibrium defined on any subspace can be extended to
T u, the space of all finite types. By Lemma 3, this is equivalent to stating that
for any invariant selection for any family of games, there is an equilibrium on T u

that specifies the actions of the types in the family according to the selection–
Part 1. This result is very useful in equilibrium analysis on T u. In such an
analysis, one often needs to specify a partial strategy for a given set of types
and have an equilibrium on T u in which the given types play according to the
specification. For a suitably selected set of types, it is relatively easy to verify
that the specified behavior of the given types is part of an equilibrium of the
games the types come from and that these equilibria form an invariant selection.
On the other hand, specifying a nontrivial equilibrium on T u is a prohibitively
difficult task because of the complex interconnections between the types in T u

and between their best responses. The result stated in Parts 1 and 2 frees the
researcher from the latter daunting task. Thanks to this result, she can focus on
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specifying the equilibrium behavior on the relevant games without worrying about
whether the specified behavior is part of an equilibrium on T u. (See Weinstein and
Yildiz (2008) for such an application.)

As a special case (for G0 = {G}), this result implies that any invariant equilib-
rium of any game G can be extended to the space of all finite types, as in Part
3. That is, one can focus on the equilibria on T u without ruling out any equi-
librium of games in which distinct types have distinct relevant information. For
example, in robustness analysis for equilibria of these games, it suffices to analyze
the sensitivity of equilibria on T u to perturbations in T u.

Finally, as another special case (for G0 = ∅), the result establishes existence
of an equilibrium on the space of finite types. This fills an important gap in the
literature, in which very little is known on the existence of equilibrium on the
universal type space and on its prominent subspaces, such as T u. Simon (2003)
shows existence of equilibrium on spaces that can be partitioned into countable
subspaces and in which the types have finite support. Unfortunately, one cannot
partition T u because given any two types in T u, there is another type in T u that
puts positive probabilities on both of the given types. (This property is exhibited
by most prominent subspaces of the universal type space, such as the spaces of all
finite types with common prior and all countable types, and one cannot partition
them, either.)

The crucial modeling assumption here is that I do not require that the strategies
are measurable, which is not necessary here. In a larger type space with types that
have uncountable supports, one needs to impose a measurability restriction on the
strategies. In that case, the above results may not be true. For example, in a
particular class his existence result applies, Simon (2003) shows that all equilibria
must be in non-measurable strategies (cf. Part 4). Under the measurability re-
striction, Friedenberg and Meier (2008) show that some equilibria of a given game
may not be extendable to a larger space even if there is an equilibrium in the larger
space (cf. Part 3).

Finally, note that if A is convex and ui is concave in own action, the above
results also apply to equilibria in pure strategies.
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7. Concluding Remarks

A piece of relevant information can be modeled through multiple types coming
from various Bayesian games. In order to avoid the solution to depend on the choice
of modeling the information, one may want to require that all these types take the
same action according to the solutions to these games. That is, the solutions to
the Bayesian games form an invariant selection. In this note, without subscribing
to any notion of relevance of information, I construct an invariant selection for
the space of all games with finite type space from arbitrary solution concepts that
satisfy two basic conditions, which are satisfied by canonical solution concepts, such
as Bayesian Nash equilibrium and interim rationalizability. I further show that any
invariant selection within a subfamily can be extended to the family of all games
with finite type spaces. Constructing such a selection is a difficult task because
one needs to equalize the actions of uncountable number of types from various
games with complicated interconnections that are difficult to foresee. In order
to construct such a selection, I first establish a very interesting and useful lattice
structure for the finite type spaces within the universal type space, a structure that
is clearly useful beyond the scope of this paper. It is this structure that enables
me to construct an invariant selection in a straightforward manner without making
any significant assumption.

There is a one-to-one correspondence between the invariant equilibrium selec-
tions and the equilibria on the space of all finite types. Using this correspondence,
I show that there exists an equilibrium in that space, filling an important gap in
the literature, and show that indeed any equilibrium in any type space can be
extended to entire space, which is a quite useful result in equilibrium analysis on
the space of all finite types.

In this paper, I focus on the finite type spaces. The specific construction I use
relies on the finiteness because infinite type spaces may have infinite ranks, and
my construction may not specify the actions of all types in such type spaces. It
seems, however, that one can extend the analysis here to the space of all count-
able type spaces using more elaborate techniques.2 For such type spaces, one does
not need the strategies to be measurable, and the underlying results used in the
construction hold. In particular, the lattice structure still applies and Bayesian

2I thank Jonathan Weinstein for pointing this out.
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Nash equilibrium satisfies the relevant sufficient conditions for an invariant selec-
tion. The only difficulty is that one needs to use infinite ordinals to rank the type
spaces. Hence, in the construction, one needs to use transfinite induction, instead
of the usual induction employed here. In order to avoid the technical difficulties, I
have not considered that extension.

Appendix A. Omitted Proofs

Proof of Lemma 1. Part 1 immediately follows from the definition of Rk, and Part 3
immediately follows from Parts 1 and 2.

(Part 2) Take any T ∈ M and integer K such that T 6∈ Rk for any k ≤ K. Then,
by Part 1, there exist models T 1, . . . , TK ∈ M\ {∅} with T 1 $ · · · $ TK $ T . In
particular, |T | > K. Therefore, for any T ∈M , T ∈ RkT for some kT ≤ |T |.

(Part 4) By Proposition 1, T̄ ∈ M . Hence, by Part 2, it has a rank kT̄ . For any
T ∈M 0, since T̄ ⊆ T , by Part 3, kT̄ ≤ kT , with strict inequality whenever T 6= T̄ . ¤

Proof of Lemma 2. In order to show that Assumption 1 holds for BNE, take any σ ∈
BNE

¡
Gh
¢
for some G. I will show that for each ti in G, the belief πti (·|σ−i ◦ h−i) ∈

∆ (Θ×A−i) of type ti on Θ × A−i is equal to the belief πhi(ti,G) (·|σ−i) ∈ ∆ (Θ×A−i)

of type hi (ti, G) on Θ × A−i. Since σ ∈ BNE
¡
Gh
¢
, this implies that σi (hi (ti,G)) ∈

BRhi(ti,G)

¡
σ−i|Gh

¢
= BRti (σ−i ◦ h−i|G) for each ti inG, showing that σ◦h ∈ BNE (G).

To show πti (·|σ−i ◦ h−i) = πhi(ti,G) (·|σ−i), take any (θ, a−i). Then,

πhi(ti,G) (θ, a−i|σ−i) =
X

h−i(t−i,G)∈h−i(T−i,G)
κu,hhi(ti,G)

(θ, h−i (t−i, G))σ−i (a−i|h−i (t−i,G))

=
X

h−i(t−i,G)∈h−i(T−i,G)

X
t0−i∈T−i∩h

−1
−i (h−i(t−i,G),G)

κti
¡
θ, t0−i

¢
σ−i

¡
a−i|h−i

¡
t0−i,G

¢¢
=

X
t0−i∈T−i

κti
¡
θ, t0−i

¢
σ−i

¡
a−i|h−i

¡
t0−i, G

¢¢
= πti (θ, a−i|σ−i ◦ h−i) ,

where the first and last equalities are by definition, the second equality is by (2.2), and
the third one is by rearrangement of the sum.

In order to show that Assumption 2 holds for BNE, take any T ∈M and any invariant
equilibrium selection σG

T 0
for the proper subspaces T 0 of T . Let T̂ =

W
T 0∈M∩2T \{T} T

0

and note that, by Lemma 3, there exists an equilibrium σ on T̂ such that σG
T 0

i (ti) =

σi (ti) for each ti ∈ T̂i. If T̂ = T , this already proves the result. Assume T\T̂ 6= ∅,
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and define the complete-information game with set N̄ ≡ ∪i
³
Ti\T̂i

´
of players, with

action set Ai for each player ti ∈ N̄ , and with utility function Uti on strategy profiles
s : ti 7→ si (ti), ti ∈ N̄ , defined as the expected payoff of ti when each tj ∈ N̄ plays sj (tj)
and each tj ∈ T̂j plays σj (tj) for all j ∈ N . Since the expectation operator preserves
continuity (by the bounded convergence theorem), under Assumption 3, each player
ti ∈ N̄ has a continuous utility function with a compact action space Ai. Since N̄ is also
finite, by Glicksberg’s (1952) Theorem, the constructed game has a Nash equilibrium σ̂

in possibly mixed strategies. Define the Bayesian Nash equilibrium σ∗ : T → ∆ (A) by
σ∗i (ti) = σi (ti) if ti ∈ T̂i and σ∗i (ti) = σ̂i (ti) otherwise. ¤

Proof of Lemma 3. As in Section 2, a strategy profile σ∗ on TG
0
is well-defined by (6.1)

iff the family σG is h-invariant. Moreover, as in the proof of Lemma 2, for any G ∈ G0
and ti in G, BRti

¡
σG−i|G

¢
= BRhi(ti,G)

¡
σ∗−i

¢
. Hence, by (6.1), σGi (ti) ∈ BRti

¡
σG−i

¢
iff

σ∗i (hi (ti, G)) ∈ BRhi(ti,G)

¡
σ∗−i

¢
. Therefore, σG is an equilibrium of G for every G ∈ G0

iff σ∗ is a Bayesian Nash equilibrium on TG
0
. ¤

Proof of Proposition 5. (Part 1) By Proposition 4, there exists an h-invariant equilibrium
selection σ̂G, G ∈ G, such that σ̂G = σG for every G ∈ G0. Then, by Lemma 3, there
exists a Bayesian Nash equilibrium σ∗ on T u such that σ∗i (hi (ti, G)) = σ̂Gi (ti) for every
G ∈ G and every type ti in G. When G ∈ G0, σ∗i (hi (ti,G)) = σ̂Gi (ti) = σGi (ti).

(Part 2) Take G0 =
©
GT |T ∈M 0ª. For each T ∈ M 0, set σG

T
= σ|T ∈ BNE

¡
GT
¢
,

where σ|T is the restriction of σ to T . Then, by Lemma 3, σG
T
, GT ∈ G0, is an h-invariant

equilibrium selection for G0. Hence, by Part 1, there exists a Bayesian Nash equilibrium
σ∗ on Tu such that σ∗i (ti) = σ∗i

¡
hi
¡
ti,G

T
¢¢
= σG

T

i (ti) = σi (ti) for all ti ∈ Ti and
T ∈M . Here, the first equality is by (2.4).

Finally, Part 1 implies both Part 3 (for G0 = {G}) and Part 4 (for G0 = ∅). ¤
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