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Abstract

We provide a tractable framework for studying the e¤ects of group size and structure on the

maximum level of a public good that can be provided in sequential equilibrium in repeated games

with private monitoring. We restrict attention to games with "all-or-nothing" monitoring, in

which in every period player i either perfectly observes player j�s contribution to the public

good or gets no information about player j�s contribution; this class of games includes many

interesting examples, including random matching, monitoring on networks, and simple kinds of

imperfect "quasi-public" monitoring. The �rst main result is that the maximum level of public

good provision can be sustained in grim trigger strategies. In games satisfying a weak form of

symmetry, comparative statics on the maximum per capita level of public good provision are

shown to depend only on the product of a term capturing the rivalness of the good and a term

capturing a simple characteristic of the monitoring technology: its "e¤ective contagiousness." In

leading examples, the maximum per capita level of provision of a pure public good is increasing

in group size, but the maximum per capita level of provision of a divisible public good is often

decreasing in group size. Under broad conditions, making monitoring less uncertain in the

second-order stochastic dominance sense increases public good provision. For games played

on asymmetric networks, we introduce a new notion of network centrality and show that more

central players in social networks make larger contributions, and that every player in better

connected networks can contribute more to the public good. We also consider an extension to

local public goods.
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extensive advice and support; and thank Abhijit Banerjee, Alessandro Bonatti, Gabriel Carroll, Anton Kolotilin,
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1 Introduction

The question of how groups sustain cooperation and the related question of what kinds of groups

can sustain cooperation best are fundamental in the social sciences. In economics, existing work on

the theory of repeated games provides a framework for answering these questions when individuals

can perfectly observe each other�s actions (e.g., Abreu, 1988), but has much less to say about

the more realistic case where monitoring is imperfect. This weakness is particularly acute when

studying large groups, where public signals are very poor signals of each individual�s actions, and

where high quality� but dispersed� private signals are the basis for cooperation. Consider the

construction of a series of infrastructure projects in a small village (wells, schools, roads, etc.).

The quality of each project is a poor signal of each villager�s contribution to its construction, but

each villager may always know whether the other members of her household worked on the project,

and may occasionally also observe other villagers working on a project. Similarly, the stock price

of a Fortune 500 company is a poor signal of each employee�s e¤ort, but each employee may observe

her o¢ cemates�e¤ort; and price is a poor signal of each �rm�s output in a large market, but each

�rm may observe the output of its local competitors. Thus, it is certainly plausible that local,

private monitoring plays a larger role than public monitoring in sustaining cooperation in many

interesting economic examples, and very little is known about how cooperation is best sustained

under this sort of monitoring.

This paper studies the provision of public goods when incentives to contribute are provided

through community enforcement under a range of monitoring technologies.1 We are particularly

interested in what strategies sustain the highest possible level of public good provision in sequential

equilibrium, how this level varies with group size and structure,2 and how this depends on charac-

teristics of the public good (e.g., whether it is pure or impure). Thus, our paper is a contribution to

the literatures on repeated games with community enforcement (e.g., Kandori, 1992; Ellison, 1994)

and repeated public good provision (Bendor and Mookherjee, 1987, 1990; Pecorino, 1999; Haag

and Laguno¤, 2007). Unlike most existing work on repeated games with community enforcement,

we characterize optimal equilibria at �xed discount factors and emphasize comparative statics with

1 In this paper, we use the terms "monitoring technology" and "group structure" interchangeably.
2How public good provision varies with group size has been a major question dating back at least to Olson (1965).

The e¤ect of social structure on public good provision has become more prominent recently, beginning with the work

of sociologists such as Coleman (1990) and Putnam (2000) and moving into the economics literature on networks

(see, for example, the papers cited in footnote 6).
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respect to group size and structure; unlike the existing literature on repeated public good provision,

we study games with private monitoring. We also study public good provision in social networks,

which makes our paper a contribution to the literature on repeated games on networks.

More precisely, we studyN -player repeated games where in every period each player decides how

much to contribute to a public good, and contributing nothing is the dominant stage game action.

Our analysis is made tractable by the restriction, maintained throughout the paper, to games in

which monitoring is "all-or-nothing," in that in every period player i either perfectly observes player

j�s contribution to the public good or gets no information about player j�s contribution. This

restriction allows us to cleanly characterize the maximum level of public good provision at any

�xed discount factor bounded away from 1, which would be impossible with more general imperfect

monitoring; indeed, optimal equilibria under all-or-nothing monitoring have stationary equilibrium

path, as discussed below. Examples of all-or-nothing monitoring structures include "uniform

monitoring," where each player i observes the contribution of each other player j with probability

p independently across i and j; "quasi-public monitoring," where all other players observe player

i�s contribution with probability p, and none of them observe her contribution with probability

1 � p;3 "random matching," where players randomly pair o¤ each period and only observe the

contributions of their partners; and "monitoring on a network," where players are arranged in �xed

positions on an arbitrary graph, and each player observes only the contributions of her neighbors

each period. All-or-nothing monitoring also seems like a reasonable approximation to the actual

monitoring structures in the motivating applications listed above.

We now outline the remainder of the paper and preview our results. Section 2 relates our paper

to the existing economics literatures on community enforcement, dynamic public good provision,

repeated games on networks, and repeated games with private monitoring. Section 3 presents our

model and our de�nition of all-or-nothing monitoring, and discusses how it encompasses a wide

range of public good environments and monitoring technologies. Section 4 establishes our main

theoretical results. We �rst show that the maximum equilibrium level of public good provision

is always sustained in "grim trigger" strategies, under which every individual contributes a �xed

amount to the public good each period and stops contributing forever if she ever observes another

individual�s failure to make her prescribed contribution. The fact that grim trigger strategies

provide the strongest possible incentive to contribute to the public good follows from a monotonicity

3We refer to this monitoring technology as "quasi"-public, because player i does not know when her opponents

observe her actions� this is a technicality that does not a¤ect any of our results.
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argument based on a kind of "strategic complementarity" in repeated public good games that to

our knowledge has not been previously exploited in the literature. The key observation is that

the highest contribution that a player is willing to make from any on-path history onwards is

non-decreasing in the contributions that every player makes from each on-path history onwards.

This allows us to use a monotonicity argument in the spirit of Milgrom and Roberts (1990) to

show that the maximum equilibrium level of public good provision is sustained by grim trigger

strategies, rather than by strategies in which players are "rewarded" when they are observed to

make their prescribed contributions. We also show that the maximum level of public good provision

is sustained in symmetric grim trigger strategies� in which each player contributes an amount x�

every period as long as she has never observed a contribution other than x�, and contributes nothing

otherwise� if and (for generic discount factors) only if monitoring also satis�es a weak symmetry

property, which requires that all players�actions are "equally observable."

We then use these results to show that, under the equal observability assumption, the maximum

per capita level of provision of a public good depends on the monitoring technology only through

its "e¤ective contagiousness,"4 de�ned as

1X
t=0

�tE [number of players who learn about a deviation within t periods] .

This fact yields simple and intuitive comparative statics results. The key observation driving

these comparative statics is that the cost of contributing to the public good does not depend

on group size or structure, while the bene�t of contributing� the expected discounted value of

the future contributions that other individuals make only if the player contributes� depends on

group size and structure through both the marginal bene�t a player receives from another player�s

contribution (the "rivalness" of the public good) and the e¤ective contagiousness. In particular,

the group size that best supports public good provision is the one that maximizes the product of

this marginal bene�t and the e¤ective contagiousness.

Section 5 uses the results of Section 4 to derive comparative statics on the maximum per capita

level of public good provision with respect to group size (N) for di¤erent kinds of public goods

and di¤erent monitoring technologies that satisfy equal observability. It serves to illustrate the

usefulness of the results of Section 4 for applications, and also demonstrates that the maximum

4The terminology "e¤ective contagiousness" is due to the fact that this number re�ects how quickly information

about a defection spreads "contagiously" through the population, measured in terms of payo¤ consequences for the

players.
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per capita level of public good provision is increasing in group size in a wide range of important

examples when the public good is pure (i.e., the marginal bene�t a player receives from another

player�s contribution does not depend on N), but is decreasing in many examples when the public

good is divisible (i.e., the marginal bene�t a player receives from another player�s contribution

scales by 1=N).5

Section 6 presents a general result comparing monitoring structures under equal observability,

holding group size �xed. We provide broad conditions under which making monitoring more

uncertain, in the sense of a mean-preserving spread of the distribution of the number of individuals

who observe a deviation, reduces the maximum level of public good provision. This suggests

that monitoring structures under which a small number of players observe a deviation with high

probability are more e¤ective at supporting cooperation than are monitoring structures under which

a deviation is publicly observed with low probability.

Section 7 drops the assumption of equal observability and studies public good provision on

general, asymmetric networks, using the results of Section 4. We introduce a new notion of

network centrality, and show that players who are "more central" make higher contributions in

the (e¤ectively unique) equilibrium that sustains the maximum level of public good provision; this

follows because a defection by a more central player leads to more defections by other central

players (who would otherwise make large contributions), which implies that more central players

are less tempted to defect. We also provide simple graph-theoretic tools for determining which

players are more central than others and demonstrate their usefulness in an example. Finally, we

show that adding a link between any two players strictly increases the contributions of all players in

the component of the graph containing those players in the equilibrium that sustains the maximum

level of public good provision, which formalizes the idea that individuals in better-connected social

groups can contribute more to public goods.

Finally, Section 8 brie�y generalizes our model to allow for local public goods� like cooper-

ation in a bilateral trading relationship� where players bene�t asymmetrically from each other�s

contributions. Our main theoretical results apply to this more general model, but the e¤ects of

group size and structure on public good provision may be di¤erent. For example, we �nd that

5A de�ning property of a public good is that it is non-rival for a given population. We distinguish between public

goods that remain non-rival as the population grows (e.g., "pure" public goods like national defense and pollution

control), and public goods whose bene�ts become diluted as the population grows (e.g., "divisible" public goods like

pro�ts in an organization or �xed prizes from intergroup con�ict). Our model also allows for intermediate cases, like

infrastructure projects.
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more "compact" social structures support a higher level of public good provision when players only

bene�t from contributions that they observe, which highlights that di¤erent social structures are

better at supporting the provision of di¤erent types of public goods. Section 9 concludes and

discusses possible directions for future research, and the appendix contains omitted proofs.

2 Related Literature

As discussed above, this paper lies at the intersection of the literature on repeated games with

community enforcement and the literature on repeated public good provision. The study of

repeated games with community enforcement was pioneered by Kandori (1992) and Ellison (1994),

who introduced the "contagion" strategies that turn out to sustain the maximum level of public

good provision in our model. Subsequent important contributions include Greif (1993), Ghosh and

Ray (1996), Kranton (1996), Dixit (2003), Takahashi (2008), and Deb (2008). Many of these papers

(e.g., Kandori, 1992; Ellison, 1994; Takahashi, 2008; Deb, 2008) focus on sustaining cooperation

in the limit as the discount factor goes to 1, rather than on characterizing the maximum level of

cooperation that is sustainable in equilibrium for a �xed discount factor. Greif (1993) shows that

trade is facilitated by "multilateral" punishments, in which a group of traders stop doing business

with an individual if she cheats an individual trader. Ghosh and Ray (1996) study a repeated

game in which some players are "uncooperative," and examine how the level of cooperation that

can be sustained in a particular class of equilibria varies with the discount factor and the fraction

of uncooperative players. Kranton (1996) examines gains from trade under perfect monitoring in

a random matching model and shows that gains from trade are larger in larger markets, as there

are more frequent future interactions in larger markets. And Dixit (2003) studies the maximal

amount of cooperation that can occur in the equilibrium of a two period game with a particular

network structure and form of incomplete information.

The maximum level of cooperation that can be sustained for given discount factors has been

considered to some degree in the small existing literature on repeated public good provision. Bendor

and Mookherjee (1987) study repeated provision of impure public goods with a particular form of

imperfect public monitoring, and present numerical evidence suggesting that in this context small

groups can provide higher payo¤s when only trigger strategies are considered; however, trigger

strategies are not optimal in their model, and they do not characterize optimal equilibria. Bendor

and Mookherjee (1990) ask when "multilateral" punishments, in which player i may punish j if j
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cheats in her relationship with k, can improve on "unilateral" punishments, where this behavior is

not present, in a repeated collective action game with perfect monitoring. They �nd an ambiguous

relationship between group size and the maximum level of cooperation.6 Pecorino (1999) studies

repeated public good provision with perfect monitoring. He shows that public good provision

is easier in larger groups with perfect monitoring, because the cost of defecting� and thereby

inducing everyone else to stop contributing to the public good� is larger in larger groups. Haag

and Laguno¤ (2007) study repeated collective action games with perfect monitoring when players

have heterogeneous discount factors. Restricting attention to stationary equilibria, they show that

the maximum level of cooperation is increasing in group size, a result that in their model depends

on heterogeneous discounting.7 Both Pecorino (1999) and Haag and Laguno¤ (2007) suggest in

their conclusions that imperfect monitoring might lead to worse public good provision in large

groups, but do not pursue this possibility in their papers. None of these papers characterize the

maximum level of public good provision in games with imperfect monitoring.8

Finally, this paper is a contribution to the study of repeated games with private monitoring. The

special "all-or-nothing" monitoring structure we consider allows us to characterize e¢ cient equilibria

at �xed discount factors under monitoring that is neither almost public nor almost perfect, whereas

6Bendor and Mookherjee (1990) can be seen as a precursor to the recent literature on sustaining cooperation

on networks� these papers tend to use "all-or-nothing" monitoring, like the current paper, but tend not to focus on

comparative statics and often restrict attention to speci�c classes of strategy pro�les. Papers in this literature include

Ali and Miller (2008), Ambrus, Möbius, and Szeidl (2008), Bloch, Genicot, and Ray (2008), Fainmesser (2009), Haag

and Laguno¤ (2006), Karlan et al (2008), Kinateder (2008a, 2008b), Lippert and Spagnolo (2008), Mihm, Toth, and

Lang (2009) and Vega-Redondo (2006).
7We show that stationary equilibria support the maximum level of public good provision in our model if monitoring

is stationary (Theorem 1); thus, we do not restrict attention to stationary equilibria a priori.
8Somewhat less closely related to the current paper is the literature on dynamic (non-repeated) public good

provision and common resource exploitation (e.g., Bliss and Nalebu¤, 1984; Admati and Perry, 1991; Fershtman and

Nitzan, 1991; Benhabib and Radner, 1992; Gradstein, 1992; Marx and Matthews, 2000; Lockwood and Thomas, 2002;

Compte and Jehiel, 2003, 2004; Bonatti and Hörner, 2009). These papers focus on non-stationary environments in

which the current level of contributions to the public good a¤ects the returns of future contributions. Most of these

papers do not study the e¤ect of group size and structure on the provision of public goods� for example, Admati

and Perry (1991), Benhabib and Radner (1992), Lockwood and Thomas (2002), and Compte and Jehiel (2003, 2004)

consider two-player games. Bliss and Nalebu¤ (1984) provide conditions under which expected delay in public good

provision decreases in group size in a war-of-attrition-like model; Fershtman and Nitzan (1991) present a model of

dynamic public good provision in which provision is increasing in group size; and Bonatti and Hörner (2009) consider

dynamic collaboration on a project of uncertain promise, and show that aggregate e¤ort is independent of group size,

though expected delay is increasing in group size.
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most of the papers in this literature focus on proving folk theorems or studying robustness to small

deviations from public monitoring. Prominent papers in this rapidly expanding literature include

Compte (1998), Kandori and Matsushima (1998), Mailath and Morris (2002, 2006), Matsushima

(2004), Ely, Hörner and Olszewski (2005), Hörner and Olszewski (2006, 2008), Fong et al (2007),

and Yamamoto (2009).

