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Abstract

The equilibria of a coordination game with incomplete information depend on its in-

formation structure, i.e. the joint distribution of signals and fundamentals. Rather than

exogenously assuming an information structure like most models in the literature, we al-

low the players to acquire information according to their own interests. The information

structure then emerges as a part of the equilibrium rather than results in it. This setup

avoids the arbitrariness in choosing information structure. The players� information ac-

quisition behavior is modeled by rational inattention, a theory stating that human beings

have limited capacity for information processing/acquisition and can optimally use it sub-

ject to such capacity constraint. Rational inattention has a solid foundation built upon

Shannon�s information theory. It frees the model from the behavioral details of human

beings�information acquisition and thus is �exible enough to provide a general framework

for the analysis of endogenous information acquisition. We show that MLRP (Monotonic

Likelihood Ratio Property) holds if ratio of strategic complementarity to the marginal cost

of information acquisition is no greater than unit and may not hold otherwise. Our model

also generates some results distinct from most global games with exogenous information.

For example, we show that lowering cost of information acquisition leads to multiplicity,

which is opposite to the implication of a well known result that increasing the accuracy of

private information facilitates uniqueness. We show that all the distinctions come from the

di¤erence between the �exible information structure of our model and the rigidity imposed

on the previous ones.

�I am grateful to Stephen Morris for his guidance and comments. I also thank Marco Battaglini, Christopher

Sims and Jorgen Weibull for their comments. I would like to thank Chi Li, Xin Wan and Yi Wang for the helpful

discussion with them.
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1 INTRODUCTION

Coordination is broadly oberserved in human activities and is often modeled by coordination

games. Generally, in a coordination game with complete information, multiple equilibria emerge

and undermine the prediction power of the model. As introduced by Carlsson and van Damme

(1993), the approach of global games appears as a natural re�nement to get rid of such mul-

tiplicity. A global game is an incomplete information game where the players are not sure

about the payo¤ structure but can make inference according to their privately observed sig-

nals. This uncertainty about the payo¤ structure and the other players�believes weakens the

common knowledge and thus facilitates the uniqueness. Regaining the prediction power, global

game models are widely used in the study of currency attacks (Morris and Shin (1998)), debt

pricing (Morris and Shin (2004)) and bank runs (Goldstein and Pauzner (2005)), etc. A com-

mon feature of these models is the exogeneity of their information structure, which determines

the equilibrium outcomes. While bringing back the prediction power, however, this approach

also brings in the arbrtrariness in choosing information structure, which makes the equilibrium

outcomes manipulable. Moreover, the information structure is usually assumed to satisfy the

Monotonic Likelihood Ratio Property (MLRP thereafter). Then a series of questions arise:

where does MLRP come from? Is it always valid? If not, under what condition is it reasonable?

These questions cannot be answered within a model having exogenous information structure

since MLRP itself is a part of the information structure. To avoid this arbitrariness and justify

MLRP, we study a global game model with endogenous information structure.

Two players coordinate in investing a risky project. The project�s fundamental (pro�tability)

is distributed according to a common prior. Each player�s utility from investing depends on

the uncertain fundamental as well as his opponents�actions. The players�actions are assumed

to be strategic complements. To endogenize the information structure, we allow the players

to actively acquire information according to their own interests rather than passively respond

to the given signals. Speci�cally, a player can choose the joint distribution of his signals and

the fundamental1 and makes decision upon the realization of the signals. It is not surprising

that the players would like to establish a ono-to-one mapping between the fundamental and

their signals if there is no other constraints. This is equivalent to allow the players to observe

the exact value of the fundamental and reduces to the games with complete information. This

setup not only makes our problem a trivial one but is also unrealistic in many situations. Thus

we need to add some constraints on the players�information acquisition behavior. Here we �nd

rational inattention a proper modeling technique.

1 It is equivalent to choose a conditional distribution of his signal on the fundamental since the marginal

distribution of the fundamental is just the common prior.
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The theory of rational inattention has two basic assumptions: i) the players� capacity for

information processing/acquisition is limited; ii) facing this limit, the players can optimally use

their capacity to acquire/process information according to their objectives. Here information

is measured by the reduction of Shannon entropy of the fundamental. The �rst assumption

says that there exists an upper bound for this entropy reduction. According to Shannon�s

information theory, this assumption is natural since nothing in the world is able to process

in�nte information within a given time period. In practice, this capacity upper bound may

come from the limited computational power or the �xed number of analysts, etc.The second

assumption may not be always realistic but serves as a benchmark. It can be viewed as the

usual "rational man" assumption in this endogenous information acquisition context. Rational

inattention imposes the least restrictions on the possible information structures and is hence

consistent with our purpose of avoiding the arbitrariness. Having a solid fundation built upon

information theory, rational inattention frees us from the behavioral details of information

acquisition and thus has the potential to provide a general framework for analyzing endogenous

information acquisition problems.

Rational inattention is �rst introduced by Sims (1998) to model the price stickiness. Sims

(2003, 2006) further develop the theory. Mackowiak and Wiederholt (2009) examines its e¤ects

in a dynamic stochastic general equilibrium framework. While these macroeconomic models

focus on the single person (the representative agent) decision problem, our model studies its

e¤ects in a strategic interactive environment. This is not merely another application of ra-

tional inattention as some new insight emerges from the combination of rational inattention

and strategic games. The strategic complementarity between the players�actions induces the

strategic complementarity between their information acquisition behavior, which leads to mul-

tiplicity. This result is similar to the main result of Hellwig and Veldkamp (2009)2 . Moreover,

if we set the parameter of strategic complementarity to zero, multiplicity disappears and our

model reduces to a single person decision problem.

In our (capacity) constrained information acquisition problem, we fully characterize all the

equilibria. We �nd that i) all equilibria are symmetric; ii) the equilibria can be divided into

three types: pooling equilibria, perfect separating equilibria and partial separating equilibria.

In the �rst type of equilibria the players pool in the same action and does not use their capacity

to process information. In the second type of equilibria the players partition the possible states

of the world into two positive-probability events corresponding to "invest" and "not invest",

repectively. Their capacity is large enough and they know exactly which event happens. In

2Hellwig and Veldkamp (2009) also study the endogenous information acqusition in a strategic interactive

environment, but they do not use rational inattention as a modeling technique.
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the third type of equilibria the players� capacity constraint binds and he can not perfectly

distinguish the above two events. The pooling equilibria and the perfect separating equilibria

are two extreme cases where capacity constraint is slack, either because there is no need to

acquire information or because the player�s capacity is su¢ ciently large. In the main part of

the paper, we provide necessary and su¢ cient conditions for the existence of these equilibria.

We �nd that MLRP holds if the players�capacity is low enough but may not hold if otherwise.

When solving the constrained information acquisition problem, the Lagrangian multiplier for

the capacity constraint is actually the shadow price of the capacity. Suppose � = � (�) > 0 is

the Lagrangian multiplier in an equilibrium and the corresponding capacity endowment is �. If

we remove the capacity constraint but allow the players to acquire information at a marginal

cost � (�), we will end up with the same equilibrium3 where each player acquires � bits of

information. We call this new problem the costly information acquisition problem, in which no

capacity constraint is imposed but the players have to acquire information at some marginal

cost. In practice, this marginal cost can be the expenditure of purchasing another computer

or hiring one more analyst, etc. These two problems are closely related and their results are

similar except that the latter one only has two types of equilibria: pooling equilibria and

partial separating equilibria. In the main part of the paper, we �rst present the constrained

information acquisition problem to provide a full characterization of the possible equilibria

in this endogenous information acquisition environment and then use the costly information

acquisition problem to further our analysis since it is easier to deal with mathematcially.

We provide a clear condition to justify MLRP. MLRP must hold if the ratio of the strategic

complementarity to the marginal cost of information acquisition is less than unit and may not

hold if otherwise. The strategic complementarity re�ects the players�motive of coordination

and the marginal cost measures the di¢ culty to do so. Thus we can de�ne their ratio as the

e¤ective strategic complementarity of the game. Intuitively, MLRP is incentive compatible since

it makes the players more likely to invest if it is more probable to be in a good state. However, if

the e¤ective strategic complementarity is too high, there may exist excessive coordination since

a player now has enough incentive and ability to coordinate with his opponent�s (irregular)

non-MLRP strategy.

We also compare the implications of the current model to that of the global games litera-

ture. We show that large e¤ective strategic complementarity leads to multiplicity (under some

regularity conditions). In other words, if the cost of information acquisition is low enough, the

players have multiple ways of coordinating in acquiring information. A well known result in

global games literature is that increasing the precision of private information facilitates unique-

3There might be other equilibria.
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ness. We extend the standard global game model by allowing the players to buy the precision

of their private signals at some cost and show that they would like to buy in�nitely precise

signals if such cost approaches zero. Thus the traditional model says that lowering the cost of

information acquisition favors the uniqueness rather than the multiplicity. Hence the current

model and the previous models have totally opposite predictions about the e¤ect of the cost of

information acquisition.

Another well known result in the literature is that the uniqueness is guaranteed if the private

signals are su¢ ciently accurate relative to the public signals (e.g. Morris and Shin (2004)).

In other words, the e¤ects on the uniqueness of increasing the precision of public signals can

be o¤set through increasing the precision of private signals. For the extended standard global

game model mentioned in last paragragh, we show that this e¤ect of increasing the precision

of public signals can be also o¤set by lowering the cost of private information acquisition. In

our endogenous information model, however, under some regularity conditions there are always

in�nitely many equilibria when the e¤ective strategic complementarity is large, regardless of the

precision of public information, i.e. the e¤ects of public information and private information

acquisiiton are disentangled. The reason is that when the cost of information acquisition is

samll, the players have enough freedom in allocating their attention, which in turn improves

their coordination. We show that all these distinctions come from the di¤erence between the

�exible information structure of the current model and the rigidity imposed on the previous

ones.

Our model also generates some results consistent with the previous global game models, e.g.

we show that providing public information of high precision leads to multiplicity.

I proceed as following. Section II sets up the benchmark model and show some simple facts

about the equilibrium information acquisition behavior. Section III studies the (capacity) con-

strained informaiton acqusition problem and fully characterizes the possible equilibria in the

environment of endogenous information acquisition. Section IV addresses the costly informa-

tion acquisition problem, further analyzes the e¤ects of public information and cost of private

information acquisition, and compare the implications of our model to previous global game

models. We conclude in Section V with several directions for further research. Appendix A

provides some basic knowledge of information theory and rational inattention. Appendix B is

a collection of technical proofs.
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2 THE BENCHMARK MODEL

2.1 The Basic Environment

Two players4 play a coordination game with payo¤s shown below

I N

I (�; �) (� � r; 0)
N (0; � � r) (0; 0)

(2:1)

where fI;Ng is the action set standing for finvest; not investg, � is the fundamental that
represents the pro�tability of the project and r > 0 measures the degree of strategic comple-

mentarity5 .

Let cummulative distribution function P (�) denote the common prior about the fundamental
�. P (�) can contain both absolutely continuous component and discrete components.6 To avoid
the trivial case where there is no uncertainty, we assume that supp(P (�)) has strictly more than
one point. This is called the non-triviality assumption thereafter.

Each player �rst independently collect information about the fundamental. Speci�cally,

player i 2 f1; 2g chooses a conditional density function qi
�
sij�
�
for his private signal si. To

make it concrete, let si 2 Si 2 R.7 These signals are private in the sense that they are

independent when conditioned on �. The conditional independence assumption models the

players�independent information collecting behavior. The players then take actions after ob-

serving the realization of their private signals. Thus player i�s strategy can be characterized

by
�
qi (�j�) ; �i (�)

�
, where qi : R ! �

�
Si
�
determines the information being collected and

�i : Si ! [0; 1] is a mapping from possible realizations of i�s private signal to the probability of

choosing I.

The conditional density function qi (�j�) describes player i�s information collecting behavior.
By choosing di¤erent functional forms for qi

�
sij�
�
, player i can make his signal covariate with

4Here the "two-player" setup is not as restrictive as it seems at the �rst glance, since all our results also hold

in the setup of a continuum of players if we slightly change the payo¤ for "invest" to � � r � (1�m), where m
is the fraction of the players that invest.

5The more general case with r (�) > 0 a:s: can also be studied in our framework and many key results still

hold. Here we assume constant strategic complementarity for the sake of simplicity.
6Note that the public signals a¤ect the common prior, thus their e¤ects on the equilibria can be studied

through the comparative static analysis with respect to the common prior. The e¤ects of the public signals are

studied in the latter part of the paper.
7Here it is not essential to assume Si 2 R. The realizations of the signal can belong to an arbitrary abstract

space. All our results hold regardless of this assumption.
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the fundamental in any way he would like. For example, if player i�s welfare is sensitive to the

�uctuation of the fundamental within some range A �supp(P (�)), he would pay much attention
to this event by making si highly correlated to � 2 A. Generally, we use I

�
si; �

�
, the mutual

information between the two random variables si and �, to measure the amount of information

about � that is contained in si. I
�
si; �

�
is uniquely determined by the functional form of qi

�
sij�
�

but not vice versa. A functional form of qi
�
sij�
�
de�nes a speci�c way of information collecting,

or in other words, it determines what information about � to be collected. Di¤erent forms of

qi
�
sij�
�
may generate the same value for I

�
si; �

�
, i.e. the same amount of information may be

collected from di¤erent aspects of �.8 Intuitively, if player i is allowed to choose the conditional

distribution without any constraint, he would like to establish a one-to-one mapping between his

signal and � and thus obtain all the information of the fundamental. This makes our problem a

trivial one since it is just a coordiantion game with complete information. Besides the triviality,

this arbitrariness in choosing the functional form of qi
�
sij�
�
is also unrealistic. The mutual

information between � and si represents player i�s capacity of information processing/collecting

and thus must have an upper bound9 , i.e. 9� > 0 s.t. I
�
si; �

�
� �. If this upper bound

is strictly less then the uncertainty (i.e. Shannon entropy) of the fundamental, no one-to-one

mapping can exist between � and si. This is the case especially when the common prior P (�)
has a continuous component, which leads to an in�nite Shannon entropy of �. Therefore, we

impose the capacity constraint on the players�information acquisition behavior:

Assumption (A1): player i 2 f1; 2g can choose any conditional density function qi
�
sij�
�
2

Qi�, where � > 0 is a constant that measures the players�capacity of information processing,

Qi ,
�
q : R! �

�
Si
�	
and Qi� ,

�
q 2 Qi : I

�
si; �

�
� �

	
.

Note that [�2R+Qi� = Qi.

The objective of player i 2 f1; 2g is to utilize his capacity to maximize his expected utility.
When � is large enough, player i may have multiple methods of information acquisition that

lead to the same maximized expected utility. To avoid this trivial multiplicity and make our

analysis brief and clear, we also assume that the players do not collect the information that is

never used. We summarize the players�preferences in the assumption below:

Assumption (A2): i) the players prefer higher expected utility, where for any pair of strategies

8For a better understanding, please read Appendix A for some basics of information theory and rational

inattention.
9As a general principle, nothing in the world can process in�nite information within a given period.
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��
q1 (�j�) ; �2 (�)

�
;
�
q2 (�j�) ; �2 (�)

��
, the expected utility of player i 2 f1; 2g is

ui = ui
�
q1 (�j�) ; �2 (�) ; q2 (�j�) ; �2 (�)

�
=

Z
�

Z
si
�i
�
si
�
�
Z
sj

�
�j
�
sj
�
� � +

�
1� �j

�
sj
��
� (� � r)

�
� qj
�
sj j�

�
� dsj � qi

�
sij�
�
� dsi � dP (�)

=

Z
�

Z
si

Z
sj
�i
�
si
�
�
�
� � r �

�
1� �j

�
sj
���

� qi
�
sij�
�
� qj
�
sj j�

�
� dsj � dsi � dP (�)

ii) if two feasible strategies generate the same expected utility, the player prefers the one with

less mutual information.

