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Abstract

We are interested in stochastic games with finite sets of actions where
the transitions commute. The Big Match and more generally absorbing
games can be formulated in this model. When there is only one player,
we show that the existence of a uniform value in pure strategies implies
the existence of 0-optimal strategies. For stochastic games we prove the
existence of the uniform value when the set of states is finite and players
observe past actions but not the state. They reduce to a specific class of
zero-sum stochastic games on R

n which we solve by using the theorem of
Mertens Neyman [MN81]. The same proof extends to the non zero-sum
case if we use the result of Vieille [Vie00a][Vie00b].

MSC 2000 subject classification: 91A15, 91A05 .

Key-words: Stochastic Game, Commutation, Uniform Value, Markov Deci-
sion Process.

1 Introduction

We are interested in two-players zero-sum stochastic games where the transitions
commute. In this model, given a sequence of decisions, the order of the decisions
is irrelevant to know the reached state. The exploitation of a mineral resource
such as oil or gold is an example of an economic problem fitting this assumption.
It is enough to remember how much of the resource has been exploited in the past
to define the remaining quantity. Another example is a competition between
firms which have to sell some stocks. The state variable is the vector of stocks
of all firms and at each stage the firms decide how much they want to sell. The
rewards depend on the quantities sold on the market and the state depends on
the different past decisions and not on their order.

In the standard cases of Markov decision processes (MDP) where the set of
states and the sets of actions are finite, Blackwell [Bla62] proved the existence
of the uniform value. This result was extended to MDP with partial observation
by Rosenberg, Solan and Vieille [RSV02] and Renault [Ren09] gives sufficient
conditions to the existence of a uniform value if the set of states is precompact.
In Theorem 1, we state that in commutative MDP when the uniform value
in pure strategies exists there exists a strategy which guarantees exactly the
value. Moreover under topological assumptions similar to Renault [Ren09], it
is possible to build such a strategy without randomization. This result applies
especially to MDP in the dark where the transitions commute.
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For stochastic game the existence of the uniform value in the finite case was
proven by Mertens and Neyman [MN81] when the players observe everything.
If the players do not observe past actions the uniform value may fail to exist.
When the set of states is precompact Renault [Ren07] gives an existence result
for a two players game on a compact subset of a normed vector space where
one player controls the transition. The case of two-players stochastic games
with a compact set of states is still open. In this paper we are interested in
a model where the set of states is a compact subset of Rn and the transitions
are applications which are non expansive for the norm ‖.‖1. This is satisfied
for example if the set of states is a simplex of probabilities over a finite set and
the transitions are defined via a Markov chain. Theorem 2 states that under
the assumption of commutation there exists a uniform value and we deduce
the existence of the uniform value for commutative stochastic games with finite
sets of states and actions where the players observe past actions but not the
state. This signalling structure is based on the study of repeated games with
symmetric incomplete information. In these models Kohlberg and Zamir[Koh74]
and Forges [For82] proved the existence of a uniform value. Neymann and Sorin
extended their results to the non zero-sum case [NS98] and Geitner [Gei02] to
a model with stochastic games.

In section 2 we introduce classic definitions on stochastic games and the
formal definition of commutation. In section 3 we state the results. The section
4 is dedicated to the proof of Theorem 1 on one-player game and the section
5 focus on the proof of Theorem 2 on stochastic games. In the last section we
give some extensions.

2 The Model

2.1 Definition

If Z is a non empty set, we denote by ∆f (Z) the set of probabilities on Z with
finite support. When Z is finite, we denote it by ∆(Z).

We will consider a model of zero-sum stochastic game Γ(p1) = (Z, I, J, q, r, p1)
given by: a non empty set of states Z, two finite non empty sets of actions
I and J , a transition function q : Z × I × J → ∆f (Z), a reward function
r : Z × I × J → [0, 1] and an initial probability distribution p1 ∈ ∆f (Z). We
say that the transition function q is deterministic when the image is a Dirac
measure.

The interpretation is the following. An initial state z1 is chosen according
to p1 and announced to the players. At each stage n > 1, player 1 and player 2
choose simultaneously an action, in ∈ I and jn ∈ J . player 1 receives the payoff
r(zn, in, jn), player 2 receives the opposite −r(zn, in, jn) and the game moves to
a new state zn+1 chosen according to the probability distribution q(.|zn, in, jn).
Then both players observe the couple of actions (in, jn), the state zn+1 and the
stage goes to n+ 1.

Hence at stage n the set of past histories for both players is Hn = (Z × I ×
J)n−1 ×Z. A strategy for player 1 is an element (σn)n>1, where for each n, σn
is a mapping from Hn to ∆(I) giving the random action played by player 1 at
stage n given the past history. A strategy for player 2 is an element τ = (τn)n>1,
where for each n, τn is a mapping from Hn to ∆(J). Denote by Σ and τ their
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respective sets of strategies. If a strategy is such that for each integer n the
image is a Dirac measure, the strategy is said to be pure.

Fix a strategy profile (σ, τ) and an initial probability p1, it induces a proba-
bility distribution on the set of finite histories of length n, (Z×I×J)n−1×Z for
all integer n. It is standard that this probability distribution can be uniquely
extended to the set of infinite plays (Z × I × J)∞. For each positive N , we
define the average expected payoff for player 1 after N stages

γN (p1, σ, τ) = Ep1,σ,τ

(
1

N

N∑

n=1

r(zn, in, jn)

)

We define also the average payoff between two stages M and N .

γM,N (p1, σ, τ) = Ep1,σ,τ

(
1

N −M + 1

N∑

n=M

r(zn, in, jn)

)

To study the infinite game Γ(p1) we focus on the notion of uniform value
and of ε-optimal strategies.

Definition 1. Let v be a real number,

• player 1 can guarantee v in Γ(p1) if for all ε > 0 there exists a strategy σ
of player 1 and N ∈ N, such that

∀n > N ∀τ ∈ τ γn(p1, σ, τ) > v − ε

We say that such a strategy σ guarantees v − ε in Γ(p1).

• player 2 can guarantee v in Γ(p1) if for all ε > 0 there exists a strategy τ
of player 2 and N ∈ N, such that

∀n > N ∀σ ∈ Σ γn(p1, σ, τ) 6 v + ε

We say that such a strategy τ guarantees v + ε in Γ(p1).

• If both players can guarantee v, v is the uniform value of the game and

we denote it by v(p1).

When the uniform value exists, given ε > 0,

• a strategy σ of player 1 is ε-optimal if

lim inf
n

inf
τ∈τ

γn(p1, σ, τ) > v(p1)− ε

• a strategy τ of player 2 is ε-optimal if

lim sup
n

sup
σ∈Σ

γn(p1, σ, τ) 6 v(p1) + ε

Notice that the uniform value exists if and only if there exists v such that
players 1 and 2 have for each ε > 0 strategies which guarantee respectively v− ε
and v+ ε. We denote by maxmin the maximum of the values that player 1 can
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guarantee and minmax the minimum of the values that player 2 can guarantee.
It is easy to see that the game has a uniform value if both are equal.

We will also be interested in another type of game Γsb(z1) = (K, I, J, q, r, p1,Σsb,τ sb)
where the set of strategies of player 1 is restricted to Σsb ⊂ Σ and the set
of strategies of player 2 is restricted to τ sb ⊂ τ . A strategy σ ∈ Σ is in
Σsb if for all hn = (z1, i1, j1, z2, ...., jn−1, zn), h

′
n = (z′1, i

′
1, j

′
1, z

′
2, ...., j

′
n−1, z

′
n) ∈

(Z × I × J)n−1 × Z such that il = i′l and jl = j′l for all l ∈ {1, .., n− 1} then
σn(hn) = σn(h

′
n). τ sb is defined similarly. The interpretation is that the play-

ers at each stage observe past actions but not the state. When K is finite, this
game is equivalent to a game Γ(p1) = (Z, I, J, q, r, p1) where Z = ∆(K) ⊂ R

]K ,
I and J are the same, q and r are the linear extension of q and r to Z and
p1 is the Dirac mass in z1. So this game reduces to the previous model with a
deterministic transition non expansive for the norm 1 of R]K .

2.2 Commutation assumption

Let Γ = (Z, I, J, q, r) be a stochastic game, we define the applications q and r
on ∆f (Z) by their linear extensions.

Definition 2. The transition function q commutes on Z if for all z ∈ Z, for
all i, i′ ∈ Iand j, j′ ∈ J ,

q(q(z, i′, j′), i, j) = q(q(z, i, j), i′, j′)

It means that the state is the same if the couple of actions (i, j) is played
before (i′, j′) or if (i, j) is played after (i′, j′). If no player can influence the
trajectory, the commutation assumption is automatically fulfilled.

Example 1. Let Z be the circle of center ω and θ : I × J → ∆f ([0, 2π]). The

transition function q is defined by q(z, i, j) =
∑

ρ θ(ρ)r(ρ, z) where r(ρ, .) is the

rotation of angle ρ and center ω.

Definition 3. The transition function q weakly commutes on Z if for all z ∈ Z,
for all i, i′ ∈ Iand j, j′ ∈ J , there exists i′′ ∈ I and j′′ ∈ J ,

q(q(z, i′, j′), i, j) = q(q(z, i, j), i′′, j′′)

The second definition is a weaker assumption. The interpretation is that if
a couple of action is played on a trajectory, this couple could have been played
before. In this definition the two couples of actions do not play symmetric roles
as in the first one.

Example 2. Let Z = N
2 be the set of states, I = {(−1, 0), (0, 4), (1, 0)}, J =

{(2, 0), (0, 1)} the sets of actions and q(z, i, j) = z+i+j the transition function.

By commutation of the addition the transitions commute. Consider Z ′ = Z,
I ′ = I and J ′ = J ∪ {α} with the same transition as before if (i′, j′) ∈ I × J
and q(z, ., α) = (0, 0). This new game is not commutative but still is weakly

commutative.

Furthermore the classical class of absorbing games introduced by Kohlberg
[Koh74] can be viewed as a subclass of commutative games. Recall that an
absorbing game is a stochastic game Γ = ({α} ∪ Z, I, J, q, r) where for each
z ∈ Z, z is absorbing and the payoff in z does not depend on the actions. The
state α is the only one where the players have an influence on the payoff and on
the trajectory.
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Proposition 1. Let Γ be an absorbing game, there exists a commutative game

Γ′ such that the set of states of Γ is included in the set of states of Γ′ and for

all these states for all n ∈ N , vn(z) = v′n(z). Moreover if there exists a strategy

σ′ which guarantees w in Γ′(z) then there exists a strategy σ which guarantees

w in Γ(z).

Let Γ = ({α}∪Z, I, J, q, r) be an absorbing game and let build a commutative
game Γ′ = (Z ′, I ′, J ′, q′, r′). We assume that I and J are disjoints. We define
Z ′ = Z ∪ {α, ω, zi, zj , zi,j | ∀i ∈ I ∀j ∈ J} and I ′ = I, J ′ = J . We have added
1+]I+]J+](I×J) new states to the game. In Γ′ the states in Z are absorbing
and with the same payoff as in Γ. Since they are absorbing the commutation
assumption is satisfied and their values are the same in both games. Moreover
we will build the transition such that there is no transition which leads to them
so we will forget them for the rest of the proof.

We define g(i, j) = 1−q(α, i, j)(α) the probability of absorption if the couple
of actions (i, j) is played and q(α, i, j|Z) the conditional probability on Z if there
has been absorption. Let the payoff function be defined by,

∀i, i′ ∈ I, j, j′ ∈ J r′(α, i, j)= r(α, i, j)
r′(zi′,j′ , i, j)= Eq(α,i′,j′|Z)(r(z))
r′(zi′ , i, j)= 1
r′(zj′ , i, j)= 0
r′(ω, i, j)= 1/2

and the transition by q′(z, i, j) = (1 − g(i, j))δz + g(i, j)δs(z,i,j) for all z ∈ Z ′,
i ∈ I and j ∈ J with s given by the following formula :

∀i, i′ ∈ I, j, j′ ∈ J s(α, i, j) = zi,j

s(zi′,j′ , i, j) =





zi′,j′ if i = i′ and j = j′

zi′ if i = i′ and j 6= j′

zj′ if i 6= i′ and j = j′

ω if i 6= i′ and j 6= j′

s(zi′ , i, j) =

{
zi′ if i = i′

ω if i 6= i′

s(zj′ , i, j) =

{
zj′ if j = j′

ω if j 6= j′

s(ω, i, j) =ω

Let (i′, j′) ∈ I × J , the transition is designed such that zi′,j′ is invariant by
the couple (i′, j′). Moreover if player 1 deviates the play stays in zi′,j′ with
probability 1 − g(i′, j′) and goes to zj′ with probability g(i′, j′). The state zj′
is controlled by player 2 and the payoff is 0 so it is a punishing state for player
1. The situation is symmetric for player 2 and if both deviate the trajectory
absorbed in ω.

Let show that the function s commutes. Since w is absorbing there is nothing
to check in this state. Let i′ ∈ I, the game Γ(zi′) is controlled by player 1 and
his actions come down to two actions i′ and something else. When the same
action is played twice the assumption is automatically satisfied so it is enough to
check the cases where he plays i′ at one stage and i 6= i′ at the other. Whenever
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this action is played there is absorption in ω so the commutation assumption is
fulfilled for all states zi′ , i

′ ∈ I and similarly for the states zj′ , j
′ ∈ J .

Let (i′, j′) ∈ I × J , in the state zi′,j′ the situation reduces as before for
each player to two actions (i′, other) and (j′, other). We check the different
cases. Assume that one of the couples is (other, other). When it is played
first the stage goes directly to w. Otherwise the state after one step is in
{zi′ , zj′ , zi′,j′ , w} and the couple is still of the form (other, other) and leads to
w so commutation is fulfilled. If one couple is (i′, j′) then on {zi′ , zj′ , zi′,j′ , w},
the transition is the identity and it commutes with everything. There is left
to check if the couples are of one of the following forms (i′, other)(i′, other),
(other, j′)(other, j′), (i′, other)(other, j′). In the two first the situation is the
same as if the same couple of action is played twice. In the last one the tran-
sitions lead to w trough ki′ if the order is (i′, other),(other, j′) and through kj′
when the order is (other, j′),(i′, other). Thus s commutes.

We deduce that q commutes. Let z ∈ Z, i, i′ ∈ I and j, j′ ∈ J then

q(q(z, i, j), i′, j′) = (1− g(i, j)(1− g(i′, j′))δz + (1− g(i, j)g(i′, j′)δs(z,i,j)

+ (1 − g(i′, j′))g(i, j)δs(z,i′,j′) + g(i, j)g(i′, j′)δs(s(z,i,j),i′,j′)

The same computation if the actions are played in the other order leads to a
symmetric result except for the last term where appears s(s(z, i′, j′), i, j). So q
is a commutative transition.

Now we prove that the value is the same in α. First we compute the value
of the game Γ′ in the different states. The state ω is absorbing so v(ω) = 1/2.
For all i′ in I, the state is controlled by player 1 and the action i′ guarantees
him to stay in zi′ so v(zi′) = 1. Similarly for all j′ ∈ J , v(zj′ ) = 0 and following
v(zi′,j′) = Eq(α,i′,j′|Z)(r(z, i, j)). By replacing all these states by their values,
the situation in α is the same as in Γ(α). So the value is the same in both games
and a strategy which guarantees w in Γ′(α), guarantees w in Γ(α). �

3 Results

3.1 Markov Decision Process

A MDP is a one player stochastic game. Formally with the previous notations
it is a stochastic game where J is a singleton. Thus we denote a MDP Γ by
(Z, I, q, r).

Theorem 1. Let Γ = (Z, I, q, r) be a MDP such that q is deterministic and

weakly commutative.

• If for all p ∈ ∆f (Z), Γ(p) has a uniform value in pure strategies then for

all p ∈ ∆f (Z) there exists a 0-optimal strategy.

• Moreover if Z is a precompact metric space, q is non expansive and r is

uniformly continuous then there exists a 0-optimal pure strategy.

Note that Renault [Ren09] proves that the topological assumptions of the
second part are sufficient to ensure the existence of the uniform value in pure
strategies. Exemple 3 shows that there may exists a value in pure strategies
without a 0-optimal pure strategy.
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Figure 1: No pure 0-optimal strategy

Example 3. The set of states is N×N and there are only two actions R and

T . R increments the first coordinate and T the second one.

q((x, y), R) = (x+ 1, y)

q((x, y), T ) = (x, y + 1)

Let εl =
1
2l
, for each l > 1 we define wl =

∑l
m=1

(
3m−1 − 1

)
and the payoff by:

r (wl, 0) = 1− εl

r (x, y) = 1− εl if x ∈
[
wl + (y − 1)

(
3l−1 − 1

)
, wl + y

(
3l−1 − 1

)]

For each l ∈ N, there is a play induced by a pure strategy where the payoff is
1−εl at each stage. So the uniform value is equal to 1 and can be guaranted with
pure strategies. But these plays move away one from each others too quickly.
A 0-optimal pure strategy has to jump from one path to another but if a play
leaves the path l at stage n it needs to visit more than n states with payoff 0 to
reach the path l + 1. So there exists no 0-optimal strategy.

As stated before if we consider Γsb = (K, I, q, r,Σsb) a stochastic game with
restricted strategies, Γsb is equivalent to a game Γ on the set of states Z = ∆(K)
which is compact and with a deterministic transition function non expansive
for the norm 1. Thus we can apply the Theorem 1 and deduce the following
corollary.

Corollary 1. Let Γsb = (K, I, q, r,Σsb) be a commutative MDP with a finite

set of states K and a finite set of actions I where the player does not observe

the state. For all p1 ∈ ∆(K), Γsb(p1) has a uniform value and there exists a

0-optimal pure strategy.

Rosenberg, Solan and Vieille asked the question of the existence of a 0-
optimal strategy in MDP with signals. Our assumption ensures that there
exists such a strategy. The following example due to Renault shows it is not
true in general and therefore there exist games which cannot be transformed in
order to fulfill the commutation assumption.

Example 4. Define an MDP with no signals as follows. Let Z = {α, β, 0, 1},
and I = {w, g}. The payoff is 0 except in state 1 where it is 1. The state 0 and
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1 are absorbing and in the other states the transition rule q is given by

q(α,w) = 1/2δα + 1/2δβ

q(β,w) = δβ

q(α, g) = δ0

q(β, g) = δ1

An ε-optimal strategy in Γ(α) is to play the action w until the probability
to be in β is high enough then to play g. So the uniform value starting from α
is 1 but there exists no 0-optimal strategy.

3.2 Stochastic games

For two-player stochastic games the commutation does not imply the existence
of 0-optimal strategies. Indeed the Big Match introduced by Gillette [Gil57] is
an absorbing game without 0-optimal strategy and with deterministic transi-
tions. Thus by Proposition 1 there exists a commutative stochastic game with
deterministic transitions with the same value and in this game player 1 has no
0-optimal strategy.

Theorem 2. Let Γ(p1) = (Z, I, J, q, r, p1) be a stochastic game such that Z is

a compact set of Rm, I and J are finite sets, q is commutative deterministic

non expansive for ‖.‖1 and r is continuous. The stochastic game Γ(p1) has a

uniform value.

And we can apply this result to the game Γsb where the players do not observe
the state but observe past actions and prove the existence of the uniform value.

Corollary 2. Let Γsb = (K, I, J, q, r,Σsb,τ sb) be a commutative MDP with a

finite set of states K and finite sets of actions I and J where the players do not

observe the state. For all p1 ∈ ∆(K), Γsb(p1) has a uniform value.

Example 5. Let K = Z/mZ and define q : K × I × J → ∆(K) by q(k, i, j) =
δk ⊕ f(i, j) where f : I × J → ∆(K) and δk is the Dirac measure on k. q is the

law of the sum of two independent random variables of law δk and f(i, j).

The addition of random independent variables is a commutative and associa-
tive operation, therefore q commutes on K. For example let m = 3, I = {T,B},
J = {L,R} and the function f given by

L R
T
B

(
1/2δ1 + 1/2δ2 δ1

δ1 δ0

)

If the players play (T, L) then the new state is one of the other states with equal
probability. If the players play (B,R) the state does not change. And otherwise
the state goes to the next state.
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4 Markov Decision Process

We focus in this section on the proof of Theorem 1. Let Γ = (Z, I, J, q, r) be
a game where the transitions are deterministic and commute. By simplicity
we rename the actions {1, ..., I}. Assume that for all p ∈ ∆f (Z) there exists a
uniform value in pure strategies, we prove that for all z1 ∈ Z , Γ(z1) = Γ(δz1) has
a 0-optimal strategy. It implies immediately the result for an initial probability
p1 ∈ ∆f (Z). Since there is only one player and the transitions are deterministic,
given an initial distribution δz1 and a pure strategy we can build a sequence of
actions with the same distribution on the set of histories. So we restrict in this
section to sequence of actions. Lehrer and Sorin [LS92] show that the value is
always non increasing. Let show that the commutation assumption implies it is
constant.

By weak commutation the state after n actions hn = i1, ..., in is the same as
after an ordered sequence of actions: M(h, 1, n) times action 1, M(h, 2, n) times
action 2,..., M(h, I, n) times action I. Take the lexicographic order on the set
{1, ..., I}n. The weak commutation ensures that if the sequence is not ordered
there exists a transformation which leads to a smaller element. So by iteration
the process converge to a minimal element which is well ordered. We denote
this sequence by a vector M(h, n) in R

]I called the ordered representation of
the strategy hn. Remark that M(h, n) is not unique.

Lemma 1. Let h and h′ such that M(h, n) < M(h′, n′) then there exists some

actions w1,..,n′−n such that the state is the same after (h1,..,n, w1,..,n′−n) and

h1,..,n′

Proof: Let h and h′ be two infinite histories such that there exists n and n′

with M(h, n) < M(h′, n′). Starting from the ordered representation M(h′, n′),
by commutation we can reject to the end the actions which should not be played
in M(h, n). We obtain a sequence of actions such that the state at stage n is
the same than after M(h, n) and at stage n′ the same than after M(h′, n′). �
Under the assumption of the lemma it is possible to complete the history h to
reach the path taken by the history h′.

Lemma 2. Let z ∈ Z and ε a positive number there exists an ε-optimal strategy

such that the value is non decreasing on the trajectory.

Proof: Let z1 ∈ Z, (εl)l∈N a decreasing sequence of positive numbers which
converges to 0 and for each l ∈ N, hl an εl-optimal strategy in Γ(z1). Given
hl, we denote M(l, n) = M(hl, n). Let define M(l) ∈ (N ∪ {+∞})I by iter-
ation. Define ϕ1 an extraction such that M(l, 1, ϕ1(n)) converges to the in-
ferior limit of the sequence (M(l, 1, n))n∈N. Given ϕk define ψk+1 such that
M(l, k+1, ϕk(ψk+1(n))) converges to the inferior limit of the sequence (M(l, k+
1, ϕk(n)))n∈N and define ϕk+1 = ϕk ◦ ψk+1. It represents the total number of
times the actions can be considered simultaneously on an infinite history.

The number of actions is finite so we can define ψ : N → N an extraction
such that for all i ∈ I, M(ψ(l), i) is increasing in l. If an action is played a finite
number of times in the strategy σψ(l), then this action is played more times in
each σψ(l′) for l′ > l. If it is played infinitely often in the strategy σψ(l) then
this action is also played an infinity of times in all σψ(l′) for l

′ > l.
Let l ∈ N, we prove that the value is non decreasing along the trajectory

σψ(l). Let m ∈ N and z = zm(z1, σψ(l)) a point on the trajectory. By definition
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of the inferior limit, there exists m̃ > m such that the ordered representation of
z′ = zm̃(z1, σψ(l)) is smaller than M(σψ(l)).

∀i ∈ {1, ..., I} M(ψ(l), i) >M(ψ(l), i, m̃)

Let l′ > l and let show that there exists m′ such that

∀i ∈ {1, ..., I} M(ψ(l′), i,m′) >M(ψ(l), i, m̃)

and we will be able to continue the history ψ(l) from m̃ to join the path ψ(l′).
By definition of M(ψ(l′)), there exists m′ ∈ N such that if M(σψ(l′), i) is

infinity then M(ψ(l′), i,m′) > M(ψ(l), i, m̃) and if M(σψ(l′), i) is finite then
M(ψ(l′),m′) =M(ψ(l′)).

M(ψ(l′), i,m′) =M(ψ(l′), i) >M(ψ(l), i) >M(ψ(l), i, m̃)

So for any l′ > l, there exists, by Lemma 1, actions which allow to reach the
trajectory followed by ψ(l′) from stage m. Define σ′ the strategy which follows
first σψ(l) for m̃ stages, then jumps from σψ(l) to σψ(l′) and finally follows σψ(l′)
from m′. By construction the trajectory from stage m′ is the same as σψ(l′) so
this strategy guarantees v(z1) − 2εψ(l′). Moreover at stage m the state is z so
the value of the game Γ(z) is greater than v(z1) − 3εψ(l′). This is true for all
l′ > l, so the value in z is equal to v(z1). Finally the result is independent of
the integer m so the value is non decreasing on the trajectory. �

Existence of a mixted 0-optimal strategy:
We define our 0-optimal strategy by concatenation of strategies given by the

Lemma 2. Given a stopping time u and two strategies σ, σ′ we define σuσ′

as follows: play σ until u, then switch to σ′ (and forget the history up to u).
Formally, for every n ∈ N and every hn = (z1, i1, j1, ..., zn), (σuσ

′)(hn) = σ(hn)
if u(hn) > n and (σuσ′)(hn) = σ′(hun) if u(hn) > n where hun = (zu, iu, ju..., zn).

Let z1 ∈ Z and (εl)l∈N a decreasing sequence converging to 0. For each
z ∈ Z and integer l we denote by σl(z) an εl-optimal strategy in Γ(z1) such that
the value is constant on the trajectory and N(l, z) an integer such that

∀n > N(l, z) γn(z, σl(z)) > v(z)− εl

Define recursively a sequence (Tj)j∈N of finite sets of stages. Let T 1
0 = 0 and

assume that the set Tj exists. We denote tj+1 =
[

1
εj+1

]
+1 and define the next

set Tj+1 by:

T 1
j+1 = T

tj
j +N(j, z

T
tj
j

) +
1

εj
T
tj
j

T 2
j+1 = T 1

j+1 +N(j + 1, zT 1
j+1

)

......

T
tj+1

j+1 = T
tj+1−1
j+1 +N(j + 1, z

T
tj+1−1

j+1

)

For each set Tj we define a stopping times uj such that for all m ∈ {1, ..., tj},
P (uj = Tmj ) = 1

tj
. τj is a random variable on a finite state and by construction

of tj , P (uj = Tmj ) 6 εj. Denote by

σ∗
j (z1) = σ0(z1)u1σ1(zu1)....ujσj(zuj

)
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and the strategy which coincides with σ∗
j on the set {n 6 uj+1}.

σ∗(z1) = σ0(z1)u1σ1(zu1)....ujσj(zuj
)...

Let prove that σ∗ is a 0-optimal strategy. Let n > T 1
j+1 we show first that

the strategy σ∗
j (z1) is 2εj-optimal and more precisely that for each realisation

of the stopping times uj the payoff is 2εj-optimal. Indeed by construction
σ∗
j = σ∗

j−1ujσj(zuj
) and for all realisation of uj, n − uj > N(j, zuj

). Let
m ∈ {1, ..., tj} then

γn(z1, σ
∗
j−1T

m
j σj) = E

[
Tmj
n
γTm

j
(z1, σ

∗
j ) +

n− Tmj
n

γTm
j

+1,n(z1, σ
∗
j )

]

> E

[
γTm

j
+1,n(z1, σ

∗
j )−

Tmj
n

]

> E
[
γn−Tm

j
(zTm

j
, σj(zTm

j
))
]
− E

[
Tmj
n

]

> E
[
v(zTm

j
)− εj

]
−

T
tj
j

T 1
j+1

> v(z1)− 2εj

The strategy we are interesting in when n > Tj+1 is σ∗
j+1. Let prove that

σ∗
j+1(z1) is 3εj-optimal. Since σ∗

j+1 = σ∗
j uj+1σj+1(zuj+1) both strategies are

the same until the realisation of uj+1.

γn(z1, σ
∗

j+1)

= E
[(uj+1

n
γuj+1(z1, σ

∗

j+1) +
n− uj+1

n
γuj+1,n(z1, σ

∗

j+1)
)

1uj+16n +
(

γn(z1, σ
∗

j+1)
)

1uj+1>n

]

= E





∑

t∈Tj+1

((

t

n
γt(z1, σ

∗

j ) +
n− t

n
γt+1,n(z1, σ

∗

j+1)

)

1uj+1=t6n +
(

γn(z1, σ
∗

j )
)

1uj+1=t>n

)





Let n ∈ [T 1
j+1, T

1
j+2], by definition of the elements of Tj+1 there exists a unique

m ∈ {1, ..., tj+1} such that n ∈ [Tmj+1, T
m+1
j+1 ]. Moreover for all l 6 m,

n− T lj+1 > N(j + 1, zT l
j+1

)

so in the previous decomposition there are three cases : the first block before
m, the block m and the rest. Let l < m then

T l
j+1

n
γT l

j+1
(z1, σ

∗

j ) +
n− T l

j+1

n
γT l

j+1+1,n(z1, σ
∗

j+1)

>
T l
j+1

n
(v(z1)− 2εj) +

n− T l
j+1

n
(v(zuj+1)− εj+1)

> v(z1)− 2εj

We have showed that σ∗
i is 2εj-optimal and we have played the strategy σj+1

for enough time in order to be εj+1-optimal in the game starting in zuj+1 for all
realisation of the stopping time. Let l > m then both strategies σ∗

j+1 and σ∗
j

are equal so σ∗
j+1 guarantees v(z1) − 2εj on this event. In the last case we do

11



not control the value but we know that the probability of the event {uj = m}
is less than εj by construction. So we can conclude by

γn(z1, σ
∗
j+1) > P (uj 6 m)(v(z1)− 2εj) + P (uj > m+ 1)(v(z1)− 2εj)

> v(z1)− 2εj − P (uj = m)

> v(z1)− 3εj

The strategy σ∗ coincides with σ∗
j between the stages T 1

j+1 and T 1
j+1 so it guar-

antees v(z1) − 3εj on this period. This is true for all integers j so the strategy
σ∗ is a 0-optimal strategy. �

Existence of a pure 0-optimal strategy in the precompact case: Let show first
that we can assume Z is compact without loss of generality. Since Z is a pre-
compact metric space, q non expansive and r uniformly continuous. The game
has a uniform value in pure strategies by Renault [Ren09]. Let Ẑ be the Cauchy
completion of Z. We can extend q and r to the adherence of Z in Ẑ which is
Ẑ. It defines a game Γ̂ on a compact set with a non expansive transition and a
reward function uniformly continuous. By Renault [Ren09] this game has also
a uniform value. Moreover if z1 is an initial point in Z, the trajectory in Γ̂ from
z1 stays in Z so both values are equal and a 0-optimal strategy in Γ̂ is well
defined in Γ. So in the rest of the proof we assume Z compact.

Let z1 ∈ Z and (εl)l∈N a decreasing sequence of positive numbers which
converges to 0. For each z ∈ Z and l ∈ N, we denote by σl(z) an εl-optimal
strategy in Γ(z) such that the value is constant and by N(l, z) an integer such
that

∀n > N(l, z) γn(z, σl(z)) > v(z)− εl

Since r is uniformly continuous and q is non expansive, there exists a sequence
(ηl)l∈N such that

∀z, z′ ∈ Z d(z, z′) 6 ηl ∀σ, ∀n ∈ N |γn(z, σ)− γn(z
′, σ)| 6 εn

Let z1 = z1 and given (zj)j6l we define zl+1 as an adherence point of the
trajectory (zl, σl(z

l)). Since the value is constant on the trajectory (zl, σl(zl)),
the uniform value in zl+1 is equal to v(z1).

To construct our 0-optimal strategy we will first split each trajectory σj(z
j)

in block by recurrence and then concatenate this block. For each j ∈ N, if
(njk)k∈N is an increasing sequence of integers we denote wj0 the actions before

stage nj0 and for all k ∈ N, wjk the ]wjk actions between the indices njk−1 and njk.

Assume that (njk)j6(l−1),k∈N are defined and let build the sequence for j = l.

We define Ll =
∑

j6l−1,k6l ]w
j
k and denote (zln)n∈N the sequence of state of

(zl, σl(zl)). We do not care about the first indices and the first condition is on
nll+1. We choose nll+1 such that the mean payoff before this stage is good.

nll+1 > N(l, zl)

Moreover we choose the length in order to be much bigger than some blocks
taken on the trajectories (σj(z

j))j6l which will be played before,

Ll

nll+1

6 εl

12



and such that at the beginning of the l block of this decomposition the state is
near the adherence point

d(zl
nl
k

, zl+1) 6
ηk
k

Finally we assume that this block is long respect to some blocks taken on the
trajectories (σj(z

j))j6l which will be played just after and the time to be optimal
if we start to play in Γ(zl+1).

N(l + 1, zl+1) +
∑l−1

j=0 ]w
j
l+1

nll+1

6 εl

Let define the strategy σ∗ by blocks. The idea is to follow on the block l first
the strategy σl(z

l) then some actions to be sure that the state at the beginning of
the next block is near zl+1. A sequence of actions is said to satisfy the property
H(l) if at stage Ll the state is the same as after the following strategy: the n1

l

first actions of σ1(z
1),..., and the nl−1

l first actions of the strategy σl−1(z
l−1).

Assume that the first l − 1 blocks are built and satisfy H(l). On the block l
follow σl(z

l) for nll+1 stages then play w′ given by Lemma 1 such that the new

sequence fulfills H(l + 1). The size of w′ is
∑l−1
j=0 ]w

j
l+1.

Let denote by (zk)k∈N the sequence of states when σ∗ is played and let prove
that the mean payoff converges to v(z1). We focus on the state at stage Ll which
is the beginning of the block l. Since it satisfies the property Hl, the state is the
same as after the sequence of actions (w0

k)k6l,..., (w
l−1
k )k6l. The application q

is non expansive so we have by an immediate recurrence

d(zLl
, zl) 6 ηl

If we consider the game of length Ll + nll+1, the strategy played is optimal for

nll+1 stages in Γ(zl) and we control the distance between zLl
and zl. So we have

γLl+nl
l+1

(z1, σ
∗) =

Ll

Ll + nll+1

γLl
(z, σ∗) +

nll+1

Ll + nll+1

γLl+1,Ll+nl
l+1

(z, σ∗)

>
nll+1

Ll + nll+1

γLl+1,Ll+nl
l+1

(z, σ∗)

> γLl+1,Ll+nl
l+1

(z, σ∗)−
Ll

Ll + nll+1

> γLl+1,Ll+nl
l+1

(z, σ∗)− εl

> γnl
l+1

(zLl
, σl(z

l))− εl

> γnl
l+1

(zl, σl(z
l))− 2εl

> v(z1)− 3εl

If n ∈ [Ll + nl+1
l , Ll+1 + N(l + 1, zl+1)] the number of stages is close to the
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previous cases since n− Ll − nll+1 6 N(l + 1, zl+1) +
∑l−1

j=0 ]w
j
l+1 so

γn(z1, σ
∗) =

Ll + nll+1

n
γLl+nl

l+1
(z, σ∗) +

n− Ll − nll+1

n
γLl+nl

l+1
+1,n(z, σ

∗)

>
Ll + nll+1

n
γLl+nl

l+1
(z, σ∗)

> γLl+nl
l+1

(z, σ∗)−
n− Ll − nll+1

n

> v(z1)− 3εl −
n− Ll − nll+1

nll+1

> v(z1)− 4εl

And finally if n ∈ [Ll+1 +N(l+1, zl+1), Ll+1 +nl+2
l+1] we concatenate a strategy

good until Ll+1 and a strategy good from stage Ll+1.

γn(z1, σ
∗) =

Ll+1

n
γLl+1

(z, σ∗) +
n− Ll+1

n
γLl+1+1,n(z, σ

∗)

>
Ll+1

n
(v(z1)− 4εl) +

n− Ll+1

n
(v(z1)− 4εl+1)

> v(z1)− 4εl

So the mean payoff converges to v(z1) and we have built a 0-optimal strategy
without randomization. �

5 Uniform value in stochastic games

This section is dedicated to the proof of Theorem 2. We focus on the case
where the initial probability is a Dirac mass. The general result is an immediate
consequence. The application q is deterministic, so we can define the trajectory
along a sequence of actions and we denote by qi,j the operator from Z to Z
defined by qi,j(z) = q(i, j, z). Let n ∈ N and h = (i1, j1, ..., in, jn) ∈ (I × J)n,
for all integer s 6 n, we denote zs+1(h) = qis,js ...qi1,j1z1 =

∏s
l=1 qil,jlz1. To

study the system, we introduce the orbits of z by several families of actions and
with prescribed number of stages. On one hand if S ⊂ I × J and l ∈ N

∗, let
Λ+
S (z, l) = {zn(h), h ∈ Sn, n > l}. It is the set of points reached along a path

of at least l stages with actions in S. On another hand Λ−
S (z, l) = {zn(h), h ∈

Sn, n 6 l} is the set of points reached in less than l stages. Notice that Λ+
S (z, 1)

is the set of points reached with actions in S without restriction on the number
of stages.

The operator qi,j is a non expansive mapping on R
n for ‖.‖1 so it has a

specific ergodic behaviour. We can deduce from Sine [Sin90] the following lemma

Lemma 3. Let M be an operator from Z ⊂ R
m to Z non expansive for ‖.‖1

then there exists an integer L 6 ϕ(m) and a family of operators B0,· · · , BL−1

such that

∀l ∈ {0, ..., L− 1} lim
n→+∞

MnL+l = Bl.

A classic example is the case whereM is the transition of a Markov chain on
a finite set. If λ is a complex eigenvalue of M then |λ| 6 1 since the application
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is non expansive. Moreover the theorem of Perron-Frobenius ensures that if
|λ| = 1 then there exists l 6 m such that λl = 1. The integer L is a common
multiple of such l and for example we can take ϕ(m) = m!.

For each z ∈ Z we separate the couples of actions in two different groups.
On one hand the actions which from z come back to z and on the other hand
the rest.

Definition 4. Let z ∈ Z, the couple (i, j) ∈ I × J is cyclic in z if there exists

t 6 ϕ(m) such that qti,jz = z. We denote by S(z) the set of cyclic actions in z

and S(z) its complementary.

Lemma 4. If z ∈ Z and z′ ∈ Λ+
I×J(z, 1) then S(z) is included in S(z′).

Proof : Indeed fix z′ ∈ Λ+
I×J(p, 1), there exists a sequence (i1, j1, ..., in, jn) ∈

(I × J)n such that z′ =
∏
l=1..n qil,jlz. Let (i

∗, j∗) ∈ S(z) and d ∈ N such that
qdi∗,j∗z = z then

qdi∗,j∗z
′ =

∏

l=1..n

qil,jlq
d
i∗,j∗z = z′.�

Example 6. Let Z = ∆(Z/2Z), z1 = (1, 0), I = {1}, J = {1} and A =

A(1, 1) =

(
1/2 1/2
1/2 1/2

)
. Then S(z1) is empty and S(Az1) = {(1, 1)}.

Thus the mapping S is increasing for the inclusion order along a trajectory
and we can prove our result by induction. Given the game Γ, we show that the
uniform value exists by induction on the cardinality of S(z) for all initial points
z ∈ Z. The induction hypothesis is the following,

Ψk : { if z ∈ Z and ]S(z) 6 k then Γ(z) has a uniform value }.

We will see that the initial step Ψ0 is true since the use of cyclic actions
leads to a finite number of states. For the recurrence step we define an auxiliary
game. In the auxiliary game if the trajectory in Γ(z) goes near to a point z′

where the induction hypothesis is satisfied absorption occurs with payoff the
uniform value in z′.

Proposition 2. Ψ0 is true.

Lemma 5. The number of stages needed to reach all points reached by iteration

of actions in S(z) is finite.

First we prove the proposition. If there are only cyclic actions, the number
of states reached during the game is finite by the lemma. The game is formally a
stochastic game with a finite set of states and finite sets of actions with classical
sets of strategies. Therefore it has a uniform value by the result of Mertens
Neymann [MN81].

Proof of the lemma: Let z ∈ Z, we prove that we can restrict to (ϕ(m) −
1)]S(z) stages.

Λ+
S(z)(z, 1) = Λ−

S(z)(z, (ϕ(m)− 1)]S(z))
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By definition the set of points reached in less than (ϕ(m)− 1)]S(z) is included
in the set of points reached without limitation on the number of stages. We
show the other inclusion by contradiction. Assume there exists z∗ which is not
reached in (ϕ(m) − 1)]S(z) stages.

Let n∗ = infn∈N∗ {n, ∃h = (il, jl)l=1..n ∈ (I × J)n, zn(h) = z∗} the mini-
mum number of stages needed to reach α. It is well defined and strictly superior
to (ϕ(m) − 1)]S(z) by definition of z∗.

∑

(i,j)∈S(z)

]{l, (il, jl) = (i, j)} = n∗

⇔ ∃(i∗, j∗) ∈ S(z) ]{l, (il, jl) = (i∗, j∗)} >
n∗

]S(z)

⇔ ∃(i∗, j∗) ∈ S(z) ]{l, (il, jl) = (i∗, j∗)} > ϕ(m)

So an action is repeated more than ϕ(m) times. By definition there ex-
ists d∗ 6 ϕ(m) such that qd

∗

i,jz = z. Hence denote by h′ the sequence of ac-
tions deduced from h by deleting d∗ times the action (i∗, j∗). By commutation
zn∗−d(h

′) = z∗ which contradicts the definition of n∗ and concludes the proof. �

Focus now on the step of the induction. Let k ∈ N such that Ψk is true
and z1 ∈ Z such that ]S(z1) = k + 1. Since we are studying a game on a
compact set with a non expansive transition function we have the following
lemma which allows us to use for all z ∈ Z an ε-optimal strategy in Γ(z) in the
games beginning in the neighbourhood of z.

Lemma 6. Given ε > 0 there exists η > 0 such that if player 1 guarantees w
in Γ(z′) then for all z, such that ‖z − z′‖ 6 η, he guarantees w − ε in Γ(z)

Given ε > 0, for all (i, j) ∈ I × J the application r(., i, j) is uniformly
continuous. Moreover there exists a finite number of applications so there exists
η > 0 such that

∀z, z′ ∈ Z ‖z − z′‖ 6 η, ∀(i, j) ∈ (I × J) |r(z, i, j)− r(z′, i, j)| 6 ε.

For all σ ∈ Σ, we can define a strategy σ∗ which does not depend on the state
such that for all τ ∈ τ the probability on the histories under (z, σ, τ) and
(z, σ∗, τ) are the same. It plays as if the game was Γ(z) for all the initial point.
Let τ = (j1, ..., jn) be a sequence of actions of player 2. Denote by hn the
trajectory given by (z, σ∗, τ) and h′n the trajectory given by (z′, σ∗, τ). For all
(i, j) ∈ I × J , q is a non expansive application so for all n ∈ N, ‖zn − z′n‖ 6

‖z − z′‖ 6 η and

|γn(z, σ
∗, τ) − γn(z

′, σ∗, τ)| 6
1

N

N∑

n=1

|r(zn, in, jn)− r(z′n, in, jn)|

6 ε

If player 1 guarantees w in Γ(z′) then he guarantees w − ε in the game Γ(z). �
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Let ε > 0 and η given by Lemma 6 and define Ξ a correspondence which
gives for each point the points in the neighbourhood where we know the uniform
value exists by the induction hypothesis.

Ξ(z) = {z′ ∈ Z such that ]S(z′) 6 n and ‖z − z′‖1 6 η}.

Denote by Φ the set of points reachable from z1 where Ξ(z) is empty.

Φ = {z ∈ Λ+
I×J(z1, 1), ∀z

′ ∈ B1(z, η), ]S(z
′) > k + 1}.

Proposition 3. The set Φ is finite.

Lemma 7. Let z ∈ Z, (i, j) ∈ S(z) and ε > 0 then there exists an integer u
such that

∀f ∈ Λ+
(i,j)(z, u) ∃f

′ ∈ Z ‖f − f ′‖1 6 ε and ]S(f ′) > ]S(z).

When iterating a non cyclic action the trajectory converges to a periodic
orbit where we can apply the recurrence hypothesis.

Example 7. Let Z = ∆(Z/2Z), z1 = (1, 0), I = {1}, J = {1} and A =

A(1, 1) =

(
1/4 3/4
3/4 1/4

)
. Then for all n ∈ N, S(Anz0) is empty but Anz0 con-

verges to z∞ = (1/2, 1/2) and S(z∞) = {(1, 1)}.

Proof of the lemma : Let z ∈ Z, (i, j) ∈ S(z) a couple of action and ε a
positive real. By the Lemma 3 applied to M = qi,j , there exists an integer L
and operators B0,..., BL−1 such that

∀l ∈ {0, ..., L− 1} lim
n→+∞

MnL+l = Bl

Let y = B0z then the sequence of iterated converges to the family (M ly)l=0..L−1.
There exists an integer u such that ∀n > u, ‖MnLz − y‖1 6 ε and as M is non
expansive for the norm 1, ‖MnL+lz− yM l‖1 6 ε. We denote u′ = u(L+1) and

∀x ∈ Λ+
(i,j)(z, u

′) ∃x′ ∈ {M lz, l = 0, . . . , L− 1} ‖x− x′‖1 6 ε

The trajectory converges to a finite set of points.
Furthermore S(z) is included in S(y). Let (i′, j′) ∈ S(z) and d an integer

such that qdi′,j′z = z then

qdi′,j′y = qdi′,j′B0z = lim
n
qdi′,j′M

nLz

= lim
n
MnLqdi′,j′z = lim

n
MnLz = y

And (i, j) ∈ S(y) by construction of y: the integer L is smaller than ϕ(m) and

MLy =MLB0z = lim
n
MLMnLz = lim

n
M (n+1)Lz = z

Under our assumption (i, j) is in S(y) but not in S(z) so ]S(y) > ]S(z) and
since S is increasing along the trajectory we proved that for all l ∈ {0, ..., L−1},
]S(yM l) > ]S(z). �

17



Proof of the proposition : Let H = {h ∈ (I × J)N| ∃n > 1, zn(h) ∈ Φ}
, the set of possible histories associated to elements of Φ. For all z ∈ Φ, we
denote n∗(z) = inf{n| ∃h ∈ (I × J)n zn(h) = z}, the least number of stages
necessary to reach z. Let show that the Lemmas 5 and 7 imply that the set
F = {n∗(z)|z ∈ Φ} is finite. By the Lemma 7 there exists an integer u such
that for all couples (i, j) in S(z1).

∀f ∈ Λ+
(i,j)(p, u) ∃f

′ ∈ R
m ‖f − f ′‖1 6 ε and ]S(f ′) < k + 1.

We prove that N = max(u, ϕ(m))](I × J) is a superior bound of F . If n∗ > N
and h is an associated history to n∗, then one action (i∗, j∗) is repeated more
than max(u, ϕ(m)) times. As in the proof of Proposition 2 either this action
is in S(z1) and the history can be shortened which is absurd respect to the
definition of n∗ or it is in S(z1) and by construction there exists f ′ ∈ Z such
that

‖qui∗,j∗z1 − f ′‖1 6 ε

]S(f ′) < k + 1

But all the transitions are non-expansive and by Lemma 4, S is increasing along
the orbits. Therefore p is not in Φ which is absurd. Thus F is finite and since
at each stage there exists a finite number of actions, Φ is finite. �

We define ξ a selection of Ξ on the element of Φ where Ξ is non empty and
an auxiliary game Γ̇(ε, z1) as the following: the initial state is z1, the set of
actions are I et J and the transition and reward functions are given by :

q̇(z, i, j) =

{

z if Ξ(z) non empty

qi,jz otherwise

ṙ(z, i, j) =

{

v(ξ(z)) if Ξ(z) non empty

r(z, i, j) otherwise

The sets of strategy for player 1 and 2 are the same as in the game Γ.

Proposition 4. Γ̇(ε, z1) has a uniform value.

All the points are in Φ so this game is formally a stochastic game with a
finite set of states and finite sets of actions. So Γ̇(ε, z1) has a uniform value by
the theorem of Mertens Neymann [MN81]). �

Moreover the value of the auxiliary game is a good approximation of what
the players can guarantee in Γ(z1).

Proposition 5. If player 1 can guarantee w in Γ̇(ε, z1) then he can guarantee

w − 3ε in Γ(z1).

Proof of the proposition: By assumption, there exists σ̇ a strategy of player

1 in Γ̇(ε, z1) and a stage Ṅ such that

∀n > Ṅ ∀τ̇ γ̇n(z1, σ̇, τ̇ ) > w − ε.

Moreover for each couple of points (z, ξ(z)) if ξ(z) exists, we denote σξ,z the
strategy given by Lemma 6 and we have

∃N(z) ∀n > N(z) ∀τ γn(z, σ
ξ,z, τ) > v(ξ(z))− 2ε.
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Let θ be the mapping from (Z × I × J)N to N
∗ given by

θ(h) = inf
n∈N∗

{n| Ξ(zt(h)) 6= ø}.

and σ the following strategy in the game Γ(z1):

σn(h) =

{
σ̇n(h) if n 6 θ(h)

σ
ξ,zθ(h)(h)

n−θ(h) if n > θ(h)

This strategy plays as in Γ̇(ε, z1) until a point z′ where the process would have
absorbed then play optimally as if the remaining game started from point ξ(z′).

Let show that this strategy guarantees w − 3ε. If τ is a strategy of player
2, we define the sequence of random variables z̃t of the state at stage t and a
stopping time θ̃

θ̃ = inf
n∈N∗

{n|Ξ(z̃n) 6= ø}.

Let M be a superior bound of {N(z), z ∈ Φ}, N∗ an integer such that M
N∗

6 ε
and N ∈ N greater than N∗.

γN (z, σ, τ) =
1

N
Ez,σ,τ




θ̃∑

n=1

r(z̃n, ı̃n, ̃n) +

N∑

n=θ̃+1

r(z̃n, ı̃n, ̃n)




=
1

N
Ez,σ,τ (ψ(z̃n, ı̃, ̃))

=
1

N
Ez,σ,τ

(
ψ(z̃n, ı̃, ̃)1N−θ̃>N + ψ(z̃n, ı̃, ̃)1N−θ̃<N

)

We study both parts separately. In the first one, the condition on θ̃ ensures that
the number of stages after the change of strategy is long enough to play well.
In the second one, we do not control the payoff but the number of stages after
θ̃ is small respect to N .

A =
1

N
Ez,σ,τ

(
ψ(z̃n, ı̃, ̃)1N−θ̃<N

)

= Ez,σ,τ



 1

N




θ̃∑

n=1

r(z̃n, ı̃n, ̃n) +

N∑

n=θ̃+1

r(z̃n, ı̃n, ̃n)



1
N−θ̃<N





> Ez,σ,τ


 1

N




θ̃∑

n=1

r(z̃n, ı̃n, ̃n) + v(ξ(z̃
θ̃
))(N − θ̃)− 2N


1

N−θ̃<N




> Ez,σ,τ


 1

N




θ̃∑

n=1

r(z̃n, ı̃n, ̃n) + v(ξ(z̃
θ̃
))(N − θ̃)


1

N−θ̃<N − 2ε1
N−θ̃<N




Focus now on the first part. By assumption we have that ‖z̃
θ̃
− ξ(z̃

θ̃
)‖ 6 η and

N − θ̃ > N(z). If σhn and τhn are the strategies induced by σ and τ after θ̃
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given hn:

Ez,σ,τ




N∑

n=θ̃+1

r(z̃n, ı̃n, ̃n)


 = Ez,σ,τ

(
γ
N−θ̃(z̃θ̃, σ

hn , τhn)(N − θ̃)
)

> Ez,σ,τ

((
v(ξ(z̃

θ̃
))− 2ε

)
(N − θ̃)

)

Therefore the contribution of the second term can be transformed into

B =
1

N
Ez,σ,τ (ψ(z̃n, ı̃, ̃)1N−θ̃>N )

= Ez,σ,τ



 1

N




θ̃∑

n=1

r(z̃n, ı̃n, ̃n) +
N∑

n=θ̃+1

r(z̃n, ı̃n, ̃n)



1
N−θ̃>N





> Ez,σ,τ


 1

N




θ̃∑

n=1

r(z̃n, ı̃n, ̃n) + v(ξ(z̃
θ̃
))(N − θ̃)− 2ε(N − θ̃)


1

N−θ̃>N




> Ez,σ,τ


 1

N




θ̃∑

n=1

r(z̃n, ı̃n, ̃n) + v(ξ(z̃
θ̃
))(N − θ̃)


1

N−θ̃>N − 2ε1
N−θ̃>N




So the summation of this two inferior bounds gives the result.

γN (z, σ, τ) > γ̇N (z, σ̇, τ) − 2ε > w − 3ε. �

To conclude our proof, denote by v(ε) the value of the game Γ̇(z1, ε). By the
previous proposition player 1 can guarantee v(ε)−3ε for all ε in Γ(z1). So he can
guarantee the superior limit when ε converges to 0 and hence lim supε→0(v(ε)).
The same demonstration proves that player 2 can guarantee the inferior limit.
Therefore

lim sup
ε

v(ε) 6 maxmin 6 minmax 6 lim inf
ε

v(ε)

Since the inferior limit is inferior to the superior limit, the maxmin and the
minmax are equal and Γ(z1) has a uniform value. The induction hypothesis is
proven at the next step and the proof of the theorem is finished. For all z ∈ Z,
the game Γ(z) has a uniform value.

5.1 Extensions

The proof of the Theorem 2 can be extended by switching some of the lemmas
with more general results. First of all the result of Sine [Sin90] applies to more
general norms than the norm ‖.‖1.

Definition 5. A norm on R
n is polyhedral if the unit ball has a finite number

of extreme points.

For example the norm ‖.‖1 and the sup norm are polyhedral norms but
not the euclidean norm. We can deduce the following lemma and the proof of
Theorem 2 leads to the same theorem with a polyhedral norm.
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Lemma 8. Let N(.) be a polyhedral norm and K ⊂ R
m a compact. There

exists ϕ(N,m) such that for all mapping T non expansive for N , there exists

t 6 ϕ(N,m) such that (T tnn∈N
converge.

The problem if the transition is non expansive for the norm ‖.‖2 like the
example on the circle is still open since the norm ‖.‖2 is not a polyhedral norm.

We can also change the result by replacing the theorem from Mertens Ney-
man [MN81] with other existence results. First Vieille [Vie00a][Vie00b] proves
the existence of an equilibrium payoff in every two-players stochastic games. So
our proof adapted to the non zero-sum case leads to the result :

Theorem 3. Let Γ = (Z, I, J, q, r1, r2) be a two-players non zero-sum stochastic

game such that Z is a compact set of Rm, I and J are finite sets, q is commu-

tative deterministic non expansive for ‖.‖1 and r1 and r2 are continuous. The

stochastic game Γ(p1) has an equilibrium payoff.

Secondly there exist some specific classes of n-players stochastic games where
the existence of an equilibrium has been proven. For example Flesch, Schoen-
makers and Vrieze [FSV08][FSV09] prove the existence of an equilibrium for
m-players stochastic games where each player controls a finite Markov chain
and the payoffs depend on the m states and the m actions at stage n. Note that
the commutation assumption here is reduced to a condition player by player.
Under the same assumption as in Theorem 2 and 3, there exists an equilibrium
payoff.

Lastly there are some open questions. In Theorem 1 and 2 we restrict to
deterministic transitions and it allows us to study stochastic games where the
players don’t observe the state. The more general model where the players
monitor past actions and have a signal on the state is linked to models with
probabilistic transitions on the state of beliefs. Thus it is interesting to find a
good assumption of commutation with probabilistic transitions. Another prob-
lem is to adapt the proof of Theorem 2 to the weakly commutation context.
Some arguments still hold but the recurrence assumption is not pertinent any
more.

References

[Bla62] David Blackwell. Discrete dynamic programming. Ann. Math. Statist.,
33:719–726, 1962.

[For82] F. Forges. Infinitely repeated games of incomplete information: Sym-
metric case with random signals. International Journal of Game The-

ory, 11(3):203–213, 1982.

[FSV08] J. Flesch, G. Schoenmakers, and K. Vrieze. Stochastic games on a
product state space. Mathematics of Operations Research, 33(2):403–
420, 2008.

[FSV09] J. Flesch, G. Schoenmakers, and K. Vrieze. Stochastic games on a
product state space: The periodic case. International Journal of Game

Theory, 38(2):263–289, 2009.

21



[Gei02] J. Geitner. Note Equilibrium payoffs in stochastic games of incomplete
information: the general symmetric case. International Journal of

Game Theory, 30(3):449–452, 2002.

[Gil57] D. Gillette. Stochastic games with zero stop probabilities. Ann. Math.

Stud, 39:178–187, 1957.

[Koh74] E. Kohlberg. Repeated games with absorbing states. The Annals of

Statistics, 2(4):724–738, 1974.

[LS92] E. Lehrer and S. Sorin. A uniform Tauberian theorem in dynamic
programming. Mathematics of Operations Research, pages 303–307,
1992.

[MN81] J.-F. Mertens and A. Neyman. Stochastic games. Internat. J. Game

Theory, 10(2):53–66, 1981.

[NS98] Abraham Neyman and Sylvain Sorin. Equilibria in repeated games
of incomplete information: the general symmetric case. Internat. J.

Game Theory, 27(2):201–210, 1998.

[Ren07] J. Renault. The value of Repeated Games with an informed controller.
arXiv:0803.3345v2, preprint, 2007.

[Ren09] J. Renault. Uniform value in dynnamic programming.
arXiv:0803.2758v2, to appear JEMS, 2009.

[RSV02] Dinah Rosenberg, Eilon Solan, and Nicolas Vieille. Blackwell opti-
mality in Markov decision processes with partial observation. Ann.

Statist., 30(4):1178–1193, 2002.

[Sin90] Robert Sine. A nonlinear Perron-Frobenius theorem. Proc. Amer.

Math. Soc., 109(2):331–336, 1990.

[Vie00a] N. Vieille. Two-player stochastic games II: The case of recursive games.
Israel Journal of Mathematics, 119(1):93–126, 2000.

[Vie00b] Nicolas Vieille. Two player stochastic games. I. A reduction. Israel J.
Math., 119:55–91, 2000.

22