3 Model

There are N players; we also write N for the set of players, abusively. Each period, every player i

simultaneously chooses a contribution xi � 0. If the players choose contributions (x1; : : : ; xN ) in

period t, player i�s period-t payo¤ is

�

NX
j=1

xj � c (xi) ,

where � 2 (0; 1] and c (�) is a strictly increasing, convex, and twice continuously di¤erentiable

function, with c (0) = 0, c0 (0) 2 (�; �N), and limx!1 c0 (x) > �N .9 The interpretation is that

c (x) is the cost of contributing x to the public good, and � is the common bene�t players receive

from contributions to the public good. The main role of the parameter � is to examine how the

manner in which it changes with N a¤ects comparative statics with respect to N ; for example,

in the leading cases of pure public goods, where � = 1 for all N , and divisible public goods, where

� = 1=N . Note that our assumption that c0 (0) 2 (�; �N) guarantees that the game is a prisoner�s

dilemma; in particular, setting xi = 0 ("defecting") is a dominant strategy for player i in the one-

shot game. Players share a common discount factor, �. For one of our results, we assume that

public randomizations are available, i.e., that the realization of a random variable Zt � U [0; 1] is

publicly observed at the end of each period.

We consider "all-or-nothing" private monitoring, in the following sense: For all i and t, there

is a set-valued random variable O (i; t) such that, at the end of period t, player j observes hj;t =

fzj;1;t; : : : ; zj;N;t; ztg, where zj;i;t = fxi;tg if j 2 O (i; t), zj;i;t = ; if j =2 O (i; t), and zt 2 [0; 1]

is the outcome of the public randomizing device. The interpretation is that O (i; t) is the set of

players that observe player i�s period t action, and that players also observe the outcome of the

9Some of our results concern the limit as N !1. These results are valid only if limx!1 c
0 (x) =1.
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public randomizing device.10,11,12 Throughout, we let hti � (hi;0; hi;1; : : : ; hi;t�1), and denote the

null history at the beginning of the game by h0 = h0i for all i. Player i�s strategy �i speci�es a

probability distribution over period t actions as a function of hti.

We call a set of outcomes of the O (i; t) a realization of the monitoring technology, and denote

such a realization by !. Note that players never observe a set O (i; t); hi;t is all that player i

observes at the end of period t. We assume that each O (i; t) is realized at the beginning of play,

which implies that the probability distribution over O (i; t) does not depend on the actions any

players take during play. We assume throughout the paper that
n
fO (i; t)gNi=1

o1
t=0

satis�es the

following two standard properties:

� Perfect Recall : i 2 O (i; t) for all i and t.

� Stationarity : The vectors fO (i; t)gNi=1 are iid across periods.

In Sections 4.2, 5, and 6, we also assume that the monitoring technology has the additional

property of equal observability. To de�ne this property, we must �rst introduce an important piece

10The public randomizing device plays a role only where explicitly mentioned in the statement of Theorem 1� it

can be omitted elsewhere.
11Our formulation implies that monitoring is nonanonymous, in that player j knows which actions she observes

are taken by which of her opponents. One can check, however, that our results that assume equal observability�

discussed below� also apply to the case of anonymous monitoring, where player j observes a randomly ordered list of

the fxi;tgi:j2O(i;t). The main idea is that, under equal observability, we can restrict attention to symmetric strategy

pro�les, and in symmetric strategy pro�les a player does not need to observe her opponents�identities to know if one

of them deviated.
12 In particular, players do not observe the level of public good provision in period t,

PN
i=1 xi;t, even though their

payo¤s depend on
PN

i=1 xi;t. Making
PN

i=1 xi;t observable would introduce a strong form of public monitoring, while

our principal motivation is to study di¤erent kinds of private monitoring. Our model is equivalent to a model where

players�payo¤s depend on observable signals of
PN

i=1 xi;t that are so noisy that they cannot practically be used to

detect a deviation by a single player (which we view as a reasonable approximation to the monitoring structures in

the motivating examples in the introduction). Our model also applies to the case where the level of public good

provision is eventually observed perfectly, but not until all public projects are completed (in this case the in�nite

horizon can be interpreted as an uncertain �nite horizon). For example, an individual may be unable to assess the

quality of a public school until years later, when she learns whether or not her childrens�skills are valued by the labor

market.
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of notation: de�ne D (� ; t; i) recursively by

D (� ; t; i) = ; if � < t

D (t; t; i) = fig

D (� + 1; t; i) = D (� ; t; i) [ fj : j 2 O (k; �) for some k 2 D (� ; t; i)g if � > t.

That is, D (� ; t; i) is the set of players in period � who have observed a player who has observed

a player who has observed. . . player i since time t. The set will be important for our analysis

because j 2 D (� ; t; i) is a necessary condition for player j�s time � history to vary with player i�s

actions starting at time t. For example, if players are using grim trigger strategies and player i

defects at time t, then D (� ; t; i) is the set of players who defect at time � . Note that stationarity

implies that the probability distribution of D (� ; t; i) is the same as the probability distribution of

D (� � t; 0; i), for all i, t, and � . Thus, when we consider the consequences of an initial deviation

by player i at some time that is clear from context, we will sometimes simplify notation by writing

D (� ; i) for the set of players who may learn about the deviation within � periods.

We use this simpli�ed notation to de�ne equal observability:

� Equal Observability : E [#D (� ; j)] = E [#D (� ; k)] for all j, k, and � .

Equal observability requires that the same expected number of players may be in�uenced by

player j�s action within � periods as may be in�uenced by player k�s action within � periods; this

is a weak way of saying that all players are monitored equally well.

Our assumptions on the monitoring technology are satis�ed by many important examples. All

the examples we consider in this paper satisfy perfect recall and stationarity. Monitoring on

an arbitrary, �xed network, where each player observes her neighbors�actions every period and

nothing else, is the only case we consider that may not satisfy equal observability; this case is

discussed in Section 7. In Section 5, we examine comparative statics with respect to N in four

examples that satisfy perfect recall, equal monitoring, and stationarity: uniform monitoring, quasi-

public monitoring, random matching, and monitoring on a circle.13 To �x ideas, we also note

an important monitoring technology that does not satisfy our assumptions: suppose that players

observe only the actions of their neighbors on a random graph that is determined at the beginning of

the game and then �xed for the duration of play. This monitoring technology violates stationarity,

13See the Introduction for informal de�nitions and Section 5 for formal ones.
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since player i is sure to observe player j�s action in period 1 if she observes it in period 0, but

observes player j�s action in period 0 only if they are linked in the realized graph.

Throughout, we study sequential equilibria (SE) of this model with the property that

E
�P1

t=0 �
t�i
�
hti
��
< 1 for all i. This technical restriction is needed to ensure that payo¤s are

well-de�ned. In particular, we will be interested in the highest expected discounted level of public

good provision in any SE, which we call the maximum equilibrium level of public good provision

(MELP):14

De�nition 1 Let �SE be the set of SE. The MELP is

X� � sup
�2�SE

� (1� �)E
" 1X
t=0

�t
NX
i=1

�i
�
hti
�#
.

A strategy pro�le � sustains the MELP if � 2 �SE and X� = � (1� �)E
hP1

t=0 �
tPN

i=1 �i
�
hti
�i
.

For any strategy pro�le �, we refer to � (1� �)E
hP1

t=0 �
tPN

i=1 �i
�
hti
�i
as the corresponding

level of public good provision.

For future reference, we also de�ne the maximum equilibrium contribution of an individual

player:

De�nition 2 Player i�s maximum equilibrium contribution is

x̂i � sup
�2�SE

(1� �)E
" 1X
t=0

�t�i
�
hti
�#
.

A strategy pro�le � sustains player i�s maximum equilibrium contribution if � 2 �SE and x̂i =

(1� �)E
�P1

t=0 �
t�i
�
hti
��
.

Our main result (Theorem 1) will show that there exists a strategy pro�le that simultaneously

sustains each player�s maximum equilibrium contribution (and thus also sustains the MELP). When

x̂i is less than the �rst-best level of xi (given by c0 (xi) = �N) for all i, it follows that this strategy

pro�le also maximizes utilitarian social welfare. Therefore, all of our results regarding the MELP

14This concept is similar to the "maximal average cooperation" (MAC) studied by Haag and Laguno¤ (2007) in

games with perfect monitoring and heterogeneous discounting. However, it is unclear how to formulate the MELP

with heterogeneous discounting (this issue does not arise in Haag and Laguno¤�s paper, as they restrict attention to

stationary equilibria). More importantly, our techniques and results are very di¤erent from Haag and Laguno¤�s,

as our focus is on changes in group size and structure under imperfect monitoring, while theirs is on heterogeneous

discounting under perfect monitoring.
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can also be regarded as results regarding welfare, as long as maximum equilibrium contributions

are below the �rst-best level.15

A preliminary observation is that the MELP is �nite. This follows because it is impossible

to give all players non-negative payo¤s when the level of public good provision is too high, by the

assumption that limx!1 c0 (x) > N .

Lemma 1 The MELP is �nite.

Proof. Fix a SE �, and let X = � (1� �)E
hP1

t=0 �
tPN

i=1 �i
�
hti
�i
. Then the sum of the players�

payo¤s under � equals

NX � (1� �)
1X
t=0

�t
NX
i=1

E
�
c
�
�i
�
hti
���
.

By convexity of c (�) and Jensen�s inequality, this is no more than

N

�
X � c

�
X

�N

��
.

Since limx!1 c0 (x) > �N , there exists �X such that N (X � c (X=�N)) < 0 for all X � �X. Since

� is a SE, each player must receive a non-negative payo¤ under � (as each player�s minmax payo¤

is 0), so the sum of the players�payo¤s must be non-negative under �. Therefore, it must be the

case that X � �X. By de�nition of the MELP, this implies that X� � �X.

4 General Results

4.1 Characterizing the Maximum Equilibrium Level of Public Good Provision

In this section, we show that the MELP can be sustained by the natural generalization of grim

trigger strategies. If monitoring satis�es equal observability, then the MELP can be sustained in

symmetric grim trigger strategies. Furthermore, all strategy pro�les that sustain the MELP have

the same equilibrium path of play, so the strategy pro�le that sustains the MELP is essentially

unique.

We begin by de�ning grim-trigger strategies and symmetric grim-trigger strategies in our envi-

ronment:
15Theorem 1 also shows that the �rst-best level of public good provision is sustainable in SE even if the MELP is

greater than the �rst-best level. However, in this case it may not be possible to provide the �rst-best level of public

good provision in the least-cost way (i.e., through equal contributions of all players).
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De�nition 3 A strategy pro�le � is a grim trigger strategy pro�le if there exist contribution levels

fx�i g
N
i=1 such that �i

�
hti
�
= 0 if player i has ever observed a player j contribute xj 6= x�j at h

t
i, and

�i
�
hti
�
= x�i otherwise. A grim trigger strategy pro�le � is symmetric if there exists x� such that

x�i = x� for all i.

Note that in a grim trigger strategy pro�le player i�s action at an o¤-path history hti does not

depend on the identity of the initial deviator. In particular, since monitoring satis�es perfect recall,

player i sets xi = 0 in every period following a deviation by player i herself. Note also that in a

grim trigger strategy pro�le a player makes the same contribution when she sees an opponent make

her prescribed contribution and when she does not observe the opponent�s action; thus, players do

not receive "rewards" when they are seen making their prescribed contributions.

We are now ready to present our �rst result, which says that the MELP can be sustained by

grim trigger strategies, that contribution levels in the grim trigger strategy pro�le that sustains

the MELP are given by a simple �xed point condition, and that any level of public good provision

below the MELP can be sustained in sequential equilibrium with public randomizations.

Theorem 1 There exists a unique grim trigger strategy pro�le �� that sustains the MELP, and

any strategy pro�le that sustains the MELP has the same equilibrium path of play as ��. �� also

sustains each player�s maximum equilibrium contribution. That is, if player i�s on-path contribution

under �� is x�i , then

X� = �
NX
i=1

x�i ,

and x�i = x̂i for all i. Furthermore, fx�i g
N
i=1 is the (component-wise) greatest vector such that

c (x�i ) = � (1� �)
1X
t=0

�t
NX
j=1

Pr (j 2 D (t; i))x�j (1)

for all i.

Finally, any level of public good provision X < X� can be sustained in sequential equilibrium,

if public randomizations are available.

Theorem 1 is intuitive: one�s �rst thought might be that grim trigger strategies sustain the high-

est level of public good provision (and the highest equilibrium contribution for each player), because

they provide the harshest possible punishment to deviators consistent with deviators understanding

how information spreads through the population. However, the theorem is not obvious, and the

13



proof is not trivial. There are two important issues to consider: First, do grim trigger strategies

actually provide the strongest incentives to contribute to the public good, or should players receive

"rewards" when they seen making high contributions? Second, might grim trigger strategies pro-

vide "too strong" incentives to contribute, thus making players unwilling to stop contributing when

they observe a deviation? We discuss these issues in turn, and in the process sketch the proof of

Theorem 1, the details of which are deferred to the appendix.

We prove Theorem 1 using a novel �xed point approach. The key idea is that a player is

willing to contribute more at any on-path history if another player contributes more at any on-

path history, because the �rst player is more likely to bene�t from this increased contribution

when she conforms than when she deviates. This observation relies on the assumption of all-

or-nothing monitoring, since otherwise a deviation by the �rst player may make some on-path

histories more likely. To see how the �xed point approach works, �x a vector of "continuation

contributions"
P1
�=t �

��tE
h
�j

�
h�j

����htj ;�ji starting from each (private) on-path history of each

player. Let the function � map this vector to the highest continuation contribution that each

player is willing to make (at each of her on-path histories) when her opponents make the given

continuation contributions. Crucially, the function � is isotone, as per the above observation.16

As in Lemma 1, there is a level of continuation contribution �X such that no player�s continuation

contribution ever exceeds �X in any sequential equilibrium. Letting �X be the vector of contributions

�X, �
�
�X
�
is weakly greater than the highest �xed point of � and is stationary, since monitoring

satis�es stationarity. Iterating � on �X yields a sequence of vectors of (on-path) contributions that

is stationary and weakly greater than the highest �xed point of � at every step, and this sequence

converges to the highest �xed point of �. Therefore, the highest �xed point of � is stationary, and

it provides an upper bound on the MELP. Since the highest �xed point of � turns out to describe

a path of play of a sequential equilibrium (as we discuss in the next paragraph), the path of play

of any strategy pro�le that sustains the MELP must coincide with the (unique) highest �xed point

of �.17 Finally, observe that a player i�s incentive to contribute would increase if her opponents�

16The reason why we must work with continuation contributions following each history rather than with stage-game

contributions is that � would not be isotone if it were de�ned over the vector of all players�stage-game contributions.

This is because a player is not willing to contribute as much today when she expects to contribute more in the future.
17The map � is similar to an isotone best response correspondence in a supermodular game, and the approach of

iterating � on �X to �nd its highest �xed point is related to the proof of Theorem 5 of Milgrom and Roberts (1990).

One important di¤erence is that our model is dynamic and we show that � preserves stationarity. We also note that

the iterative procedure described in the text gives a simple and applicable method of computing the grim trigger

14



contributions were "transferred" from the state in which player i�s action is unobserved to the state

in which player i is observed to take her prescribed action, but since every player is already making

her maximum sequentially rational contribution at every on-path history the resulting strategy

pro�le would not satisfy sequential rationality for player i�s opponents. This is why strategies that

"reward" players when they are seen making their prescribed contributions cannot sustain a higher

level of public good provision than can grim trigger strategies.

The discussion of Theorem 1 so far has focused on on-path incentive constraints. As we have

suggested, one might be concerned that grim trigger strategies do not satisfy o¤-path incentive

constraints, as a player might want to contribute o¤-path in order to slow the "contagion" of

defecting, as in Kandori (1992) and Ellison (1994). This concern does not apply to strategies that

sustain the maximum level of contribution (i.e., the highest �xed point of �), however, as under

such strategies players must be just indi¤erent between making their prescribed contributions and

not contributing on the equilibrium path, which� by virtually the same argument as in Ellison�s

paper� implies that they weakly prefer not to contribute o¤-path. The fact that levels of provision

below X� are also sustainable in sequential equilibrium when public randomizations are available

follows from considering two-phase "relenting" strategies as in Ellison�s paper.

Finally, once it is established that the MELP can be sustained in a grim trigger strategy

pro�le ��, the observation that the vector of on-path contributions fx�i g
N
i=1 is the greatest vector

that satis�es (1) is intuitive. The left-hand side of (1) is the (per period) cost to player i from

conforming to ��. The bene�t to player i from conforming to �� is that, if player i deviated,

every player j (including player i herself) would stop contributing to the public good as soon as she

found out about the deviation, which occurs as soon as she enters the set D (t; i) (since information

about a deviation spreads according to D (t; i) when players use grim trigger strategies). Thus,

the right-hand side of (1) is the discounted bene�t to player i from conforming to ��. The highest

vector fx�i g
N
i=1 that equalizes costs and bene�ts for each player sustains the MELP.

We now show that the MELP can be sustained in symmetric grim trigger strategies if monitoring

satis�es equal observability, and that the converse holds for generic discount factors (unless the

MELP equals 0, in which case the grim trigger strategy pro�le that sustains the MELP is trivially

symmetric). The proof that equal observability is su¢ cient for symmetry follows easily from the

proof of Theorem 1 and is deferred to the appendix, so only the proof that equal observability is

necessary for symmetry for generic discount factors is provided in the text.

strategy pro�le that sustains the MELP.
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Theorem 2 If monitoring satis�es equal observability, then there exists a unique symmetric grim

trigger strategy pro�le �� that sustains the MELP, and all strategy pro�les that sustain the MELP

have the same equilibrium path of play as ��. That is, if x� is the on-path contribution in ��, then

X� = �Nx�,

and x� = x̂i for all i. If monitoring does not satisfy equal observability, then the set of discount

factors in [0; 1] for which the MELP is positive and the grim trigger strategy pro�le �� that sustains

the MELP is symmetric has Lebesgue measure 0.

Proof. Suppose that monitoring does not satisfy equal observability, i.e., that there exist players

i and j and an integer t such that E [#D (t; i)] 6= E [#D (t; j)]. If �� is symmetric, (1) becomes

c (x�) = � (1� �)
1X
t=0

�t
NX
j=1

Pr (j 2 D (t; i))x�,

which can be rewritten as

c (x�) = � (1� �)
1X
t=0

�tE [#D (t; i)]x�.

For this equality to hold for all i, it must hold for i and j. If the MELP is positive (x� > 0), this

implies that
1X
t=0

�t (E [#D (t; i)]� E [#D (t; j)]) = 0. (2)

Note that E [#D (0; i)] = E [#D (0; j)] = 1, so E [#D (t; i)] 6= E [#D (t; j)] for some t � 1. There-

fore, the left-hand side of (2) is a power series in � with a nonzero coe¢ cient on �t for some t � 1.

The set of zeros of such a power series has Lebesgue measure 0, by Sard�s Theorem, so (2) can only

hold for a set of discount factors of Lebesgue measure 0. Therefore, the set of discount factors for

which the MELP is symmetric has Lebesgue measure 0.

Before leaving this section, we impose an assumption that guarantees that x̂i > 0. We impose

this assumption for the remainder of the paper.

Assumption 1 � (1� �)
P1
t=0 �

tPN
j=1 Pr (j 2 D (t; i)) > c0 (0) for all i.

For any c0 (0) 2 (�; �N), Assumption 1 holds for high enough � if Pr (j 2 D (t; i))! 1 as t!1

for all i; j, which says that almost surely player j eventually observes a player who has observed a

player who has observed. . . player i. This is a fairly weak condition; for example, it is easy to check

that Pr (j 2 D (t; i)) ! 1 as t ! 1 for all i; j in all of the examples in Section 5. Assumption 1
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is important for our results only because it allows us to make statements about strict, rather than

weak, comparative statics on the MELP and on players�maximum equilibrium contributions; the

issue is that, in the absence of Assumption 1, strict comparisons between two games may not be

possible because x̂i may equal 0 for all i in both games. The weak versions of all of our comparative

static results continue to hold in the absence of Assumption 1. We now show why Assumption 1

guarantees that x̂i > 0.

Corollary 1 x̂i > 0 for all i if Assumption 1 holds.

Proof. Let ~x = fxigNi=1, and de�ne the map ~� (~x) : fxig
N
i=1 ! fxigNi=1 (similar to the map �

�
~X
�

de�ned in the proof of Theorem 1) by letting ~�i (~x) be the unique x
0
i such that

c
�
x0i
�
= � (1� �)

1X
t=0

�t
NX
j=1

Pr (j 2 D (t; i))xj . (3)

By the same argument as in the proof of Theorem 1, ~� is isotone, and the highest �xed point of ~�

is the unique vector of on-path contributions that sustain the MELP, fx�i g
N
i=1.

Suppose that Assumption 1 holds. We claim that there exists x > 0 such that ~�i (x; : : : ; x) > x

for all i, where ~�i is the i
th coordinate of ~�. To see this, note that ~�i (0; : : : ; 0) = 0, and, by (3),

the derivative of ~�i (x; : : : ; x) with respect to x is

d

dx
c�1

0@� (1� �) 1X
t=0

�t
NX
j=1

Pr (j 2 D (t; i))x

1A =
� (1� �)

P1
t=0 �

tPN
j=1 Pr (j 2 D (t; i))

c0
�
c�1

�
� (1� �)

P1
t=0 �

tPN
j=1 Pr (j 2 D (t; i))x

�� .
For small enough x, this derivative is greater than 1, by Assumption 1 and the facts that c (0) = 0

and c (�) is increasing and continuously di¤erentiable. Therefore, there exists x > 0 such that

~�i (x; : : : ; x) > x for all i. Since ~� is isotone, this implies that (x; : : : ; x) is strictly lower than the

highest �xed point of ~�, which in turn implies that x̂i = x�i > x > 0 for all i.

4.2 Comparative Statics on the MELP Under Equal Observability

Using the characterization of strategies that sustain the MELP developed in the previous subsection,

we now characterize comparative statics on the MELP, under the assumption of equal observability.

We take up some related issues in our analysis of public good provision on networks in Section 7,

where equal observability may not hold.
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Formally, let a game, �, denote a group size N (�), a bene�t from contributions � (�), and a

probability distribution over realizations of the monitoring technology.18 Our main result in this

section describes when the MELP is higher in a game � than in another game �0, when both � and

�0 satisfy equal observability. Note that � contains all information about both group size (N) and

group structure (the distribution over realizations of the monitoring technology).

Assume that a game � satis�es equal observability� we impose this condition until Section

7. Let �� be the symmetric grim trigger strategy pro�le sustaining the MELP, which exists

and is unique by Theorem 2, and let x� be the corresponding individual contribution level. Let

D (t; i;�) be the set D (t; i) in game �. By stationarity and equal observability, E [#D (t; i;�)]

does not depend on the identity of the initial deviator i, so we economize on notation by let-

ting E [#D (t;�)] � E [#D (t; 1;�)]. With this notation, equation (1) and symmetry imply that

the maximum per capita level of public good provision, X�= (�N),19 (which equals each player�s

maximum equilibrium contribution) is the highest value of x such that

c (x) = � (�) (1� �)
1X
t=0

�tE [#D (t;�)]x. (4)

Call the highest solution of (4) x� (�). Note that x� (�) is the highest zero of

� (�) (1� �)
P1
t=0 �

tE [#D (t;�)]x � c (x), which is concave in x. Therefore, if x� > 0, then

x� (�0) > x� (�) if � (�0) (1� �)
P1
t=0 �

tE [#D (t;�0)]x�c (x) > � (�) (1� �)
P1
t=0 �

tE [#D (t;�)]x�

c (x) for all x. This observation yields our main comparative statics result:

Theorem 3 Let �0 and � be two games. Then x� (�0) > x� (�) if and only if

�
�
�0
� 1X
t=0

�tE
�
#D

�
t;�0

��
> � (�)

1X
t=0

�tE [#D (t;�)] :

The proof of Theorem 3 parallels the above discussion and is deferred to the appendix.

Theorem 3 gives a complete characterization of when x� (�) is higher or lower than x� (�0), for

any two games � and �0. Thus, it shows that all the information needed to determine whether

changing � increases or decreases the maximum per capita level of public good provision is con-

tained in the product of two terms: the "rivalness" term � (�) and the "e¤ective contagiousness"

18We could also let the discount factor, �, di¤er across games, but since none of our applications involve changes

in � we omit this possibility to simplify notation.
19Note that the maximum per capita level of public good provision is X�= (�N), not X�=N . Thus, the maximum

per capita level of public good provision measures contributions, while the MELP measures the bene�t players receive

from these contributions.
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term
P1
t=0 �

tE [#D (t;�)]. Information such as group size, higher moments of the distribution

of #D (t;�), and which players are more likely to observe which other players are all irrelevant,

if the rivalness and e¤ective contagiousness terms are held �xed. In particular, the single num-

ber
P1
t=0 �

tE [#D (t;�)]� the e¤ective contagiousness� completely determines the e¤ectiveness of

a given monitoring structure at supporting cooperation in sequential equilibrium.

The �nding that comparative statics are determined by the product of the rivalness and e¤ective

contagiousness terms yields useful intuitions about the e¤ect of group size on the maximum per

capita level of public good provision. In particular, consider indexing a game � by its group size, N ,

and write � (N) for the corresponding bene�t from contributions (we will use this simpler notation

for the remainder of this section and for Section 5). Normally, one would expect the rivalness

term to decrease in N (i.e., a larger population reduces i�s bene�t from j�s contribution to the

public good) and the e¤ective contagiousness terms term to increase in N (i.e., a larger population

makes it more likely that i�s action is observed by more people). The interaction of these terms

determines the group size that maximizes per capita public good provision. Consider again the

example of constructing a local infrastructure project, like a well. In this case, � (N) is likely to

be decreasing, and, over a range, concave: as each individual uses the well only occasionally, there

are few externalities among the �rst few individuals, but once the population reaches a certain size

it starts to becomes di¢ cult to �nd times when the well is available, and water shortages start to

become a problem. Similarly,
P1
t=0 �

tE [#D (t;N)] is likely to be increasing, and may be concave,

if there are "congestion" e¤ects in monitoring. Thus, it seems likely that in many applications

� (N)
P1
t=0 �

tE [#D (t;N)], and therefore the maximum per capita level of public good provision,

is maximized at an intermediate value of N .

Finally, we can use Theorem 3 to easily derive particularly simple comparative statics results

for the leading cases of pure public goods (� (N) = 1) and divisible public goods (� (N) = 1=N),

which will be useful for the applications considered in Section 5. Note that in the case of pure

public goods the MELP equals Nx� (N), while in the case of divisible public goods the MELP

simply equals x� (N).

Corollary 2 If the public good is pure (� (N) = 1), then x� (N) is strictly increasing if E [#D (t;N)]

is non-decreasing in N for all t and strictly increasing in N for some t.

For pure public goods, x� (N) is always increasing unless monitoring degrades so quickly as N

increases that the expected number of players who �nd out about a deviation within t periods is
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decreasing in N , for some t. This suggests that both x� (N) and the MELP are increasing in N in

a wide range of applications, which is consistent with the examples in Section 5.

Corollary 3 If the public good is divisible (� (N) = 1=N), then x� (N) is strictly increasing if

E [#D (t;N)] =N is non-decreasing in N for all t and strictly increasing in N for some t.

For divisible public goods, x� (N) (which equals the MELP) is increasing only if the expected

fraction of players who observe a deviation within t periods of its occurrence is non-decreasing in N ,

for all t. This suggests that, for divisible public goods, x� (N) is decreasing in many applications,

which is again consistent with our �ndings in Section 5.

5 Comparing Group Sizes in Examples with Equal Observability

In this section, we examine the e¤ect of group size on the maximum per capita level of public

good provision, x� (N), for both pure and divisible public goods under four di¤erent monitoring

technologies satisfying stationarity and equal monitoring: uniform monitoring, quasi-public moni-

toring, random matching, and monitoring on a circle. We are interested in each of these monitoring

technologies in its own right and also in demonstrating the usefulness of the results of Section 4

more generally. With pure public goods, x� (N) is increasing in N for all of these technologies, and

is increasing in N under quasi-public monitoring even if the probability of observing a deviation

is declining in N , so long as it is not declining faster than 1=N . With divisible public goods,

x� (N) may be increasing or decreasing in N under uniform monitoring, and is decreasing in N

under quasi-public monitoring, random matching, and monitoring on a circle. We also examine

the behavior of x� (N) in large groups (N ! 1) where possible; recall that for all results about

limits as N ! 1, we are assuming that limx!1 c0 (x) = 1. For example, we consider whether

the e¤ect of increasing group size on c (x� (N)) vanishes in large groups.20 To keep the exposition

compact, most of the proofs in this section are deferred to the appendix.

5.1 Uniform Monitoring

De�nition 4 Monitoring is uniform if there exists p 2 (0; 1] such that j 2 O (i; t) with probability

p, independently across i; j; t.

20This is a more natural question than that of whether the e¤ect of increasing group size on x� vanishes in large

groups, as small increases in x� may have very large e¤ects on c (x�) (e.g., if c (�) has a vertical asymptote).
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5.1.1 Pure Public Goods

Proposition 1 With uniform monitoring and pure public goods, x� (N) is strictly increasing.

Proof. By Corollary 2, it su¢ ces to show that E [#D (t;N)] is non-decreasing in N for all t and

strictly increasing in N for t = 1. Fix N 0 > N . Parametrize the probability distribution over

realizations of the monitoring technology as follows: let ! = f!i;j;tgi;j;t, where !i;j;t is a uniform

[0; 1] random variable, such that i 2 O (j; t) if and only if !i;j;t < p or i = j. Then D (t;N 0; !) �

D (t;N; !) for all !, and D (1; N 0; !) � D (1; N; !) with positive probability, as there is a positive

probability that a player in fN + 1; : : : ; N 0g observes the initial deviation in period 0.

In large populations with uniform monitoring, each player contributes for more than two peri-

ods after a deviation with vanishing probability, since the number of players who defect in the

�rst period after the initial deviation goes to in�nity, and each player observes each of these

defections with independent probability p > 0. Thus, for large N , increasing N increases

(1� �)
P1
t=0 �

tE [#D (t;N)]x� c (x) by a nonvanishing amount, which implies that c (x�) must in-

crease by a nonvanishing amount. An immediate consequence of this is that limN!1 c (x� (N)) =

1.

Proposition 2 With uniform monitoring and pure public goods, c (x� (N + 1)) � c (x� (N)) does

not converge to 0 as N converges to 1.

5.1.2 Divisible Public Goods

With uniform monitoring and divisible public goods, larger groups may or may not be able to

provide higher levels of public goods. To see this, �rst suppose that � is close to 0, so that

a player�s incentive to contribute to the public good comes almost entirely through her private

bene�t from contributing, 1=N .21 Then increasing N reduces a player�s incentive to contribute,

and therefore reduces the maximum level of public good provision. On the other hand, suppose

that � is moderate and p is close to 0. When N is small, a deviation is almost never detected quickly

enough to have substantial payo¤ consequences for the deviator, so the incentive to contribute to

the public good comes almost entirely from private bene�ts, which implies that the maximum level

of public good provision is very small. When N is extremely large, however, then almost all players

�nd out about an initial deviation at the end of period 1: at the end of period 0, approximately

21This is consistent with our assumptions that c0 (0) > 1=N and x� (N) > 0 if c0 (0) is only slightly greater than

1=N .
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proportion p of the population �nds out about the deviation, but, since pN is a very large number

if N is large enough, almost all players observe one of these period-1 deviators at the end of period

1. Therefore, incentives to contribute to the public good now come from community enforcement,

which can support a larger level of public good provision.

Proposition 3 With uniform monitoring and divisible public goods, there are examples in which

x� (N 0) > x� (N) and examples in which x� (N 0) < x� (N), with N 0 > N in both cases.

5.2 Quasi-Public Monitoring

De�nition 5 Monitoring is quasi-public if there exists p (N) 2 (0; 1] such that, with probability

p (N), j 2 O (i; t) for all j and, with probability 1� p (N), j =2 O (i; t) for all j 6= i, independently

across i; t.

Note that we have allowed p to vary with N in the de�nition of quasi-public monitoring. This

allows us to state more general results than if p were �xed.

5.2.1 Pure Public Goods

Due to the simple structure of quasi-public monitoring, we do not need to rely on the su¢ cient

conditions for x� (N) to be increasing given by Corollary 2. Instead, we use Theorem 3 to establish

the following result directly:

Proposition 4 With quasi-public monitoring and pure public goods, x� (N) is strictly increasing

(decreasing) if

p (N + 1)� p (N) > (<)�
�
1� � (1� p (N))

1� �

�
p (N + 1)

N � 1 (5)

for all N .

Proposition 4 gives a precise characterization of when x� (N) is increasing, and it can also give

some intuition. In particular, x� (N) is increasing if p (N) is non-decreasing, or if p (N + 1)�p (N)

is su¢ ciently close to zero relative to p (N + 1). This conveys the important point that x� (N) is

increasing so long as p (N) does not decline too quickly. However, the exact form of (5) is not

easy to interpret. This leads us to consider what happens when p (N) = �N � for constants � > 0

and � � 0, a natural class of functions p (N). In this case, Proposition 5 gives very clean results:

x� (N) is increasing if � � �1 and is decreasing if N is large and � < �1, regardless of �.
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Proposition 5 Suppose that p (N) = �N � , with � > 0 and � � 0. Then x� (N) is strictly

increasing if � � �1, and if � < �1, there exists �N (�) > 0 such that x� (N) is strictly decreasing

if N > �N (�).

Now assume that p (N) is �xed at p for all N . Then E [#D (t;N + 1)]�E [#D (t;N)] does not

depend on N , for all t. This implies that the e¤ect of increasing N on c (x�) does not vanish as N

converges to 1, which in turn implies that limN!1 c (x� (N)) =1.

Proposition 6 With quasi-public monitoring and pure public goods, c (x� (N + 1)) � c (x� (N))

does not converge to 0 as N converges to 1.

5.2.2 Divisible Public Goods

With quasi-public monitoring and divisible public goods, x� (N) is strictly decreasing in N as long

as p (N) is not increasing in N , because the expected fraction of the population that learns about a

deviation within t periods does not increase in N if p (N) is non-increasing. Fixing p, x� (N) may

or may not converge to 0 as N ! 1: it converges to 0 if and only if c0 (0) � �p= (1� � (1� p)),

which holds when � or p is small.

Proposition 7 With quasi-public monitoring, divisible public goods, and p (N) non-increasing in

N , x� (N) is strictly decreasing in N .

Proposition 8 With quasi-public monitoring, divisible public goods, and p (N) � p for all N ,

x� (N) converges to 0 as N !1 if c0 (0) � �p
1��(1�p) , and converges to a positive number otherwise.

5.3 Random Matching

De�nition 6 Monitoring is random matching if in each period each player is randomly paired with

another player, and j 2 O (i; t) if and only if i and j are paired at t.

5.3.1 Pure Public Goods

With random matching and pure public goods, x� (N) is increasing in N , even though the proba-

bility that player i monitors player j in period t is decreasing in N , for any �xed i and j. This

follows because E [#D (t;N)] is increasing in N , for t � 2, as defectors are less likely to match with

each other in a larger population.
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Proposition 9 With random matching and pure public goods, x� (N) is strictly increasing.

As N !1, c (x� (N)) remains bounded if � is less than 1=2� in contrast to the cases of uniform

and quasi-public monitoring� but converges to 1 if � is greater than 1=2. This follows because

the expected number of defectors t periods after an initial deviation is approximately 2t when N

is large, so whether e¤ective contagiousness converges or diverges as N !1 depends on whether

� is greater than or less than 1=2.

Proposition 10 With random matching and pure public goods, c (x� (N)) converges to a �nite

number as N !1 if � < 1
2 , and converges to 1 as N !1 if � � 1

2 .

5.3.2 Divisible Public Goods

With random matching and divisible public goods, if � < 1=2, we can establish that the maximum

level of public good provision is decreasing in N (as long as the change in group size under con-

sideration is su¢ ciently large) and converges to 0 as N ! 1. The proof of Proposition 11 relies

directly on Theorem 3 (i.e., on showing that
P1
t=0 �

tE [#D (t;N)] =N is decreasing).

Proposition 11 With random matching and divisible public goods, if � < 1
2 then, for any 
 > 0,

there exists �N such that x� (N 0) < x� (N) if N 0 > (1 + 
)N � �N .

Proposition 12 With random matching and divisible public goods, x� (N) ! 0 as N ! 1 if

� < 1
2 .

The � � 1=2 case presents technical complications and is omitted.

5.4 Monitoring on a Circle

De�nition 7 Monitoring is on a circle if the players are arranged in a �xed circle and there exists

an integer k � 1 such that j 2 O (i; t) if and only if the distance between i and j is at most k.

5.4.1 Pure Public Goods

Under monitoring on a circle, that x� (N) is increasing in N follows immediate from Theorem 3.

Proposition 13 With monitoring on a circle and pure public goods, x� (N) is strictly increasing.
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Proof. E [#D (t;N)] = 1+2kt if 2kt < N , and E [#D (t;N)] = N if 2kt � N , so
P1
t=0 �

tE [#D (t;N)]

is strictly increasing in N . The result follows from Theorem 3.

With monitoring on a circle, c (x� (N)) remains bounded as N ! 1. To see why this is

true, note that, from the perspective of a potential deviator, increasing N is equivalent to adding

players on the opposite side of the circle from the potential defector, as #D (t;N + 1) = #D (t;N)

if #D (t;N) < N . And, when N is large, it takes a long time for a player on the other end of

the circle to �nd out about an initial defection, so increasing N by 1 has a vanishing e¤ect onP1
t=0 �

tE [#D (t;N)].

Proposition 14 With monitoring on a circle and pure public goods, x� (N) converges to a �nite

number as N !1.

5.4.2 Divisible Public Goods

With monitoring on a circle and divisible public goods, the maximum level of public good provision

is strictly decreasing in group size and converges to 0 as N !1. The intuition for this is simply

that the fraction of players who �nd out about an initial deviation within t periods of its occurrence

goes to 0 as N !1, for any t, and the results follow from Theorem 3.

Proposition 15 With monitoring on a circle and divisible public goods, x� (N) is strictly decreas-

ing.

Proof. E [#D (t;N)] =N = (1 + 2kt) =N if 2kt < N , and E [#D (t;N)] =N = 1 if 2kt � N , soP1
t=0 �

tE [#D (t;N)] =N is strictly decreasing in N . The result follows from Theorem 3.

Proposition 16 With monitoring on a circle and divisible public goods, x� (N)! 0 as N !1.

6 Comparing Monitoring Structures with Equal Observability

In this section, we present a general result comparing group structures in terms of the maximum

level of public good provision they support, for a �xed group size. We continue to restrict attention

to monitoring structures satisfying stationarity and equal observability. By Theorem 3, such a

monitoring structure supports a higher level of public good provision if and only if it corresponds

to a higher level of
P1
t=0 �

tE [#D (t)] (i.e., higher expected contagiousness), where we have omitted

� (N) and N because we are now considering comparisons across monitoring structures for �xed
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N . Our main motivation is to compare "less reliable, more public monitoring," where it is likely

that either a very large or very small fraction about the population �nds out about a deviation,

with "more reliable, less public monitoring," where it is more certain that an intermediate fraction

of the population �nds out about it. The latter kind of monitoring is "less uncertain," in that the

distribution of the number of individuals who observe player i�s action each period is second-order

stochastically dominant. We �nd that, under fairly broad conditions, less uncertain monitoring

structures support higher levels of public good provision.

As our focus in this section is on the distribution of the number of individuals who observe

a deviation, we restrict attention to monitoring structures in which the probability that a given

number of individuals observe a defection in period t depends only on the number of defectors in

period t:

Assumption 2 There exists a family of functions fgk (�)gNk=1 such that, whenever #D (t) = k,

Pr (#D (t+ 1) = k0) = gk (k
0), for all t, k, and k0.

Note that Assumption 2 is satis�ed for uniform monitoring, quasi-public monitoring, and ran-

dommatching, but not for monitoring on a circle, as under monitoring on a circle Pr (#D (t+ 1) = k0)

depends on the location of the k time-t defectors.

Given a probability mass function gk (k0), denote the corresponding distribution function by

Gk (k
0) �

Pk0

s=0 gk (s). Recall that a distribution ~Gk strictly second-order stochastically dominates

Gk if
PN
s=0 � (s) ~gk (s) >

PN
s=0 � (s) gk (s) for all non-decreasing and strictly concave � (�). Our

result is the following:

Theorem 4 Suppose that ~Gk (k0) and Gk (k0) are both non-increasing in k for all k0 and strictly

convex in k for all k � k0, and that ~Gk strictly second-order stochastically dominates Gk for all

k 2 f1; : : : ; N � 1g. Then the MELP is strictly higher under a monitoring structure corresponding

to f~gk (�)gNk=1 than under a monitoring structure corresponding to fgk (�)g
N
k=1.

We now discuss the conditions of Theorem 4. The condition that Gk (k0) is non-increasing

and convex in k means that, as the number of defectors in period t increases, the probability that

there are fewer than k0 defectors in period t+1 decreases at a decreasing rate. The condition that

~Gk strictly second-order stochastically dominates Gk means that, for any number of defectors k

in period t (other than 0 or N), the distribution of the number of defectors in period t + 1 under

~Gk strictly second-order stochastically dominates the number of defectors in period t + 1 under
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Gk. If there are 0 (N) defectors in period t, then there are 0 (N) defectors in period t+ 1, so we

cannot require strict second-order stochastic dominance if k 2 f0; Ng; however, ~G0 ( ~GN ) weakly

second-order stochastically dominates G0 (GN ), trivially.

The intuition for Theorem 4 is fairly simple: If ~Gk strictly second-order stochastically dominates

Gk for all k, then under ~Gk it is more likely that an intermediate number of players �nd out about

an initial deviation each period. And, since Gk (k0) and ~Gk (k0) are non-increasing and convex, the

expected number of players who �nd out about the deviation within t periods increases in t more

quickly when it is more likely that an intermediate number of players �nd out about the deviation

each period. This implies that
P1
t=0 �

tE [#D (t)] is strictly higher under a monitoring structure

corresponding to f~gk (�)gNk=1 than under a monitoring structure corresponding to fgk (�)g
N
k=1, and

the result then follows from Theorem 3. The details of the proof are deferred to the appendix.

7 Monitoring on a Network

In this section, we study public good provision under monitoring on a network. That is, there is

a �xed network L = fli;jgi;j2N�N where li;j 2 f0; 1g, and i 2 O (j; t) if and only if li;j = 1, for all

t. To simplify the exposition, we restrict attention to undirected networks, which means that we

assume that li;j = lj;i for all i; j, though the extensions of all of the results in this section to directed

networks is straightforward. Note that monitoring on a network always satis�es stationarity, but

may or may not satisfy equal observability. As in Section 6, we omit the parameter � (N) in this

section.

Our main results in this section are that if player i is "more central" than player j in a sense

de�ned below, then player i�s maximum equilibrium contribution is greater than player j�s; and

that adding a link between any two players strictly increases the maximum equilibrium contribution

of each player in the connected component containing the players.

7.1 Centrality and Equilibrium Contribution Levels

We begin by introducing our notion of player i�s being "more central" than player j. Informally, we

say that player i is "more central" than player j if i has more neighbors than j, i�s neighbors have

more neighbors than j�s neighbors, i�s neighbors�neighbors have more neighbors than j�s neighbors�

neighbors, and so on. In the following formal, recursive de�nition, d (i; j) is the distance (shortest

path length) between players i and j, with d (i; j) � 1 if there is no path between i and j:
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Figure 1: A Five-Player Example

De�nition 8 Player i is 1-more central than player j if, for all t = f0; 1; : : :g, # fk 2 N : d (i; k) � tg �

# fk 2 N : d (j; k) � tg. Player i is strictly 1-more central than player j if in addition

# fk 2 N : d (i; k) � tg > # fk 2 N : d (j; k) � tg for some t.

Player i is s-more central than player j if, for all t = f0; 1; : : :g, there exists a surjection

 : fk 2 N : d (i; k) � tg ! fk 2 N : d (j; k) � tg such that, for all k with d (j; k) � t, there exists

k0 2  �1 (k) such that k0 is s � 1-more central than k. Player i is strictly s-more central than

player j if in addition k0 is strictly s� 1-more central than k for some t,  , k, and k0.

Player i is more central than player j if i is s-more central than j for all s = f1; 2; : : :g. Player

i is strictly more central than player j if in addition i is strictly s-more central than j for some s.

We illustrate this concept with the simple example of �ve players arranged in a line (see Figure

1)� later in this section, we present a more complicated examples that illustrates the value of tools

developed below for determining when one player is more central than another. According to our

de�nition, player 3 is strictly more central than players 2 and 4, who are in turn strictly more

central than players 1 and 5; thus, in this example, our de�nition corresponds to a naive notion of

"centrality." To see this, we argue by induction. It is easy to check that player 3 is strictly 1-more

central than players 2 and 4, who are in turn each strictly 1-more central than players 1 and 5. For

example, player 2 is strictly 1-more central than player 5 because player 2 has 1 "neighbor" within

distance 0 (player 2 herself), 3 neighbors within distance 1, 4 neighbors within distance 2, and 5

neighbors within distance 3 or more; while player 5 has 1 neighbor within distance 0, 2 neighbors

within distance 1, 3 neighbors within distance 2, 4 neighbors within distance 3, and 5 neighbors

within distance 4 or more. Now suppose that player 3 is s-more central than players 2 and 4, and

that players 2 and 4 are both s-more central than players 1 and 5. Then it is easy to check that

player 3 is also s + 1-more central than players 2 and 4, who in turn are both s + 1-more central

than players 1 and 5; for example, one surjection  : fk 2 N : d (2; k) � 2g ! fk 2 N : d (5; k) � 2g

that satis�es the terms of the de�nition is given by  (1) =  (2) = 5,  (3) = 3,  (4) = 4. Thus,

by induction on s, player 3 is strictly more central than player 2 and 4, who are in turn strictly

more central than players 1 and 5.
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We may now state the �rst result of this section, which says that more central players have

greater maximum equilibrium contributions. The proof uses a monotonicity argument similar to

that in the proof of Theorem 1, which shows that more central players contribute more at every step

of a sequence of contributions that converges to the vector of maximum equilibrium contributions.

Theorem 5 If player i is more central than player j, then x̂i � x̂j. The inequality is strict

whenever player i is strictly more central than player j.

The proof of the strict inequality in Theorem 5 uses the following lemma, the proof of which is

deferred to the appendix:

Lemma 2 If player i is more central than player j, then for all t = f0; 1; : : :g there exists a

surjection  : fk 2 N : d (i; k) � tg ! fk 2 N : d (j; k) � tg such that, for all k with d (j; k) � t,

there exists k0 2  �1 (k) such that k0 is more central than k.

Proof of Theorem 5. Let ~� (~x) be de�ned as in the proof of Corollary 1, and note that in the

present context ~�i (~x) is the unique x
0
i such that

c
�
x0i
�
= (1� �)

1X
t=0

�t
X

k:d(i;k)�t
xk. (6)

By the same argument as in the proof of Theorem 1, iterating the map ~� (�) on the vector �x = f�xgNi=1
yields a sequence of vectors f~xgmconverging to the vector of maximum equilibrium contributions,

where �x is a number higher than any contribution that could occur in any SE. Let xi;m � ~�
m
i (�x),

where ~�
m
denotes the map given by iterating ~� (�) m times.

To prove the weak inequality, suppose that player i is more central than player j. We use

induction on m to show that xi;m � xj;m for all m, which implies that x̂i = limm!1 xi;m �

limm!1 xj;m = x̂j . Since player i is 1-more central than player j, # fk 2 N : d (i; k) � tg �

# fk 2 N : d (j; k) � tg for all t, which implies that xi;1 � xj;1, by (6). Now suppose that

xk0;m � xk;m whenever player k0 is more central than player k, for some m. Since player i is

m + 1-more central than player j, for any t there exists a surjection  : fk 2 N : d (i; k) � tg !

fk 2 N : d (j; k) � tg such that, for all k with d (j; k) � t, there exists k0 2  �1 (k) such that k0 is

m-more central than k. Since xk0;m � xk;m, this implies that
P
k0:d(i;k0)�t xk0;m �

P
k:d(j;k)�t xk;m.

This holds for all t, which implies that xi;m+1 � xj;m+1, by (6). By induction, we conclude that

xi;m � xj;m for all m, completing the proof of the weak inequality.
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To prove the strict inequality, suppose that player i is strictly more central than player j, i.e.,

that player i is more central than player j and is strictly s-more central than player j for some

s. We derive a strictly positive lower bound on x�i � x�j that depends on s, where x
�
i is as in the

statement of Theorem 1 (recall that x�i = x̂i for all i). First, rewrite (1) as

c (x�i ) = (1� �)
1X
t=0

�t
X

k:d(i;k)�t
x�k. (7)

By Lemma 2, for any t there exists a surjection  : fk 2 N : d (i; k) � tg ! fk 2 N : d (j; k) � tg

such that, for all k with d (j; k) � t, there exists k0 2  �1 (k) such that k0 is more central than k.

Suppose that i is more central than j and strictly 1-more central than j, let x� � mini fx�i g
N
i=1, which

is positive by Corollary 1, and let �d be the diameter of L, i.e., the maximum distance between any

two path-connected nodes in L. Then, by Lemma 2 and (7), c (x�i ) � c
�
x�j

�
+�

�d�1max f�; 1� �gx�,

as player i has at least one more distance-k neighbor than player j for some k.22 Therefore, there

exists "1 > 0 such that x�i � x�j � "1 > 0 whenever i is more central than j and strictly 1-more

central than j. Now suppose that there exists "s > 0 such that x�i � x�j � "s > 0 whenever i is

more central than j and strictly s-more central than j. Suppose that i is more central than j and

strictly s+1-more central than j. Then c (x�i ) � c
�
x�j

�
+ �

�d�1max f�; 1� �g "s, by Lemma 2 and

(7), which implies that there exists "s+1 > 0 such that x�i � x�j � "s+1 > 0. By induction, we

conclude that x�i > x�j whenever i is strictly more central than j.

We remark that Theorem 5 can be used both for determining which players�maximum equi-

librium contributions are higher in a given network, and for determining how a given player�s

maximum equilibrium contribution changes as the network changes: the latter is accomplished by

asking whether the player�s position in the new network is more central than her position in the

old network. The next subsection contains an application of this idea.

Unfortunately, using Theorem 5 directly for applications may be cumbersome, because checking

whether one player is more central than another may be di¢ cult; indeed, this requires checking

an in�nite number of inequalities, and therefore generally requires a recursive argument like that

given in the above �ve-player example. Sometimes, however, symmetries in the network can be

exploited to determine which players are more central than others more easily. Corollaries 4 and 5

and the subsequent seven-player example illustrate how this can be done. Corollary 4 provides the

natural idea that, if player i is closer to all players k 6= i; j than is player j, then player i is more

22The max f�; 1� �g term thus corresponds to the possibility that player i may have one more distance- �d neighbor

than player j, or may have one more distance- �d� 1 neighbor and the same number of distance- �d neighbors.
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central than player j. Corollary 5 shows that if players i and � (i) are in "symmetric" positions in

the network and player � (i) is more central than player j, then player i is more central than player

j as well. Combining Corollaries 4 and 5, we see that if player i is in a symmetric position with

some player � (i) who is closer to all other players than is player j, then player i is more central

than player j. This observation is useful both as a way of directly observing when one player is

more central than another, and also as a tool for checking the "more central than" relation for pairs

of players to whom Corollaries 4 and 5 do not directly apply� for example, knowing that player i

is more central than player j may make it easier to check that player i0 is more central than player

j0 if player i is a neighbor of player i0 and player j is a neighbor of player j0. The seven-player

example following the corollaries gives an example of this kind of argument.

Corollary 4 If d (i; k) � d (j; k) for all k 6= i; j, then player i is more central than player j. Player

i is strictly more central than player j if in addition the inequality is strict for some k 6= i; j.

Proof. It is immediate that player i is 1-more central than player j, and that player i is strictly

1-more central if at least one of the inequalities is strict. Suppose that player i is s-more central.

To see that player i is s+1-more central, for any t let  (�) be any surjection such that  (k) = k if

d (j; k) � t and  (i) = j. Then for any k with d (j; k) � t, there exists k0 2  �1 (k) such that k0 is

s-more central than k, since (as is easy to check) any player is s-more central than herself. That

player i is more central than player j follows by induction, and player i is therefore strictly more

central than player j if at least one of the inequalities is strict.

The intuitive statement of Corollary 5 above relied on the notion of two players� being in

"symmetric" positions in a network. Mathematically, this is captured by the concept of a graph

automorphism. Formally, a graph automorphism on L is a permutation � on N such that if li;j = 1,

then l�(i);�(j) = 1; that is, a graph automorphism is a permutation of vertices that preserves links.

Our result is the following:

Corollary 5 If there exists a graph automorphism � : N ! N such that � (i) is (strictly) more

central than j, then i is (strictly) more central than j.

Proof. We again proceed by induction. Since # fk : d (i; k) � tg = # fk : d (� (i) ; k) � tg for

all t, it is clear that i is 1-more central than j if � (i) is 1-more central than j. Suppose we

have shown that i is s-more central than j if � (i) is s-more central than j, for all i; j. Suppose

that  : fk 2 N : d (� (i) ; k) � tg ! fk 2 N : d (j; k) � tg is a surjection such that, for all k with
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Figure 2: A Seven-Player Example

d (j; k) � t, there exists k0 2  �1 (k) such that k0 is s-more central than k. We claim that  �� is a

surjection from fk 2 N : d (i; k) � tg ! fk 2 N : d (j; k) � tg such that, for all k with d (j; k) � t,

there exists k00 2 ( � �)�1 (k) such that k00 is s-more central than k. To see this, note that if

d (� (i) ; k0) � t, then d
�
i; ��1 (k0)

�
� t (as � (�) preserves distances), and if k0 is s-more central

than k, then ��1 (k0) is s-more central than k as well, by the inductive hypothesis. Therefore,

k00 � ��1 (k0) satis�ed the required conditions, and repeating this argument for all t shows that i is

s+1 more central than j if � (i) is s+1 more central than j. That i is more central than j follows

by induction. The argument for i strictly more central than j is similar.

The example in Figure 2 illustrates the usefulness of Corollaries 4 and 5.23 Direct application

of Corollary 4 implies that player 3 is more central than players 1 and 2, and that player 5 is more

central than players 6 and 7. However, it is not clear how to show that player 3 is more central

than players 6 and 7, say, and it is not obvious whether player 4 is more central than the players

in f1; 2; 6; 7g or than players 3 and 4.

Corollary 5 makes analyzing this network substantially easier. Observe the following map � is

an automorphism of L: � (1) = 7, � (2) = 6, � (3) = 5, � (4) = 4, � (5) = 3, � (6) = 2, and � (7) = 1.

Since we have already established that player 3 is more central than players 1 and 2 and that player

5 is more central than players 6 and 7, Corollary 5 now implies that each player in f3; 5g is more
23This example is the same as that in Figure 2.13 of Jackson (2008), which Jackson uses to illustrate various

network-theoretic concepts of centrality. As we will see, in this example our de�nition of centrality is similar to

the concepts discussed by Jackson in that players 3, 4, and 5 are all more central than players 1, 2, 6, and 7. One

impotant di¤erence between our de�nition of centrality and those discussed by Jackson is that our de�nition induces

an incomplete ordering over nodes, while all of the concepts discussed by Jackson induce complete orderings.
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central than each player in f1; 2; 6; 7g.

Given this observation, it is not hard to show that player 4 is more central than each player

in f1; 2; 6; 7g. Consider player 1. Player 4 is 1-more central than player 1, by inspection. Since

player 4 is within distance 2 of every player, showing that player 4 is s-more central than player 1

reduces to �nding a bijection  : f3; 4; 5g ! f1; 2; 3g such that k is s � 1-more central than  (k)

for all k 2 f3; 4; 5g. We proceed by induction, supposing that we have already established that

player 4 is s � 1-more central than player 1. Let  (3) = 3,  (4) = 1, and  (5) = 2. Player

3 is s � 1-more central than herself, trivially; player 4 is s � 1-more central than player 1, by the

inductive hypothesis; and player 5 is s � 1-more central than player 2, by the observation in the

previous paragraph, which followed from Corollaries 4 and 5. Therefore, player 4 is more central

than player 1, and the same argument shows that player 4 is more central than each player in

f1; 2; 6; 7g. The above arguments can easily be replicated for "strictly more central," so Theorem

5 implies that players 3, 4, and 5 have greater maximum equilibrium contributions than do players

1, 2, 6, and 7.

Finally, it is easy to see that players 3 and 4 are not more central than each other, as player

3 has more immediate neighbors while player 4 has more neighbors within distance 2. Therefore,

Theorem 5 does not say whether player 3 or player 4 contributes more in an equilibrium that

sustains the MELP. This is reassuring, because one can easily construct examples in which player

3 contributes more and others in which player 4 contributes more: for example, if c (x) = x + x3,

then x�1 � 2:167, x�3 � 2:215, and x�4 � 2:225 if � = :9, whereas if � = :4 then x�1 � 1:068, x�3 � 1:182,

and x�4 � 1:177. It is not surprising that player 3 contributes more relative to player 4 when � is

lower, as in this case the fact that player 3 has more immediate neighbors is more important, while

player 4�s greater number of distance-2 neighbors matters more when � is higher (since �2 is low

relative to � when � is low).

Before leaving this subsection, we remark that Theorem 5 provides a new perspective on the

Olsonian idea of the "exploitation of the great by the small." Olson (1965) noted that small players

may free ride on larger players if larger players have greater private incentives to contribute to

public goods. Theorem 5 illustrates a reason why larger players might be expected to contribute

disproportionately much to public goods even if they do not have greater private incentives to

contribute. That is, larger players tend to be observed by more other players (i.e., they tend to

be "more central" in the sense of De�nition 8), which implies that a defection by a larger player

leads more other players to defect. This in turn implies that larger players can contribute more
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than smaller players in equilibrium, as shown by Theorem 5. This argument contrasts with most

previous analyses of "centrality" in networks, which usually suggest that central players receive

higher payo¤s. In the case of public good provision, it is players who are not central (i.e., who are

poorly monitored) who receive higher payo¤s, as they are more able to free ride on their opponents�

contributions, and therefore cannot be expected to make large contributions in equilibrium.

7.2 The Consequences of Adding or Removing Links

We now show that adding a link between any two players strictly increases the maximum equilibrium

contribution of every player in the connected component containing these players. This result is a

natural formalization of the widespread idea that better-connected societies can provide more public

goods. The intuition is that adding a link between players i and j increases the amount that they

can contribute in equilibrium, since it decreases their continuation payo¤s following a defection,

which in turn increases the amount that any player who is path-connected to them can contribute

in equilibrium. Theorem 6 could be proved directly using our �xed point characterization of

maximum equilibrium contributions (equation (1)), but it is easier to prove by noting that adding

a link between two players makes all players in the corresponding connected component strictly

more central in the sense of De�nition 8 and then applying Theorem 5.

Theorem 6 Let L0 and L be undirected networks such that lk;k0 = l0k;k0 for all (k; k
0) 6= (i; j),

l0i;j = 1, and li;j = 0. Let C be the connected component of L0 containing i and j. Then, for any

k 2 C, x�k is strictly higher under monitoring on L0 than under monitoring on L.

Proof. Let L00 be the network with two disjoint components, of which one is isomorphic to L0 and

the other isomorphic to L. For any player k 2 L, let ~k be the corresponding player in L0. We

claim that if ~k 2 C, then ~k is strictly more central (in L00) than k. Since (1) implies that player

k�s (~k�s) maximum equilibrium contribution is the same in L00 as in L (L0), the result then follows

from Theorem 5.

Fix ~k 2 C. To see that ~k is more central than k, note that, for any s and t, the surjection

 :
n
k0 2 L00 : d

�
~k; k0

�
� t
o
!  fk0 2 L00 : d (k; k0) � tg that maps ~k0 to k0 satis�es the conditions

of De�nition 8. Next, note that ~{ is strictly 1-more central than i, since ~{ has one more distance-1

neighbor than i does. Therefore, taking the above surjection in De�nition 8 with t � d
�
~k;~{
�

(which is well-de�ned because ~k 2 C) implies that ~k is strictly 2-more central than k, because ~{ is

strictly 1-more central than i. Therefore, ~k is strictly more central than k.
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8 An Extension: Local Public Goods

Thus far, we have focused on "global" public goods, in that each player bene�ts equally from each

other player�s contribution to the public good. In this section, we consider a generalization of our

model where, for example, a player may only bene�t from contributions of players she observes,

or from contributions of an arbitrary subset of players. This generalization encompasses several

models of "local" public goods, which allows our model to cover applications such as cooperation

in decentralized trade, exerting e¤ort on a team project within a larger organization, and pricing

in a di¤erentiated market where at each date only a subset of �rms end up in competition with

each other. Versions of our key theoretical results (Theorems 1 through 3) continue to hold in this

more general setting, but the e¤ects of group size and structure on cooperation may be di¤erent.

In particular, public good provision is best supported by monitoring structures in which a given

player i is likely to be observed by those players whose contributions she values. For example, �xed

partnerships (where each player matches with the same partner every period) support a higher level

of public good provision than does random matching when players only bene�t from contributions

of players they observe, but random matching supports a higher level of global public good provision

than do �xed partnerships.

Formally, we generalize our model by changing player i�s period-t bene�t from player j�s con-

tribution from �xj to �i;j
�
fO (k; t)gNk=1

�
xj , for an arbitrary function �i;j : fO (k; t)gNk=1 ! R+.

Thus, player i�s period-t payo¤ becomes

NX
j=1

�i;j

�
fO (k; t)gNk=1

�
xj � c (xi) .

Note that �i;j
�
fO (k; t)gNk=1

�
is iid across periods, by stationarity. Leading examples include

�i;j

�
fO (k; t)gNk=1

�
deterministic (i.e., players weight each other�s contributions asymmetrically,

independently of the realization of the monitoring technology) and �i;j

�
fO (k; t)gNk=1

�
= 1 if

i 2 O (j; t) and �i;j
�
fO (k; t)gNk=1

�
= 0 otherwise (i.e., a player only bene�ts from contributions

that she observes); these two cases may be thought of as di¤erent models of local public goods.

Observe that the latter case corresponds to the random matching model of Kandori (1992) and

Ellison (1994). We now develop analogs of Theorems 1 through 3 for the generalized model, and

then discuss their implications for the e¤ects of group size and structure on cooperation. The

proofs of these results are straightforward extensions of the proofs of Theorem 1 through 3 and are

therefore omitted.
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In the generalized model, there is no single number that measures the overall level of public

good provision, as the MELP does in the case of global public goods. Nonetheless, the following

direct extension of Theorem 1 holds in the generalized model:

Proposition 17 There exists a unique grim trigger strategy pro�le �� that sustains each player�s

maximum equilibrium contribution.

In the generalized model, players are e¤ectively "equally well monitored" only if they are equally

likely to be observed by players whose contributions bene�t them. Thus, the appropriate general-

ization of equal observability is the following:

� Equal Observability (General Version):

NX
j=1

Pr (j 2 D (� ; t; i))E
h
�i;j

�
fO (k; �)gNk=1

���� j 2 D (� ; t; i)i =
NX
j=1

Pr
�
j 2 D

�
� ; t; i0

��
E
h
�i0;j

�
fO (k; �)gNk=1

���� j 2 D �� ; t; i0�i
for all i, i0, � , and t.

Note that

Pr (j 2 D (� ; t; i))E
h
�i;j

�
fO (k; �)gNk=1

���� j 2 D (� ; t; i)i =
Pr (j 2 D (� � t; 0; i))E

h
�i;j

�
fO (k; � � t)gNk=1

���� j 2 D (� � t; 0; i)i ,
by stationarity. We simplify notation by writing Pr (j 2 D (t; i))E

h
�i;j

�
fO (k; t)gNk=1

���� j 2 D (t; i)i
for Pr (j 2 D (t; 0; i))E

h
�i;j

�
fO (k; t)gNk=1

���� j 2 D (t; 0; i)i, paralleling the notation introduced in
Section 3.

An analog of Theorem 2 follows immediately:

Proposition 18 If monitoring satis�es the general version of equal observability, there exists a

unique symmetric grim trigger strategy pro�le �� that sustains each player�s maximum equilibrium

contribution.

Finally, we have an analog of Theorem 3. In the statement of this result, Pr (j 2 D (t; i) ; �),

�i;j

�
fO (k; t)gNk=1 ; �

�
, and E

h
�i;j

�
fO (k; t)gNk=1 ; �

���� j 2 D (t; i) ; �i refer to
Pr (j 2 D (t; i)), �i;j

�
fO (k; t)gNk=1

�
, and E

h
�i;j

�
fO (k; t)gNk=1 ; �

���� j 2 D (t; i)i in game �, respec-
tively (note that this notation allows both the function �i;j (�) and the distribution of fO (k; t)gNk=1
to vary with �).
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Proposition 19 Let �0 and � be two games that satisfy the general version of equal observability.

Then every player�s maximum equilibrium contribution is higher in �0 than in � if and only if

1X
t=0

�t
N(�0)X
j=1

Pr
�
j 2 D (t; i) ; �0

�
E
h
�i;j

�
fO (k; t)gNk=1 ; �

0
���� j 2 D (t; i) ; �0i >

1X
t=0

�t
N(�)X
j=1

Pr (j 2 D (t; i) ; �)E
h
�i;j

�
fO (k; t)gNk=1 ; �

���� j 2 D (t; i) ; �i
for any i.

Proposition 19 contains the key idea we wish to highlight regarding the di¤erence between

supporting cooperation with global and local public goods: the extent to which a monitoring

technology supports contributions by player i with general public goods depends on its e¤ective

contagiousness among those players whose contributions bene�t player i. In the case of global public

goods, this reduces to Theorem 3, which shows that the extent to which a monitoring technology

supports cooperation with global public goods depends on its overall e¤ective contagiousness.

Proposition 19 is intuitive: with general public goods, player i only bene�ts from the contributions

of some of her opponents, so she is deterred from defecting only when those speci�c players are

likely to �nd out about a potential defection. Nonetheless, Proposition 3 is useful for analyzing

which monitoring structures are more e¤ective at supporting provision of di¤erent types of public

goods. For example, it is interesting to compare random matching (de�ned in Section 5) with the

following monitoring structure:

De�nition 9 Monitoring is given by �xed partnerships if for every player i there exists a player

i0 such that O (i; t) = O (i0; t) = fi; i0g for all t.

Note that �xed partnerships and random matching both satisfy the general version of equal

observability. The following result is therefore immediate from Theorem 3 and Proposition 19:

Proposition 20 Fix N � 4 and even. With global public goods, every player�s maximum equi-

librium contribution is greater under random matching than under �xed partnerships. With local

public goods, de�ned as �i;j
�
fO (k; t)gNk=1

�
= 1 if i 2 O (j; t) and �i;j

�
fO (k; t)gNk=1

�
= 0 oth-

erwise, every player�s maximum equilibrium contribution is greater under �xed partnerships than

under random matching.
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Proof. Under random matching, E [#D (1)] = 2 and E [#D (t)] > 2 for all t � 2. Under �xed

partnerships, E [#D (t)] = 2 for all t � 1. Therefore, with global public goods, every player�s

maximum equilibrium contribution is greater under random matching, by Theorem 3.

Under random matching,
PN
j=1 Pr (j 2 D (1; i))E

h
�i;j

�
fO (k; 1)gNk=1

���� j 2 D (1; i)i < 2 andPN
j=1 Pr (j 2 D (t; i))E

h
�i;j

�
fO (k; t)gNk=1

���� j 2 D (t; i)i � 2 for all t � 2. Under �xed part-

nerships,
PN
j=1 Pr (j 2 D (1; i))E

h
�i;j

�
fO (k; 1)gNk=1

���� j 2 D (1; i)i = 2 for all t � 1. Therefore,

with local public goods, every player�s maximum equilibrium contribution is greater under �xed

partnerships, by Proposition 19.

The intuition for Proposition 20 is straightforward. E [#D (t)] is higher under random matching

than under �xed partnerships, for all t, because under random matching information about a

defection spreads throughout the entire group. This implies that defecting is more costly under

random matching when the public good is global. However, under �xed partnerships a player who

defects never receives a contribution from her partner again, while under random matching a player

can defect and still receive contributions from her future partners. Therefore, defecting is more

costly under �xed partnerships when the public good is local (in the sense of Proposition 20).24

More generally, Theorem 3 and Proposition 19 show that "compact" social structures (in the

sense of high
PN
j=1 Pr (j 2 D (t; i) \ i 2 D (t; j))) are better at supporting the provision of local (in

the sense of Proposition 20) public goods� as in this case it is important that a player observes the

same players that observe her� while "di¤use" social structures (in the sense of high E [#D (t)])

are better at supporting the provision of global public goods� as in this case it is important that

a large fraction of the entire population �nds out about a defection quickly.

9 Conclusion

This paper introduces a tractable framework for studying repeated public good provision and

provides comparative statics on the maximum equilibrium level of public good provision with

respect to group size, monitoring structure, and network connectivity. The basis of our results

is a characterization of strategies that sustain the maximum level of public good provision: the

24A similar result, the proof of which is also straightforward, is that under random matching every player�s maximum

equilibrium contribution is decreasing in N when the public good is local (in the sense of Proposition 20) and pure,

while it is increasing in N when the public good is global and pure, by Proposition 9. This is analogous to the

result of Kandori (1992) and Ellison (1994) that a higher discount factor is required to sustain cooperation when the

population is larger in the repeated prisoner�s dilemma with random matching.
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maximum level of public good provision is sustained by grim trigger strategies, and these strategies

are also symmetric if monitoring satis�es a weak equal observability condition. The maximum per

capita level of public good provision is increasing in group size in the case of pure public goods

under quite broad conditions, but is decreasing in group size in the case of divisible public goods in

many natural examples; in general, comparative statics on the maximum per capita level of public

good provision depend on the product of the rivalness term and the e¤ective contagiousness of the

monitoring structure. Less uncertain monitoring, which in some applications may be interpreted as

reliable local monitoring rather than unreliable public monitoring, sustains a higher level of public

good provision under broad conditions. In social networks, more central individuals can contribute

more than less central individuals, and all individuals can contribute more when the network is

better connected. Finally, our approach illustrates how provision of global and local public goods

are best supported by di¤erent social structures.

We conclude by discussing directions for future research. First, our analysis of optimal equilib-

ria with all-or-nothing private monitoring may facilitate further investigations of the relationship

between public and private monitoring as means of sustaining cooperation. In the examples in

the introduction, it seems likely that only extremely weak incentives can be provided by public

monitoring, but this intuition is not captured clearly by existing models of repeated games with

imperfect public monitoring. A model in which players learn about each other�s play through both

all-or-nothing private monitoring and imperfect public monitoring could clarify the extent to which

large groups are able to avoid the problems associated with public monitoring by relying on local,

private monitoring of the kind studied in this paper.

Second, it would be interesting to see if the concept of all-or-nothing monitoring introduced

in this paper has application to settings other than public good provision. In general repeated

games with private monitoring, two key challenges are identifying deviations and coordinating

punishments. In our model, identifying deviations is made simple by all-or-nothing monitoring, and

coordinating punishments is unnecessary due to the speci�c structure of the public good provision

game (in particular, contributing 0 is the strongest possible punishment, and contributing 0 after

observing a deviation is optimal in the grim trigger strategy that sustains the MELP). In general,

studying models with all-or-nothing monitoring might provide a way to isolate the game-theoretic

problem of coordinating punishments from the more statistical problem of identifying deviations.

Finally, our analysis provides several clean predictions about the e¤ects of group size and

structure on the level of public good provision, how this di¤ers for pure and divisible public goods
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and global and local public goods, and what strategies best sustain public good provision. A

natural next step would be to study these predictions empirically, either experimentally or using

detailed �eld data like that used in Karlan et al (2008).

Appendix: Omitted Proofs

Proof of Theorem 1. Rather than directly studying the problem of maximizing

� (1� �)E
hP1

t=0 �
tPN

i=1 �i
�
hti
�i
over all sequential equilibria, we start by considering the relaxed

problem of maximizing � (1� �)E
hP1

t=0 �
tPN

i=1 �i
�
hti
�i
over all strategy pro�les � such that, for

every player i and history hti, player i weakly prefers following �i from history h
t
i onwards to setting

xi;� = 0 for all � � t following hti. We �rst show that a solution � to the relaxed problem exists

that satis�es the following two properties, and that every solution to the relaxed problem has the

same path of play:

1. � is a grim trigger strategy pro�le.

2. If hti is on the path of play of �, then player i is indi¤erent between following � at h
t
i and

setting xi;� = 0 for all � � t following hti.

We then show that any solution to the relaxed problem that satis�es these properties also solves

the full problem.

Let Ei
h
�j

�
h�j

����hti;�ii be player i�s expectation at history hti of player j�s period � contribution,
conditional on player i�s following strategy �i; and let Ei

h
�j

�
h�j

����hti; 0i be the same expectation
conditional on player i�s playing xi = 0 at history hti and at every subsequent history. The

requirement that player i weakly prefers following �i at history hti to setting xi;� = 0 for all � � t

following hti may then be written as0@ NX
j=1

� (1� �)
1X
�=t

���tEi
�
�j
�
h�j
���hti;�i�

1A� (1� �) 1X
�=t

���tEi
�
c (�i (h

�
i ))jhti;�i

�!

�
NX
j=1

� (1� �)
1X
�=t

���tEi
�
�j
�
h�j
���hti; 0� ,

or

(1� �)
1X
�=t

���tEi
�
c (�i (h

�
i ))jhti;�i

�
�

NX
j=1

� (1� �)
1X
�=t

���t
�
Ei
�
�j
�
h�j
���hti;�i�� Ei ��j �h�j ���hti; 0�� .

(8)
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Observe that

Ei
�
�j
�
h�j
���hti;�i; j =2 D (� ; t; i)� = Ei ��j �h�j ���hti; 0; j =2 D (� ; t; i)� ,

where D (� ; t; i) is de�ned in Section 3; this follows because, conditional on the event j =2 D (� ; t; i),

the probability distribution over histories h�j does note depend on player i�s actions following history

hti. Therefore, the right-hand side of (8) equals

NX
j=1

� (1� �)
1X
�=t

���t Pr (j 2 D (� ; t; i))
�
Ei
�
�j
�
h�j
���hti;�i; j 2 D (� ; t; i)�� Ei ��j �h�j ���hti; 0; j 2 D (� ; t; i)�� ,

which is not more than
NX
j=1

� (1� �)
1X
�=t

���t Pr (j 2 D (� ; t; i))Ei
�
�j
�
h�j
���hti;�i; j 2 D (� ; t; i)� .

Therefore, the following condition is necessary for (8):

(1� �)
1X
�=t

���tEi
�
c (�i (h

�
i ))jhti;�i

�
�

NX
j=1

� (1� �)
1X
�=t

���t Pr (j 2 D (� ; t; i))Ei
�
�j
�
h�j
���hti;�i; j 2 D (� ; t; i)� . (9)

Let

Xi
�
hti; �

�
� � (1� �)

1X
�=t

���tE
�
�i (h

�
i )jhti;�i

�
.

Xi
�
hti; �

�
is the expected value of player i�s future contributions starting from history hti. With

this notation and a little algebra, the right-hand side of (9) may be rewritten as

NX
j=1

1X
�=t

���t (Pr (j 2 D (� ; t; i))� Pr (j 2 D (� � 1; t; i)))Ei
�
Xj (h

�
i ; �)jhti;�i; j 2 D (� ; t; i) nD (� � 1; t; i)

�
;

(10)

the intuition for this is simply that player j �rst enters the set D (T; t; i) at T = � with probability

Pr (j 2 D (� ; t; i))�Pr (j 2 D (� � 1; t; i)), and when this occurs the expected value of player j�s fu-

ture contributions from player i�s perspective is Ei
�
Xj (h

�
i ; �)jhti;�i; j 2 D (� ; t; i) nD (� � 1; t; i)

�
.

Note also that � (1� �)E
hP1

t=0 �
tPN

i=1 �i
�
hti
�i
=
PN
i=1Xi

�
h0; �

�
, recalling that h0 is the null

history at the beginning of the game. Since (9) is necessary for (8), and (10) equals the right-

hand side of (9), the solution to the relaxed problem is bounded from above by the solution to the

program

sup
�2�

NX
i=1

Xi
�
h0; �

�
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subject to

(1� �)
1X
�=t

���tEi
�
c (�i (h

�
i ))jhti

�
�

NX
j=1

1X
�=t

���t (Pr (j 2 D (� ; t; i))� Pr (j 2 D (� � 1; t; i)))Ei
�
Xj (h

�
i ; �)jhti;�i; j 2 D (� ; t; i) nD (� � 1; t; i)

�
for all hti. Observe that the left-hand side of this inequality is bounded from below by c

�
Xi
�
hti; �

�
=�
�
,

by convexity of c (�) and Jensen�s inequality. Also, observe that playing xi = 0 from period t on-

wards yields a weakly positive payo¤ to player i, so the same argument as in the proof of Lemma

1 implies that there exists �X such that Xi
�
hti; �

�
� �X for all i and hti if � satis�es (8). Let �X

be an in�nite-dimensional vector of �X�s, one for each player i and private history hti. Combining

the two preceding observations implies the solution to the relaxed problem is no higher than the

solution to the following program:

sup
fXi(hti;�)g��X

NX
i=1

Xi
�
h0; �

�
subject to

c
�
Xi
�
hti; �

�
=�
�
�

NX
j=1

1X
�=t

���t (Pr (j 2 D (� ; t; i))� Pr (j 2 D (� � 1; t; i)))Ei
�
Xj (h

�
i ; �)jhti;�i; j 2 D (� ; t; i) nD (� � 1; t; i)

�
(11)

for all i; hti. Finally, the inequality in (11) may be replaced with equality for all i; h
t
i without loss

of generality, as in the case of strict inequality Xi
�
hti; �

�
may be increased without decreasing the

objective or violating any of the constraints, since Pr (i 2 D (� ; t; j)) � Pr (i 2 D (� � 1; t; j)) � 0

for all j, � , and t (by de�nition of D (� ; t; j)).

We now characterize the solution to this program, and then show that the solution can be

obtained in a strategy pro�le that satis�es the constraints of the relaxed problem. Given a vector

of the Xi
�
hti
�
for all i and hti, ~X �

�
Xi
�
hti
�	
, de�ne the map

�
�
~X
�
=
n
�i;hti

�
~X
�o
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where �i;hti

�
~X
�
is the unique Xi

�
hti
�0 such that

c
�
Xi
�
hti
�0
=�
�
=

NX
j=1

1X
�=t

���t (Pr j 2 D (� ; t; i)� Pr (j 2 D (� � 1; t; i)))Ei
�
Xj (h

�
i )jhti; j 2 D (� ; t; i) nD (� � 1; t; i)

�
.

�
�
~0
�
= ~0, so � (�) has at least one �xed point that lies below �X (i.e., at least one �xed point with

Xi
�
hti
�
� �X for all i; hti). Since Pr (j 2 D (� ; t; i)) � Pr (j 2 D (� � 1; t; i)) � 0 for all i, � , and t,

� (�) is an isotone function, so by Tarski�s theorem it has a highest �xed point below �X, which we

denote by ~X�. Furthermore, the highest �xed point of � (�) below �X solves the above program

providing an upper bound on the solution to the (original) relaxed problem, because the fact that

� (�) is isotone implies that the highest �xed point of � (�) below �X involves the highest Xi
�
h0
�
� �X

consistent with (11), for all i. In particular,
PN
i=1X

�
i

�
h0
�
is an upper bound on the solution to

the relaxed problem.

We now claim that ~X� is stationary, in that, for each i, there exists X�
i such that X

�
i

�
hti
�
= X�

i

for all hti. Let �k
�
~X
�
be the map obtained from iterating � (�) k times on ~X, and let �ki;hti

�
~X
�

be the
�
i; hti

�th coordinate of �k � ~X�. By de�nition of ~X�, �X � X�
i

�
hti
�
for all i; hti. Therefore,

by isotonicity of � (�), �k
�
�X
�
� ~X� for all k. Furthermore, limk!1 �k

�
�X
�
= ~X�, because the

fact that �
�
�K
�
�X
��
� �K

�
�X
�
for all K implies that �

�
limk!1 �k

�
�X
��
� limk!1 �k

�
�X
�
(since

limits preserve weak inequalities and � (�) is continuous in the product topology), which implies

that �
�
limk!1 �k

�
�X
��
= limk!1 �k

�
�X
�
. Finally, it is clear from the de�nition of � (�) and the

fact that monitoring satis�es stationarity that �
�
~X
�
is stationary if ~X is. Since �X is stationary,

it follows that �k
�
�X
�
is stationary for all k, which implies that limk!1 �k

�
�X
�
= ~X� is stationary.

From the de�nition of Xi
�
hti; �

�
, every strategy pro�le � with Xi

�
hti; �

�
= X�

i for all h
t
i on the

path of play of � must satisfy �i
�
hti
�
= X�

i =� for all h
t
i on the path of play of �. We claim that

the following grim trigger strategy pro�le �� with this path of play satis�es the constraints of the

relaxed problem (and therefore solves the relaxed problem): for all i, let ��i
�
hti
�
= 0 if there exists

a zi;j;� 2 hti such that zi;j;� =2
n
X�
j =�; ;

o
, and let ��i

�
hti
�
= X�

i =� otherwise.

Under ��, the constraint of the relaxed problem ((8)) becomes

c (X�
i =�) �

NX
j=1

� (1� �)
1X
�=t

���t Pr (j 2 D (� ; t; i))
�
Ei
�
��j
�
h�j
���hti;��i ; j 2 D (� ; t; i)�� Ei ���j �h�j ���hti; 0; j 2 D (� ; t; i)��
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for all i. This holds trivially if X�
i = 0, so assume that X

�
i > 0. Suppose that player i deviates

to playing xi = 0 at history hti, that Pr (j 2 D (� ; t; i)) > 0, and that the realization of the mon-

itoring technology up to time � , which we denote by !� , is such that j 2 D (� ; t; i) given !� and

Pr
�n
fO (i; t)gNi=1

o�
t=0

= !�
�
> 0. We claim that ��j

�
h�j

�
= 0 given !� . This claim is trivial

if X�
j = 0, so assume that X�

j > 0. Proceed by induction on � : If � = t + 1, then player j

observes player i�s o¤-path play at time t given !� , and therefore ��j
�
h�j

�
= 0. Suppose that

the claim holds for all � � T , and consider the case where � = T + 1. Since j 2 D (T + 1; t; i),

player j observes the action of some player k 2 D (T; t; i) at time T given !� , and the fact that

Pr
�n
fO (i; t)gNi=1

o�
t=0

= !�
�
> 0 implies that Pr (j 2 D (T + 1; T; k)) > 0. Since X�

j > 0, the fact

that Pr (j 2 D (T + 1; T; k)) > 0 implies that X�
k > 0, by the de�nition of �. Therefore, by the

inductive hypothesis, ��k
�
hTj

�
= 0 given !� , which is o¤ the equilibrium path of ��. This implies

that ��j
�
h�j

�
= 0, completing the proof of the claim.

Therefore, when X�
i > 0, the constraint of the relaxed problem becomes

c (X�
i =�) �

NX
j=1

� (1� �)
1X
�=t

���t Pr (j 2 D (� ; t; i))Ei
�
��j
�
h�j
���hti;��i ; j 2 D (� ; t; i)�

=

NX
j=1

1X
�=t

���t (Pr (j 2 D (� ; t; i))� Pr (j 2 D (� � 1; t; i)))X�
j ,

which holds with equality by the de�nition of ~X�. Therefore, �� satis�es the constraints of the

relaxed problem, and therefore solves the relaxed problem. Furthermore, every strategy pro�le

that solves the relaxed problem has the same path of play as ��, �� is a grim-trigger strategy

pro�le, and at every history hti on the path of play of �
�, player i is indi¤erent between following

�� at hti and deviating to xi = 0 forever.

We now claim that �� also solves the full problem, i.e., that � (together with consistent beliefs)

is a SE. Clearly, no deviation at an on-path history is more pro�table for player i than setting

xi = 0, and the constraint of the relaxed problem guarantees that this deviation is not pro�table,

so we must only check that no player has a pro�table deviation at an o¤-path history (by the

one-shot deviation principle). We claim that in any grim trigger strategy in which players are

indi¤erent between conforming and playing x = 0 on-path, every player weakly prefers playing

x = 0 at every o¤-path history. This follows from the standard argument (originally due to Ellison,

1994) that a player�s incentive to play x�i > 0 rather than 0 in a grim trigger strategy pro�le is

reduced after a deviation by another player. Formally, we establish this fact in our setting, using

notation similar to Ellison�s: Let D (t) be the set of players such that there exists a zi;j;� 2 hti such
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that zi;j;� =2
n
X�
j =�; ;

o
(i.e., the set of players "in the defection phase" at time t). Recall that !

denotes a realization of the monitoring technology. For � � t, de�ne C (� ;D (t) ; !) by

C (t;D (t) ; !) = NnD (t)

C (� + 1; D (t) ; !) = fi 2 C (� ;D (t) ; !) : i =2 O (j; �) for all j =2 C (� ;D (t) ; !)g .

De�ne ~D (� ; i�; !) by

~D (t; i�; !) = fi�g

~D (� + 1; i�; !) =
n
~D (� ; i�; !) [ i : i 2 O (j; �) for some j 2 ~D (� ; i�; !)

o
.

Given any !, the bene�t to player i� from playing x�i > 0 rather than 0 at time t is the expected

present value of the contributions made by players in C (� ;D (t) ; !) \ ~D (� ; i�; !). For all t, �

and !, the set of such players is smaller when D (t) is larger, as C (� ;D (t) ; !) � C (� ;D0 (t) ; !) if

D (t) � D0 (t). Therefore, the bene�t to player i� from playing x�i� > 0 o¤-path is weakly smaller

than her bene�t from playing x�i� on-path, so the fact that she is indi¤erent between playing x
�
i�

and 0 on-path implies that she weakly prefers to play 0 o¤-path.

We have shown that there exists a grim trigger strategy pro�le �� that sustains the MELP.

Furthermore, any strategy pro�le that solves the relaxed problem must have the same path of play

as ��, which implies that any strategy pro�le that sustains the MELP must also have the same path

of play as ��. Finally, each player i�s maximum equilibrium contribution is bounded from above

by the maximum of Xi
�
h0i ; �

�
=� over

�
Xi
�
hti; �

�	
� �X satisfying (11), which equals X�

i =� by

isotonicity of � (�). This implies that player i�s maximum equilibrium contribution equals X�
i =�,

and that this is sustained by ��.

Finally, we sketch a proof of the fact that any level of public good provision below X� can

be sustained in sequential equilibrium if public randomizations are available. Fix a grim trigger

strategy pro�le �� that sustains the MELP and X < X�, and let �i
�
hti
�
� X

X���
�
hti
�
for all hti.

The level of public good provision under � equals X. We �rst claim that players do not have a

pro�table on-path deviation under �. To see this, note that no deviation at hti is more pro�table

than setting xi = 0, so it su¢ ces to show that

(1� �)
1X
�=t

���tEi
�
c (�i (h

�
i ))jhti;�i

�
�

NX
j=1

� (1� �)
1X
�=t

���t Pr (j 2 D (� ; t; i))Ei
�
�j
�
h�j
���hti;�i; j 2 D (� ; t; i)� , (12)
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which is the same as (9). Since �� is a SE,

(1� �)
1X
�=t

���tEi
�
c (��i (h

�
i ))jhti;��i

�
�

NX
j=1

� (1� �)
1X
�=t

���t Pr (j 2 D (� ; t; i))Ei
�
��j
�
h�j
���hti;��i ; j 2 D (� ; t; i)� , (13)

The right-hand side of (12) is X=X� times the right-hand side of (13). Since c (0) = 0 and c (�) is

convex, the left-hand side of (12) is less than X=X� times the left-hand side of (13). Therefore,

(12) is satis�ed.

Since players weakly prefer to conform to � on-path and public randomizations are available,

there exists a two-phase strategy pro�le of the form described in Ellison (1994, p. 571) such that

every player i is indi¤erent between conforming to � and playing xi = 0 on-path. Since we have

shown that a player�s bene�t from playing xi = 0 is weakly higher o¤-path than on-path, this

implies that players weakly prefer playing xi = 0 o¤-path under such a two-phase strategy pro�le.

Therefore, there exists a two-phase strategy pro�le that is a sequential equilibrium and that has

on-path play identical to �; this strategy pro�le is a sequential equilibrium that sustains the level

of public good provision X.

Proof of "Su¢ cient" Direction of Theorem 2. Consider the map � (�) de�ned in the

proof of Theorem 1. We claim that equal observability implies that, if ~X is symmetric, in that

Xi
�
hti
�
= X1

�
ht1
�
for all players i and histories hti and ht1 of the same length, then �

�
~X
�
is

symmetric. To see this, suppose that ~X is symmetric, and note that

NX
j=1

1X
�=t

���t (Pr j 2 D (� ; t; i)� Pr (j 2 D (� � 1; t; i)))Ei
�
Xj (h

�
i )jhti; j 2 D (� ; t; i) nD (� � 1; t; i)

�
=

NX
j=1

1X
�=t

���t (Pr j 2 D (� ; t; i)� Pr (j 2 D (� � 1; t; i)))X1
�
ht1
�

=

1X
�=t

���t ((E [#D (� � t; i)]� 1)� (E [#D (� � t� 1; i)]� 1))X1
�
ht1
�
,

which is the same for all i, by equal observability. The de�nition of �i;hti

�
~X
�
then implies that

�
�
~X
�
is symmetric.

As in the proof of Theorem 1, let �k
�
~X
�
be the map obtained from iterating � (�) k times on

~X, and let �ki;hti

�
~X
�
be the

�
i; hti

�th coordinate of �k � ~X�. Note that �X is symmetric as well as

stationary. Therefore, for all k, �k
�
�X
�
is symmetric and stationary, and �ki;hti

�
�X
�
� �k+1

i;hti

�
�X
�
�
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X�
i

�
hti
�
. Therefore, the sequence

�
�k
�
�X
�	
k
converges monotonically to ~X�, and is symmetric and

stationary at every step, which implies that ~X� is symmetric and stationary.

Finally, the same argument as in the proof of Theorem 1 implies that there exists a SE in grim

trigger strategies with ��i
�
hti
�
= X�

i for all i; h
t
i on-path, and we have shown that this yields an

upper bound on the MELP, so it must yield the MELP itself; and the same argument as in the

proof of Theorem 1 implies that this is the equilibrium path of any strategy pro�le that sustains

the MELP. Since ~X� is symmetric, X�
i = X�

1 for all i, so �
�
i

�
hti
�
= ��1

�
ht1
�
for all i; hti; h

t
1. Thus,

�� is symmetric.

Proof of Theorem 3. x� (�0) > x� (�)means that the highest zero of � (�0) (1� �)
P1
t=0 �

tE [#D (t;�0)]x�

c (x) is greater than the highest zero of � (�) (1� �)
P1
t=0 �

tE [#D (t;�)]x� c (x). So if x� (�0) >

x� (�) then, by concavity of � (�) (1� �)
P1
t=0 �

tE [#D (t;�)]x� c (x),

�
�
�0
�
(1� �)

1X
t=0

�tE
�
#D

�
t;�0

��
x� (�)� c (x� (�)) > 0

and

� (�) (1� �)
1X
t=0

�tE [#D (t;�)]x� (�)� c (x� (�)) = 0:

Therefore, � (�0)
P1
t=0 �

tE [#D (t;�0)] > � (�)
P1
t=0 �

tE [#D (t;�)].

Similarly, if � (�0)
P1
t=0 �

tE [#D (t;�0)] > � (�)
P1
t=0 �

tE [#D (t;�)], then

�
�
�0
�
(1� �)

1X
t=0

�tE
�
#D

�
t;�0

��
x� c (x) > � (�) (1� �)

1X
t=0

�tE [#D (t;�)]x� c (x)

for all x � 0, which implies that the highest zero of � (�0) (1� �)
P1
t=0 �

tE [#D (t;�0)]x � c (x) is

greater than the highest zero of � (�) (1� �)
P1
t=0 �

tE [#D (t;�)]x� c (x) (since both of these are

positive, by Corollary 1). That is, x� (�0) > x� (�).

Proof of Proposition 2. As N converges to 1, the fraction of players who observe an initial

defection in period 0 converges to p almost surely. Therefore, for any " > 0, there exists �N (") > 0

such that, if N > �N ("), the probability that player N + 1 is in D (2; N + 1) is at least 1 �

(1 + ") (1� p)pN . Furthermore, the probability that any player i 2 f1; : : : ; Ng is in D (t;N + 1) is

weakly higher than the probability that she is in D (t;N), for all t. Therefore, if N > �N ("), then

(1� �)
1X
t=0

�tE [#D (t;N + 1)]x� c (x)�
 
(1� �)

1X
t=0

�tE [#D (t;N)]x� c (x)
!

= (1� �)
1X
t=0

�t (E [#D (t;N + 1)]� E [#D (t;N)])x

� �2
�
1� (1 + ") (1� p)pN

�
x.
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This converges to �2x asN converges to1. Since (1� �)
P1
t=0 �

t (E [#D (t;N + 1)]� E [#D (t;N)])x

is increasing in x, this implies that c (x� (N + 1))�c (x� (N)) is at least �2x� (N), which is bounded

away from 0.

Proof of Proposition 3. By Theorem 2, x� (N 0) > (<)x� (N) if

(1� �)
1X
t=0

�tE
�
#D

�
t;N 0�� =N 0 > (<) (1� �)

1X
t=0

�tE [#D (t;N)] =N ,

or, since the initial deviator is always in D (t;N),

1

N 0 + (1� �)
1X
t=1

�tE
�
#D

�
t;N 0�� 1� =N 0 > (<)

1

N
+ (1� �)

1X
t=1

�tE [#D (t;N)� 1] =N . (14)

It is immediate that the left-hand side of (14) is strictly less than the right-hand side of (14)

for su¢ ciently small � > 0. Choosing such a � and then taking c0 (0) close enough to 1=N 0 that

Assumption 1 is satis�ed then yields an example where x� (N 0) < x� (N).

Next, note that as N ! 1, #D (1; N) =N a:s:! p, by the strong law of large numbers, since all

players except the initial deviator are in D (1; N) with independent probability p. Let " 2 (0; p).

Then Pr (i 2 D (2; N) j#D (1; N) =N > p� ") ! 1 as N ! 1 for all i, independently across i.

Therefore, by the weak law of large numbers, E [#D (2; N) j#D (1; N) =N > p� "] =N ! 1 as

N !1. So, since #D (1; N) =N a:s:! p, we have that E [#D (2; N)] =N ! 1 as N !1. Therefore,

as N 0 ! 1 the left-hand side of (14) converges to (1� �) �p + �2. And if N = 2, the right-hand

side of (14) equals
1

2

�
1 + (1� �) �p

1� � (1� p)

�
,

which is less than (1� �) �p + �2 if p is close to 0 and � is slightly larger than
p
1=2. Therefore,

an example exists where x� (N 0) > x� (N).

Proof of Proposition 4. By Theorem 3, x� (N) is strictly increasing in N if

(1� �)
P1
t=0 �

tE [#D (t;N)]x is strictly increasing in N . With quasi-public monitoring, we have

(1� �)
1X
t=0

�tE [#D (t;N)]x = x+ �
1X
t=0

�tp (N) (1� p (N))t (N � 1)x

= x+
�p (N)

1� � (1� p (N)) (N � 1)x

=
1� � + �Np (N)
1� � (1� p (N))x,

so x� (N) is increasing in N if 1��+�Np(N)1��(1�p(N)) is increasing in N . This is the case if

1� � + � (N + 1) p (N + 1)

1� � (1� p (N + 1))
>
1� � + �Np (N)
1� � (1� p (N))
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for all N , which, with a little algebra, can be rearranged as (5).

The argument for x� (N) strictly decreasing is identical.

Proof of Proposition 5. If p (N) = �N � , Proposition 4 implies that a su¢ cient condition for

x� (N) to be increasing ((5)) becomes

� (N + 1)� � �N � > �
 
1� �

�
1� �N �

�
1� �

!
� (N + 1)�

N � 1 .

Dividing both sides by � (N + 1)� and rearranging gives�
N

N + 1

��
< 1 +

 
1� �

�
1� �N �

�
1� �

!�
1

N � 1

�
.

If � � �1, the left-hand side of this inequality is not more than N+1
N . Therefore, a su¢ cient

condition for x� (N) to be increasing for all � � �1 is

N + 1

N
< 1 +

 
1� �

�
1� �N �

�
1� �

!�
1

N � 1

�
,

or

1 <

 
1� �

�
1� �N �

�
1� �

!�
N

N � 1

�
.

Since
1��(1��N�)

1�� > 1 for all N and all � � 0, and N
N�1 > 1, this condition holds.

Similarly, rearranging (5) implies that a su¢ cient condition for x� (N) to be decreasing is�
N

N + 1

��
> 1 +

 
1� �

�
1� �N �

�
1� �

!�
1

N � 1

�
,

which can be further rearranged as

� <

ln

�
1 +

�
1��(1��N�)

1��

��
1

N�1

��
ln
�

N
N+1

� .

Using L�Hopital�s rule, it can be shown that the limit as N ! 1 of the right-hand side of this

inequality equals �1 whenever � < 0. Therefore, if � < �1 there exists �N (�) > 0 such that this

inequality is satis�ed for all N > �N (�).

Proof of Proposition 6. Using the computation of
P1
t=0 �

tE [#D (t;N)] from the proof of

Proposition 4,

(1� �)
1X
t=0

�tE [#D (t;N + 1)]x� c (x)�
 
(1� �)

1X
t=0

�tE [#D (t;N)]x� c (x)
!

=

�
�p

1� � (1� p)

�
x.
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Therefore, since (1� �)
P1
t=0 �

tE [#D (t;N)]x is increasing in x, c (x� (N + 1)) � c (x� (N)) ��
�p

1��(1�p)

�
x� (N) (recalling that c (x� (N)) = (1� �)

P1
t=0 �

tE [#D (t;N)]x�), which is bounded

away from 0, since x� (N) is increasing.

Proof of Proposition 7. Following the proof of Proposition 4 with � (N) = 1=N , we see that

x� (N) is strictly decreasing in N if x � c (x) �
�

1��
1��(1�p(N))

� �
N�1
N

�
x is strictly decreasing in N .

By inspection, this is the case if p (N) is non-increasing.

Proof of Proposition 8. By the same argument as in the proof of Proposition 4, x� (N) is the

highest zero of x� c (x)�
�

1��
1��(1�p)

� �
N�1
N

�
x, which converges to

�
�p

1��(1�p)

�
x� c (x) as N !1.

Therefore, x� (N) converges to 0 as N !1 if c0 (0) � �p
1��(1�p) and converges to a positive number

otherwise.

Proof of Proposition 9. The result is immediate if N increases from 1 to 2, so we restrict

attention to N � 3. By Corollary 2, it su¢ ces to show that E [#D (t;N)] is non-decreasing in N

for all t and strictly increasing in N for all t � 2. E [#D (0; N)] = 1 and E [#D (1; N)] = 2, for

all N , so it su¢ ces to show that E [#D (t;N)] is strictly increasing for all t � 2. Let D (l; t; k;N)

be the probability that there are at least l defectors t periods in the future when there are k

defectors today out of N total players. We claim that D (�; t; k;N) is increasing in N in the

�rst-order stochastic dominance sense, for all t � 2 and k � 1, which su¢ ces for the result.

First, D (l; t; k;N) is increasing in k for all t and N , as the number of deviators in period t is

non-decreasing in k for all realizations of the monitoring technology !, and is strictly increasing

in k with positive probability. Second, D (�; 1; k;N) is increasing in the �rst-order stochastic

dominance sense in N if k � 2, as increasing N weakly increases the number of deviators in

period 1 for all !, when ! is interpreted as �rst randomly assigning matches among players in

the larger set and then randomly rematching those players whose partners are not in the smaller

population. Now �x N 0 > N and use induction on t: If D (�; t� 1; k;N 0) �rst-order stochastically

dominates D (�; t� 1; k;N), then there exists a measure-preserving bijection between realizations

! and !0 such that #D (t� 1; k;N 0; !0) > #D (t� 1; k;N; !) for all !. Then, since N 0 > N ,

D (�; 1;#D (t� 1; k;N 0; !0) ; N 0) �rst-order stochastically dominatesD (�; 1;#D (t� 1; k;N; !) ; N),

which means that the distribution D (�; t; k;N 0j!0), which is conditional on the realization !0 of

the monitoring technology up to time t � 1, �rst-order stochastically dominates the distribution

D (�; t; k;N j!), which is conditional on the realization ! of the monitoring technology up to time t�

1, for any !. This implies that the unconditional distribution D (�; t; k;N 0) �rst-order stochastically

dominates D (�; t; k;N), completing the proof.
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Proof of Proposition 10. Suppose that � < 1=2. Note that E [#D (t;N)] � 2t for all t;N .

Therefore,

(1� �)
1X
t=0

�tE [#D (t;N)] � (1� �)
1X
t=0

�t2t

=
1� �
1� 2� ,

so c (x� (N)) � 1��
1�2�x

� (N). Since limx!1 c0 (x) =1, this implies that c (x� (N)) is bounded (and

therefore converges, since it is increasing).

Suppose that � � 1=2. For every T , the probability that any two defectors match with each

other within the �rst T periods after an initial deviation converges to 0 as N !1. Therefore, for

any T > 0 and " > 0, there exists �N > 0 such that, for all N � �N ,

(1� �)
1X
t=0

�tE [#D (t;N)] � (1� �) (1� ")
TX
t=0

�t2t

� (1� �) (1� ")T .

So, for any T , there exists �N > 0 such that, for all N � �N , c (x� (N)) � (1� �)Tx� (N). Therefore,

limN!1 c (x� (N)) =1.

Proof of Proposition 11. By Theorem 3, to show that x� (N 0) < x� (N) it su¢ ces to show that

1X
t=0

�t
E [#D (t;N 0)]

N 0 <
1X
t=0

�t
E [#D (t;N)]

N
,

or
1X
t=0

�t
�
NE

�
#D

�
t;N 0���N 0E [#D (t;N)]

�
< 0.

For any t and any " > 0, there exists �N 00 such that E [#D (t;N 0)]�E [#D (t;N)] < " for anyN 0; N �
�N 00, as the probability that any two defectors match with each other within the �rst t periods when

there are either N 0 or N players converges to 0 as N ! 1. Furthermore, E [#D (t;N 0)] �

E [#D (t;N)] � 2t, since #D (t;N 0; !) � 2t for all ! and #D (t;N) � 0. Therefore, for any "0 > 0,

there exists �N 0 such that
P1
t=0 �

tE [#D (t;N 0)�#D (t;N)] < "0 for any N 0; N � �N 0, as each of the

�rst T terms in the sum converges to 0 as �N 0 !1, for any T , and the sum of the remaining terms

is less than
P1
t=T �

t2t = (2�)T

1�2� , which converges to 0 as T !1, under the assumption that � < 1
2 .

Let "0 = 
, let �N 0 (
) be the corresponding �N 0, and let �N � (1 + 
) �N 0 (
), which guarantees that
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N � �N 0 (
) if (1 + 
)N � �N . Then,

1X
t=0

�t
�
NE

�
#D

�
t;N 0���N 0E [#D (t;N)]

�
= N

1X
t=0

�t
�
E
�
#D

�
t;N 0��� E [#D (t;N)]�

�
�
N 0 �N

� 1X
t=0

�tE [#D (t;N)]

� N
 �
�
N 0 �N

� 1X
t=0

�tE [#D (t;N)]

� N
 �
�
N 0 �N

�
< 0,

where the �rst inequality follows because N 0; N � �N 0 (
), the second inequality follows becauseP1
t=0 �

tE [#D (t;N)] � 1, and the third inequality follows because N 0 > (1 + 
)N , completing the

proof.

Proof of Proposition 12. Note that E [#D (t;N)] � 2t for all t;N . Therefore,

(1� �)
1X
t=0

�t
E [#D (t;N)]

N
� 1

N
(1� �)

1X
t=0

�t2t

=
1

N

�
1� �
1� 2�

�
.

So c (x� (N)) � 1
N

�
1��
1�2�

�
x� (N). Since x� (N) is bounded from above, by Proposition 11, this

implies that c (x� (N))! 0 as N !1, which implies that x� (N)! 0 as N !1.

Proof of Proposition 14. Note that E [#D (t;N)] � 1 + 2kt for all t;N . Therefore,

(1� �)
1X
t=0

�tE [#D (t;N)] � 1 + (1� �)
1X
t=0

�t2kt

= 1 +
�

1� �2k.

So c (x� (N)) �
�
1 + �

1��2k
�
x� (N). Since limx!1 c0 (x) =1, this implies that x� (N) is bounded.

Proof of Proposition 16. Note that E [#D (t;N)] � 1 + 2kt for all t;N . Therefore, as in the

proof of Proposition 14,

(1� �)
1X
t=0

�t
E [#D (t;N)]

N
� 1

N

�
1 +

�

1� �2k
�
.
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So c (x� (N)) � 1
N

�
1 + �

1��2k
�
x� (N). Since x� (N) is decreasing, by Proposition 15, this implies

that c (x� (N))! 0 as N !1, which implies that x� (N)! 0 as N !1.

Proof of Theorem 4. We �rst introduce some new notation: let

gtk (k
0) � Pr (#D (t) = k0j#D (0) = k), let Gtk (k

0) be the corresponding distribution function, and

let Egtk [k
0] �

PN
k0=0 k

0gtk (k
0). That is, gtk (k

0) is the probability that there will be k0 defectors in t

periods when there are k defectors today, and Gtk (k
0) and Egtk [k

0] are the corresponding cumulative

distribution function and expected number of defectors.

We �rst claim that ~Gtk (k
0) strictly second-order stochastically dominates Gtk (k

0) for all t � 1

and k 2 f1; : : : ; N � 1g, which is equivalent to
Pk0

s=0
~Gtk (s) <

Pk0

s=0G
t
k (s) for all k

0 � k. We

proceed by induction on t. The t = 1 case is simply the assumption that ~Gk strictly second-order

stochastically dominates Gk. Assume that
Pk0

s=0
~G�k (s) <

Pk0

s=0G
�
k (s) for all k

0 � k and all

� � t� 1. Then

k0X
s=0

~Gtk (s) =
k0X
s=0

sX
r=0

~gt�1k (r) ~Gr (s)

=
k0X
r=0

~gt�1k (r)
k0X
s=r

~Gr (s)

=
k0X
r=0

~gt�1k (r)
k0X
s=0

~Gr (s)

�
k0X
r=0

~gt�1k (r)
k0X
s=0

Gr (s)

<
k0X
r=0

gt�1k (r)
k0X
s=0

Gr (s)

=
k0X
s=0

Gtk (s) ,

where the �rst line follows because ~Gtk (s) =
Ps
r=0 ~g

t�1
k (r) ~Gr (s), the second line reverses the

order of sums, the third line follows because ~Gr (s) = 0 if s < r, the fourth line follows because

~Gr (s) weakly second-order stochastically dominates Gr (s) for all r, the �fth line follows because

~Gt�1k (r) strictly second-order stochastically dominates Gt�1k (r) (by the inductive hypothesis) andPk0

s=0Gr (s) is non-increasing and strictly convex (because Gr (s) is non-increasing and weakly

convex for all r, and strictly convex for r � s, so the sum of such functions is non-increasing and

strictly convex for r � k0), and the sixth line follows from undoing the rearrangement of the �rst

two lines for Gtk (s) rather than ~G
t
k (s). This completes the proof of the claim.
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By Theorem 3, showing that
P1
t=0 �

tE~gt1 [k
0] >

P1
t=0 �

tEgt1 [k
0] su¢ ces to prove the theorem.

Trivially, E~g01 [k
0] = Eg01 [k

0] = 1, and E~g11 [k
0] � Eg11 [k

0] because ~Gk second-order stochastically

dominates Gk. We claim that E~gt1 [k
0] > Egt1 [k

0] for all t � 2. This follows because

E~gtk
�
k0
�
=

k0X
s=0

~gt�11 (s)E~g1s
�
k0
�

�
k0X
s=0

~gt�11 (s)Eg1s
�
k0
�

>
k0X
s=0

gt�11 (s)Eg1s
�
k0
�

= Egtk
�
k0
�
,

where the �rst line follows by the law of iterated expectation, the second line follows because

~Gt�1s (k0) second-order stochastically dominates Gt�1s (k0) if t � 2, by Lemma 2, the third line

follows because Eg1s [k
0] is non-decreasing and strictly concave in s (since Gk (k0) is non-increasing

and strictly convex in k, for all k � k0) and ~Gt�11 (s) strictly second-order stochastically dominates

Gt�11 (s), and the fourth line follows from undoing the rearrangement of the �rst line. Summing

over t completes the proof of the theorem.

Proof of Lemma 2. We �rst claim that if player i is s-more central than player j, then player i

is s� 1-more central than player j. We proceed by induction on s. If i is 2-more central than j,

then for all t = f0; 1; : : :g there exists a surjection  : fk 2 N : d (i; k) � tg ! fk 2 N : d (j; k) � tg,

which implies that # fk 2 N : d (i; k) � tg � # fk 2 N : d (j; k) � tg, so i is 1-more central than j.

Suppose now that, if ~{ is s� 1-more central than ~j, then ~{ is s� 2-more central than ~j, for all ~{ and
~j, and suppose that i is s-more central than j. Then for all t = f0; 1; : : :g there exists a surjection

 : fk 2 N : d (i; k) � tg ! fk 2 N : d (j; k) � tg such that, for all k with d (j; k) � t, there exists

a k0 2  �1 (k) such that k0 is s� 1-more central than k. By the inductive hypothesis, this implies

that k0 is s � 2-more central than k, which, by the de�nition of s � 1-more central, implies that i

is s� 1-more central than j. This establishes the claim.

The claim shows that, for any k, the set of players k0 such that d (i; k0) � t and k0 is s-more

central than k is (weakly) shrinking in s. Since fk0 2 N : d (i; k0) � tg and fk 2 N : d (j; k) � tg

are �nite, this implies that there exists �s such that, for all k with d (j; k) � t, the set of players k0

such that d (i; k0) � t and k0 is s-more central than k is the same for all s � �s. By the above claim,

if k0 is �s more-central than k then she is also �s�m-more central than k for all m, so if she is also

s-more central than k for all s > �s then she is more central than k.
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If player i is more central than player j, there exists a surjection  : fk 2 N : d (i; k) � tg !

fk 2 N : d (j; k) � tg such that, for all k with d (j; k) � t, there exists a k0 2  �1 (k) such that k0

is �s-more central than k, and the preceding paragraph shows that such a player k0 is more central

than k.
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