A constrained information acquisition problem G (r; �) can be stated as: two players with

preference (A2) play the game with payo¤ matrix shown in (2:1). Player i 2 f1; 2g chooses
strategy

�
qi
�
sij�
�
; �i (�)

�
subject to the capacity constraint (A1), where �i : Si ! [0; 1] is a

mapping from possible realizations of i�s private signal to the probability of choosing I. The

equilibrium concept is Bayesian Nash equilibrium.

In principle, this problem seems hard to deal with, since the players�possible choices belong

to a functional space and even S1 and S2, the sets of the possible realizations of the private

signals are endogenous. However, some patterns emerge from the players�optimization behavior

and next subsection provides a �rst simpli�cation of our problem.

2.2 Some Simple Facts About The Equilibria Of The Constrained

Information Acquisition Problem

De�ne Si = [�2supp(P (�)) (supp (qi (�j�))), i 2 f1; 2g.

Let SiI =
�
si 2 Si : �i

�
si
�
= 1
	
, SiN =

�
si 2 Si : �i

�
si
�
= 0
	
and Siind =

�
si 2 Si : �i

�
si
�
2 (0; 1)

	
.

Then
�
SiI ; S

i
N ; S

i
ind

�
is a partition of Si and Pr

�
SiI
�
+ Pr

�
SiN
�
+ Pr

�
Siind

�
= 1.

Lemma 01 in the equilibrium of the constrained information acquisition problem, #
�
Si
�
= 1

or 2, and Pr
�
Siind

�
= 0, 8i 2 f1; 2g.

Proof. see Appendix B.

The intuition behind Lemma 01 is that player i has no incentive to distinguish di¤erent

realizations within any set of SiI , S
i
N and Siind, since this e¤ort generates no utility but incurs

cost of information collecting. It also suggests that the mixed strategies are not played in

equilibria. Since player i is indi¤erent between I and N when event Siind happens, he would

pay no attention to distinguish it from other realizations. Thus there is no need for Siind to

exist and player i always plays the pure strategy upon receiving his signal.
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Let mi (�) , Pr (player i chooses Ij�) be the probability that player i 2 f1; 2g invests when
the true state of the fundamental is �. Then mi (�) is totally determined by player i�s strategy�
qi
�
sij�
�
; �i (�)

�
, i 2 f1; 2g. On the other hand, Lemma 01 implies that player i�s strategy�

qi
�
sij�
�
; �i (�)

�
is also totally determined by mi (�). Speci�cally, when Pr (mi (�) = 1) = 1

(Pr (mi (�) = 0) = 1), let Si =
�
siI
	
, 8� 2supp(P (�)), qi

�
siI j�

�
= 1 and �i

�
siI
�
= I (Si =

�
siN
	
,

8� 2supp(P (�)), qi
�
siN j�

�
= 1 and �i

�
siN
�
= N); otherwise, let Si =

�
siI ; s

i
N

	
, 8� 2supp(P (�)),

qi
�
siI j�

�
= mi (�), qi

�
siN j�

�
= 1�mi (�), �i

�
siI
�
= I and �i

�
siN
�
= N . In other words, mi (�)

is a su¢ cient statistic of player i�s equilibrium strategy and we can directly focus on the pair

(m1 (�) ;m2 (�)) when studying the equilibria. Let ai = I or N be a generic action of player

i, then mi (�) determines the conditional distribution of ai as well as the mutual information
I
�
ai; �

�
between player i�s action and the fundamental. According to Lemma1, the capacity

constraint becomes I
�
ai; �

�
� � and player i�s objective is to maximize his expected utility

through choosing mi (�) subject to this capacity constraint.

In principle, the players can choose any function m (�) from some abstract functional space


. To make our analysis precise and rigorous, however, we need to require 
 to satisfy some

regularity conditions.

Let P1 (�) and P2 (�) denote the absolutely continuous and the discrete components of the
common prior P (�), respectively. Let L (R;P (�)) =

�
f j
R
jf (�) j � dP (�) <1

	
and de�ne a

distance � (�; �) on L (R;P (�)) as � (m1;m2) =
R
jm1 (�)�m2 (�) j�dP (�), 8m1;m2 2 L (R;P (�)).

8m 2 L (R;P (�)), 8� > 0, de�ne the vibration function of m as

wm;� (�) = inf
fF�RjPr(F )=0g

sup
�1;�22[���=2;�+�=2]\supp(P1(�))nF

jm (�2)�m (�1) j

. Then let 
 � L (R;P (�)) be a closed set of uniformly bounded functions and satisfy the
following property:

Property A: if P1 (�) is the absolutely continuous component of the common prior P (�), then
8� > 0, 9� (�) > 0, s.t. 8m 2 
,

R
wm;�(�) (�) � dP1 (�) < �.

Property A is actually a "uniformly integrable" condition, it makes the possible strategy

space 
 a convext and compact functional space. This assumption is not as restrictive as it

looks like, at least in the sense that all the equilibria solved out later satisfy Property A. It

actually excludes those strategies that vibrate so wildly with non-zero probability. Since these

ill-conditioned strategies are impossible to belong to any equilibrium, our assumption here is

appropriate.
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3 THEGENERALAPPROACHTOTHECONSTRAINED

INFORMATION ACQUISITION PROBLEM

We �rst formalize the constrained information acquisition problem and establish the existence

of the equilibria. Then we fully characterize the three types of possible equilibria and provide

the necessary and su¢ cient conditions for each type.

Given a pair of strategies (m1 (�) ;m2 (�)), 8i; j 2 f1; 2g ; i 6= j, player i�s expected utility is

ui (mi (�) ;mj (�)) =
Z
mi (�) � [� � r � (1�mj (�))] � dP (�) (3:1)

. Player i�s objective is to maximize his expected utility given by (3:1) subject to the capacity

constraint I
�
ai; �

�
� �. Note that I

�
ai; �

�
, the mutual information between player i�s action

and the fundamental is actually a functional of emi (�). To make it clear, we use I (emi (�)) instead
of I

�
ai; �

�
thereafter.

An equilibrium of the constrained information acquisition problem is a pair (m1 (�) ;m2 (�))
solving the the following problem:

i; j 2 f1; 2g , i 6= j, mi (�) 2 argmaxemi(�)
ui (emi (�) ;mj (�)) =

Z emi (�)�[� � r � (1�mj (�))]�dP (�) (3:2)

s.t. emi (�) 2 


emi (�) 2 [0; 1] (3:3)

and � � I (emi (�))

=

Z
[emi (�) ln emi (�) + (1� emi (�)) ln (1� emi (�))] dP (�)

�epIi ln epIi � (1� epIi) ln (1� epIi) (3:4)

where epIi = Pr (player i chooses I) = R emi (�) � dP (�).

Proposition 1 the Nash equlibrium of the constrained information acquisition problem exists.

Proof. let 
� = femi (�) 2 
 : 8� 2 supp (P (�)) , emi (�) 2 [0; 1] and I (emi (�)) � �g. Since I (emi (�))
is a continuous functional of emi (�) and is always non-negative (a property of mutual informa-
tion), 
� is a closed subset of 
. Note that L1 (R) is Hausdor¤ and so is its subset 
, thus


� is a closed subset of a compact Hausdor¤ space. This implies that 
� is also compact.

On the other hand, as a property of mutual information, I (emi (�)) is a convext functional ofemi (�), therefore 
� is convext and compact. Player i�s expected utility ui (mi (�) ;mj (�)) is a
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continuous and linear functional with respect to his strategymi (�), thus it is also quasi-concave.
According to Nash equilibrium theorem, the Nash equilibrium exists.

Since 
� is convex and compact and player i�s expected utility ui (emi (�) ;mj (�)) =
R emi (�) �

[� � r � (1�mj (�))] �dP (�) is a continuous and quasi-concave functional with respect to emi (�),
we can solve the equilibrium by Lagrangian method. Let �i (�) � 0, �i (�) � 0 and �i � 0 be
the multipliers for emi (�) � 1, emi (�) � 0 and the capacity constraint � � I (emi (�)), repectively.
Player i�s Lagrangian is

Li =

Z emi (�) � [� � r � (1�mj (�))] � dP (�) + �i � �+ �i � [epIi � ln epIi � (1� epIi) � ln (1� epIi)]
��i �

Z
[emi (�) ln emi (�) + (1� emi (�)) ln (1� emi (�))] � dP (�)

+

Z
[�i (�) [1� emi (�)] + �i (�) emi (�)] � dP (�) (3:5)

where epIi = Pr (player i chooses I) = Z emi (�) � dP (�) i 2 f1; 2g (3:6)

The �rst order condition implies

8� 2 supp (P (�)) ,

� � r � (1�mj (�)) = �i �
�
ln

�
mi (�)

1�mi (�)

�
� ln

�
pIi

1� pIi

��
+ �i (�)� �i (�) i; j 2 f1; 2g ; i 6= j (3:7)

Then an equilibrium of the constrained information acquisition problem is a pair (m1 (�) ;m2 (�)) 2

� � 
� satisfying (3:7).

Generally, three types of strategies are possible in this problem.

The �rst type is the pooling strategy where Pr (m (�) = 1) = 1 or Pr (m (�) = 0) = 1.

The second type is called the perfect separating strategy where Pr (m (�) = 1)+Pr (m (�) = 0) =

1 and Pr (m (�) = 1) 2 (0; 1).

The third type is called the partial separating strategy where Pr (m (�) 2 (0; 1)) > 0.

With the pooling strategy, the player pools in the same action and does not use his copacity

to process information.

With the perfect separating strategy, the player partitions supp(P (�)) into two positive-
probability events f� 2 supp (P (�)) : m (�) = 1g and f� 2 supp (P (�)) : m (�) = 0g correspond-
ing to "invest" and "not invest", repectively. He knows exactly which event happens and his

capacity constraint does not bind. With the partial separating strategy the player�s capac-

ity constraint binds and he can not perfectly distinguish the above two events. The pooling

strategy and the perfect separating strategy are two extreme cases where capacity constraint is
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slack, either because there is no need to acquire information or because the player�s capacity is

large enough. A natural question here is whether an equilibrium can consist of di¤erent types

of strategies. Our answer is no and we can prove an even stronger result.

Proposition 2 All the equilibria of the constrained information acquisition problem are sym-

metric, i.e. if a pair (m1 (�) ;m2 (�)) is an equilibrium, then Pr (m1 (�) = m2 (�)) = 1.

Proof. see Appendix B.

This proposition allows us to use a single function m (�) to represent the equilibrium there-

after.

The symmetry of the equilibria comes from the symmetry of the payo¤ matrix (2:1) and the

strategic complementarity r > 0. Each player attempts to match up to his opponent�s strategy

due to the coordinating motive. If there is strategic substitutability instead of strategic com-

plementarity, the equilibria will not be symmetric even though the payo¤ matrix is symmetric.

In the rest of this subsection, we characterize each of the three types of equilibria.

Lemma 02 the constrained information acquisition problem has an equilibrium with at least

one player pooling in I (N) i¤ Pr (� � 0) = 1 (Pr (� � r � 0) = 1).

Proof. see Appendix B.

Proposition 3 the constrained information acquisition problem has a pooling equilibrium (I; I)

((N;N)) i¤ Pr (� � 0) = 1 (Pr (� � r � 0) = 1).

Proof. We only prove the case of pooling in I. The case of pooling in N follows the same

argument.

(Su¢ ciency) If Pr (� � 0) = 1, both players pooling in I is obvious an equilibrium.

(Necessity) the necessity is a direct implication of Lemma 02.

Proposition 3 establishes the su¢ cient and necessary condition for the existence of the pooling

equilibria.

In principle, the players have two motives in collecting information. One is to reduce the

uncertainty of the fundamental and the other is to coordinate with their opponents. When

his opponent is pooling, the player has no coordinating incentive. Moreover, if Pr (� � 0) = 1
(Pr (� � r � 0) = 1), I (N)always dominates N (I). The players have no incentive to collect

information and thus must pool in the same action. However, the condition in Proposition 3

13



does not exclude other types of equilibria. For example, there might also exist perfect separating

equilibria when some other conditions are satis�ed, as shown in Proposition 4.

The pooling equilibrium is an extreme case where both players pay zero attention to the

fundamental. The other extreme is the perfect separating equilibrium where both players�

pay non-zero attention but their capacity constraints are slack. In this case, player i partitions

supp(P (�)) into two positive-probability events and choose di¤erent actions upon the occurence
of di¤erent events. Recall that player i�s perfect separating strategy can be totally characterized

by the event that he invests: SiI , f� 2 supp (P (�)) : mi (�) = 1g (note that Pr (mi (�) = 1) +

Pr (mi (�) = 0) = 1). Let A+ = f� 2 supp (P (�)) : � � r > 0g, A� = f� 2 supp (P (�)) : � < 0g
and A0 =supp(P (�)) n (A+ [A�), then we have the following proposition:

Proposition 4 i) the constrained information acquisition problem has a perfect separating

equilibrium i¤ the following three condtions are satis�ed: a) Pr (A+) < 1, Pr (A�) < 1; b)

Pr (A+) = Pr (A�) = 0 implies 9B � A0, s.t. Pr (B) 2 (0; 1) and � � H (Pr (B)); c)

� � min fH (Pr (A+)) ;H (Pr (A�))g; where 8p 2 [0; 1], H (p) , �p � ln p� (1� p) � ln (1� p) is
the bivariate Shannon entropy function10 ;

ii) when the conditions in i) are satis�ed, all the perfect separating equilibrium can be char-

acterized by fSI � supp (P (�)) : A+ � SI � A+ [A0 and H (Pr (SI)) � �g with both players
playing I when SI happens and playing N othewise.

Proof. By Proposition 2, all the equilibria are symmetric, thus we use SI , the event upon

which both players invest, to represent an arbitrary perfect separating equilibrium.

i) (Su¢ ciency) Suppose min fH (Pr (A+)) ;H (Pr (A�))g > 0. In the case of H (Pr (A+)) �
H (Pr (A�)) > 0, let SI = A+ [ A0 and both players play the strategy characterized by SI ,
i.e. 8� 2 SI , m (�) = 1 and 8� 2supp(P (�)) nSI , m (�) = 0. Since I (m (�)) = H (Pr (SI)) =

H (Pr (A+ [A0)) = H (Pr (A�)) � �, this strategy is feasible. It is obvious that SI is the best
response to itself. Also note that Pr (A�) 2 (0; 1) since H (Pr (A�)) > 0 and Pr (A�) < 1 as

assumed. Thus Pr (SI) 2 (0; 1) and we have constructed a perfect separating equilibrium. In
the case of 0 < H (Pr (A+)) < H (Pr (A�)), let SI = A+, then (SI ; SI) is an equilibrium by the

same argument.

Now consider the case min fH (Pr (A+)) ;H (Pr (A�))g = 0. If H (Pr (A�)) = 0, we know

that Pr (A�) = 0 since Pr (A�) < 1. Thus Pr (A+) < 1 implies Pr (A0) > 0. When Pr (A+) > 0,

SI = A+ is a perfect separating equilibrium. Otherwise, by condition b) Pr (A+) = 0 implies

9B � A0, s.t. Pr (B) 2 (0; 1) and � � H (Pr (B)). Then SI = B is a perfect separating

10Note that H (0) , limp!0H (p) = 0, H (1) , limp!1H (p) = 0.
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equilibrium. The same argument also works if H (Pr (A+)) = 0.

(Necessity) Let SI �supp(P (�)) characterize the perfect separating equilibrium.

If Pr (A+) = 1 or Pr (A�) = 1, only the pooling equilibrium can exist. Then we must have

Pr (A+) < 1 and Pr (A�) < 1, i.e. condition a) holds.

Suppose Pr (A+) = Pr (A�) = 0, and 8B � A0, Pr (B) 2 f0; 1g or � < H (Pr (B)), then

SI � A0 and Pr (SI) 2 (0; 1) implies � < H (Pr (SI)), i.e. the capacity constraint is violated

and SI �supp(P (�)) cannot be a perfect separating equilibrium. This contradiction shows the
necessity of condition b).

Suppose SI �supp(P (�)) is a perfect separating equilibrium, thus A+ � SI � A+ [ A0.
This implies Pr (A+) � Pr (SI) � Pr (A+ [A0). Since the Shannon entropy function is

concave, we have � � I (m (�)) = H (Pr (SI)) � min fH (Pr (A+)) ;H (Pr (A+ [A0))g =
min fH (Pr (A+)) ;H (1� Pr (A+ [A0))g = min fH (Pr (A+)) ;H (Pr (A�))g, where the �rst
inequality follows the capacity constraint, the �rst equality follows the de�nition of mutual

information, the second inequality comes from the cacavity of H (�) and the last equlity holds
since H (p) = H (1� p). Therefore, condition c) is also necessary.

ii) the proof is omitted here, since it can be directly derived from the above proof.

From Proposition 4, we see multiple equlibria may emerge if Pr (A0) > 0 and

� � min fH (Pr (A+)) ;H (Pr (A�))g. Note that Pr (A0) = Pr (r � � � 0) is the probability
of the event that coordination is important. For given common prior, the larger the strate-

gic complementarity, the more probable that coordination matters the players welfare. Thus

multiplicity results from high strategic complementarity and high capacity.

The capacity constraint is slack for both the pooling equilibrium and the perfect separating

equilibrium, thus the players have no need to take care of their attention allocation. The most

interesting case is the partial separating equilibrium, the intermediate case between the pooling

and the perfect separating equilibria. As shown in the last case of the proof of Lemma 06

in Appendix B, however, there might exist partial separating equilibrium with slack capacity

constraints. This case is very rare since it exists under very restrictive conditions (see the

remark of Lemma 06). In the main part of the paper, we only study the partial separating

equilibria with binding capacity constraints.

Proposition 5 the constrained information acquisition problem has a partial separating equi-

librium if Pr (� < 0) > 0, Pr (� � r > 0) > 0 and � < min fH (Pr (A+)) ;H (Pr (A�))g.

Proof. by Proposition 3 and 4, if Pr (� < 0) > 0, Pr (� � r > 0) > 0 and � < min fH (Pr (A+)) ;H (Pr (A�))g,
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there is no pooling equilibrium and perfect separating equilibrium. Then Proposition 1 implies

the existence of a partial separating equilibrium.

The following corollaries characterize the partial separating equilibria.

Corollary 5.1 i) let mi (�) = m (�), i 2 f1; 2g be a partial separating equilibrium with bind-

ing capacity constraints, then Pr (m (�) 2 (0; 1)) = 1; ii) a partial separating equilibrium with

binding capapcity constraints is characterized by the following equation:

8� 2 supp (P (�)) , � � r � [1�m (�)] = � �
�
ln

�
m (�)

1�m (�)

�
� ln

�
pI

1� pI

��
(3:8)

where pI =
R
m (�) � dP (�) and � > 0 is the Lagrangian multiplier for the capacity constraint.

Proof. i) recall that any equilibrium of the constrained information acquisition problem must

satisfy (3:7)

8� 2 supp (P (�)) ,

� � r � (1�mj (�)) = �i �
�
ln

�
mi (�)

1�mi (�)

�
� ln

�
pIi

1� pIi

��
+ �i (�)� �i (�) i; j 2 f1; 2g ; i 6= j (3:7)

Proposition 2 says that the equilibrium is symmetric, thus we have

8� 2 supp (P (�)) ,

� � r � (1�m (�)) = � �
�
ln

�
m (�)

1�m (�)

�
� ln

�
pI

1� pI

��
+ � (�)� � (�) (3:9)

Note that the Lagrangian multiplier � must be strictly positive, otherwise the capacity con-

straint does not bind. Suppose Pr (m (�) = 0 or m (�) = 1) > 0. Since m (�) is a partial sepa-
rating equilibrium, Pr (m (�) 2 (0; 1)) > 0 and thus pI =

R
m (�) � dP (�) 2 (0; 1). Then for any

�, s.t. m (�) = 0 (or m (�) = 1), � �
h
ln
�

m(�)
1�m(�)

�
� ln

�
pI
1�pI

�i
= �1 (or 1) and (3:9) does

not hold. Therefore, we must have Pr (m (�) = 0 or m (�) = 1) = 0, i.e. Pr (m (�) 2 (0; 1)) = 1.

ii) Pr (m (�) 2 (0; 1)) = 1 implies � (�) = � (�) = 0 and then (3:9) becomes

8� 2 supp (P (�)) , � � r � (1�m (�)) = � �
�
ln

�
m (�)

1�m (�)

�
� ln

�
pI

1� pI

��
(3:8)

Remarks: (3:8) is intuitive. Given player j�s strategy mj (�) = m (�), the left hand side of

(3:8) is player i�s marginal bene�t of increasing mi (�). � > 0 is the shadow price of an extra

bit of information and
h
ln
�

m(�)
1�m(�)

�
� ln

�
pI
1�pI

�i
is the derivative of the mutual information

with respect to mi (�), thus the right hand side of (3:8) is player i�s marginal cost of increasing

mi (�). (3:8) says that the marginal cost must equal the marginal bene�t. Also note that

ln
�

pI
1�pI

�
is the unconditional (or say, average) log-likelihood ratio of "I" relative to "N" ,
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while ln
�

m(�)
1�m(�)

�
is player i�s log-likelihood ratio of choosing "I" over "N" conditional on �.

Then (3:8) says that if the marginal bene�t �� r (�) (1�m (�)) is positive (negative) for some
�, player i should choose "I" with a probability higher (lower) than the average level. If there

is no capacity constraint, i.e. � = 0, he would choose m (�) = 1. Then we return to the pooling

or perfect separating equilibirum.

It is easy to verify that the graph
n
(�;m) j� � r � [1�m] = � �

h
ln
�

m
1�m

�
� ln

�
pI
1�pI

�io
is

central-symmetric11 in the � � m plane about the point (�0; 1=2), where �0 = r=2���ln
�

pI
1�pI

�
.

The single equation (3:8) (let�s ignore pI =
R
m (�) � dP (�) at this point) actually suggests that

�0, or say, pI determines the position of m (�) while r and � = � (�; P (�)) determine its possible
shapes, as shown in the corollary below.

Corollary 5.2 let er = r
4�� , i) if er � 1, then 8� 2supp(P (�)), there is a unique value m such

that (3:8) holds; ii) if er > 1, let
m1 =

�
1 + (1� er�1)1=2� =2

�1 = � �
�
ln

�
m1

1�m1

�
� ln

�
pI

1� pI

��
+ r � [1�m1]

= � �
�
ln

�
1 + (1� er�1)1=2
1� (1� er�1)1=2

�
� ln

�
pI

1� pI

��
+
r

2
�
�
1� (1� er�1)1=2�

m2 =
�
1� (1� er�1)1=2� =2

�2 = � �
�
ln

�
m2

1�m2

�
� ln

�
pI

1� pI

��
+ r � [1�m2]

= � �
�
ln

�
1� (1� er�1)1=2
1 + (1� er�1)1=2

�
� ln

�
pI

1� pI

��
+
r

2
�
�
1 + (1� er�1)1=2�

and de�nem : (�1;+1)\supp(P (�))! (m1; 1) by ��r�[1�m (�)] = ��
h
ln
�

m(�)
1�m(�)

�
� ln

�
pI
1�pI

�i
,

m : (�1; �2)\supp(P (�))! (0;m2) by � � r � [1�m (�)] = � �
h
ln
�

m(�)
1�m(�)

�
� ln

�
pI
1�pI

�i
and

em : [�1; �2]\supp(P (�))! [m2;m1] by �� r � [1� em (�)] = � � hln� em(�)
1�em(�)

�
� ln

�
pI
1�pI

�i
, then

(3:8) implies that 8� 2supp(P (�))\[�1; �2], m (�) 2 fm (�) ;m (�) ; em (�)g, 8� 2 (�1; �1)\supp(P (�)),
m (�) = m (�), and 8� 2 (�2;+1)\supp(P (�)), m (�) = m (�).

Proof. i) take derivative of both sides of (3:8) with respect to m, we �nd that

d�

dm
=

�

m (1�m) � r

when er = r
4�� � 1,

d�
dm > 0 for all m 2 (0; 1=2)[ (1=2; 1), thus there exists a one-to-one mapping

between m and �.
11This symmetry comes from the constant strategic complementarity.
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ii)if er = r
4�� > 1, 9 m1 =

�
1 + (1� er�1)1=2� =2 and m2 =

�
1� (1� er�1)1=2� =2, such

that d�
dm = 0 at these two points. Then the result follows the fact that d2�

dm2 jm=m1
> 0 and

d2�
dm2 jm=m2

< 0.

The shape of m (�) evolves as er increases, as shown in the �gures below:
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�gure 01 (e¤ective strategic complementarity er < 1)
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�gure 04 (shadow price � = 0, it reduces to perfect separating equilibrium)

Several messages of the model:

1) generally, the equilibrium m (�) has an "S"-like shape. This represents the players�desire
to play a switching strategy, i.e. invest if the fundamental is high and do not invest if it is

low. They can de�nitely play such a strategy when the capacity constraint is slack and thus

return to the perfect separating equilibrium. When the capacity constraint binds, however,

the players can only approximate the switching strategy but cannot attain it. As shown in

the above �gures, they almost certainly invest (not invest) as the fundamental becomes large

(negatively large) but are reluctant to do so for the intermediate values.

2) these �gures clearly show how multiple equilibria may emerge12 as er = r
4�� becomes larger

than unit. When �, the players�capacity of information processing increases, the shadow price

of information processing, � = � (�; P (�)), becomes lower and facilitates the emergence of
multiplicity. This is intuitive. More restrictive capacity constraint imposes more randomness

in the players�behavior. In the limit �! 0, they are just the noisy traders. The players always

desire more coordination but lessening capacity reduces their ability to do so. Moreover, it also

harms the players� incentive to coordinate. Knowing that his opponent has samller capacity

and thus noisier behavior, the player will no longer have as much incentive to coordinate as

before. In other words, increasing capacity facilitates coordination and thus the emergence of

multiple equilibria. We call er = r
4�� the e¤ective strategic complementarity thereafter. It shows

12We will prove this multiplicity in the costly information acquisition problem.
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that not only does the physical strategic complementarity r a¤ect the equilibrium, but also the

shadow price, or say, the capacity of information processing plays a role in this coordination

game.

3) Monotonic Likelihood Ratio Property (MLRP) is a key assumption in most of the global

games literature. As a part of the the information structure, MLRP cannot be justi�ed within

the models with exogenous information structure. Our model provides a way to examine MLRP.

By the Lemma1, Pr (sI j�) = m (�), thus MLRP may not hold for the e¤ective strategic com-
plementarity larger than one, as shown in �gure 03. The reason is that when the motive of

coordination is very large (i.e. r is large) or acquiring information is very easy (i.e. � is small

or � is large), a player has enough incentive and ability to coordinate with his oppenent who is

playing the wierd inverse-MLRP strategy. MLRP always holds when er = r
4�� � 1.

4) As capacity becomes large enough, � = � ! 0 and the equilibrium approches the shape

shown in �gure 04, which actually approximates the perfect separating equilibria.

Through analyzing the constraint information acquisition problem, we provide a fully char-

acterization of the possible equilibria. However, � depends on (�; P (�)) in a complex way,
which restricts our further analysis. In Section 4, we turn to the costly information acquisition

problem where � > 0 is an exogenously given marginal cost of information acquisition and each

player decides the amount of capacity to purchase according to his own interest.

4 THECOSTLY INFORMATIONACQUISITIONPROB-

LEM

The basic setup of the costly information acquisition problem is almost the same as before,

except that there is no capacity constraint and the players are able to acquire information at

some marginal cost � > 0. In practice, � can be the cost of buying a new computer or hiring

another analyst, etc.

Note that the second part of the preference assumption (A2) is automatically satis�ed in the

costly information acquisition problem.

Formally, an equilibrium of the costly information acquisition problem is a pair (m1 (�) ;m2 (�))
solving the the following problem:

i; j 2 f1; 2g , i 6= j, mi (�) 2 argmaxemi(�)
ui (emi (�) ;mj (�)) =

Z emi (�) � [� � r � (1�mj (�))] � dP (�)

�� � I (emi (�)) (4:1)
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s.t. emi (�) 2 


8� 2 supp (P (�)) , m (�) 2 [0; 1] (4:2)

where I (emi (�)) =
R
[emi (�) ln emi (�) + (1� emi (�)) ln (1� emi (�))] dP (�)�epIi ln epIi�(1� epIi) ln (1� epIi)

is the amount of information acquired and epIi = Pr (player i chooses I) = R emi (�) � dP (�).

In this section, �rst we characterize all the possible equilibria of the costly information

acquisition problem; second we study the e¤ects of private information acquisition through the

comparative static analysis with respect to the marginal cost �; third we study the e¤ects of

public information through the comparative analysis with respect to the common prior P (�).
We also compare our results to that of the previous models and �nd signi�cant di¤erence.

4.1 Characterizing The Equilibria

Under the same conditions in the previous section, we show that the equilibirum of this new

problem exists.

Proposition 6 the equlibrium of the costly information acquisition problem exists.

Proof. let e
 = femi (�) 2 
 : 8� 2 supp (P (�)) ; emi (�) 2 [0; 1]g, then e
 is compact since it is a
closed subset of a compact space 
. Because I (emi (�)) is a continuous and convex functional
of emi (�), ui (emi (�) ;mj (�)) is continuous and concave in emi (�). According to Nash equilibrium
theorem, the Nash equilibrium exists.

The main di¤erence between the two problems is:

Lemma 03 the perfect separating strategies can not be played in an equilibrium of the costly

information acquisition problem.

Proof. Player i�s Lagrangian is

Li =

Z emi (�) � [� � r � (1�mj (�))] � dP (�) + � � [epIi � ln epIi � (1� epIi) � ln (1� epIi)]
�� �

Z
[emi (�) ln emi (�) + (1� emi (�)) ln (1� emi (�))] � dP (�)

+

Z
[�i (�) [1� emi (�)] + �i (�) emi (�)] � dP (�) (4:3)

where epIi = Pr (player i chooses I) = Z emi (�) � dP (�) i 2 f1; 2g (4:4)
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The �rst order condition implies

8� 2 supp (P (�)) ,

� � r � (1�mj (�)) = � �
�
ln

�
mi (�)

1�mi (�)

�
� ln

�
pIi

1� pIi

��
+ �i (�)� �i (�) i; j 2 f1; 2g ; i 6= j (4:5)

Suppose player i plays a perfect separating strategy, i.e. Pr (mi (�) 2 (0; 1)) = 0 and Pr (mi (�) = 1) 2
(0; 1). Then pIi = Pr (mi (�) = 1) 2 (0; 1). Since the cost of acquiring information is � > 0,

8� 2supp(P (�)) s.t. mi (�) = 1 implies � �
h
ln
�

mi(�)
1�mi(�)

�
� ln

�
pIi
1�pIi

�i
= 1, thus (4:5) does

not hold with probability Pr (mi (�) = 1) > 0 and mi (�) cannot be an equilibrium strategy.

Compared to the Lagrangian multiplier in the constrained information acquisition problem,

here the cost of acquiring information is exogenously given and always strictly positive, which

makes the margianl cost of acquiring information too high (or too low) to support a perfect

separating equilibirum. According to Lemma 03, only the pooling strategies and the partial

separating strategies can be played in the equilibria. A natural question here is whether an

equilibrium can consist of di¤erent types of strategies. Our answer is no and we can prove an

even stronger result.

Proposition 7 All the equilibria of the costly information acquisition problem are symmetric,

i.e. if a pair (m1 (�) ;m2 (�)) is an equilibrium, then Pr (m1 (�) = m2 (�)) = 1.

Proof. see Appendix B.

This proposition allows us to use a single function m (�) to represent the equilibrium there-

after.

Proposition 8 the costly information acquisition problem has a pooling equilibrium (I; I) ((N;N))

i¤ Pr (� � 0) = 1 (Pr (� � r � 0) = 1).

Proof. We only prove the case of pooling in I. The case of pooling in N follows the same

argument.

(Su¢ ciency) If Pr (� � 0) = 1, both players pooling in I is obvious an equilibrium.

(Necessity) the necessity is a direct implication of Lemma 03.

Proposition 8 establishes the su¢ cient and necessary condition for the existence of the pooling

equilibria. The following proposition chracterizes the partial equilibria.

Proposition 9 the costly information acquisition problem has a partial separating equilibrium

if Pr (� < 0) > 0 and Pr (� � r > 0) > 0.
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Proof. by Proposition 8, if Pr (� < 0) > 0, Pr (� � r > 0) > 0, there is no pooling equilibrium.
Then Proposition 6 and Lemma 03 imply the existence of a partial separating equilibrium.

The following corollaries characterize the partial separating equilibria.

Corollary 9.3 i) let mi (�) = m (�), i 2 f1; 2g be a partial separating equilibrium, then
Pr (m (�) 2 (0; 1)) = 1; ii) a partial separating equilibrium is characterized by the following

equation:

8� 2 supp (P (�)) , � � r � [1�m (�)] = � �
�
ln

�
m (�)

1�m (�)

�
� ln

�
pI

1� pI

��
(4:6)

where pI =
R
m (�) � dP (�) and � > 0 is the cost of acquiring information.

Proof. i) is proved in Lemma 09 in Appendix B. ii) directly follows i) and (4:5).

The intuition behind (4:6) is the same as that of (3:8).

It is easy to verify that the graph
n
(�;m) j� � r � [1�m] = � �

h
ln
�

m
1�m

�
� ln

�
pI
1�pI

�io
is

central-symmetric13 in the � � m plane about the point (�0; 1=2), where

�0 = r=2� � � ln
�

pI
1� pI

�
(4:7)

. Combining (4:6) and (4:7) leads to

� � �0 = � � ln
�

m (�)

1�m (�)

�
+ r �

�
1

2
�m (�)

�
Thus we can index m (�) by �0, i.e. m (�) = m (�; �0) and

� � �0 = � � ln
�

m (�; �0)

1�m (�; �0)

�
+ r �

�
1

2
�m (�; �0)

�
(4:8)

�0 determines the position of m (�; �0) but has no e¤ect on its shape. The shape of m (�; �0) is
determined by the two key parameters, r and �.

Corollary 9.4 let er = r
4�� , i) if er � 1, then 8� 2supp(P (�)), there is a unique m such that

13This symmetry comes from the constant strategic complementarity.
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(4:6) holds; ii) if er > 1, let
m1 =

�
1 + (1� er�1)1=2� =2

�1 = � �
�
ln

�
m1

1�m1

�
� ln

�
pI

1� pI

��
+ r � [1�m1]

= � �
�
ln

�
1 + (1� er�1)1=2
1� (1� er�1)1=2

�
� ln

�
pI

1� pI

��
+
r

2
�
�
1� (1� er�1)1=2�

= �0 � � � ln
�
1� (1� er�1)1=2
1 + (1� er�1)1=2

�
� r

2
� (1� er�1)1=2 (4:9)

m2 =
�
1� (1� er�1)1=2� =2

�2 = � �
�
ln

�
m2

1�m2

�
� ln

�
pI

1� pI

��
+ r � [1�m2]

= � �
�
ln

�
1� (1� er�1)1=2
1 + (1� er�1)1=2

�
� ln

�
pI

1� pI

��
+
r

2
�
�
1 + (1� er�1)1=2�

= �0 + � � ln
�
1� (1� er�1)1=2
1 + (1� er�1)1=2

�
+
r

2
� (1� er�1)1=2 (4:10)

and de�nem : (�1;+1)\supp(P (�))! (m1; 1) by ��r�[1�m (�)] = ��
h
ln
�

m(�)
1�m(�)

�
� ln

�
pI
1�pI

�i
,

m : (�1; �2)\supp(P (�))! (0;m2) by � � r � [1�m (�)] = � �
h
ln
�

m(�)
1�m(�)

�
� ln

�
pI
1�pI

�i
and

em : [�1; �2]\supp(P (�))! [m2;m1] by �� r � [1� em (�)] = � � hln� em(�)
1�em(�)

�
� ln

�
pI
1�pI

�i
, then

(4:6) implies that 8� 2supp(P (�))\[�1; �2], m (�) 2 fm (�) ;m (�) ; em (�)g, 8� 2 (�1; �1)\supp(P (�)),
m (�) = m (�), and 8� 2 (�2;+1)\supp(P (�)), m (�) = m (�).

Proof. the proof is the same as Corollary 5.2 and is omitted here.

Remarks: the equilibrium is determined by r, � and the common prior P (�). On the one hand,
r and �, the parameters characterizing the players�private information acquisition behavior,

determine the possible shapes of m (�; �0). According to Corollary 9.4, there are in�nitely many

possible shapes of m (�; �0) to satisfy (4:8) when er = r
4�� > 1. The following �gures show several

typical shapes:

a) the strategy is inverse-MLRP. For � 2 (�1; �2), we choose the decreasing component,

otherwise choose the unique m (�) satisfying (4:8). This strategy is shown below:
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inverse MLRP strategy, r/(4*mu)=2/(4*0.1)=5 theta0=0

�gure 05: m (�; �0) is of shape a)

b) the strategy is MLRP. For � 2 (�1;1), choose the upper part of the increasing component,
otherwise choose the unique m (�) satisfying (4:8). This strategy is shown below:
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MLRP strategy, r/(4*mu)=2/(4*0.1)=5 theta0=0

�gure 06: m (�; �0) is of shape b)
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c) the strategy is MLRP. For � 2 (�0;1), choose the upper part of the increasing component,
otherwise choose the lower part of the increasing component. This strategy is shown below:
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MLRP strategy, r/(4*mu)=2/(4*0.1)=5 theta0=0

�gure 07: m (�; �0) is of shape c)

d) the strategy is MLRP. For � 2 (�1; �2), choose the lower part of the increasing component,
otherwise choose the unique m (�) satisfying (4:8). This strategy is shown below:
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�gure 08: m (�; �0) is of shape d)

De�ne a set of functions

M (r; �) ,
�
m (�) 2 e
 : � = � � ln� m (�)

1�m (�)

�
+ r �

�
1

2
�m (�)

��
M is actually the set of all possible shapes of the partial separating equilibrium strategies.

Note that #M =

8<: 1 if er = r
4�� � 1

1 if er = r
4�� > 1

9=;. When r and � are given, a partial separating

equilibrium m (� � �0) is determined by its shape m 2M (r; �) and its position �0. Recall that

the unconditional probability of investing is pI =
R
m (� � �0) � dP (�) and (4:7) implies that

the common prior P (�) determines �0 through the following equation:

�0 = r=2� � � ln
� R

m (� � �0) � dP (�)
1�

R
m (� � �0) � dP (�)

�
(4:11)

Since the public information is summarized in the common prior P (�), the above argument
shows that it a¤ects the equilibrium only through changing its position �0 = r=2�� � ln

�
pI
1�pI

�
but leaves its shape una¤ected. All in all, to �nd an equilibrum with any given shape m 2
M (r; �) is equivalent to �nd a �xed point �0 of the following mapping:

g (�0;m) , r=2� � � ln
� R

m (� � �0) � dP (�)
1�

R
m (� � �0) � dP (�)

�
(4:12)

Here g (�0; �) is a functional of the possible shape m 2M (r; �).

Although (4:12) is derived from the conditions of partial separating equilibria, it can cover

the case of pooling equilibria as well if we let �0 2 R[f�1;+1g. When (4:12) has a �xed point
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�0 = �1 (�0 =1), it actually means an equilibrium pooling in I (N), since 8� 2supp(P (�)),
lim�0!�1m (� � �0) = 1 (lim�0!+1m (� � �0) = 0) for any possible shape.

As er = r
4�� > 1 allows for multiple possible shapes, a natural question is whether this

multiplicity of possible shapes leads to multiple equilibria of the game. We answer this question

in next subsection.

4.2 The Comparison Between Private Information Acquisition With

Endogenous And With Exogenous Information Structures

Proposition 10 If er = r
4�� > 1, the common prior P (�) is an absolutely continuous distribution

with full support (i.e. the density p (�) exists and supp(P (�)) = R), then the costly information
acquisition problem has in�nitely many equilibria.

Proof. see Appendix B.

This proposition says that multiplicity emerges if the marginal cost of information acquisition

is small relative to the strategic complementarity (i.e. � < r=4). In other words, if acquir-

ing/processing information becomes easier (e.g. the computational power becomes cheaper,

the wage of the analysts becomes smaller relative to the total pro�t of the �rms, etc.), the

players have higher capability as well as incentive to coordinate and thus more equilibria can

be supported.

Another interesting observation is that even though there is no exogenous discreteness (i.e.

the common prior P (�) only has an absolutely continuous componnent) there is a jump (maybe
jumps) within any equilibrium m (�) due to the condition er = r

4�� > 1. Here the existence of

jumps is an essential feature of all the equilibria and does not come from changing from one

equilibrium to another as did in many previous models trying to capture the sudden changes in

�nancial systems. Thus the intrinsic discontinuity in this model have the potential to explain

�nancial crisis within a single equilibrium.

To compare our result to that of the previous models, consider a semi-endogenous information

structure model where the players are allowed to increase the accuracy of their private signals

at some cost but cannot change any other aspect of the information structure. Speci�cally, let

two players play the game with payo¤ matrix (2:1). The common prior about the fundamental

� is P (�). Player i 2 f1; 2g takes action ai 2 fI;Ng after observing his private signal xi =
�+ �

�1=2
i � "i, where "i is distributed according to a smooth density function f (�), E"i = 0 and

V ar
�
"i
�
<1. Here �i measures the precision of player i�s information. The cost of acquiring

information of precision � is c � h (�), where c > 0 is an exogenous parameter and h (�) is a

29



continuous increasing function with h (0) = 0.

Each player�s strategy involves simultaneously chooses a precision �i 2 R+ and an action

rule si : R!f0; 1g, where si
�
xi
�
= 1 (si

�
xi
�
= 0) means that player i chooses I (N) when

observing xi.

We write G (c) for the game with cost parameter c.

Proposition 11 If the common prior P (�) is an absolutely continuous distribution with density
p (�), Pr (� > r) > 0, Pr (� < 0) > 0 and the noise "i has a full support, i.e. supp(f (�)) = R,

then 8� > 0, 9c > 0, s.t. every rationalizable strategy in G (c) for c < c, has each player

acquiring information of precision at least �.

Proof. see Appendix B.

This proposition says that the players would like to acquire information of arbitrarily large

precision if the cost of doing so is arbitrarily small. A well known result in the literature of

global games is that in the models with exogenous information structure, unique equilibrium

is guaranteed if the private signals are su¢ ciently accurate relative to the accuracy of public

signals (e.g. Morris and Shin (2004)). Proposition 11 allows us to establish the standard global

game result in the semi-endogenous information structure model.

Corollary 11.5 If the common prior P (�) is an absolutely continuous distribution with full
support (i.e. the densitiy p (�) exists and supp(P (�)) = R), then 8� > 0, 9c > 0, s.t. 8 strategy
s : R!f0; 1g surviving iterated deletion of strictly dominated strategies in the game G (c) for
c < c satis�es: s (x) = 0 if x � r=2� � and s (x) = 1 if x � r=2 + �.

Proof. The proof is a direct application of Proposition 2.2 in Morris and Shin (2003) and

Proposition 11. According to Proposition 2.2 of Morris and Shin (2003), 8� > 0, 9� > 0, s.t.
the above statement holds for all � > �. Then Proposition 11 says there exists c > 0 such that

the players acquire information of precision at least �.

Corollary 11.5 says that when the information cost approaches zero all the equilibria be-

come approximately the unique switching strategy s (x) =

8<: 0 if x � r=2
1 if x > r=2

9=;. This result is
consistent with the standard global game arguments in that lowering the information cost in-

duces more accurate private signals, reduces the common knowledge and thus facilitates the

uniqueness of the equilibirum. In our model with endogenous information structure, however,

Proposition 10 says that lowering information cost enhances common knowledge and facilitates

multiplicity. This sharp comparison comes from the fact that too much rigidity exists in the
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previous global game models, where the private signal is the fundamental plus some noise. This

noise is ususally assumed to be independent with the fundamental, which implicitly imposes

a strong restriction on the players� information acquisition. In the language of rational inat-

tention, this is equivalent to require the players to pay equal attention to every aspects of the

fundamental. This restriction on the information structure underestimates the players�active

information acquisition behavior and might not be always realistic.

It is well known that the unique equilibrium (when c ! 0 and thus � ! 1) in the global
games with exogenous information structure is ine¢ cient. Both players would have enjoyed

higher payo¤s if they could commite to a strategy es (x) =
8<: 0 if x � 0
1 if x > 0

9=;. In our model
with endogenous information structure, however, 8b� 2 [0; r], m (�) =

8<: 0 if � � b�
1 if � > b�

9=; is an

equilibrium when marginal cost �! 0, as shown in �gure 04 in Section 3. Thus both the most

e¢ cient strategy b� = 0 and the most ine¢ cient strategy b� = r can be supported as equilibria.
In other words, our model shows that rather than converging to the unique but ine¢ cient

equilibrium, lowering the marginal cost of information acquisition provides an opportunity to

achieve a better equilibrium at the risk of being trapped in an even worse one.

The results of these two-player games still hold for the case with a continuum of players if

we slightly change the payo¤ to "investing" to � � r � (1�m), where m is the fraction of the

players that invest. Here m is the aggregate variable of this economy and is a function of the

fundamental �. In the semi-endogenous information structure model, m (�) is always continuous

in � provided that the noise "i is a continuous random variable. In our model with endogenous

information structure, however, there exists some intrinsic discontinuity of m with respect to

� in all equilibria when the conditions in Proposition 10 are satis�ed. Here the key condition

resulting in such discontinuity is er = r
4�� > 1. The message is that the players are able to

tell if the fundamental is larger than a cuto¤ or not when the marginal cost of information

acquisition � is small, and they would like to do so when the strategic complementarity r is

large. As before, this distinction also comes from the di¤erence between the �exible information

structure of the current model and the rigidity imposed on the previous ones.

4.3 Some Comparative Static Analysis With Respect To The Public

Information

In this subsection, we study the e¤ects of the public information through the comparative static

analysis with respect to the common prior P (�), since the public information is summarized in
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it.

Proposition 12 8r > 0, 8� > 0 and 8� 2 (0; r=2), 9� > 0 s.t. the costly information acqui-
sition problem has multiple equilibria for all absolutely continuous common prior P (�) (i.e. its
density p (�) exists) satisfying Pr (� 2 [�; r � �]) > 1� �.

Proof. see Appendix B.

This proposition says that multiple equilibria emerge if the public information makes the

players con�dent enough about the event f� 2 (0; r)g. This result is intuitive since in the

limit case Pr (� 2 [0; r]) = 1, we have two pooling equilibria and some intermediate equilibria

(partial separating equilibria). This is a strong proposition in the sense that the criterion

Pr (� 2 [�; r � �]) > 1� � is uniform for all absolutely continuous common priors. To make this

result comparable to the standard global game results, we establish the following corollary:

Corollary 12.6 Let p (�) be the probability density function of a common prior with �nite

expectation Ep (�) and variance V arp (�), then 8r > 0, 8� > 0, 8y 2 (0; r), 9� > 0 s.t.

8� > �, the costly information acquisition problem with the common prior (density function)

�1=2 � p
�
�1=2 � (� � y)

�
has multiple equilibria.

Proof. Since y 2 (0; r), we can choose � > 0 small enough such that y 2 (�; r � �). Choose
the corresponding � > 0 as suggested in Proposition 12. Let Ep;� (�) and V arp;� (�) be the

expectation and variance corresponding to the density �1=2 � p
�
�1=2 � (� � y)

�
, respectively.

Let Pr (�; �) denote the probability measure induced by the density �1=2 � p
�
�1=2 � (� � y)

�
and

d = 1
2 �min fy � �; r � �� yg. Since

lim
�!1

Ep;� (�)

= lim
�!1

Z 1

�1
� � �1=2 � p

�
�1=2 � (� � y)

�
� d�

= lim
�!1

Z 1

�1

�
��1=2 � e� + y� � p�e�� � de�

= lim
�!1

h
y + ��1=2 � Ep (�)

i
= y 2 (�; r � �)

there exists �0 > 0, s.t. 8� > �0, Ep;� (�) 2 (y � d; y + d). Also note that lim�!1 V arp;� (�) =

lim�!1 �
�1 � V arp (�) = 0, thus 9� > �0 s.t. 8� > �, V arp;� (�) < 4 � d2 � (1� �). Finally we
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have 8� > �,�
Ep;� (�)�

1

2
� (1� �)�1=2 � [V arp;� (�)]1=2 ; Ep;� (�) +

1

2
� (1� �)�1=2 � [V arp;� (�)]1=2

�
� [Ep;� (�)� d;Ep;� (�) + d]

� [y � 2 � d; y + 2 � d]

� [y �min fy � �; r � �� yg ; y +min fy � �; r � �� yg]

� [�; r � �]

thus

Pr (f� 2 [�; r � �]g ; �)

� Pr

��
� 2

�
Ep;� (�)�

1

2
� (1� �)�1=2 � [V arp;� (�)]1=2 ; Ep;� (�) +

1

2
� (1� �)�1=2 � [V arp;� (�)]1=2

��
; �

�
� 4 � (1� �) > (1� �)

where the second inequality comes from Chebyshev�s inequality. Then the result directly follows

Proposition 12.

Here � measures the precision of public information. Corollary 12.6 says that providing

public information of high precision facilitates the multiplicity. This is consistent with the well

known result in the global games literature. Another well known result is that the uniqueness

is guaranteed if the private signals are su¢ ciently accurate relative to the public signals (e.g.

Morris and Shin (2004)). In other words, the e¤ects on the uniqueness of increasing the precision

of public signals can be o¤set by increasing the precision of private signals. Based on Corollary

11.5, in the semi-endogenous information structure model the e¤ect of increasing the precision

of public signals can be o¤set by lowering the cost of private information acquisition. In our

endogenous information model, however, if the density of the common prior has a full support,

Proposition 10 states that there are always in�nitely many equilibria when er = r
4�� > 1,

regardless of the precision of public information, i.e. the e¤ects of public information and

private information acquisiiton are disentangled. The reason is that when the cost of information

acquisition is samll, the players have enough freedom in allocating their attention, which in turn

improves their coordination. Also this freedom has nothing to do with the public information.

The entangled e¤ects in the previous models actually comes from the rigidity imposed on the

information structure.

In the rest of this section, we numerically solve the model for various common priors to see

the e¤ects of public information. In order to exclude the possible indeterminancy caused by

the multiple equilibrium choices of private information acquisition, we conduct the numerical

analysis under the the condition er = r
4�� � 1. Thus there is a unique shape m satisfying
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� = � � ln
�

m(�)
1�m(�)

�
+ r �

�
1
2 �m (�)

�
and an equilibrium m (� � �0) is determined by its position

paramter �0. In other words, whether there is multiplicity only depends on the public informa-

tion. Speci�cally, for r = 2:8 and � = 0:8, we calculate all the equilibrium position �0�s for

normal common priors with mean and standard deviation ranging over [�1; 3:5] and [0:02; 2:5],
respectively. These ranges are large enough to cover all the possible situations, as shown in the

�gures below. To make it applicable for the numerical analysis, we use the trancated normal

distributions and thus pooling equilibria may also exist14 .

For the trancated normal common priors, generally speaking, there may be one, three or

�ve equilibrium �0�s. The stable and unstable equilibria always appear alternately and the

number of the stable equilibria is always one more than that of the unstable equilibria. Here an

equilibrium �0 is stable if it has a neighborhood such that any deviation within it approaches

�0 in the long run.

We plot the equilibrium �0 as a function of ("mean", "standard deviation") of the common

prior. However, it is hard to plot the multiple equilibria in one graph. To preserve as much

information as possible, we plot the graph according to the following rule: for any pair ("mean",

"standard deviation"), if there is a unique equilibrium �0, just plot it and record it as globally

stable; if there are three equilibria �10 < �
2
0 < �

3
0, plot �

2
0 and record it as unstable; if there are

�ve equilibria �10 < �
2
0 < �

3
0 < �

4
0 < �

5
0, plot �

3
0 and record it as locally stable with neighborhood�

�20 ; �
4
0

�
. Note that in the last case, �20 and �

4
0 are unstable equilibria and �

4
0 � �20 is a stability

coe¢ cient for the locally stable equilibrium �30. The larger is this coe¢ cient, the more stable

is the corresponding equilibrium. As a natural extension, the stability coe¢ cient is zero for

the unstable equilibria and is in�nity for the globally stable equilibria. Besides plotting �0

against each pair of ("mean", "standard deviation"), we also use a colored plane to indicate the

stability coe¢ cient of the corresponding �0. Higher coe¢ cient is represented by the color close

to the red end of the color bar and lower coe¢ cient is represented by the color close to the blue

end. The stability coe¢ cient of the globally stable equilibria is 1, which cannot be directly
shown in the graph. Here we use a large number to represent this 1. Recall that �0 = 1
(�0 = �1) means a pooling in N (I) equilibrium and a parital separating equilibrium with �0

large (negatively large) enough is closed to the pooling in N (I) equilibrium. These �0�s are too

large (negatively large) to plot and we trancate them to the same large number representing

the pooling equilibria.

The graph is shown by the following �gures from four directions as if it is rotated counter-

clockwise.
14Note that normal distributions have full support and thus there cannot exist any pooling equilibrium ac-

cording to Proposition 8.
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The plane �0 = 0 indicates the stability of equilibria under di¤erent compositions of "mean"

and "standard deviation" of the common prior. The dark-red area corresponds to the glob-
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ally stable equilibria (which are also the unique equilibria for the corresponding "mean" and

"standard deviation"); the blue area and the green area correspond to the unstable equilibria

and the locally stable equilibria, respectively. We see that the whole plane is almost occupied

by the stable and unstable area, and the locally stable equilibria only exist for intermediate

values of "mean" and "standard deviation". Both the stable area and the unstable area are

disconnected, which implies that moving from one type15 of stable equilibrium to another type

must experience some jumps. In the area of stable equilibria, �0 decreases in the mean of the

common prior, i.e. a better public signal induces a higher probability of investing. This is

intuitive. The opposite happens in the area of unstable equilibria. It means nothing since the

unstable equilibria cannot exist in practice. This graph provides some guidance for the strategic

disclosure of public information, which can be discussed in future research.

5 CONCLUSION

We endogenize the information structure of a global game model to avoid the arbitrariness in

choosing the information structure. Since this model generates distinct results, it might be

interesting to apply it to the usual problems like currency attacks, debt pricing and bank run

to see if there is any new implications. To attack these more applied topics, we need to allow

r, the strategic complementarity, to vary with the fundamental, i.e. r = r (�). Fortunately,

most results of this paper can be easily extended to cope with this new setup. Dynamic

endogenous information acquisition models might be another interesting direction, especially

the propaganda of a new standard or techonology. Our analysis of stability of the equilibria in

Subsection 4.3 is a preliminary attempt to address this problem, but a full understanding calls

for a real dynamic model of endogenous information acquisition.
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A Basics of Information Theory and Rational Inattention

In Shannon�s information theory, information is de�ned as the reduction of uncertainty, while

uncertainty is measured by entropy. For a discrete random vector
�!
X with probability weights

p (�!x ) ; �!x 2 X , its entropy is

H
��!
X
�
= �E�!x [log p (�!x )] = �

X
�!x 2X

p (�!x ) � log p (�!x )

, where we de�ne p (�!x ) log p (�!x ) = 0 when p (�!x ) = 0 . Shannon proves that any function

measuring the uncertainty and satisfying three axioms must have this form. Thus it is a

natural and objective measurement of uncertainty. The base of the logarithm is not essential,

it just changes the unit of entropy. For example, when the base is 2 , the entropy of a discrete

random variable with equal probability on two values is 1 bit.
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When
�!
X =

��!
X 1;

�!
X 2

�
, we also call H

��!
X
�
= H

��!
X 1;

�!
X 2

�
the joint entropy of

�!
X 1 and

�!
X 2.

The conditional entropy of
�!
X 1 given

�!
X 2 is the expected conditional entropy over

�!
X 2, which is

de�ned as

H
��!
X 1j

�!
X 2

�
= E�!

X2

h
H
��!
X 1j�!x 2

�i
= �

X
�!x 22X2

p (�!x 2) �
X

�!x 12X1

p (�!x 1j�!x 2) � log p (�!x 1j�!x 2)

= �
X
�!x 2X

p (�!x 1;�!x 2) � log
p (�!x 1;�!x 2)
p (�!x 2)

. Note that H
��!
X 1j

�!
X 2

�
= H

��!
X 1;

�!
X 2

�
� H

��!
X 2

�
. H

��!
X 1j

�!
X 2

�
measures the remaining

uncertainty of
��!
X 1;

�!
X 2

�
when

�!
X 2 is known.

The mutual information between two random vectors measures the amount of information

that can be obtained about one random vector when the other one is known. Its de�nition is

I
��!
X 1;

�!
X 2

�
=
X
�!x 2X

p (�!x 1;�!x 2) log
p (�!x 1;�!x 2)

p (�!x 1) � p (�!x 2)

. Note that

I
��!
X 1;

�!
X 2

�
= I

��!
X 2;

�!
X 1

�
= H

��!
X 2

�
�H

��!
X 2j

�!
X 1

�
= H

��!
X 1

�
�H

��!
X 1j

�!
X 2

�
= H

��!
X 1

�
+H

��!
X 2

�
�H

��!
X 1;

�!
X 2

�
. Mutual information is always non-negative. If the above joint probability p (�!x 1;�!x 2) is
replaced by the conditional joint probability p (�!x 1;�!x 2j�!y ) on some random vector

�!
Y , we

get the conditional mutual information, which measures the mutual information between two

random vectors when the third one is known. Conditional mutual information is also always

non-negative.

Some properties of the mutual information: i) given the marginal probability p (�!x 1), I
��!
X 1;

�!
X 2

�
is a convex functional with respect to the conditional probability p (�!x 2j�!x 1); ii) given the condi-
tional probability p (�!x 2j�!x 1), I

��!
X 1;

�!
X 2

�
is a concave functional with respect to the marginal

probability p (�!x 1).

For a continuous random vector, its Shannon entropy is in�nity, since it can take a continuum

of possible values. In this case the di¤erential entropy is de�ned as an extension of the Shannon

entropy. Formally, the di¤erential entropy of a continuous random vector
�!
X with probability

density function p (�!x ) is de�ned as

h
��!
X
�
= �

Z
�!
X2Rn

p (�!x ) � log p (�!x ) � d�!x
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, where n is the dimension of
�!
X . All the above properties of Shannon entropy still hold for

di¤erential entropy. Since the base of the logarithm is not essential, I just use the natural

logarithm in the rest of this paper.

Let�s look at an example of normal random vectors: let
��!
X 1;

�!
X 2

�
� N ((�!� 1;�!� 2) ;�) ,

where �!� i 2 Rni , i = 1; 2 and

� =

0@ �11 �12

�21 �22

1A
Then the joint entropy of

��!
X 1;

�!
X 2

�
is h

��!
X 1;

�!
X 2

�
= n

2 � [ln (2�) + 1] +
1
2 � ln j�j , where

n = n1 + n2 .

The conditional entropy is h
��!
X 1j

�!
X 2

�
= n1

2 � [ln (2�) + 1] +
1
2 � ln j�11 � �12�

�1
22 �21j , and

the mutual information is I
��!
X 1;

�!
X 2

�
= � 1

2 � ln jI ��
�1
11 �12�

�1
22 �21j , where I is the identical

matrix with dimension n1 .

Channel refers to the medium to convey information. The channel between two random

vectors
�!
X 1 and

�!
X 2 is described by the conditional distribution p (

�!x 1j�!x 2) or p (�!x 2j�!x 1) .
Given the unconditional distributions of

�!
X 1 and

�!
X 2 , di¤erent conditional distributions de�ne

di¤erent channels. Thus a speci�c channel determines which kind of information about one

random vector is conveyed by the other. The mutual information I
��!
X 1;

�!
X 2

�
measures the

amont of information transmitted through the channel between
�!
X 1 and

�!
X 2 .

The basic idea of rational inattention is that the agent�s actions can depend on observations

of the state variables only through a channel with �nite capacity. Thus he should appropriately

allocate his capacity to collect the information most relevent to his objective and ignore others.

Speci�cally, if
�!
� denotes the state random variables, then the agent can choose an appropri-

ate channel to generate the signals
�!
S subject to the constraint that the mutual information

I
��!
� ;
�!
S
�
is upper bounded by his capacity. For more about rational inattention, please see

Sims (2003 and 2005).

B TECHNICAL PROOFS

Proof of Lemma 01.

Proof. suppose player i collects information in a way described by qi
�
sij�
�
, si 2 Si. Con-

struct a new strategy with three possible realizations of the signal
�
siI ; s

i
N ; s

i
ind

	
such that

8� 2supp(P (�)), qi
�
siI j�

�
=
R
SiI
qi
�
sij�
�
dsi, qi

�
siN j�

�
=
R
SiN
qi
�
sij�
�
dsi and qi

�
siindj�

�
=
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R
Siind

qi
�
sij�
�
dsi. Player i chooses I when si = siI , chooses N when si = siN and is indi¤erent

when si = siind. Obviously this modi�cation does not change i�s expected utility. However,

if the original Si has more than three elements, this new strategy costs strictly less mutual

information. According to the preference assumption (A2), qi
�
sij�
�
is suboptimal and cannot

be an equilibrium strategy. Thus we proved that #
�
Si
�
� 3, 8i 2 f1; 2g.

Suppose 9i 2 f1; 2g, Pr
�
Siind

�
> 0, i.e. Pr

�
siind

�
> 0, since we proved that in the equilibrium

Siind =
�
siind

	
.

If Pr
�
siind

�
2 (0; 1), then Pr

�
siI
�
> 0 or Pr

�
siN
�
> 0. Without loss of generality, let

Pr
�
siI
�
> 0. Replace the two realizations siind and s

i
I by a new one esiI such that 8� 2supp(P (�)),

qi
�esiI j�� = qi

�
siI j�

�
+ qi

�
siindj�

�
. Let player i choose I when receiving esiI . Obviously this

modi�cation does not change i�s expected utility. Since Pr
�
siI
�
> 0 and Pr

�
siind

�
> 0, this new

strategy costs strictly less mutual information. According to the preference assumption (A2),

qi
�
sij�
�
is suboptimal and cannot be an equilibrium strategy.

Now we know that Pr
�
siind

�
= 1, i.e. player j�s strategy makes player i always indi¤erent be-

tween I and N . Thus, 9mi 2 [0; 1], s.t. player i always invests with probability mi and does not

collect any information. Let mi (�) , Pr (player i chooses Ij�) be the probability that player
i 2 f1; 2g invests when the realization of the fundamental is �. Then mi (�) is totally deter-
mined by player i�s strategy

�
qi
�
sij�
�
; �i (�)

�
, i 2 f1; 2g. If Pr (� � r � (1�mj (�)) 6= 0) > 0, e.g.

Pr (� � r � (1�mj (�)) > 0) > 0, then player i can always bene�t from using some more capac-

ity16 to distinguish some non-zero probability event A � f� � r � (1�mj (�)) > 0g and investing
when this event happens. Thus we have Pr (mi (�) = mi) = 1 and Pr (� � r � (1�mj (�)) = 0) =

1. Let F+ = f� 2 supp (P (�)) j� � r � (1�mi) > 0g, F� = f� 2 supp (P (�)) j� � r � (1�mi) < 0g
and B = f� 2 supp (P (�)) j� � r � (1�mi) = 0g. Construct a new strategy

�eqj �sj j�� ; e�j (�)�,
Sj =

n
sjI ; s

j
N

o
for player j, s.t. eqj �sj = sjI j�� = 1 if � 2 F+ [ B , eqj �sj = sjN j�� = 1 if

� 2 F�, and e�j �sjI� = I, e�j �sjN� = N . Then this new strategy brings player j an expected
utility no less than that gained with the original strategy and uses a capacity no more than

that used in the original strategy. Moreover, the non-triviality assumption implies Pr (B) < 1,

thus Pr (F+) + Pr (F�) > 0. Without loss of generality, assume Pr (F+) > 0. 8� 2 F+,

��r � (1�mi) > 0 = ��r � (1�mj (�)), i.e. mj (�) < mi � 1. Thus the new strategy generates
at least

R
F+
(1�mj (�)) dP (�) > 0 amount of extra expected utility for player j. Therefore,�eqj �sj j�� ; e�j (�)� strictly dominates �qj �sj j�� ; �j (�)� and thus �qj �sj j�� ; �j (�)� cannot be

player j�s equilibrium strategy.

16This is feasible since player i�s current strategy uses zero capacity and his capacity constraint is � > 0.
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Now we have proved Pr
�
Siind

�
= 0, 8i 2 f1; 2g by contradiction. Combined with the previous

result that #
�
Si
�
� 3, 8i 2 f1; 2g, it also implies that #

�
Si
�
= 1 or 2.

Proof of Lemma 02.

Proof. We only prove the case of pooling in I. The case of pooling in N follows the same

argument.

(Su¢ ciency) If Pr (� � 0) = 1, both players pooling in I is obvious an equilibrium.

(Necessity) Suppose player i pools in I, i.e. 8� 2supp(P (�)), mi (�) = 1, which implies

�i (�) � 0, �i (�) = 0, pIi = mi (�) = 1 and thus the �rst term of the right hand side of (3:7)

vanishes. Then (3:7) becomes

8� 2 supp (P (�)) , � � r � (1�mj (�)) = �i (�) � 0

i.e.

8� 2 supp (P (�)) , � � r � (1�mj (�)) � 0

i.e. Pr (� � 0) = 1.

Lemma 04 in an equilibrium of the constrained information acquisition problem with one

player pooling in I (N), the other player must also pool in I (N).

Proof. We only prove the case of pooling in I. The case of pooling in N follows the same

argument. Suppose player i pools in I, then Lemma 02 implies Pr (� � 0) = 1. By the non-

triviality assumption, Pr (� = 0) < 1. Thus pooling in I always generates a non-negative

utility for player j and any other strategy either reduces his expected utility or incurs non-zero

attention. According to the preference assumption A2, player j must pool in I.

Lemma 05 in an equilibrium of the constrained information acquisition problem with one

player playing the perfect separating strategy, the other player must play the same strategy.

Proof. Suppose player i plays a perfect separating strategy, i.e. player i partitions supp(P (�))
into two positive-probability events and choose di¤erent actions upon the occurence of dif-

ferent events. This strategy can be totally characterized by the event that player i invests:

SiI , f� 2 supp (P (�)) : mi (�) = 1g (note that Pr (mi (�) = 1) + Pr (mi (�) = 0) = 1). We

�rst �nd out player j�s best response mj (�) and then verify its feasibility. As an equilibrium
strategy, SiI satis�es f� 2 supp (P (�)) : � � r > 0g � SiI � f� 2 supp (P (�)) : � � 0g. Thus

8� 2 SiIn f� = 0g, player j must choose mj (�) = 1 to enjoy a positive conditional expected

utility � > 0; 8� 2supp(P (�)) nSiIn f� = rg, player j must choose mj (�) = 0 to avoid a negative

42



conditional expected utility �� r < 0. If Pr (� = 0) = Pr (� � r = 0) = 0, then the above argu-
ment leads to Pr (mi (�) = mj (�)) = 1. Now suppose Pr (� = 0) > 0. If 0 2 SiI but mj (0) < 1,

then player i�s conditional expected utility by choosing mi (0) = 1 is 0 � r � (1�mj (0)) < 0,

thus � = 0 should not belong toSiI , which is a contradition. Therefore 0 2 S
j
I if 0 2 SiI . By

the same argument we know that when Pr (� = r) > 0, if SiI does not contain f� = rg, S
j
I does

not either. Thus we showed that Pr (mi (�) = mj (�)) = 1. Since both players have the same

capacity, player j�s strategy is feasible.

Lemma 06 in an equilibrium of the constrained information acquisition problem with one

player playing the partial separating strategy, the other player must play the same strategy.

Proof. Suppose player i plays a partial separating strategy mi (�) , i.e. Pr (mi (�) 2 (0; 1)) > 0.

Recall that an equilibrium is characterized by

8� 2 supp (P (�)) ,

� � r � (1�mj (�)) = �i �
�
ln

�
mi (�)

1�mi (�)

�
� ln

�
pIi

1� pIi

��
+ �i (�)� �i (�) i; j 2 f1; 2g ; i 6= j (3:7)

where

pIi = Pr (player i chooses I) =
Z
mi (�) � dP (�) i 2 f1; 2g (3:6)

We �rst show that �i = 0 implies �j = 0.

Suppose �i = 0 but �j > 0. �i = 0 implies

8� 2 supp (P (�)) ,

� � r � (1�mj (�)) = �i (�)� �i (�) (B:1)

If player j�s equilibrium strategy is pooling or perfect separating, his capacity constraint must

be slack and �j = 0. Thus �j > 0 implies that player j uses partial separating strategy, i.e.

Pr (mj (�) 2 (0; 1)) > 0, which suggests that pIj =
R
mj (�) � dP (�) 2 (0; 1). Combind with the

fact that �j > 0, we must have Pr (mj (�) 2 (0; 1)) = 1. Otherwise the right handside of (3:7)
for player j would be in�nite with non-zero probability. Then player j�s equilibrium strategy

mj (�) satis�es the following equation

8� 2 supp (P (�)) ,

� � r � (1�mi (�)) = �j �
�
ln

�
mj (�)

1�mj (�)

�
� ln

�
pIj

1� pIj

��
(B:2)

LetA+ = f� 2 supp (P (�)) j� � r � (1�mj (�)) > 0g, A� = f� 2 supp (P (�)) j� � r � (1�mj (�)) < 0g
and A0 =supp(P (�)) n (A+ [A�) = f� 2 supp (P (�)) j� � r � (1�mj (�)) = 0g. Then (B:1) im-
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plies that

mi (�) =

8>><>>:
1 if � 2 A+
2 [0; 1] if � 2 A0
0 if � 2 A�

9>>=>>;
Now construct a new strategy emj (�) for player j, s.t. 8� 2supp(P (�)), emj (�) = mi (�). Note

that emj (�) is feasible for player j since the two players have the same capacity. With this new
strategy, 8� 2 A+, player j�s conditional expected utility becomes emj (�)�[� � r � (1�mi (�))] =

1 � [� � r � (1� 1)] = � > mj (�) � � = mj (�) � [� � r � (1�mi (�))] ="player j�s conditional

expected utility with his original strategy mj (�)". The inequality is true since � > r �
(1�mj (�)) > 0 and we proved Pr (mj (�) 2 (0; 1)) = 1. Similarly, we can show that 8� 2 A�,
player j�s conditional expected utility with his new strategy strictly exceeds that generated

by his original strategy. 8� 2 A0, if � � r � (1�mi (�)) > 0 = � � r � (1�mj (�)), thenemj (�) = mi (�) > mj (�) and player j strictly bene�ts from change from mj (�) to emj (�); if

� � r � (1�mi (�)) < 0 = � � r � (1�mj (�)), then emj (�) = mi (�) < mj (�) and player j

also strictly bene�ts from change from mj (�) to emj (�). Now we prove that emj (�) generates
strictly larger ex ante expected utility than does mj (�). If not, we must have Pr (A0) = 1 and
Pr (mi (�) = mj (�)) = 1. Recall that by de�nition, 8� 2 A0, � � r � (1�mj (�)) = 0, thus

� � r � (1�mi (�)) = 0 and (B:2) implies �j �
h
ln
�

mj(�)
1�mj(�)

�
� ln

�
pIj
1�pIj

�i
= 0, i.e. 8� 2 A0,

pIj = mj (�) = 1 � �=r. Since Pr (A0) = 1, this implies #supp(P (�)) = 1, which is a contra-
diction to the non-triviality assumption. Therefore, we proved that emj (�) is a feasible strategy
strictly dominating mj (�), which contradicts the fact that mj (�) is player j�s equilibrium strat-

egy. This �nal contradiction shows that either �i = �j = 0 or �i > 0 and �j > 0.

i) the case of �i > 0 and �j > 0. Note that �i > 0 and Pr (mi (�) 2 (0; 1)) > 0 implies that
Pr (mj (�) 2 (0; 1)) = 1. Otherwise the right handside of (3:7) for player i would be in�nite

with non-zero probability. If player j�s equilibrium strategy is pooling or perfect separating,

his capacity constraint must be slack and �j = 0. Thus �j > 0 implies that player j uses

partial separating strategy, i.e. Pr (mj (�) 2 (0; 1)) > 0, then the same argument leads to

Pr (mj (�) 2 (0; 1)) = 1. Now (3:7) becomes

8� 2 supp (P (�)) ,

� � r � (1�mj (�)) = �i �
�
ln

�
mi (�)

1�mi (�)

�
� ln

�
pIi

1� pIi

��
(B:3)

� � r � (1�mi (�)) = �j �
�
ln

�
mj (�)

1�mj (�)

�
� ln

�
pIj

1� pIj

��
(B:4)

Suppose Pr (mi (�) 6= mj (�)) > 0. Let h�; �i denote the inner product on L (R;P (�)), i.e.

8f1; f2 2 L (R;P (�)) , hf1; f2i ,
Z
f1 (�) � f2 (�) � dP (�)
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First we show that hmi �mj ; �=r � (1�mi)i > 0 or hmj �mi; �=r � (1�mj)i > 0. If not,

we have

hmi �mj ; �=r � (1�mi)i � 0

hmi �mj ; �=r � (1�mj)i � 0

Taking di¤erence of these two inequalities leads to hmi �mj ;mj �mii � 0, i.e. kmi �mjk2 �
0, thus kmi �mjk2 = 0, which is a contradiction to Pr (mi (�) 6= mj (�)) > 0.

Without loss of generality, suppose hmi �mj ; �=r � (1�mi)i > 0. According to (B:4), we
have

D
mi �mj ; �j �

h
ln
�

mj(�)
1�mj(�)

�
� ln

�
pIj
1�pIj

�iE
> 0, i.e.

D
mi �mj ;

h
ln
�

mj(�)
1�mj(�)

�
� ln

�
pIj
1�pIj

�iE
>

0, since �j > 0. Let em (�) = t�mi (�)+(1� t)�mj (�), t 2 [0; 1], 8� 2supp(P (�)). Then em (�) 2 

since 
 is convex. If a player plays the strategy characterized by em (�), the mutual information
between his action and the fundamental is

I (em (�)) = Z [em (�) ln em (�) + (1� em (�)) ln (1� em (�))] dP (�)� epI ln epI � (1� epI) ln (1� epI)
where epI = R em (�) � dP (�) = t � pIi + (1� t) � pIj .
Note that

dI (em (�))
dt

jt=0=
�
mi �mj ;

�
ln

�
mj (�)

1�mj (�)

�
� ln

�
pIj

1� pIj

���
> 0

thus 9t 2 (0; 1) s.t. I (em (�)) > I (mj (�)) = �. On the other hand, the mutual information

I (m (�)) is a convex functional of m (�), thus I (em (�)) � �. This generates a contradiction.
Therefore, we must have Pr (mi (�) = mj (�)) = 1.

ii) the case of �i = �j = 0. Now (3:7) becomes

8� 2 supp (P (�)) ,

� � r � (1�mj (�)) = �i (�)� �i (�) (B:1)

� � r � (1�mi (�)) = �j (�)� �j (�) (B:5)

LetAj+ = f� 2 supp (P (�)) j� � r � (1�mj (�)) > 0g, Aj� = f� 2 supp (P (�)) j� � r � (1�mj (�)) < 0g
and Aj0 =supp(P (�)) n

�
Aj+ [A

j
�

�
= f� 2 supp (P (�)) j� � r � (1�mj (�)) = 0g, j 2 f1; 2g.

Note that 8� 2 Aj+, (B:1) implies mi (�) = 1 � mj (�) and � � r � (1�mi (�)) � � � r �
(1�mj (�)) > 0, thus by de�nition � 2 Ai+ and (B:5) impliesmj (�) = 1. Then A

j
+ = A

i
+ , A+

and mj (�) = mi (�) = 1, 8� 2 A+. Similarly we can show that Aj� = Ai� , A� and

mj (�) = mi (�) = 0, 8� 2 A�. This implies that Aj0 = Ai0 = A0. Also note that by def-

inition 8� 2 A0, � � r � (1�mj (�)) = 0 = � � r � (1�mi (�)), i.e. mj (�) = mi (�). Since

supp(P (�)) = A+ [A� [A0, we prove that Pr (mi (�) = mj (�)) = 1.
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A remark to the case of �i = �j = 0: this case is actually very rare, in the sense that

it only exists under very restrictive conditions. Speci�cally, the seond part of the preference

assumption (A2) (do not collect information that is not used..) implies that a partial separating

equilibrium with �i = �j = 0 exists i¤ 9�B 2 (0; r)\supp(P (�)) s.t. Pr (� = �B) 2 (0; 1), and
9F �supp(P (�)) n f�Bg s.t. a) f� 2 supp (P (�)) j� > rg � F � f� 2 supp (P (�)) j� � 0g; b)
Pr (F ) = [1� Pr (� = �B)] = 1� �B=r; c) � � [1� Pr (� = �B)] �H (1� �B=r); where 8p 2 [0; 1],
H (p) , �p � ln p � (1� p) � ln (1� p) is the bivariate Shannon entropy function17 . If such
equilibrium exists, it has the form

m (�) =

8>><>>:
1 if � 2 F
1� �B=r if � = �B

0 otherwise

9>>=>>;
Since it is such a rare case, we just present the above statement without proof. In the main part

of the paper, we do not discuss this strange case and when we mention the partial separating

equilibria we always mean the case with binding capacity constraints.

Proof of Proposition 2.

Proof. the proof is a direct application of Lemma 04, 05 and 06.

Lemma 07 the costly information acquisition problem has an equilibrium with at least one

player pooling in I (N) i¤ Pr (� � 0) = 1 (Pr (� � r � 0) = 1).

Proof. We only prove the case of pooling in I. The case of pooling in N follows the same

argument.

(Su¢ ciency) If Pr (� � 0) = 1, both players pooling in I is obvious an equilibrium.

(Necessity) Suppose player i pools in I, i.e. 8� 2supp(P (�)), mi (�) = 1, which implies

�i (�) � 0, �i (�) = 0, pIi = mi (�) = 1 and thus the �rst term of the right hand side of (4:5)

vanishes. Then (4:5) becomes

8� 2 supp (P (�)) , � � r � (1�mj (�)) = �i (�) � 0

i.e.

8� 2 supp (P (�)) , � � r � (1�mj (�)) � 0

i.e. Pr (� � 0) = 1.

Lemma 08 in an equilibrium of the costly information acquisition problem with one player

pooling in I (N), the other player must also pool in I (N).

17Note that H (0) , limp!0H (p) = 0, H (1) , limp!1H (p) = 0.
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Proof. We only prove the case of pooling in I. The case of pooling in N follows the same

argument. Suppose player i pools in I, then Lemma 07 implies Pr (� � 0) = 1. By the non-

triviality assumption, Pr (� = 0) < 1. Thus pooling in I always generates a non-negative utility

for player j and any other strategy either reduces his expected utility or incurs non-zero cost

of information acquisition. Thus player j must pool in I.

Lemma 09 in an equilibrium of the costly information acquisition problem with one player

playing a partial separating strategy m (�), the other player must play the same strategy. More-
over, Pr (m (�) 2 (0; 1)) = 1.

Proof. Suppose player i plays a partial separating strategy mi (�) , i.e. Pr (mi (�) 2 (0; 1)) >
0. We �rst show that Pr (mi (�) 2 (0; 1)) = 1. Suppose Pr (mi (�) 2 (0; 1)) 2 (0; 1), then

Pr (mi (�) = 1) + Pr (mi (�) = 0) > 0 and pIi 2 (0; 1). In the case of Pr (mi (�) = 1) > 0,

8� 2supp(P (�)) s.t. mi (�) = 1, the �rst term of right hand side of (4:5) becomes in�-

nite and (4:5) cannot hold. Pr (mi (�) = 0) > 0 leads to the same contradiction. Thus

Pr (mi (�) 2 (0; 1)) = 1 and mi (�) satis�es

8� 2 supp (P (�)) ,

� � r � (1�mj (�)) = � �
�
ln

�
mi (�)

1�mi (�)

�
� ln

�
pIi

1� pIi

��
(B:6)

Suppose player j pools in I, i.e. Pr (mj (�) = 1) = 1, then Lemma 07 suggests that Pr (� � 0) =
1. Combined with the non-triviality assumption, we have Pr (� > 0) > 0. Thus (B:6) becomes

8� 2 supp (P (�)) ,

� �
�
ln

�
mi (�)

1�mi (�)

�
� ln

�
pIi

1� pIi

��
= � � r � (1�mj (�))

= � � r � (1� 1)

= � � 0 (B:7)

i.e. Pr (mi (�) � pIi) = 1 and Pr (mi (�) > pIi) > 0. Therefore pIi =
R
mi (�) � dP (�) > pIi,

which is a contradiction.

Simillarly, we can exclude the possibility of Pr (mj (�) = 0) = 1. Then according to Lemma

03, player j must play a partial separating strategy, i.e. Pr (mj (�) 2 (0; 1)) > 0. By the same
argument in proving Pr (mi (�) 2 (0; 1)) = 1, we know that Pr (mj (�) 2 (0; 1)) = 1. Therefore
mj (�) satis�es
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8� 2 supp (P (�)) ,

� � r � (1�mi (�)) = � �
�
ln

�
mj (�)

1�mj (�)

�
� ln

�
pIj

1� pIj

��
(B:8)

Suppose (m1 (�) ;m2 (�)) is a partial separating equilibrium, then it satis�es

8� 2 supp (P (�)) ,

� � r � (1�m1 (�)) = � �
�
ln

�
m2 (�)

1�m2 (�)

�
� ln

�
pI2

1� pI2

��
(B:9)

� � r � (1�m2 (�)) = � �
�
ln

�
m1 (�)

1�m1 (�)

�
� ln

�
pI1

1� pI1

��
(B:10)

(B:9)� (B:10) implies

8� 2 supp (P (�)) ,

r � (m1 (�)�m2 (�)) = � �
�
ln

�
m2 (�)

1�m2 (�)

�
� ln

�
m1 (�)

1�m1 (�)

��
� � �

�
ln

�
pI2

1� pI2

�
� ln

�
pI1

1� pI1

� �
i.e.

8� 2 supp (P (�)) ,�
ln

�
pI2

1� pI2

�
� ln

�
pI1

1� pI1

� �
=

�
ln

�
m2 (�)

1�m2 (�)

�
� ln

�
m1 (�)

1�m1 (�)

��
+
r

�
(m2 (�)�m1 (�)) (B:11)

Note that if pI2 = pI1, (B:11) becomes

8� 2 supp (P (�)) ,

0 =

�
ln

�
m2 (�)

1�m2 (�)

�
� ln

�
m1 (�)

1�m1 (�)

��
+
r

�
(m2 (�)�m1 (�))

and we must have 8� 2supp(P (�)), m2 (�) = m1 (�) since r
� > 0.

Now suppose pI2 6= pI1. Without loss of generality, let pI2 > pI1. Denote z = ln
�

pI2
1�pI2

�
�

ln
�

pI1
1�pI1

�
> 0. Then (B:11) becomes

8� 2 supp (P (�)) ,

0 < z =

�
ln

�
m2 (�)

1�m2 (�)

�
� ln

�
m1 (�)

1�m1 (�)

��
+
r

�
(m2 (�)�m1 (�)) (B:12)

which suggests that Pr (m2 (�) > m1 (�)) = 1. Let ln
�

m2(�)
1�m2(�)

�
= x (�) and ln

�
m1(�)
1�m1(�)

�
=

y (�). (B:12) implies

8� 2 supp (P (�)) , x (�)� y (�) = z � r

�
(m2 (�)�m1 (�)) < z
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i.e.

8� 2 supp (P (�)) , x (�) < y (�) + z (B:13)

Note that pIi =
R
mi (�) � dP (�) = Emi (�), i 2 f1; 2g, m2 (�) =

exp(x(�))
1+exp(x(�)) and m1 (�) =

exp(y(�))
1+exp(y(�)) , thus

z = ln

�
pI2

1� pI2

�
� ln

�
pI1

1� pI1

�
= ln

�
Em2 (�)

1� Em2 (�)

�
� ln

�
Em1 (�)

1� Em1 (�)

�

= ln

0@E
h

exp(x(�))
1+exp(x(�))

i
E
h

1
1+exp(x(�))

i
1A� ln

0@E
h

exp(y(�))
1+exp(y(�))

i
E
h

1
1+exp(y(�))

i
1A

< ln

0@E
h

exp(y(�)+z)
1+exp(y(�)+z)

i
E
h

1
1+exp(y(�)+z)

i
1A� ln

0@E
h

exp(y(�))
1+exp(y(�))

i
E
h

1
1+exp(y(�))

i
1A

Take the exponential of both sides of the above inequality, we have

exp (z) <
E
h

exp(y(�)+z)
1+exp(y(�)+z)

i
� E
h

1
1+exp(y(�))

i
E
h

1
1+exp(y(�)+z)

i
� E
h

exp(y(�))
1+exp(y(�))

i
i.e.

1 <
E
h

exp(y(�))
1+exp(y(�)+z)

i
� E
h

1
1+exp(y(�))

i
E
h

1
1+exp(y(�)+z)

i
� E
h

exp(y(�))
1+exp(y(�))

i
i.e.

2 �E
�

exp (y (�))

1 + exp (y (�) + z)

�
�E
�

1

1 + exp (y (�))

�
> 2 �E

�
1

1 + exp (y (�) + z)

�
�E
�

exp (y (�))

1 + exp (y (�))

�
i.e. Z

exp (y (�1))

1 + exp (y (�1) + z)
dP (�1) �

Z
1

1 + exp (y (�2))
dP (�2)

+

Z
exp (y (�2))

1 + exp (y (�2) + z)
dP (�2) �

Z
1

1 + exp (y (�1))
dP (�1)

>

Z
1

1 + exp (y (�1) + z)
dP (�1) �

Z
exp (y (�2))

1 + exp (y (�2))
dP (�2)

+

Z
1

1 + exp (y (�2) + z)
dP (�2) �

Z
exp (y (�1))

1 + exp (y (�1))
dP (�1)

i.e. Z �
exp (y (�1))

1 + exp (y (�1) + z)

1

1 + exp (y (�2))
+

exp (y (�2))

1 + exp (y (�2) + z)

1

1 + exp (y (�1))

�
dP (�1) dP (�2)

>

Z �
1

1 + exp (y (�1) + z)

exp (y (�2))

1 + exp (y (�2))
+

1

1 + exp (y (�2) + z)

exp (y (�1))

1 + exp (y (�1))

�
dP (�1) dP (�2)
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i.e.

Z
exp (y (�1)) [1 + exp (y (�2) + z)] [1 + exp (y (�1))]

+ exp (y (�2)) [1 + exp (y (�1) + z)] [1 + exp (y (�2))]

� exp (y (�2)) [1 + exp (y (�2) + z)] [1 + exp (y (�1))]
� exp (y (�1)) [1 + exp (y (�1) + z)] [1 + exp (y (�2))]

[1 + exp (y (�1) + z)] [1 + exp (y (�2))] [1 + exp (y (�2) + z)] [1 + exp (y (�1))]
dP (�1) dP (�2) > 0 (B:14)

Let y (�1) = u and y (�2) = v, then the numerator in the integral becomes

numerator = eu [1 + evez] [1 + eu] + ev [1 + euez] [1 + ev]� ev [1 + evez] [1 + eu]� eu [1 + euez] [1 + ev]

= [eu � ev] [1 + evez] [1 + eu]� [eu � ev] [1 + euez] [1 + ev]

= [eu � ev] [1 + evez + eu ++euevez � 1� euez � ev � eveuez]

= [eu � ev]2 [1� ez] < 0

where the last inequality follows the fact that z > 0. Therefore, the left side of (B:14) is

strictly negative, which is a contradiction. Therefore, Pr (m1 (�) = m2 (�) = m (�)) = 1 and

Pr (m (�) 2 (0; 1)) = 1.

Proof of Proposition 7.

Proof. the proof is a direct application of Lemma 03, 07, 08 and 09.

Proof of Proposition 10.

Proof. Since er = r
4�� > 1, there are in�nitely many possible shapes of m 2 M (r; �) as shown

in Subsection 4.2. Let m1 =
�
1 + (1� er�1)1=2� =2 and m2 =

�
1� (1� er�1)1=2� =2, then the

upper increasing component is above m1, the lower increasing component is below m2 and the

decreasing component is within [m1;m2]. We use t 2 [0; 1] to index all the shapes satisfying
MLRP (i.e. m (�) increasing in �). Speci�cally, let mt (�) 2 [0;m2] if � 2 (�1; �1+t �(�2 � �1)];
mt (�) 2 [m1; 1] if � 2 (�1 + t � (�2 � �1) ;+1), where �1 = ��ln

�
1+(1�er�1)1=2
1�(1�er�1)1=2

�
� r

2 �(1�er�1)1=2
and �2 = � � ln

�
1�(1�er�1)1=2
1+(1�er�1)1=2

�
+ r

2 � (1� er�1)1=2 are de�ned in Corollary 9.4. For example, the
corresponding indices for �gure 06, 07 and 08 are t = 0, 1=2 and 1, respectively.

De�ne bpI (�0) by (4:7), i.e.
�0 = r=2� � � ln

� bpI (�0)
1� bpI (�0)

�
then bpI (�0) is a continuous function of �0. Note that (�0;m) 2 R�M (r; �) is a partial sepa-

rating equilibrium i¤
R
m (� � �0) � dP (�) = bpI (�0).

De�ne epI (�0; t) , R
mt (� � �0) � dP (�). Since P (�) is absolutely continuous, epI (�0; t) is

a continuous function with respect to �0 and t (even if mt (� � �0) is not continuous in �).
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Also note that supp(P (�)) = R implies that epI (�0; t) is strictly decreasing in t, thus 8pI 2
[epI (�0; 1) ; epI (�0; 0)], there exists some t 2 [0; 1] s.t. pI = R mt (� � �0) � dP (�). On the other
hand, for any possible shape m 2M (r; �), no matter whether it satis�es MLRP or not, we have

pI =
R
m (� � �0) � dP (�) 2 [epI (�0; 1) ; epI (�0; 0)]. Hence, the costly information acquisition

problem has a partial separating equilibrium i¤ 9�0 2 R s.t. bpI (�0) 2 [epI (�0; 1) ; epI (�0; 0)].
According to Proposition 6 and 8, there exists a partial separating equilibrium (��0;m

�) 2
R�M (r; �) since Pr (� > r) > 0 and Pr (� < 0) > 0. This implies bpI (��0) 2 [epI (��0; 1) ; epI (��0; 0)].
If bpI (��0) 2 (epI (��0; 1) ; epI (��0; 0)), there exists � > 0 s.t. bpI (��0 + �) 2 (epI (��0 + �; 1) ; epI (��0 + �; 0)),

since bpI (�0), epI (�0; 1) and epI (�0; 0) are continuous in �0. Then 9t 2 [0; 1] s.t. pI = R mt (� � ��0 � �)�
dP (�) = bpI (��0 + �). Since any possible shape m 2 M (r; �) is not invariant with respect to

translation, this suggests that (��0 + �;mt) 2 R�M (r; �) is another partial separating equilib-

rium.

Now we consider the boundary situations bpI (��0) = epI (��0; 1) and bpI (��0) = epI (��0; 0).
Suppose bpI (��0) = epI (��0; 1) and (��0;m1) is the unique equilibrium, then 8�0 2 Rn f��0g,bpI (��0) < epI (��0; 1) < epI (��0; 0), since bpI (�0), epI (�0; 1) and epI (�0; 0) are continuous in �0. This

suggests that for any shape m 2 M (r; �) and any �0 < �
�
0, bpI (�0) < R m (� � �0) � dP (�) and

thus g (�0;m) = r=2 � � � ln
� R

m(���0)�dP (�)
1�
R
m(���0)�dP (�)

�
< r=2 � � � ln

� bpI(�0)
1�bpI(�0)

�
= �0. Therefore

�0 = �1 is a �xed point of the mapping g (�0;m) and there exists an equilibrium pooling in

I. This is a contradiction to the assumption Pr (� < 0) > 0 according to Proposition 8. In

otherwords, there must be multiple equilibria.

The multiplicity in the other boundary situation bpI (��0) = epI (��0; 0) can be proved in a similar
way.

Moreover, there are in�nitely many partial separating equilibria.

In the interior case bpI (��0) 2 (epI (��0; 1) ; epI (��0; 0)), there is a continuum of �0 s.t. bpI (�0) 2
(epI (�0; 1) ; epI (�0; 0)), since bpI (�0), epI (�0; 1) and epI (�0; 0) are all continuous in �0. For each
such �0, 9t 2 (0; 1) s.t. (�0;mt) 2 R�M (r; �) is a partial separating equilibrium satisfying

MLRP. There also exist in�nitely many partial separating equilibria that do not satisfy MLRP,

since for each such (�0;mt) we can construct a new equilibrium by removing some weight from

the upper and the lower increasing components to the decreasing component without changing

the corresponding bpI (�0).
In the boundary cases, e.g. bpI (��0) = epI (��0; 1), suppose there are �nitely many equilibria.

The above analysis implies that all these equilibria are on the boundary bpI (�0) = epI (�0; 1),
otherwise there must be some interior case which induces in�nitely many equilibria. Suppose

there are n equilibria, then the set of equilibria is
n
�k0 ;m1

on
k=1

. Let �10 = min
n
�k0

on
k=1

, then
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for any shape m 2M (r; �) and any �0 < �
�
0, bpI (�0) < R m (� � �0) �dP (�) and thus g (�0;m) =

r=2�� � ln
� R

m(���0)�dP (�)
1�
R
m(���0)�dP (�)

�
< r=2�� � ln

� bpI(�0)
1�bpI(�0)

�
= �0. As shown before, this implies the

existence of an equilibrium pooling in I, which is a contradiction. The existence of in�nitely

many partial separating equilibria in the other boundary situation bpI (��0) = epI (��0; 0) can be
proved in a similar way.

Proof of Proposition 11.

Proof. We write g� (�) for the density function over signals induced by precision � signals, i.e.

g� (x) =

Z
�

�1=2 � f
�
�1=2 (x� �)

�
� p (�) � d�

and write l� (�jx) for the induced posterior density over �:

l� (�jx) =
�1=2 � f

�
�1=2 (x� �)

�
� p (�)

g� (x)

A su¢ cient statistic for a player�s conjecture over his opponent�s play is the probability he

attaches to his opponent investing as a function of �, which is a function m : R! [0; 1]. For

the same reason in the last paragraph of Section 2, we restrict our attention to m 2 e
 =

fm 2 
j8� 2 supp (P (�)) , m (�) 2 [0; 1]g. Note that e
 is a compact functional space.
If a player chooses (�; s) against conjecture m, his expected utility is

V (�; s;m) =

Z
x

s (x) �
�Z

�

(� � r � (1�m (�))) � l� (�jx) � d�
�
� g� (x) � dx

With an optimal choice of s (�) this gives

V � (�;m) =

Z
x

max

�
0;

Z
�

(� � r � (1�m (�))) � l� (�jx) � d�
�
� g� (x) � dx

=

Z
x

max

�
0;

Z
�

(� � r � (1�m (�))) � �1=2 � f
�
�1=2 (x� �)

�
� p (�) � d�

�
� dx (B:15)

Note that lim�!1 �
1=2 � f

�
�1=2 (x� �)

�
= � (x� �), where � (�) is Dirac function. Then

(B:15) implies

V �� (m) , lim
�!1

V � (�;m)

=

Z
x

max f0; (x� r � (1�m (x))) � p (x)g � dx

=

Z
�

max f0; (� � r � (1�m (�))) � p (�)g � d� (B:16)

V �� (m) is the player�s ex ante expected utility against conjecture m if he can always observe

the exact realization of the fundamental.
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We �rst show that 8m 2 e
, 8� > 0, V �� (m) > V � (�;m). By the convexity of max f0; �g,
(B:15) implies

V � (�;m) =

Z
x

max

�
0;

Z
�

(� � r � (1�m (�))) � �1=2 � f
�
�1=2 (x� �)

�
� p (�) � d�

�
� dx

�
Z
x

Z
�

max f0; (� � r � (1�m (�))) � p (�)g � �1=2 � f
�
�1=2 (x� �)

�
� d� � dx

=

Z
�

max f0; (� � r � (1�m (�))) � p (�)g �
Z
x

�1=2 � f
�
�1=2 (x� �)

�
� dx � d�

=

Z
�

max f0; (� � r � (1�m (�))) � p (�)g � 1 � d�

= V �� (m) (B:17)

where the last equality follows (B:16). The above inequality is strict i¤

L

��
x 2 Rj

Z
�

�1=2 � f
�
�1=2 (x� �)

�
� 1f(��r�(1�m(�)))�p(�)>0g � d� 2 (0; 1)

��
> 0 (B:18)

where L (�) is the Lebesque measure over R and 1A denotes the characteristic function of

set A. Since 8� 2supp(P (�)), m (�) 2 [0; 1], we have Pr ((� � r � (1�m (�))) � p (�) > 0) �
Pr ((� � r) � p (�) > 0) = Pr (� > r) > 0 and Pr ((� � r � (1�m (�))) � p (�) � 0) � Pr (� � p (�) � 0) =
Pr (� < 0) > 0. Then supp(f (�)) = R implies that 8x 2 R,Z
�

�1=2 �f
�
�1=2 (x� �)

�
�1f(��r�(1�m(�)))�p(�)>0g �d� �

Z
�

�1=2 �f
�
�1=2 (x� �)

�
�1f�>rg �d� > 0

andZ
�

�1=2 �f
�
�1=2 (x� �)

�
�1f(��r�(1�m(�)))�p(�)�0g �d� �

Z
�

�1=2 �f
�
�1=2 (x� �)

�
�1f�<0g �d� > 0

i.e.
R
�
�1=2 �f

�
�1=2 (x� �)

�
�1f(��r�(1�m(�)))�p(�)>0g �d� 2 (0; 1). Thus (B:18) holds and (B:17)

becomes

8m 2 e
, 8� > 0, V � (�;m) < V �� (m) (B:19)

Now we prove another intermediate result: 8� > 0, 9�0 > 0 s.t. 9�
�
�; �0

�
> 0 s.t. 8m 2 e
,

V �
�
�0;m

�
� V � (�;m) > �

�
�; �0

�
.

Suppose this result does not hold, then 9� > 0, s.t. 8�0 > 0, 8n > 0, 9mn
�;�0 2 e
, s.t.

V �
�
�0;mn

�;�0

�
� V �

�
�;mn

�;�0

�
� 1=n. Thus 8�0 > 0, there exists a m�;�0 2 e
 and a subse-

quence
�
nk;�0

	1
k=1

s.t. limk!1m
nk;�0

�;�0 = m�;�0 and V �
�
�0;m�;�0

�
� V �

�
�;m�;�0

�
� 0, since e


is compact and V � (�;m) is a continuous functional of m for all � > 0. However, (B:19) implies

that V �
�
�0;m�;�0

�
� V �

�
�;m�;�0

�
> 0 if �0 is large enough, which is a contradiction.

According to this intermediate result, we conclude that 8� > 0, 9�0 > �, s.t. 8m 2 e
,
V �
�
�0;m

�
� c � h

�
�0
�
> V � (�;m)� c � h (�) if c < c , �(�;�0)

h(�0)�h(�) > 0.
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Therefore, the players would like to acquire information of precision at least �.

Proof of Proposition 12.

Proof. Let PR be the space of all the probability density functions over R and P[�;r��] ,
fp 2 PR : supp (p) � [�; r � �]g. De�ne a distance � (�; �) on PR as � (p1; p2) =

R
jp1 (�)�p2 (�) j�

d� for any pair (p1; p2) 2 PR �PR. De�ne a set of functions

M ,
�
m (�) 2 e
 : � = � � ln� m (�)

1�m (�)

�
+ r �

�
1

2
�m (�)

��
(B:20)

M is actually the set of all possible shapes of the equilibrium strategies. Note that #M =8<: 1 if er = r
4�� � 1

1 if er = r
4�� > 1

9=;. De�ne a mapping g : R�M�PR ! R as

g (�0;m; p) , r=2� � � ln
� R

m (� � �0) � p (�) � d�
1�

R
m (� � �0) � p (�) � d�

�
(B:21)

then g (�0;m; p) is a continuous function of �0 for given (m; p) 2 M�PR, a continuous func-
tional of m for given (�0; p) 2 R�PR and a continuous functional of p for given (�0;m) 2 R�M.

We �rst prove the following lemma.

Lemma 010 9�0, �0 2 R, s.t. �0 > �0, 8�0 � �0, 8 (m; p) 2M�P[�;r��], g (�0;m; p) � �0 >
�=2 and 8�0 � �0, 8 (m; p) 2M�P[�;r��], g (�0;m; p)� �0 < ��=2.

Proof. If er = r
4�� > 1, then 8�0 � r � � + � � ln

�
1�(1�er�1)1=2
1+(1�er�1)1=2

�
+ r

2 � (1 � er�1)1=2, Propo-
sition 9 implies 8m 2 M , m (� � �0) is a strictly increasing function for � 2 [�; r � �]. Ifer = r

4�� � 1, m (� � �0) is strictly increasing in � for all �0 2 R. Thus 8�0 � r � � +
max

n
� � ln

�
1�(1�er�1)1=2
1+(1�er�1)1=2

�
+ r

2 � (1� er�1)1=2; 0o, 8p 2 P[�;r��], we have Pr (f� 2 supp (p) : m (� � �0) � m (r � �� �0)g) =
1 and

g (�0;m; p)� �0 = r=2� � � ln
� R

m (� � �0) � p (�) � d�
1�

R
m (� � �0) � p (�) � d�

�
� �0

� r=2� � � ln
� R

m (r � �� �0) � p (�) � d�
1�

R
m (r � �� �0) � p (�) � d�

�
� �0

= r=2� � � ln
�

m (r � �� �0)
1�m (r � �� �0)

�
� �0 (B:22)

(B:20) implies

� � �0 = � � ln
�

m (� � �0)
1�m (� � �0)

�
+ r �

�
1

2
�m (� � �0)

�
(B:23)

then

� � ln
�

m (r � �� �0)
1�m (r � �� �0)

�
= r � �� �0 � r �

�
1

2
�m (r � �� �0)

�
(B:24)
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Plugging (B:24) into (B:22) leads to

g (�0;m; p)� �0 � r=2�
�
r � �� �0 � r �

�
1

2
�m (r � �� �0)

��
� �0

= �� r �m (r � �� �0) (B:25)

Since lim�0!+1m (r � �� �0) = 0, there exists �0 > r��+max
n
� � ln

�
1�(1�er�1)1=2
1+(1�er�1)1=2

�
+ r

2 � (1� er�1)1=2; 0o
s.t. g (�0;m; p) � �0 > �=2 for all �0 � �0. Note that (B:25) holds for all p 2 P[�;r��] and all
m 2M 18 , thus this �0 is uniform over M�P[�;r��].

If er = r
4�� > 1, then 8�0 � ��

�
� � ln

�
1�(1�er�1)1=2
1+(1�er�1)1=2

�
+ r

2 � (1� er�1)1=2�, Proposition 9 implies
8m 2M , m (� � �0) is a strictly increasing function for � 2 [�; r � �]. If er = r

4�� � 1, m (� � �0)
is strictly increasing in � for all �0 2 R. Thus 8�0 � ��max

n
� � ln

�
1�(1�er�1)1=2
1+(1�er�1)1=2

�
+ r

2 � (1� er�1)1=2; 0o,
8p 2 P[�;r��], we have Pr (f� 2 supp (p) : m (� � �0) � m (�� �0)g) = 1 and

g (�0;m; p)� �0 = r=2� � � ln
� R

m (� � �0) � p (�) � d�
1�

R
m (� � �0) � p (�) � d�

�
� �0

� r=2� � � ln
� R

m (�� �0) � p (�) � d�
1�

R
m (�� �0) � p (�) � d�

�
� �0

= r=2� � � ln
�

m (�� �0)
1�m (�� �0)

�
� �0 (B:26)

by (B:23)

� � ln
�

m (�� �0)
1�m (�� �0)

�
= �� �0 � r �

�
1

2
�m (�� �0)

�
(B:27)

Plugging (B:27) into (B:26) leads to

g (�0;m; p)� �0 � r=2�
�
�� �0 � r �

�
1

2
�m (�� �0)

��
� �0

= r � [1�m (�� �0)]� � (B:28)

Since lim�0!�1m (�� �0) = 1, there exists �0 < ��max
n
� � ln

�
1�(1�er�1)1=2
1+(1�er�1)1=2

�
+ r

2 � (1� er�1)1=2; 0o
s.t. g (�0;m; p)� �0 < ��=2 for all �0 � �0. Note that (B:28) holds for all p 2 P[�;r��] and all
m 2M 19 , thus this �0 is uniform over M�P[�;r��]. Also note that �0 > �0 by de�nition.

8� > 0, let A� ,
�
q 2 PR : 9p 2 P[�;r��] s.t. � (q; p) < 2 � �

	
. Now we prove another lemma.

Lemma 011 9� > 0, s.t. 8q 2 A�, 8m 2M , g
�
�0;m; q

�
� �0 > 0 and g (�0;m; q)� �0 < 0.

Proof. �0 > r� �+max
n
� � ln

�
1�(1�er�1)1=2
1+(1�er�1)1=2

�
+ r

2 � (1� er�1)1=2; 0o implies that g ��0;m; p��
�0 does not vary over m 2 M . Thus g

�
�0;m; p

�
� �0 is actually a continuous functional of p.

18Note that m (r � �� �0) does not vary over m 2 M since �0 � r � � +

max

�
� � ln

�
1�(1�er�1)1=2
1+(1�er�1)1=2

�
+ r

2
� (1� er�1)1=2; 0�.

19Note that m (�� �0) does not vary over m 2 M since �0 � � �

max

�
� � ln

�
1�(1�er�1)1=2
1+(1�er�1)1=2

�
+ r

2
� (1� er�1)1=2; 0�.
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By Lemma 010, we have

8 (m; p) 2M�P[�;r��]; , �=2 < g
�
�0;m; p

�
��0 = r=2���ln

 R
m
�
� � �0

�
� p (�) � d�

1�
R
m
�
� � �0

�
� p (�) � d�

!
��0

i.e.

8 (m; p) 2M�P[�;r��], pI
�
�0;m; p

�
,
Z
m
�
� � �0

�
�p (�)�d� < 1

exp
��
�0 � r=2 + �=2

�
=�
�
+ 1

(B:29)

Note that 8 (m; q) 2M�A�, by de�nition 9p 2 P[�;r��] s.t. � (q; p) < 2 � � and

jpI
�
�0;m; q

�
� pI

�
�0;m; p

�
j

= j
Z
m
�
� � �0

�
� q (�) � d� �

Z
m
�
� � �0

�
� p (�) � d�j

�
Z
m
�
� � �0

�
� jq (�)� p (�) j � d�

�
Z
1 � jq (�)� p (�) j � d�

= � (q; p) < 2 � � (B:30)

where the last inequality comes from the fact 8� 2 R, m
�
� � �0

�
2 [0; 1].

Let
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4
�
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�
=�
�
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� 1
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��
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�
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#
> 0

then (B:29) and (B:30) implies 8 (m; q) 2M�A�, 9p 2 P[�;r��] s.t. � (q; p) < 2 � � and
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"
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� 1
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(B:31)

Note that (B:31) is equivalent to

8 (m; q) 2 M�A�,

g
�
�0;m; q

�
� �0 = r=2� � � ln

 R
m
�
� � �0

�
� q (�) � d�

1�
R
m
�
� � �0

�
� q (�) � d�

!
� �0

> r=2� � � ln

0@ 1

exp((�0�r=2)=�)+1

1� 1
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1A� �0 = 0
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thus we prove the �rst part of Lemma 010. By the same argument, we can choose � > 0, s.t.

8q 2 A�, 8m 2M , g (�0;m; q)� �0 < 0. Finally, let � = min
�
�; �
	
.

Now choose � > 0 as suggested by Lemma 010. 8p 2 PR s.t. Pr (� 2 [�; r � �]) > 1 � �, let

ep (�) =
8<: 0 if � 2 Rn [�; r � �]

p(�)
Pr(�2[�;r��]) if � 2 [�; r � �]

9=;, then ep 2 P[�;r��]. The distance between p and ep is
� (p; ep) =

Z
jp (�)� ep (�) j � d�

=

Z
�2Rn[�;r��]

jp (�)� ep (�) j � d� + Z
�2[�;r��]

jp (�)� ep (�) j � d�
=

Z
�2Rn[�;r��]

jp (�)� 0j � d� +
Z
�2[�;r��]

jp (�)� p (�)

Pr (� 2 [�; r � �]) j � d�

= 1� Pr (� 2 [�; r � �]) + 1� Pr (� 2 [�; r � �])
Pr (� 2 [�; r � �]) �

Z
�2[�;r��]

p (�) � d�

= 1� Pr (� 2 [�; r � �]) + 1� Pr (� 2 [�; r � �])
Pr (� 2 [�; r � �]) � Pr (� 2 [�; r � �])

= 2 � [1� Pr (� 2 [�; r � �])] < 2 � �

this suggests p 2 A�. Then by Lemma 011, we have g
�
�0;m; p

�
��0 > 0 and g (�0;m; p)��0 < 0

for all m 2M . Since g (�0;m; p) is a continuous function of �0 for any given (m; p) 2M�PR
and �0 > �0 as shown in Lemma 010, 8m 2 M , 9�m0 2

�
�0; �0

�
s.t. g (�m0 ;m; p) = �m0 . Here

m (� � �m0 ) is a partial separating equilibrium. For any given m 2 M , if g (�0;m; p) � �0 �
0 for some �0 2

�
�0;1

�
, then we have another partial separating equilibrium. Otherwise,

g (�0;m; p) � �0 > 0 for all �0 2
�
�0;1

�
, which implies an equilibrium pooling in N . The

same argument applies for �0 2 (�1; �0), which leads to other partial separating equilibria or
the pooling (in I) equilibrium. Thus we prove the multiplicity for each m 2 M . Moreover, ifer = r

4�� > 1, #M =1 and we have in�nitely many equilibria.

This concludes the proof of Proposition 12.
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