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Abstract

We study the stability of social and economic networks when players are far-

sighted. We adopt Herings, Mauleon and Vannetelbosch�s [Games and Economic

Behavior 67, 526-541 (2009)] notions of farsightedly stable set and of myopically

stable set. We �rst provide an algorithm that characterizes the unique pairwise and

groupwise farsightedly stable set of networks under the componentwise egalitarian

allocation rule. We then show that this set coincides with the unique groupwise my-

opically stable set of networks but not with the unique pairwise myopically stable set

of networks. We conclude that, (i) if groupwise deviations are allowed then whether

players are farsighted or myopic does not matter; (ii) if players are farsighted then

whether players are allowed to deviate in pairs only or in groups does not matter.

Finally, we provide some primitive conditions on value functions so that the set of

strongly e¢ cient networks belongs to the unique farsightedly stable set.
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1 Introduction

The organization of agents into networks and groups or coalitions plays an important

role in the determination of the outcome of many social and economic interactions.1

For instance, networks of personal contacts are important in obtaining information

on goods and services, like product information or information about job opportuni-

ties. Many commodities are traded through networks of buyers and sellers. A simple

way to analyze the networks that one might expect to emerge in the long run is to

examine the requirement that individuals do not bene�t from altering the structure

of the network. An example of such a condition is the pairwise stability notion

de�ned by Jackson and Wolinsky (1996). A network is pairwise stable if no player

bene�ts from severing one of her links and no two players bene�t from adding a link

between them, with one bene�ting strictly and the other at least weakly. Pairwise

stability is a myopic de�nition. Players are not farsighted in the sense that they do

not forecast how others might react to their actions. For instance, the adding or

severing of one link might lead to subsequent addition or severing of another link.

If individuals have very good information about how others might react to changes

in the network, then these are things one wants to allow for in the de�nition of the

stability concept. For instance, a network could be stable because players might not

add a link that appears valuable to them given the current network, as that might

in turn lead to the formation of other links and ultimately lower the payo¤s of the

original players.

In this paper we address the question which networks one might expect to emerge

in the long run when players are either farsighted or myopic.

Herings, Mauleon and Vannetelbosch (2009) have �rst extended the Jackson and

Wolinsky pairwise stability notion to a new set-valued solution concept, called the

pairwise myopically stable set. A set of networks G is pairwise myopically stable

(i) if all possible myopic pairwise deviations from any network g 2 G to a network
outside the set are deterred by the threat of ending worse o¤ or equally well o¤, (ii)

if there exists a myopic improving path from any network outside the set leading

to some network in the set, and (iii) if there is no proper subset of G satisfying

Conditions (i) and (ii). The myopically pairwise stable set is non-empty, unique

and contains all pairwise stable networks. They have then introduced the pairwise

1See Jackson (2008) or Goyal (2007) for a comprehensive introduction to the theory of social

and economic networks.
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farsightedly stable set, to predict which networks may be formed among farsighted

players. The de�nition corresponds to the one of a pairwise myopically stable set

with myopic deviations and myopic improving paths replaced by farsighted devia-

tions and farsighted improving paths. A farsighted improving path is a sequence of

networks that can emerge when players form or sever links based on the improve-

ment the end network o¤ers relative to the current network. Each network in the

sequence di¤ers by one link from the previous one. If a link is added, then the two

players involved must both prefer the end network to the current network. If a link

is deleted, then it must be that at least one of the two players involved in the link

prefers the end network. Similarly, it is straightforward to de�ne the notions of

groupwise myopically stable sets and of groupwise farsightedly stable sets.

We �rst provide an algorithm that characterizes the unique pairwise and group-

wise farsightedly stable set of networks under the componentwise egalitarian alloca-

tion rule. We then show that this set coincides with the unique groupwise myopi-

cally stable set of networks but not with the unique pairwise myopically stable set

of networks. We conclude that, (i) if groupwise deviations are allowed then whether

players are farsighted or myopic does not matter; (ii) if players are farsighted then

whether players are allowed to deviate in pairs only or in groups does not matter. In

addition, we show that alternatives notions of farsighted stability also single out Gv

as the unique farsighted stable set. We then analyze the possibility of having small

transfers among deviating players. Finally, we provide some primitive conditions on

value functions so that the set of strongly e¢ cient networks belongs to the unique

pairwise farsightedly stable set.

The paper is organized as follows. In Section 2 we introduce some notations and

basic properties and de�nitions for networks. In Section 3 we de�ne the notions of

pairwise (groupwise) myopically stable sets and of pairwise (groupwise) farsightedly

stable sets. In Section 4 we characterize the unique farsightedly stable set of networks

under the componentwise egalitarian allocation rule. In Section 5 we study the

relationship between farsighted stability and other concepts of farsighted stability

such as the largest consistent set, the von Neumann-Morgenstern farsightedly stable

set and the path dominance core. In Section 6 we look at the relationship between

farsighted stability and e¢ ciency of networks. In Section 7 we conclude.
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2 Networks

Let N = f1; : : : ; ng be the �nite set of players who are connected in some net-
work relationship. The network relationships are reciprocal and the network is thus

modeled as a non-directed graph. Individuals are the nodes in the graph and links

indicate bilateral relationships between individuals. Thus, a network g is simply a

list of which pairs of individuals are linked to each other. We write ij 2 g to indicate
that i and j are linked under the network g. Let gS be the set of all subsets of S � N
of size 2.2 So, gN is the complete network. The set of all possible networks or graphs

on N is denoted by G and consists of all subsets of gN : The network obtained by

adding link ij to an existing network g is denoted g+ij and the network that results

from deleting link ij from an existing network g is denoted g � ij. Let

gjS = fij j ij 2 g and i 2 S, j 2 Sg:

Thus, gjS is the network found deleting all links except those that are between
players in S. For any network g, let N(g) = fi j 9 j such that ij 2 gg be the
set of players who have at least one link in the network g. A path in a network

g 2 G between i and j is a sequence of players i1; : : : ; iK such that ikik+1 2 g for
each k 2 f1; : : : ; K � 1g with i1 = i and iK = j. A non-empty network h � g is

a component of g, if for all i 2 N(h) and j 2 N(h) n fig; there exists a path in h
connecting i and j, and for any i 2 N(h) and j 2 N(g), ij 2 g implies ij 2 h. The
set of components of g is denoted by C(g). Knowing the components of a network,

we can partition the players into groups within which players are connected. Let

�(g) denote the partition of N induced by the network g.

A value function is a function v : G ! R that keeps track of how the total

societal value varies across di¤erent networks. The set of all possible value functions

is denoted by V. An allocation rule is a function Y : G � V ! RN that keeps

track of how the value is allocated among the players forming a network. It satis�esP
i2N Yi(g; v) = v(g) for all v and g.

Jackson andWolinsky (1996) have proposed a number of basic properties of value

functions and allocation rules. A value function is component additive if v(g) =P
h2C(g) v(h) for all g 2 G. Component additive value functions are the ones for

which the value of a network is the sum of the value of its components. An allocation

2Throughout the paper we use the notation � for weak inclusion and  for strict inclusion.

Finally, # will refer to the notion of cardinality.
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rule Y is component balanced if for any component additive v 2 V, g 2 G, and
h 2 C(g), we have

P
i2N(h) Yi(h; v) = v(h). Component balancedness only puts

conditions on Y for v�s that are component additive, so Y can be arbitrary otherwise.

Given a permutation of players � and any g 2 G, let g� = f�(i)�(j) j ij 2 gg. Thus,
g� is a network that is identical to g up to a permutation of the players. A value

function is anonymous if for any permutation � and any g 2 G, v(g�) = v(g).

Given a permutation �, let v� be de�ned by v�(g) = v(g�
�1
) for each g 2 G. An

allocation rule Y is anonymous if for any v 2 V, g 2 G, and permutation �, we have
Y�(i)(g

�; v�) = Yi(g; v).

An allocation rule that is component balanced and anonymous is the componen-

twise egalitarian allocation rule. For a component additive v and network g, the

componentwise egalitarian allocation rule Y ce is such that for any h 2 C(g) and
each i 2 N(h), Y cei (g; v) = v(h)=#N(h). For a v that is not component additive,

Y ce(g; v) = v(g)=n for all g; thus, Y ce splits the value v(g) equally among all players

if v is not component additive.

In evaluating societal welfare, we may take various perspectives. A network g

is Pareto e¢ cient relative to v and Y if there does not exist any g0 2 G such that
Yi(g

0; v) � Yi(g; v) for all i with at least one strict inequality. A network g 2 G is

strongly e¢ cient relative to v if v(g) � v(g0) for all g0 2 G. This is a strong notion
of e¢ ciency as it takes the perspective that value is fully transferable.

Which networks are likely to emerge in the long run? The game-theoretic ap-

proach to network formation uses two di¤erent notions of a deviation by a coalition.

Pairwise deviations (Jackson and Wolinsky, 1996) are deviations involving a single

link at a time. That is, link addition is bilateral (two players that would be involved

in the link must agree to adding the link), link deletion is unilateral (at least one

player involved in the link must agree to deleting the link), and network changes

take place one link at a time. Groupwise deviations (Jackson and van den Nouwe-

land, 2005) are deviations involving several links within some group of players at a

time. Link addition is bilateral, link deletion is unilateral, and multiple link changes

can take place at a time. Whether a pairwise deviation or a groupwise deviation

makes more sense will depend on the setting within which network formation takes

place. The de�nitions of stability we consider allow for a deviation by a coalition to

be valid only if all members of the coalition are strictly better o¤. It is customary

to require that a coalition deviates only if all members are made better o¤ since
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changing the status-quo is costly, and players have to be compensated for doing so.3

3 De�nitions of stable sets of networks

3.1 Myopic de�nitions

We �rst introduce the notion of pairwise myopically stable sets of networks due to

Herings, Mauleon and Vannetelbosch (2009) which is a generalization of Jackson and

Wolinsky (1996) pairwise stability notion.4 Pairwise stable networks do not always

exist. A pairwise myopically stable set of networks is a set such that from any

network outside this set, there is a myopic improving path leading to some network

in the set, and each deviation outside the set is deterred because the deviating

players do not prefer the resulting network. The notion of a myopic improving path

was �rst introduced in Jackson and Watts (2002). A myopic improving path is a

sequence of networks that can emerge when players form or sever links based on

the improvement the resulting network o¤ers relative to the current network. Each

network in the sequence di¤ers by one link from the previous one. If a link is added,

then the two players involved must both prefer the resulting network to the current

network. If a link is deleted, then it must be that at least one of the two players

involved in the link prefers the resulting network.

Formally, a pairwise myopic improving path from a network g to a network

g0 6= g is a �nite sequence of networks g1; : : : ; gK with g1 = g and gK = g0 such

that for any k 2 f1; : : : ; K � 1g either: (i) gk+1 = gk � ij for some ij such that
Yi(gk+1; v) > Yi(gk; v) or Yj(gk+1; v) > Yj(gk; v), or (ii) gk+1 = gk + ij for some ij

such that Yi(gk+1; v) > Yi(gk; v) and Yj(gk+1; v) > Yj(gk; v). For a given network g,

let m(g) be the set of networks that can be reached by a pairwise myopic improving

path from g.

3But sometimes some players may be indi¤erent between the network they face and an alter-

native network, while others are better o¤ at this network structure. Then, it should not be too

di¢ cult for the players who are better o¤ to convince the indi¤erent players to join them to move

towards this network structure when very small transfers among the deviating group of players are

allowed.
4A network g 2 G is pairwise stable with respect v and Y if no player bene�ts from severing one

of their links and no two players bene�t from adding a link between them. The original de�nition

of Jackson and Wolinsky (1996) allows for a pairwise deviation to be valid if one deviating player

is better o¤ and the other one is at least as well o¤.
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De�nition 1. A set of networks G � G is pairwise myopically stable with respect
v and Y if

(i) 8 g 2 G,

(ia) 8 ij =2 g such that g + ij =2 G, Yi(g + ij; v) � Yi(g; v) or Yj(g + ij; v) �
Yj(g; v),

(ib) 8 ij 2 g such that g � ij =2 G, Yi(g � ij; v) � Yi(g; v) and Yj(g � ij; v) �
Yj(g; v),

(ii) 8g0 2 G nG; m(g0) \G 6= ;;

(iii) @ G0  G such that G0 satis�es Conditions (ia), (ib), and (ii).

Conditions (ia) and (ib) in De�nition 1 capture deterrence of external deviations.

In Condition (ia) the addition of a link ij to a network g 2 G that leads to a network
outside G is deterred because the two players involved do not prefer the resulting

network to network g. Condition (ib) is a similar requirement, but then for the case

where a link is severed. Condition (ii) requires external stability. External stability

asks for the existence of a pairwise myopic improving path from any network outside

G leading to some network in G. Condition (ii) implies that if a set of networks is

pairwise myopically stable, it is non-empty. Notice that the set G (trivially) satis�es
Conditions (ia), (ib), and (ii) in De�nition 1. This motivates Condition (iii), the

minimality condition.

Jackson and Watts (2002) have de�ned the notion of a closed cycle. A set of

networks C is a cycle if for any g 2 C and g0 2 C n fgg; there exists a pairwise
myopic improving path connecting g to g0: A cycle C is a maximal cycle if it is not

a proper subset of a cycle. A cycle C is a closed cycle if no network in C lies on

a pairwise myopic improving path leading to a network that is not in C. A closed

cycle is necessarily a maximal cycle. Herings, Mauleon and Vannetelbosch (2009)

have shown that the set of networks consisting of all networks that belong to a closed

cycle is the unique pairwise myopically stable set.

The notion of pairwise myopically stable set only considers deviations by at most

a pair of players at a time. It might be that some group of players could all be made

better o¤ by some complicated reorganization of their links, which is not accounted

for under pairwise myopic stability. A network g0 2 G is obtainable from g 2 G via
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deviations by group S � N if (i) ij 2 g0 and ij =2 g implies fi; jg � S, and (ii)

ij 2 g and ij =2 g0 implies fi; jg \ S 6= ?.
A groupwise myopic improving path from a network g to a network g0 6= g is a

�nite sequence of networks g1; : : : ; gK with g1 = g and gK = g0 such that for any

k 2 f1; : : : ; K � 1g : gk+1 is obtainable from gk via deviations by Sk � N and

Yi(gk+1; v) > Yi(gk; v) for all i 2 Sk. For a given network g, let M(g) be the set of
networks that can be reached by a groupwise myopic improving path from g.

De�nition 2. A set of networks G � G is groupwise myopically stable with respect
v and Y if

(i) 8 g 2 G, S � N , g0 =2 G that is obtainable from g via deviations by S, there

exists i 2 S such that Yi(g0; v) � Yi(g; v),

(ii) 8g0 2 G nG; M(g0) \G 6= ;;

(iii) @ G0  G such that G0 satis�es Conditions (ia), (ib), and (ii).

Replacing the notion of pairwise improving path by the notion of groupwise im-

proving path in the de�nition of a closed cycle, we have that the set of networks

consisting of all networks that belong to a closed cycle is the unique groupwise my-

opically stable set. The notion of groupwise myopically stable set is a generalization

of Dutta and Mutuswami (1997) strong stability notion.5 In Figure 1 we have de-

picted an example where the unique pairwise myopically stable set is fg0; g7g while
the unique groupwise myopically stable set is fg7g. The networks g0 and g7 are pair-
wise stable but only g7 is strongly stable, and there are no cycles of networks when

players can modify their links either in pairs or in groups. There is no network such

that there is a pairwise myopic improving path from any other network leading to it:

m(g0) = ;, m(g1) = fg0; g4; g6; g7g, m(g2) = fg0; g4; g5; g7g, m(g3) = fg0; g5; g6; g7g,
m(g4) = fg7g, m(g5) = fg7g, m(g6) = fg7g, and m(g7) = ;. Hence, a set formed by
the empty network g0 and the complete network g7 is a pairwise myopically stable set.

However, the groupwise myopically stable set consists only of the complete network

5A set g is strongly stable stable with respect v and Y if 8 S � N , g0 that is obtainable from
g via deviations by S, there exists i 2 S such that Yi(g0; v) � Yi(g; v). Jackson and van den

Nouweland (2005) have introduced a slightly stronger de�nition where a deviation is valid if some

members are better o¤ and others are at least as well o¤. For many value functions and allocation

rules these de�nitions coincide.
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since g7 2 M(g) 8g 6= g7 and M(g7) = ?. Indeed, we have M(g0) = fg4; g5; g6; g7g,
M(g1) = fg0; g4; g5; g6; g7g, M(g2) = fg0; g4; g5; g6; g7g, M(g3) = fg0; g4; g5; g6; g7g,
M(g4) = fg7g, M(g5) = fg7g, M(g6) = fg7g, and M(g7) = ;.
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Figure 1: An example without cycles.

In Figure 2 we have depicted Jackson and Wolisnky co-author model with three

players. It is easy veri�ed that the complete network g7 is the unique pairwise stable

network. Moreover, it is easy to demonstrate that the pairwise myopically stable

set is fg7g. However, there is no strongly stable network. The groupwise myopi-
cally stable set is fg1; g2; g3; g4; g5; g6; g7g and consists only of cycles. Indeed, we
have M(g0) = fg1; g2; g3; g4; g5; g6; g7g, M(g1) = fg1; g2; g3; g4; g5; g6; g7g, M(g2) =
fg1; g2; g3; g4; g5; g6; g7g, M(g3) = fg1; g2; g3; g4; g5; g6; g7g, M(g4) = fg1; g2; g3; g4; g5,
g6; g7g, M(g5) = fg1; g2; g3; g4; g5; g6; g7g, M(g6) = fg1; g2; g3; g4; g5; g6; g7g, and
M(g7) = fg1; g2; g3; g4; g5; g6; g7g.

3.2 Farsighted de�nitions

A pairwise farsighted improving path is a sequence of networks that can emerge

when players form or sever links based on the improvement the end network o¤ers

relative to the current network. Each network in the sequence di¤ers by one link

from the previous one. If a link is added, then the two players involved must both

strictly prefer the end network to the current network. If a link is deleted, then

it must be that at least one of the two players involved in the link prefers the end
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Figure 2: The co-author model with three players.

network. Formally, a pairwise farsighted improving path from a network g to a

network g0 6= g is a �nite sequence of networks g1; : : : ; gK with g1 = g and gK = g0

such that for any k 2 f1; : : : ; K � 1g either: (i) gk+1 = gk � ij for some ij such that
Yi(gK ; v) > Yi(gk; v) or Yj(gK ; v) > Yj(gk; v), or (ii) gk+1 = gk + ij for some ij such

that Yi(gK ; v) > Yi(gk; v) and Yj(gK ; v) > Yj(gk; v). For a given network g, let f(g)

be the set of networks that can be reached by a pairwise farsighted improving path

from g.

We now give the de�nition of a pairwise farsightedly stable set due to Herings,

Mauleon and Vannetelbosch (2009).

De�nition 3. A set of networks G � G is a pairwise farsightedly stable set with

respect v and Y if

(i) 8 g 2 G,

(ia) 8 ij =2 g such that g + ij =2 G, 9 g0 2 f(g + ij) \G such that Yi(g0; v) �
Yi(g; v) or Yj(g0; v) � Yj(g; v),

(ib) 8 ij 2 g such that g � ij =2 G, 9 g0; g00 2 f(g � ij) \ G such that

Yi(g
0; v) � Yi(g; v) and Yj(g00; v) � Yj(g; v),

(ii) 8g0 2 G nG; f(g0) \G 6= ;:
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(iii) @ G0  G such that G0 satis�es Conditions (ia), (ib), and (ii).

Condition (i) in De�nition 3 requires the deterrence of external deviations. Con-

dition (ia) captures that adding a link ij to a network g 2 G that leads to a network
outside of G; is deterred by the threat of ending in g0: Here g0 is such that there is

a pairwise farsighted improving path from g + ij to g0: Moreover, g0 belongs to G;

which makes g0 a credible threat. Condition (ib) is a similar requirement, but then

for the case where a link is severed. Condition (ii) in De�nition 3 requires external

stability and implies that the networks within the set are robust to perturbations.

From any network outside of G there is a farsighted improving path leading to some

network in G. Condition (ii) implies that if a set of networks is pairwise farsightedly

stable, it is non-empty. Notice that the set G (trivially) satis�es Conditions (ia),

(ib), and (ii) in De�nition 3. This motivates the requirement of a minimality con-

dition, namely Condition (iii). Herings, Mauleon and Vannetelbosch (2009) have

shown that a pairwise farsightedly stable set of networks always exists.6

A network g strictly Pareto dominates all other networks if g is such that for all

g0 2 G n fgg it holds that, for all i, Yi(g; v) > Yi(g0; v). Although the network that
strictly Pareto dominates all others is pairwise stable, there might be many more

pairwise stable networks. Herings, Mauleon and Vannetelbosch (2009) have shown

that, if there is a network g that strictly Pareto dominates all other networks, then

fgg is the unique pairwise farsightedly stable set. Thus, pairwise farsighted stability
singles out the Pareto dominating network as the unique pairwise farsightedly stable

set.

A groupwise farsighted improving path from a network g to a network g0 6= g

is a �nite sequence of networks g1; : : : ; gK with g1 = g and gK = g0 such that for

any k 2 f1; : : : ; K � 1g : gk+1 is obtainable from gk via deviations by Sk � N and

Yi(gK ; v) > Yi(gk; v) for all i 2 Sk. For a given network g, let F (g) be the set of
networks that can be reached by a groupwise farsighted improving path from g.

De�nition 4. A set of networks G � G is groupwise farsightedly stable with respect
v and Y if

6Other approaches to farsightedness in network formation are suggested by the work of Chwe

(1994), Xue (1998), Herings, Mauleon and Vannetelbosch (2004), Mauleon and Vannetelbosch

(2004), Dutta, Ghosal and Ray (2005), Page, Wooders and Kamat (2005), and Page and Wooders

(2009).
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(i) 8 g 2 G, S � N , g0 =2 G that is obtainable from g via deviations by S, there

exists g00 2 F (g0) \G such that Yi(g00; v) � Yi(g; v) for some i 2 S,

(ii) 8g0 2 G nG; F (g0) \G 6= ;;

(iii) @ G0  G such that G0 satis�es Conditions (ia), (ib), and (ii).

Let us reconsider the co-author model with three players depicted in Figure 2.

No singleton set is pairwise farsightedly stable. Indeed, there is no network such

that there is a farsighted improving path from any other network leading to it.

More precisely, f(g0) = fg1; g2; g3; g4; g5; g6g, f(g1) = fg4; g5g, f(g2) = fg4; g6g,
f(g3) = fg5; g6g, f(g4) = fg7g, f(g5) = fg7g, f(g6) = fg7g, and f(g7) = ;. How-
ever, a set formed by the complete and two star networks is a pairwise farsight-

edly stable set of networks. The pairwise farsightedly stable sets are fg4; g5; g7g,
fg4; g6; g7g, fg5; g6; g7g, and fg1; g2; g3; g7g in the co-author model with three play-
ers. Suppose that we allow now for groupwise deviations. Then, we have F (g0) =

fg1; g2; g3; g4; g5; g6g, F (g1) = fg4; g5g, F (g2) = fg4; g6g, F (g3) = fg5; g6g, F (g4) =
fg3; g7g, F (g5) = fg2; g7g, F (g6) = fg1; g7g, and F (g7) = fg1; g2; g3g. Hence,

fg1; g2; g3g becomes a groupwise farsightedly stable set. But, this is not the unique
groupwise farsightedly stable set. The others are fg2; g3; g5; g6g, fg2; g3; g4; g6g,
fg1; g3; g4; g5g, fg1; g3; g5; g6g, fg1; g2; g4; g5g, fg1; g2; g4; g6g, fg4; g5; g7g, fg4; g6; g7g,
fg5; g6; g7g.

4 Stable sets of networks under the component-

wise egalitarian allocation rule

We now investigate whether the pairwise or groupwise farsighted stability coincide

or not with the pairwise or groupwise myopically stability under the componentwise

egalitarian allocation. Let

g(v; S) =

�
g � gS

���� v(g)#N(g)
� v(g0)

#N(g0)
8g0 � gS

�
be the set of networks with the highest per capita value out of those that can

be formed by players in S � N . Given a component additive value function v,

�nd a network gv through the following algorithm due to Banerjee (1999). Pick

some h1 2 g(v;N). Next, pick some h2 2 g(v;N n N(h1)). At stage k pick some
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hk 2 g(v;N n[i�k�1N(hi)). Since N is �nite this process stops after a �nite number

K of stages. The union of the components picked in this way de�nes a network gv.

We denote by Gv the set of all networks that can be found through this algorithm.

More than one network may be picked up through this algorithm since players may

be permuted or even be indi¤erent between components of di¤erent sizes.

Lemma 1. Consider any anonymous and component additive value function v. For

all g 2 Gv we have f(g) = ? and F (g) = ? under the componentwise egalitarian

allocation rule Y ce.

Proof. Take any g 2 Gv where g =
SK
k=1 hk with hk 2 g(v;N n[i�k�1N(hi)). Players

belonging to N(h1) in g who are looking forward will never engage in a move since

they can never be strictly better o¤ than in g given the componentwise egalitarian

allocation rule Y ce. Players belonging to N(h2) in g who are forward looking will

never engage in a move since the only possibility to obtain a strictly higher payo¤

is to end up in h1 (if h1 gives a strictly higher payo¤ than h2) but players belonging

to N(h1) will never engage a move. So, players belonging to N(h2) can never end

up strictly better o¤ than in g given the componentwise egalitarian allocation rule

Y ce. Players belonging to N(hk) in g who are forward looking will never engage in

a move since the only possibility to obtain a strictly higher payo¤ is to end up in

h1 or h2 ... or hk�1 but players belonging to [i�k�1N(hi) will never engage a move.
So, players belonging N(hk) can never end up strictly better o¤ than in g given

the componentwise egalitarian allocation rule Y ce; and so on. Thus, f(g) = ? and
F (g) = ?.

Corollary 1. Consider any anonymous and component additive value function v.

For all g 2 Gv we have m(g) = ? and M(g) = ? under the componentwise egali-

tarian allocation rule Y ce.

Lemma 2. Consider any anonymous and component additive value function v.

For all g0 =2 Gv there exists g 2 Gv such that g 2 f(g0) under the componentwise
egalitarian allocation rule Y ce.

Proof. We show in a constructive way that for all g0 =2 Gv there exists g 2 Gv such
that g 2 f(g0) under the componentwise egalitarian allocation rule Y ce. Take any
g0 =2 Gv.
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Step 1: If there exists some h1 2 g(v;N) such that h1 2 C(g0) then go to Step
2 with g1 = g0. Otherwise, two cases have to be considered. (A) There

exists h 2 C(g0) such that h1  h with h1 2 g(v;N). In g0 all players are
strictly worse o¤than the players belonging toN(h1) under the componentwise

egalitarian allocation rule Y ce. From g0, let the players who belong to N(h1)

and who look forward to g 2 Gv delete successively all their links to reach
g1 = g

0 � fij j i 2 N(h1) and ij =2 h1g. Along the sequence from g0 to g1 all

players who are moving always prefer the end network g to the current network.

(B) There does not exist h 2 C(g0) such that h1  h with h1 2 g(v;N). Pick
some h1 2 g(v;N). In g0 all players are strictly worse o¤ than the players
belonging to N(h1) under the componentwise egalitarian allocation rule Y ce.

From g0, let the players who belong to N(h1) and who are looking forward to

g 2 Gv such that h1 2 C(g) �rst deleting successively all their links and then
building successively the links in h1 leading to g1 = g0 � fij j i 2 N(h1) and
ij =2 h1g+fij j i 2 N(h1), ij 2 h1 and ij =2 g0g. Along the sequence from g0 to
g1 all players who are moving always prefer the end network g to the current

network. Once g1 and h1 are formed, we move to Step 2.

Step 2: If there exists some h2 2 g(v;N n N(h1)) such that h2 2 C(g1) then go
to Step 3 with g2 = g1. Otherwise, two cases have to be considered. (A)

There exists h 2 C(g0) such that h2  h with h2 2 g(v;N n N(h1)). In g1
all the remaining players who belong to N nN(h1) are strictly worse o¤ than
the players belonging to N(h2) under the componentwise egalitarian allocation

rule Y ce. From g1 let the players who belong to N(h2) and who look forward

to g 2 Gv such that h1 2 C(g) and h2 2 C(g) delete successively all their
links to reach g2 = g1 � fij j i 2 N(h2) and ij =2 h2g + fij j i 2 N(h2),
ij 2 h2 and ij =2 g1g. Along the sequence from g1 to g2 all players who

are moving always prefer the end network g to the current network. (B)

There does not exist h 2 C(g0) such that h2  h with h2 2 g(v;N n N(h1)).
Pick some h2 2 g(v;N n N(h1)). In g1 all the remaining players who are
belonging to N n N(h1) are strictly worse o¤ than the players belonging to
N(h2) under the componentwise egalitarian allocation rule Y ce. From g1 let

the players who belong to N(h2) and who are looking forward to g 2 Gv such
that h1 2 C(g) and h2 2 C(g) �rst deleting successively all their links and
then building successively the links in h2 leading to g2 = g1 � fij j i 2 N(h2)
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and ij =2 h2g + fij j i 2 N(h2), ij 2 h2 and ij =2 g1g. Along the sequence
from g1 to g2 all players who are moving always prefer the end network g to

the current network. Once g2 and h2 are formed, we move to Step 3.

Step k: If there exists some hk 2 g(v;N n fN(h1) [ ::: [ N(k � 1)g) such that
hk 2 C(gk�1) then go to Step k + 1 with gk = gk�1. Otherwise, two cases

have to be considered. (A) There exists h 2 C(gk�1) such that hk  h with

hk 2 g(v;N nfN(h1)[:::[N(k�1)g). In gk�1 all the remaining players who are
belonging to N nfN(h1)[ :::[N(k�1)g are strictly worse o¤ than the players
belonging to N(hk) under the componentwise egalitarian allocation rule Y ce.

From gk�1 let the players who belong to N(hk) and who look forward to g 2 Gv

such that h1 2 C(g), h2 2 C(g), ... hk 2 C(g) delete successively all their links
to reach gk = gk�1 � fij j i 2 N(hk) and ij =2 hkg + fij j i 2 N(hk), ij 2 hk
and ij =2 gk�1g. Along the sequence from gk�1 to gk all players who are moving
always prefer the end network g to the current network. (B) There does not

exist h 2 C(gk�1) such that hk  h with hk 2 g(v;N nfN(h1)[ :::[N(k�1)g).
Pick some hk 2 g(v;N n fN(h1) [ ::: [N(k � 1)g). In gk�1 all the remaining
players who are belonging to N n fN(h1) [ ::: [ N(k � 1)g are strictly worse
o¤ than the players belonging to N(hk) under the componentwise egalitarian

allocation rule Y ce. From gk�1 let the players who belong to N(hk) and who

are looking forward to g 2 Gv such that h1 2 C(g), h2 2 C(g), ... hk 2 C(g)
�rst deleting successively all their links and then building successively the links

in hk leading to gk = gk�1 � fij j i 2 N(hk) and ij =2 hkg + fij j i 2 N(hk),
ij 2 hk and ij =2 gk�1g. Along the sequence from gk�1 to gk all players who are
moving always prefer the end network g to the current network. Once gk and

hk are formed, we move to Step k + 1; and so on until we reach the network

g =
SK
k=1 hk with hk 2 g(v;N n [i�k�1N(hi)). Thus, we have build a pairwise

farsightedly improving path from g0 to g; g 2 f(g0). Since f(g0) � F (g0), we
also have that for all g0 =2 Gv there exists g 2 Gv such that g 2 F (g0) under
the componentwise egalitarian allocation rule Y ce.

The next proposition tells us that once players are farsighted it does not matter

whether groupwise or only pairwise deviations are feasible. Both pairwise farsighted

stability and groupwise farsighted stability single out the same unique set.

Proposition 1. Consider any anonymous and component additive value function
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v. The set Gv is both the unique pairwise farsightedly stable set and the unique

groupwise farsightedly stable set under the componentwise egalitarian allocation rule

Y ce.

Proof. Consider any anonymous and component additive value function v. From

Lemma 1 we know that f(g) = ? and F (g) = ? for all g 2 Gv under the com-
ponentwise egalitarian allocation rule Y ce. From Lemma 2 we have that for all

g0 =2 Gv there exists g 2 Gv such that g 2 f(g0) under the componentwise egalitar-
ian allocation rule Y ce. Using Theorem 5 in Herings, Mauleon and Vannetelbosch

(2009) which says that G is the unique pairwise farsightedly stable set if and only

if G = fg 2 G j f(g) = ?g and for every g0 2 G n G, f(g0) \ G 6= ?, we have that
Gv is the unique pairwise farsightedly stable set. In case of groupwise deviations,

Theorem 5 says that G is the unique groupwise farsightedly stable set if and only if

G = fg 2 G j F (g) = ?g and for every g0 2 GnG, F (g0)\G 6= ?. Since f(g) � F (g)
8g 2 G, we have that Gv is also the unique groupwise farsightedly stable set.

Lemma 3. Consider any anonymous and component additive value function v. For

all g0 =2 Gv there exists g 2 Gv such that g 2 M(g0) under the componentwise

egalitarian allocation rule Y ce.

Proof. We show in a constructive way that for all g0 =2 Gv there exists g 2 Gv such
that g 2 M(g0) under the componentwise egalitarian allocation rule Y ce. Take any
g0 =2 Gv.

Step 1: If there exists some h1 2 g(v;N) such that h1 2 C(g0) then go to Step 2 with
g1 = g

0. Otherwise, pick some h1 2 g(v;N). In g0 all players are strictly worse
o¤ than the players belonging to N(h1) under the componentwise egalitarian

allocation rule Y ce. Then, we have that all members of N(h1) have incentives

to deviate from g0 to g1 = g0jNnN(h1) [ h1. Indeed, g1 is obtainable from g0 via

deviations by N(h1) � N and Yi(g1; v) > Yi(g0; v) for all i 2 N(h1). In words,
players who belong to N(h1) delete their links in g0 with players not in N(h1)

and build the missing links of h1. Once g1 and h1 are formed, we move to Step

2.

Step 2: If there exists some h2 2 g(v;N n N(h1)) such that h2 2 C(g1) then go
to Step 3 with g2 = g1. Otherwise, pick some h2 2 g(v;N n N(h1)). In g1
all the remaining players who are belonging to N n N(h1) are strictly worse
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o¤ than the players belonging to N(h2) under the componentwise egalitarian

allocation rule Y ce. Then, we have that all members of N(h2) have incentives

to deviate from g1 to g2 = g1jNnN(h2) [h2. Indeed, g2 is obtainable from g1 via
deviations by N(h2) � N and Yi(g2; v) > Yi(g1; v) for all i 2 N(h2). Once g2
and h2 are formed, we move to Step 3.

Step k: If there exists some hk 2 g(v;N n fN(h1) [ ::: [ N(k � 1)g) such that
hk 2 C(gk�1) then go to Step k + 1 with gk = gk�1. Otherwise, pick some

hk 2 g(v;N n fN(h1)[ :::[N(k� 1)g). In gk�1 all the remaining players who
are belonging to N n fN(h1) [ ::: [ N(k � 1)g are strictly worse o¤ than the
players belonging to N(hk) under the componentwise egalitarian allocation

rule Y ce. Then, we have that all members of N(hk) have incentives to deviate

from gk�1 to gk = gk�1jNnN(hk) [ hk. Indeed, gk is obtainable from gk�1 via

deviations by N(hk) � N and Yi(gk; v) > Yi(gk�1; v) for all i 2 N(hk). Once
gk and hk are formed, we move to Step k + 1; and so on until we reach the

network g =
SK
k=1 hk with hk 2 g(v;N n [i�k�1N(hi)). Thus, we have build a

groupwise myopically improving path from g0 to g; g 2M(g0).

The next proposition tells us that groupwise myopic stability singles out the

same unique set as pairwise and groupwise farsighted stability do.

Proposition 2. Consider any anonymous and component additive value function v.

The set Gv is the unique groupwise myopically stable set under the componentwise

egalitarian allocation rule Y ce.

Proof. Since the set of networks consisting of all networks that belong to a closed

cycle is the unique groupwise myopically stable set, we have to show that the set

of all networks that belong to a closed cycle is Gv. From Lemma 3 we know that

for all g0 =2 Gv there exists g 2 Gv such that g 2 M(g0) under the componentwise
egalitarian allocation rule Y ce. By Corollary 1 we have that M(g) = ? for all

g 2 Gv. Thus, it follows that each g 2 M(g) is a closed cycle, all closed cycles
belong to Gv, and Gv is the unique groupwise myopically stable set.

Notice that all networks belonging to Gv are pairwise stable networks in a strict

sense. However, the pairwise myopically stable set may include networks that do

not belong to Gv. Thus, if players are myopic it matters whether groupwise or

only pairwise deviations are feasible. So, pairwise farsighted stability, groupwise
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farsighted stability and groupwise myopic stability re�nes the notion of pairwise

stability under Y ce when deviations are valid only if all deviating players are strictly

better o¤.

5 Other notions of farsighted stability

In this section we study the relationship between alternative notions of farsighted

stability and pairwise farsighted stable sets. The largest consistent set is a concept

that has been de�ned in Chwe (1994) for general social environments. By considering

a network as a social environment, we obtain the de�nition of the largest consistent

set.

The largest consistent set

De�nition 5. G is a consistent set if 8 g 2 G, S � N , g0 2 G that is obtainable

from g via deviations by S, there exists g00, where g00 = g0 or g00 2 F (g0) \ G such

that Yi(g00; v) � Yi(g; v) for some i 2 S. The largest consistent set is the consistent
set that contains any consistent set.

Proposition 3. Consider any anonymous and component additive value function

v. The set Gv is the largest consistent set under the componentwise egalitarian

allocation rule Y ce.

Proof. First, we show in a constructive way that any g0 =2 Gv cannot belong to a
consistent because there always exists a deviation which is not deterred. Take any

g0 =2 Gv.
Suppose @h1 2 g(v;N) such that h1 2 C(g0). Then, in g0 all players are strictly

worse o¤ than the players belonging to N(h1) under the componentwise egalitarian

allocation rule Y ce. We have that the deviation by all members of N(h1) from

g0 to g00 = g0jNnN(h1) [ h1 cannot be deterred. Indeed, g00 is obtainable from g0 via

deviations byN(h1) � N and Yi(g00; v) > Yi(g0; v) for all i 2 N(h1). In words, players
who belong to N(h1) delete their links in g0 with players not in N(h1) and build the

missing links of h1. In addition, for any g� 6= g00, we have that Yi(g00; v) � Yi(g�; v)
for all i 2 N(h1). So, for any g000 2 F (g00) we have Yi(g0; v) < Yi(g00; v) = