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Abstract

It is well known among fund-raisers that many people contribute to charities or organi-
zations only when asked and that large donations are more likely to occur as a fund-raiser
increases the time spent soliciting and/or researching a potential donor. As fund-raisers can
only spend time with or research donors that they are aware of, the relationship (or links)
between fund-raisers and donors is quite important. We model a fund-raising game where
fund-raisers can only solicit donors whom they are tied to and analyze how this network
in�uences donation requests. We show that if this network is incomplete and if donors
experience extreme donor fatigue, then fund-raisers will spend more time soliciting donors
that other fund-raisers are also tied to and less time soliciting donors that they are the only
fund-raiser tied to. If instead donors experience mild donor fatigue, then fund-raisers prefer
donors that they are the only fund-raiser tied to over donors that are shared with other
fund-raisers. If donors are potential givers with no donor fatigue, then multiple equilibria
may exist. Stochastic stability is used to re�ne the number of equilibria in this case and
conditions are given under which the unique stochastically stable equilibrium is e¢ cient.
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1 Introduction

In 2005, seventy percent of all U.S. households gave to charity with donations totalling over

$200 billion; see Andreoni (2008). This high charitable contribution rate is due in part to

the "power of the ask" as most people contribute to charities or organizations only when

asked; see Yörük (2009), Andreoni (2006), Andreoni and Payne (2003), and Keegan (1994).

Large donations are more likely to occur as a fund-raiser increases the time spent with the

potential donor and/or increases the time spent researching the potential donor.1 However,

a fund-raiser can only research or solicit a donor that he is aware of or that he has some sort

of tie to; for instance a fund-raiser may research or solicit a donor who has responded in the

past to a mail out campaign. Thus, the relationship or ties between fund-raisers and donors

is quite important. However, the network of ties between fund-raisers and donors and

this network�s in�uence on donations has not been explored in the fund-raising literature.

We analyze such a network and examine how this network in�uences "the ask" or donation

requests.

In particular, we show that if the fund-raiser donor network is incomplete, then

whether or not a fund-raiser shares a donor tie with other fund-raisers becomes important

and will in�uence donation requests. For instance, if donors experience extreme "donor

fatigue", fund-raisers prefer shared donor ties while if donors experience mild "donor fa-

tigue" then fund-raisers prefer un-shared donor ties. Additionally, if donors are identi�ed

as potential givers with no "donor fatigue", then multiple equilibria may exist. We use

stochastic stability to re�ne the number of equilibria and give conditions under which the

unique stochastically stable state is e¢ cient.

The basic model and results are as follows. Fund-raisers are tied to donors in a
1For instance, Della Vigna, List, and Malmendier (2009) compare donation rates from a door to door

fund-raising drive to donations received via the mail or the Internet. They �nd that the mail and Internet
donation rate is around 0.0001 percent while the face to face donation rate is over 6 percent. Thus, fund-
raisers can greatly increase donations by using the more time consuming face to face solicitation technique.
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network and fund-raisers may only ask donors that they are tied to for donations. If multiple

fund-raisers are tied to the same donor, then they compete with each other for donations in

an average donation sharing game. In such a game, a donor�s total donation increases as

the total time all fund-raisers spend with the donor increases and donations are split among

fund-raisers in proportion to the time each fund-raiser spends soliciting or researching the

donor. If there is a monopoly fund-raiser who is tied to all donors, then this fund-raiser

splits his solicitation e¤orts evenly among all donors if donors experience "donor fatigue" or

if donations increase at a decreasing rate with solicitation time and thus donors become less

and less responsive to solicitation appeals. The fund-raiser picks a single donor and spends

all his time soliciting this donor if donors are thought of as potential givers with no donor

fatigue whose donations increase at an increasing rate with solicitation time. These results

are echoed if multiple fund-raisers compete on the complete network where every fund-raiser

is tied to every donor. Here fund-raisers split their solicitation e¤orts evenly among donors

if donor fatigue is present of if the returns to solicitation time are increasing at a decreasing

rate. While all fund-raisers spend all their time soliciting the same donor if the returns to

solicitation time are increasing at an increasing rate.

The results change if the fund-raiser donor network is incomplete or if not all donors

are tied to all fund-raisers. For instance, alumni donors are tied to colleges and/or uni-

versities that they attended and not to all institutions, religious donors are tied to religious

organizations of which they are members, and charities in general have lists of donors who

have responded to past mail out campaigns where again not all donors will respond to all

campaigns.

First, we assume that donors experience donor fatigue or that donations are increasing

at a decreasing rate with time spent soliciting donations. Here, fund-raisers will no longer

split their time evenly among donors. In an incomplete network, some fund-raisers may have

access to donors that others do not while other donors may be tied to multiple fund-raisers.

If donors experience extreme donor fatigue or if the donation-solicitation function is fairly
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curved, then as a fund-raiser spends extra time with a donor although the total donation

does not increase much the fund-raiser�s share of the donation increases quite a bit. Thus,

the fund-raiser spends more time soliciting donors that other fund-raisers are also tied to and

less time soliciting donors that he is the only fund-raiser tied to. If donors experience mild

donor fatigue of it the donation-solicitation function is not as curved, then the fund-raiser

prefers un-shared donor ties and the fund-raiser will spend more time soliciting donors that

other fund-raisers are not tied to and less time soliciting donors that other fund-raisers are

also tied to.

Next, we consider donors who experience no donor fatigue and we allow donations

to increase in solicitation time at an increasing rate. Here all fund-raisers would prefer to

solicit the same donor. If the network is incomplete, then this may not be possible. Even

if there exists a donor who all fund-raisers are tied to, not all fund-raisers will have access

to every other donor and multiple equilibria will exist. At most equilibria, multiple donors

will be solicited since once a fund-raiser solicits a potential donor, the incompleteness of the

network may not allow other fund-raisers also to solicit this same donor; there can exist a

large number of these ine¢ cient equilibria. As the number of equilibria may be quite large,

stochastic stability is used in order to re�ne the number of equilibria. Trembles or mistakes

are allowed to occur where after a fund-raiser has decided how much time to spend with a

donor, there is a positive probability that a mistake occurs and that his solicitation decisions

are reallocated. If the network is such that there is a donor whom all fund-raisers are tied

to, then at the unique stochastically stable state all fund-raisers will solicit this donor which

coincides with the e¢ cient Nash equilibrium.

Our paper contributes to several literatures. First, it contributes to the literature on

the strategic analysis of fund-raising. Andreoni (2006) o¤ers an excellent literature review

on this topic. This literature answers questions such as how fund-raisers react to government

grants (see Andreoni and Payne (2003)) as well as how competition among charities can result

in too many or too few solicitations (see Mungan and Yörük (2009)). Our paper adds to
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this literature by allowing fund-raisers to behave strategically while competing for donations

on a network. Other fund-raising literatures analyze the strategic behavior of donors in

a public goods context; see Marx and Matthews (2000), Bagnoli and Lipman (1989), and

Andreoni (2006) for a literature review. Recent empirical studies show that fund-raising

behavior is crucial to donations; see Yörük (2009) and Della Vigna, List, and Malmendier

(2009).

Second, our paper contributes to the literature on economic and social networks; a

literature review is given by Jackson (2009) and Jackson and Wolinsky (1996) is a founding

paper of this literature. Speci�cally, our model adds to the literature on applications of

social and economic networks. In our model donations or money can only �ow along social

links. Previous papers have looked at the �ow of information regarding coauthors or job

prospects along links (see Jackson and Wolinsky (1996) and Calvo-Armengol and Jackson

(2004)) as well as the �ow of �nancial help along social links in developing countries (see

Bramoullé and Kranton (2007) and Fafchamps and Lund (2003)); for further examples of

network applications see Jackson (2009). Additionally, we employ stochastic stability in a

network context as does Jackson and Watts (2002a and 2002b).

Lastly, we assume donations are divided among fund-raisers in proportion to the time

spent by the fund-raiser with the donor. Thus, our paper is related to the literature on

average surplus and average cost sharing games of Moulin (2008), Moulin and Watts (1997),

and Watts (1996). The current paper di¤ers from these previous papers in that the average

surplus sharing game is played on a network and each fund-raiser may solicit multiple donors.

The paper proceeds as follows. The basic model and monopoly fund-raiser results are

presented in sections 2 and 3. In section 4, fund-raisers compete on the complete network.

While the incomplete network results are presented in section 5 and concluding remarks are

presented in section 6.
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2 Basic Model

There are N = f1; 2; :::; ng potential donors. Let M = f1; 2; :::;mg represent the set of

fund-raisers. Each i 2M has total time T = 1 to spend asking for donations. Fund-raiser

i can divide T among the set N where tij is the time i spends with donor j 2 N to solicit his

donation and
Pn

j=1 t
i
j � 1. Let ti � fti1; ti2; :::; ting, tj � ft1j ; t2j ; :::; tmj g, and t � ft1; t2; :::; tmg:

Let t�i � ft1; t2; :::; ti�1; ti+1; :::; tmg and t�ij � ft1j ; t2j ; :::ti�1j ; ti+1j ; :::; tmj g.

The pro�t i 2 M receives equals his donations net fund-raising costs, where we

assume a constant marginal cost of fund-raising equal to c. The donation i receives from

j 2 N depends on the time all fund-raisers spend with j and is represented by �ij(tj) =

y(tij; t
�i
j ) � ctij. We assume @y

@tij
> 0 and y(0; t�ij ) = 0. Additionally, we assume that if et�ij

is any permutation of t�ij then y(tij;et�ij ) = y(tij; t�ij ). Let the total pro�ts that i receives be
represented by �i(t) =

Pn
j=1 �

i
j(tj). For brevity, we will often abbreviate �ij(tj) by �

i
j and

�i(t) by �i.

We assume that c is small enough so that in all of the following results each fund-

raiser will select ti such that
Pn

j=1 t
i
j = 1. Thus, for simplicity we will ignore fund-raising

costs in what follows and will set �ij(tj) = y(t
i
j; t

�i
j ).

3 Monopoly Fund-raiser

First we consider the case where there is no competition for donors by fund-raisers, or where

m = 1. Here agent i 2 M wants to choose ti to maximize his total expected pro�ts

�i =
Pn

j=1 y(t
i
j).

Proposition 1 Let m = 1 and assume y00 > 0. Then i 2 M maximizes total expected

pro�ts by setting tij = 1 for some j 2 N and tik = 0 for all k 6= j, k 2 N .
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Proof. Agent i wants to maximize �i or to maxti1;:::;tin
Pn

j=1 y(t
i
j) such that

Pn
j=1 t

i
j � 1. It

is easy to check that given y0 > 0 and y00 > 0, the solution to the maximization problem is

a corner solution where tij = 1 for some j 2 N .

Proposition 2 Let m = 1 and assume y00 < 0. Then i 2 M maximizes total expected

pro�ts by setting tij =
1
n
for all j 2 N .

Proof. As y0 > 0, agent i will always choose to use all of his time or to set
Pn

j=1 t
i
j = 1.

Agent i wants to maximize �i or maxti1;:::;tin
Pn

j=1 y(t
i
j) subject to

Pn
j=1 t

i
j = 1. First order

conditions yield y0(tij) = y
0(1 � ti1 � ti2 � ::: � tin) for all j 2 f1; 2; :::; n � 1g. Given y0 > 0

and y00 < 0, these �rst order conditions are only met if ti1 = ti2 = :::tin or if t
i
j =

1
n
for all

j 2 N . Since y00 < 0, the corresponding bordered Hessian has leading principal minors

which alternate in sign. Thus �i is negative de�nite on
Pn

j=1 t
i
j = 1 and our solution is a

maximum.

4 Fund-raisers Competing on the Complete Network

Next we consider the case where the number of fund-raisers m > 1. In this section, we

assume that each fund-raiser has access to every donor. If we consider a fund-raiser�s access

to a donor as a link between a fund-raiser and a donor, then every fund-raiser is linked to

every donor and the fund-raiser donor network is complete. The case of an incomplete

network is considered in section 5.

4.1 Average Donation Sharing Model on the Complete Network

Fund-raisers compete against each other in an average donation sharing game for each agent

j 2 N�s donation. Fund-raisers simultaneously choose time spent with donors and if mul-

tiple fund-raisers solicit the same donor, then the donation is split among fund-raisers in
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proportion to the time spent with the donor. Formally, the donation i 2 M expects from

j 2 N equals

�ij = y(t
i
j; t

�i
j ) =

tijPm
k=1 t

k
j

f(
mX
k=1

tkj )

for some function f such that f(0) = 0 and f 0 > 0. Here f(
Pm

k=1 t
k
j ) represents the total

donations that donor j will make given the total time all fund-raisers spend soliciting j�s

donation. For simplicity, we assume this function is the same for all donors. Additionally,

note that we use the convention that if tkj = 0 for all k 2M , then �ij = 0.

4.2 Average Donation Sharing Results on the Complete Network

Proposition 3 Let m > 1, f 00 < 0, and assume fund-raisers compete in an average donation

sharing game. At the symmetric Nash equilibrium of the average donation sharing game,

tij =
1
n
for all j 2 N and i 2M .

Note that we focus on only the symmetric Nash equilibrium in this proposition and

in the �rst part of section 5 where the donation function is concave. The reason is threefold.

First, we want to compare the Nash equilibria of the game played on the complete network to

the game played on the incomplete network. Concentrating on the symmetric Nash in each

situation facilitates this comparison. Second, focusing on the symmetric Nash simpli�es

our calculations. The �rst order conditions of our maximization problem are quite complex

making it extremely di¢ cult to compute other possible equilibria. Lastly, we hypothesize

that in many cases the symmetric Nash is the unique Nash, although proving this is quite

di¢ cult and is beyond the scope of the current paper.

Proof. We �nd i 2 M�s best response to tkj =
1
n
for all k 6= i, k 2 M , and j 2 N .

Since �ij = (
tijPm
k=1 t

k
j
)f(
Pm

k=1 t
k
j ) we know that �

i =
Pn

j=1((
tijPm
k=1 t

k
j
)f(
Pm

k=1 t
k
j )). Thus i�s

7



maximization problem is

max
tii;t

i
2;;:::;t

i
n

�i such that
nX
j=1

tij = 1

with �rst order conditions

@�i

@tij
= (

P
k 6=i t

k
j

(tij +
P

k 6=i t
k
j )
2
)f(tij+

X
k 6=i

tkj )+(
tij

(tij +
P

k 6=i t
k
j )
)f 0(tij+

X
k 6=i

tkj ) = 0 for all j 2 N

and
nX
j=1

tij = 1.

If tkj =
1
n
for all k 6= i, k 2M and j 2 N , then

P
k 6=i t

k
j =

m�1
n
for all j 2 N and the solution

to the above �rst order conditions is tij =
1
n
for all j 2 N . To check the second order

conditions, let Oij(
m�1
n
) = p(

tij
(tij+

m�1
n
)
)f(tij +

m�1
n
) represent i�s opportunity set for donations

from j given tkj =
1
n
for all k 6= i, k 2 M . Thus, �i(ti; m�1

n
) =

Pn
j=1O

i
j(
m�1
n
). It is easy to

check that
@Oij
@tij

> 0 and
@2Oij
@(tij)

2 < 0 for all 0 < tij � 1. Thus, �i(ti; m�1
n
) is negative de�nite

on
Pn

j=1 t
i
j = 1. So t

i
j =

1
n
for all j 2 N is i�s best response to tkj =

1
n
for all k 6= i, k 2 M ,

and j 2 N , and our solution is a Nash equilibrium.

Proposition 4 Let m > 1, f 00 > 0, and assume fund-raisers compete in an average donation

sharing game. At all Nash equilibria there exists k 2 N such that tik = 1 for all i 2M .

Proof. Assume there exists k 2 N such that t`k = 1 for all ` 6= i , ` 2 M . We �nd i 2 M�s

best response. Here, �i =
P

j2N;j 6=k(
tij
(tij)
)f(tij)+ (

tik
(tik+(m�1))

)f(tik+(m�1)) with
Pn

j=1 t
i
j = 1.

Since f 0 > 0 and f 00 > 0, i does best by choosing tik = 1 and t
i
j = 0 for all j 2 N , j 6= k.

Next we show that all Nash equilibria are of this type. Consider i�s best response to a �xed

t�i. Here i�s best response is to set tik = 1 for some k such that k 2 argmaxj
P

`2M;` 6=i t
`
j.

Given that this is true for all i 2M , all Nash equilibria must be as described.
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5 Competition on an Incomplete Network

Let g represent a network of connections between fund-raisers and donors. If i 2 M and

j 2 N then ij 2 g if i and j are linked. Note that for all links, ij, we will use the convention

that the fund-raiser is always listed �rst.

Let B(j; g) = fi j ij 2 g; i 2 Mg; thus B(j; g) represents the set of fund-raisers that

j 2 N is directly linked with in graph g. Let j S j represent the cardinality of set S � Z.

Let Az(i; g) = fj j ij 2 g; j 2 N andj B(j; g) j= zg; thus Az(i; g) represents the set of donors

that i is linked to in g such that each donor in the set has exactly z direct links.

Let fund-raisers compete in an average donation sharing game and assume g is �xed.

Here

�i =
X

j2A1(i;g)

f(tij) +
X

j2A2(i;g)

tij

tij + t
k(j)
j

f(tij + t
k(j)
j ) + :::+

X
j2An(i;g)

tijPn
`=1 t

`
j

f(
nX
i=1

t`j)

where k(j) 2M such that kj 2 g.

5.1 Competition on an Incomplete Network with a Concave Do-
nation Function

The following example illustrates how time spent soliciting donations depends on both the

network con�guration and the curvature of f(t).

Example 1 Let M = f1; 2g and N = f1; 2; 3g. Let f(t) = t
1
2 . Let g1 = f11; 12; 21; 22g

and g2 = f11; 12; 22; 23g. Notice that in network g1 each fund-raiser is tied to the same two

donors. In network g2 each fund-raiser again has two ties, but this time only one donor is

common to both fund-raisers while each fund-raiser also has one tie to a donor that the other

has no ties to. By Proposition 3, the symmetric Nash equilibrium of the average donation

sharing game with network g1 is tij =
1
2
for all i 2 M , j 2 N . Next we consider the

symmetric Nash equilibrium of the average donation sharing game with network g2. Here
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�1 = (t11)
1
2 +

t1
2

t12+t
2
2
(t12 + t

2
2)

1
2 and �2 is similar. First order conditions for fund-raiser 1

yield 1
2
(t11)

� 1
2 = (

t2
2

(t12+t
2
2)
2 ) (t

1
2 + t

2
2)

1
2 +

1
2
t1
2

t12+t
2
2
(t12 + t

2
2)
� 1
2 and t11 + t

1
2 = 1, with fund-raiser 2

having similar �rst order conditions. At the symmetric Nash equilibrium t11 = t
2
3 = :47 and

t12 = t22 = :53. Thus, fund-raisers spend more time with the shared donor than they do

in network g1 and less time with the unshared donor. However, if we change f(t) so that

f(t) = t:7, then at the symmetric Nash of the game with g2, t11 = t
2
3 = :502 and t

1
2 = t

2
2 = :498.

Thus, fund-raisers now spend less time with the shared donor.

Next we increase the number of donors and compare three networks: one where all

fund-raisers are linked to the same set of donors, one where each fund-raiser has only one

shared tie and many unshared ties, and one where each fund-raiser has only one unshared

tie and many shared ties.

Example 2 LetM = f1; 2g and N = f1; 2; 3; :::; 2a�1g for a � 2 and a 2 Z. Let f(t) = t 12 .

Let g1 = f11; 12; :::; 1a; 21; 22; :::; 2ag, g2 = f11; 12; :::; 1a; 2a; 2(a + 1); :::; 2(2a � 1)g, and

g3 = f11; 12; :::; 1a; 22; 23; :::; 2(a+ 1)g. By Proposition 3, the symmetric Nash equilibrium

of the average donation sharing game with network g1 is tij =
1
a
for all i 2M , j 2 N . For

g2 at the symmetric Nash t1k = t2j =
1

a+:125
for k 2 f1; :::; a � 1g, j 2 fa + 1; :::; 2a � 1g

and t1a = t2a =
1:125
a+:125

. While at the symmetric Nash for g3, t11 = t2a+1 =
1

1:125a�:125 and

t1k = t
2
j =

1:125
1:125a�:125 for k; j 2 f2; :::; ag. Again, the fund-raisers spend more time with the

shared donors and less with time with the unshared donors. Notice that fund-raisers spend

more time with unshared links in g2 than in g3, but the ratio of time spent with unshared to

shared links ( t
1
1

t1a
) is the same for these two networks.

Next we consider the general case of any concave donation function, f , and compare

two symmetric networks: one were all fund-raisers are linked to the same set of donors, and

one where each fund-raiser has the same number of unshared ties and has the same set of

shared ties.
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Proposition 5 Let M = f1; 2g and N = f1; 2; :::; 2a+bg for a; b 2 Z; a � 1 and b � 1. Let

g1 = f11; 12; :::; 1(a+ b); 21; 22; :::; 2(a+ b)g and let g2 = f11; 12; :::; 1(a+ b); 2(a+ 1); 2(a+

2); :::; 2(2a+ b)g. At the symmetric Nash equilibrium of the average donation sharing game

with g1, tij =
1
a+b

for all j 2 N , i 2 M . At the symmetric Nash equilibrium of the average

donation sharing game with g2,

(i) if f 0( t
2
) < f(t)

2t
+ f 0(t)

2
for all 0 � t � 1, then tij <

1
a+b

for all i 2 M and j 2

f1; 2; :::; a; a+b+1; a+b+2; :::; 2a+bg and tij > 1
a+b

for all i 2M and j 2 fa+1; a+2; :::; a+bg,

and

(ii) if f 0( t
2
) > f(t)

2t
+ f 0(t)

2
for all 0 � t � 1, then tij >

1
a+b

for all i 2 M and j 2

f1; 2; :::; a; a+b+1; a+b+2; :::; 2a+bg and tij < 1
a+b

for all i 2M and j 2 fa+1; a+2; :::; a+bg.

Notice that our condition f 0( t
2
) < f(t)

2t
+ f 0(t)

2
for all 0 � t � 1 is met by f(t) = t� for

0 < � � :63 while the condition f 0( t
2
) > f(t)

2t
+ f 0(t)

2
for all 0 < t � 1 is met by f(t) = t� for

:64 � � < 1.

Proposition 5 says that if the donation function, f(t), is fairly curved, then fund-

raisers spend more time with shared ties and less time with unshared ties. While if the

donation function is straighter, then fund-raisers spend more time with unshared donors

and less time with shared donors. Thus, if the donation function is more curved, then the

loss from decreasing time with unshared donors is small while the gain from spending more

time with shared donors is large, because even though shared donations do not increase that

much the fund-raiser�s proportion of these donations increases quite a bit. If however the

donation function is less curved, then there is a substantial gain from increasing time spent

with unshared donors.

Proof. The statement regarding the symmetric Nash equilibrium for the game with g1

is proven true by Proposition 3. Next we �nd the symmetric Nash equilibrium for the

average donation sharing game with g2. Here �1 =
Pa

j=1 f(t
1
j) +

Pa+b
k=a+1

t1k
t1k+t

2
k
f(t1k + t

2
k)
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while �2 is similar. The �rst order conditions for the Nash equilibrium require that f 0(t1j) =

t2k
(t1k+t

2
k)
2f(t

1
k + t

2
k)+

t1k
t1k+t

2
k
f 0(t1k + t

2
k) for all j 2 f1; 2; :::; ag and k 2 fa+1; a+2; :::; a+ bg. At

the symmetric Nash equilibrium, t1 � t1j = t2` for all j 2 f1; 2; :::; ag and ` 2 fa+ b+ 1; a+

b+ 2; :::; 2a+ bg and ta+1 � t1k = t2k for all k 2 fa+ 1; a+ 2; :::; a+ bg. In addition we know

that
Pa+b

j=1 t
1
j = 1. Thus, we can rewrite the �rst order conditions as

f 0(t1) =
ta+1

(2ta+1)2
f(2ta+1) +

ta+1
2ta+1

f 0(2ta+1) where at1 + bta+b = 1. (1)

If to the contrary we let t1 = ta+1 =
1
a+b

then the �rst order conditions simplify to

f 0( 1
a+b
) = 1

2

f( 2
a+b

)
2

a+b

+ 1
2
f 0( 2

a+b
). If f 0( t

2
) < f(t)

2t
+ f 0(t)

2
for all 0 � t � 1, then our �rst order

condition will not be met. Fund-raiser 1 must increase the left hand side of equation (1) and

decrease the right hand side. Since f 0 > 0 and f 00 < 0, we know that t1 must be decreased

and thus ta+b increased. Thus, at the Nash equilibrium t1 < 1
a+b

and ta+1 > 1
a+b
. If instead

f 0( t
2
) > f(t)

2t
+ f 0(t)

2
for all 0 � t � 1, then in order to meet equation 1 we must increase t1

and so at the Nash t1 > 1
a+b

and ta+1 < 1
a+b
.

Example 3 Let M = f1; 2; 3g and N = f1; 2; 3; 4; 5; 6; 7g. Let

g1 = f11; 12; 13; 14; 21; 22; 23; 24; 31; 32; 33; 34g

and let

g2 = f11; 12; 13; 14; 22; 24; 25; 26; 33; 34; 35; 37g:

Thus, in network g2 each fund-raiser has one tie to an unshared donor, two ties to donors

shared with one other fund-raiser, and one tie to donor 4, while in network g1 all fund-raisers

are tied to the same set of four donors. By Proposition 3, for any increasing and concave

f(t) the symmetric Nash equilibrium of the average donation sharing game with network g1

is tij =
1
4
for all i 2 M , j 2 N . Next we consider the symmetric Nash equilibrium of the

game with network g2. Here �1 = f(t11) +
P

j2f2;3g
t1j

t1j+t
j
j

f(t1j + t
j
j) +

t14
t14+t

2
4+t

3
4
f(t14 + t

2
4 + t

3
4)
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and �2and �3 are similar. First order conditions for fund-raiser 1 are f 0(t11) =
tjj

(t1j+t
j
j)
2
f(t1j +

tjj) +
t1j

t1j+t
j
j

f 0(t1j + t
j
j) =

t24+t
3
4

(t14+t
2
4+t

3
4)
2f(t

1
4 + t

2
4 + t

3
4) +

t14
t14+t

2
4+t

3
4
f 0(t14 + t

2
4 + t

3
4) for all j 2 f2; 3g

and
P4

j=1 t
1
j = 1; �rst order conditions for fund-raisers 2 and 3 are similar. If f(t) = t:5,

then at the symmetric Nash equilibrium t11 = t26 = t37 = :24, tij = :27, and ti4 = :22 for

i 2 M , j 2 f2; 3; 5g. Thus, the tie to donor 4 who is tied to all fund-raisers is weighted

least and the ties to donors shared among two fund-raisers are weighted most. If f(t) = t:9,

then at the symmetric Nash equilibrium t11 = t26 = t37 = :29, tij = :25, and ti4 = :20 for

i 2M , j 2 f2; 3; 5g. Here again the tie to donor 4 who is tied to all fund-raisers is weighted

least, but the tie to the donor shared with no one is weighted most. If f(t) = t:1, then at

the symmetric Nash equilibrium t11 = t26 = t37 = :09, tij = :32, and ti4 = :27 for i 2 M ,

j 2 f2; 3; 5g. Here the tie to the donor shared with no one is weighted least and the ties to

donors shared among two fund-raisers are weighted most.

Let there be m fund-raisers and n donors. Let gsym be a symmetric network such

that each fund-raiser has a1 ties with to donors shared with no one, a2 ties to donors shared

with one other fund-raiser, a3 ties to donors shared with two other fund-raisers,..., and an

ties to donors shared with all other fund-raisers, where aj 2 Z+ for all j 2 f1; 2; :::; ng. Let

g1 be a network where each fund-raiser is tied to each j 2 f1; 2; :::;
Pn

i=1 aig and j 2 N .

Proposition 6 If f 0(t) > 1
2
f(2t)
2t
+ 1

2
f 0(2t), then at the symmetric Nash equilibrium of the

average donation sharing game with any gsym, t�1 > t�2 > ::: > t�n where t�j is the time

i 2 M spends with each of his aj ties, j 2 f1; 2; :::; ng and ij 2 gsym. At the symmetric

Nash equilibrium of the game with g1, tij =
1Pn

j=1 aj
for all i 2M , j 2 N .

Proof. Since f 0 > 0 and f 00 < 0 and by assumption f 0(t) > 1
2
f(2t)
2t
+ 1

2
f 0(2t), it follows that

k�1
k

f(kt)
kt
+ 1

k
f 0(kt)> k

k+1
f((k+1)t)
(k+1)t

+ 1
k+1
f 0((k + 1)t) for all k 2 f1; 2; :::; n � 1g. Consider any

�xed network gsym. Let Aj � N represent the set of donors each having j ties in gsym,

13



j 2 f1; 2; :::; ng. Let �j 2 Aj represent an element of this set. Pro�ts for fund-raiser 1 are

represented as

�1 =
X

�12A1;1�12gsym
f(t1�1) +

X
�22A2;1�22gsym;`�22gsym

t1�2
t1�2 + t

`
�2

f(t1�2 + t
`
�2
) + ::: (2)

+
X

�n2An;1�n2gsym

t1�nPn
i=1 t

i
�n

f(

nX
i=1

ti�n)

with ` 2M and ` 6= 1. First order conditions require

f 0(t1�1) =
t`�2

(t1�2 + t
`
�2
)2
f(t1�2 + t

`
�2
) +

t1�2
t1�2 + t

`
�2

f 0(t1�2 + t
`
�2
) = ::: = (3)

=
t2�n + t

3
�n + :::+ t

n
�n

(t1�n + t
2
�n + :::+ t

n
�n)

2
f(t1�n + t

2
�n + :::+ t

n
�n) +

t1�n
t1�n + t

2
�n + :::+ t

n
�n

f 0(t1�n + t
2
�n + :::+ t

n
�n)

and
Pn

j=1 ajt
1
�j
= 1, where �i 2 Ai, 1�i 2 gsym, `�i 2 gsym for i 2 f1; 2; :::; ng, ` 6= 1,

` 2M . The �rst order conditions for i 6= 1, i 2M are similar.

At the symmetric Nash equilibrium t�j � ti�j = t
`
�j
for all i 6= `, i; ` 2 M; �j 2 Aj,

i�j 2 gsym, `�j 2 gsym and j 2 f1; 2; :::; ng. We can rewrite the �rst order conditions as

f 0(t�1) =
1

4t�2
f(2t�2)+

1

2
f 0(2t�2) =

2

9t�3
f(3�3)+

1

3
f 0(3�3) = ::: =

(n� 1)
n2t�n

f(nt�n)+
1

n
f 0(nt�n)

where
Pn

j=1 ajt�j = 1.

Assume to the contrary that t�k =
1Pn

j=1 aj
� t for all k 2 f1; 2; :::; ng. Then, by

assumption

f 0(t) >
1

2

f(2t)

2t
+
1

2
f 0(2t) >

2

3

f(3t)

3t
+
1

3
f 0(3t) > ::: >

(n� 1)
n

f(nt)

nt
+
1

n
f 0(nt)
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and the �rst order conditions are not met. In order to meet the �rst order conditions we must

decrease f 0(t�1) in comparison to
1

4t�2
f(2t�2)+

1
2
f 0(2t�2) and decrease

1
4t�2

f(2t�2)+
1
2
f 0(2t�2)

in comparison to 2
9t�3

f(3�3) +
1
3
f 0(3�3), etc. Since f 0 > 0, f 00 < 0, we know that t�i

must be increased in comparison to t�i+1 for all i 2 f1; 2; :::; n � 1g. Thus, in equilibrium

t�1 > t�2 > ::: > t�n.

Proposition 7 If f 0(t) < 1
2
f(2t)
2t
+ 1

2
f 0(2t), then at the symmetric Nash equilibrium of the

average donation sharing game with any gsym, t�2 > t�1.

Proof. Pro�ts for fund-raiser 1 are as given by equation 2 and �rst order conditions are as

given by equation 3. Thus, in equilibrium we must have f 0(t1�1) =
tj�2

(t1�2+t
j
�2
)2
f(t1�2 + t

j
�2
) +

t1�2
t1�2+t

j
�2

f 0(t1�2+ t
j
�2
) for �1 2 A1, �2 2 A2, 1�1 2 gsym, j�2 2 gsym, j 6= 1 and j 2M . Assume

to the contrary that t�1 = t�2 = t. Then, by assumption f
0(t) < 1

2
f(2t)

2t
+ 1

2
f 0(2t). In order

to meet our �rst order conditions we must increase the left hand side of this inequality and

decrease the right hand side. Since f 0 > 0 and f 00 < 0 this requires that we decrease t�1 and

increase t�2 and so in equilibrium t�1 < t�2.

Remark 1 We have assumed that the fund-raiser�s time constraint is binding and that the

fund-raiser�s cost constraint is not. If instead the cost constraint is binding but not the

time constraint, then all results regarding the f 00 < 0 case would change quantitatively but

not qualitatively. If the cost constraint is binding, then all �rst order conditions would

remain the same but would now also all equal c. Thus, every tij would decrease from the

case where only the time constraint is binding, but the relationships between every tik and

tij, j; k 2 N , would remain the same as those given in the results above. Thus, our results

would not qualitatively change. The same logic applies to the complete network case and to

the monopoly fund-raiser case.

In the next section we assume f 00 > 0. Here it does not make sense to consider the

case where the cost constraint is binding. If f 00 > 0, and if cost is small enough so that it
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is worthwhile for the fund-raiser to solicit donors, then the fund-raiser always does best by

choosing
Pn

j=1 t
i
j = 1. Again the same logic applies to the complete network case and to the

monopoly fund-raiser case.

5.2 Competition on an Incomplete Network with a Convex Dona-
tion Function

When the donation function is convex, all of the time spent with a donor signi�cantly

increases donations. Thus agents want to spend time with donors that others are soliciting.

However, the network may not allow all fund-raisers to solicit a popular donor; this can

create multiple equilibria where several donors are solicited at the same time as can be seen

in the following example.

Example 4 Let M = f1; 2; 3g and N = f1; 2; 3; 4; 5; 6; 7g. Let f 0 > 0 and f 00 > 0. Let

g = f11; 12; 13; 14; 22; 24; 25; 26; 33; 34; 35; 37g. Thus, each fund-raiser has one tie to a donor

untied to other fund-raisers, two ties to donors shared with one other fund-raiser, and one tie

to a donor (donor 4) shared with all fund-raisers. As f 0 > 0 and f 00 > 0, each fund-raiser

wants to solicit only one donor and prefers to solicit a donor who is already being solicited

by others. In this example, there are 14 pure Nash equilibrium: 1) t11 = t26 = t37 = 1, all

other tij = 0; 2) t
1
4 = t

2
4 = t

3
4 = 1, all other t

i
j = 0; 3) t

1
2 = t

2
2 = t

3
3 = 1, all other t

i
j = 0; 4)

t12 = t
2
2 = t

3
4 = 1, all other t

i
j = 0; 5) t

1
2 = t

2
2 = t

3
7 = 1, all other t

i
j = 0. There are 9 other

Nash equilibria similar to those described in 3), 4), and 5) above where two fund-raisers put

all their weight on a shared tie and the third fund-raiser is left to put all his weight on a donor

shared with no other fund-raisers. There are also several mixed Nash. For instance there is

a mixed Nash where t12 = t
2
2 = t

3
7 = 1 each with probability

1
2
and t13 = t

2
6 = t

3
5 = 1 each with

probability 1
2
and all other tij = 0. There are also a number of mixed Nash similar to the

following one where t12 = t
2
2 = 1 and fund-raiser 3 plays t

3
3 = 1; t

3
4 = 1; t

3
7 = 1 all with positive

probability. Note that pure Nash 2) above where all fund-raisers solicit donor 4 generates
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the highest payo¤ for the fund-raisers. However, at all of the other Nash equilibria, donor

4 is either unsolicited or solicited by only one fund-raiser.

As the above example shows the number of Nash equilibria can be quite large for the

case where f 00 > 0. Next, we try to re�ne the number of Nash equilibria using stochastic

stability.

Dynamics. Let time be discrete and represented as f0; 1; 2; :::; � ; :::g. Let t(� � 1)

represent the time t(� � 1) = ft1(� � 1); t2(� � 1); :::; tm(� � 1)g the fund-raisers spend

soliciting donations in period (� � 1). At each period � , one fund-raiser i is chosen at

random to update his strategy, ti. Fund-raiser i will choose a myopic best response to

t�i(� � 1). After this choice is made, there is a small probability 1 > " > 0 that another

strategy is chosen instead. Thus, with probability " there is a mistake and the strategy ti(�)

is chosen at random with each possible ti receiving positive probability.

Stochastic Stability. This process determines a �nite state, irreducible, aperiodic

Markov chain and has a unique invariant probability distribution �" over strategy con�gu-

rations. A strategy t is stochastically stable if it is in the support of � = lim"!0 �
".2

Let g1 represent a network such that there is exactly one donor, say donor 1, that all

fund-raisers are tied to; all other donors have strictly less than m ties.

Proposition 8 Assume f 0 > 0 and f 00 > 0. At the unique stochastically stable equilibrium

of the average donation sharing game with any g1, ti1 = 1 for all i 2M , m � 2.

Proof. First we show that setting ti1 = 1 for all i 2 M is a Nash equilibrium. Given all

k 6= i, k 2 M set tk1 = 1, we show that i�s best response is to set t
i
1 = 1. Assume to the

contrary that ti1 = a such that 0 � a < 1 and that tij = 1 � a for some j 2 N . Then

�i = f(1� a)+ a
n�1+af(n� 1+ a). Since f

0 > 0 and f 00 > 0, f(1� a)+ a
n�1+af(n� 1+ a) <

2See Freidlin and Wentzell (1984) or Young (1998) for further discussion of stochastic stability.
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1
n
f(n), which is i�s payo¤ if ti1 = 1. Similarly, for any other t

i 6= (1; 0; :::; 0), i�s payo¤will be

smaller than 1
n
f(n). Thus, i sets ti1 = 1 and our proposed strategy is a Nash equilibrium.

(Note that at all Nash equilibrium each fund-raiser i sets tij = 1 for some j 2 N since i�s

payo¤, t
t+a
f(t+a), from soliciting a donor who others are soliciting with total time a � 0, is

increasing in both t and a; thus i would like to spend all his time soliciting the donor with

the largest such a.)

Let t� represent the equilibrium where ti1 = 1 for all i 2 M . If t� is the unique

Nash equilibrium of the game, then it is trivially stochastically stable. Next, we assume

that there is at least one other Nash equilibrium say et = (et1;et2; :::;etm). Let m � 3, we will

consider the case of m = 2 below. To leave state t� and move to state et takes at least dm
2
e

trembles (where dae, a 2 R, represents the integer z 2 Z closest to a such that z � a). To

see this note that if dm
2
� 1e trembles occur, then the largest payo¤ a trembling agent could

have is if all trembling fund-raisers solicit the same new donor resulting in a payo¤ for each

trembling agent of 1
dm
2
�1ef( d

m
2
�1e); this is because 1

t
f(t) is strictly increasing in t whenever

f 0 > 0 and f 00 > 0. If the trembling agent goes back to his t� strategy his payo¤ would

be 1
m+1�dm

2
�1ef(m + 1� dm

2
� 1e) which is larger than 1

dm
2
�1ef( d

m
2
� 1e). Thus, dm

2
� 1e

trembles is not enough to leave state t�.

However, to go from state et to state t� takes at most dm
2
� 1e trembles for m � 3. To

see this notice that at the et equilibrium not all fund-raisers are soliciting the same donor,

since in g1 there is only one donor who is linked to all fund-raisers and this donor is solicited

by all fund-raisers at the t� equilibrium. Thus, at the et equilibrium there exists a donor,

say 2, such that the number of fund-raisers soliciting 2 is less than or equal to m
2
. First,

assume that the number of fund-raisers soliciting 2 is less than m
2
. Let dm

2
� 1e fund-

raisers not soliciting 2 tremble to the t� equilibrium. Then any fund-raiser soliciting 2 has

incentive to move to the t� equilibrium as his payo¤ will increase from at most 1
dm
2
�1ef(

dm
2
�1e) to 1

dm
2
�1e+1f( d

m
2
�1e+1). Similarly, all remaining fund-raisers will move to the t�

equilibrium. Second, let the number of fund-raisers soliciting 2 equal m
2
. Again let dm

2
� 1e
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other fund-raisers tremble to the t� equilibrium. Next, the remaining fund-raiser who is also

not soliciting donor 2 will move to the t� equilibrium as his payo¤ will increase from f(1)

to 1
dm
2
�1e+1f( d

m
2
� 1e + 1). Similarly, all remaining fund-raisers will move to t�. Thus,

dm
2
� 1e trembles is enough to move from state et to state t�.
Lastly, consider the case where m = 2 and where an alternative Nash, et, exists. To

move from t� to et takes two trembles, since if either fund-raiser is soliciting donor 1, then
the other fund-raiser has incentive to also solicit donor 1. However, to leave et and move
to t� takes just one tremble. Here if one fund-raiser trembles to his t� strategy, then the

other fund-raiser will also switch to solicit donor 1. By Young (1993) only states with the

minimum resistance are stochastically stable; so t� is stochastically stable while et is not.
Notice here that the unique stochastically stable state coincides with the e¢ cient

Nash equilibrium, since all players are better o¤ soliciting the same donor when the donation

function is increasing and convex.

Remark 2 If the network has multiple donors each of whom are linked to all fund-raisers,

then the above proof can be modi�ed to show that there will be multiple stochastically stable

states. At each stochastically stable state, each fund-raiser spends all his time soliciting the

same donor.

6 Conclusion

We showed that donation requests are in�uenced by the fund-raiser donor network and in

particular by whether or not a fund-raiser shares a donor tie with other fund-raisers. For

instance, in an incomplete network with extreme donor fatigue fund-raisers spend more

time soliciting donors shared with other fund-raisers as compared with unshared donor ties.

If donors experience instead mild donor fatigue, then fund-raisers prefer to solicit donors

unshared with other fund-raisers. Additionally, we examined the case of no donor fatigue
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and showed that multiple equilibria may exist; stochastic stability was used to re�ne the

number of equilibria.

The model may be extended in several ways. For instance, we could allow heteroge-

neous donors to exist on the same network where some donors are more willing to donate

money than others. It would be interesting to see how the placement of such a donor onto

the network would in�uence donation requests. As the current model is already quite com-

plicated, solving this issue is beyond the scope of the current paper and is left for future

research.

Additionally, we have assumed for simplicity that the network is exogenous, however

it would be interesting to allow the network to be endogenous. For instance, perhaps every

period fund-raisers could learn of new donors and have a chance to add a link to such a new

donor or not. As fund-raisers do not have time to solicit all donors, it would be interesting

to explore both the circumstances under which a fund-raiser would add and would refuse a

new donor link.
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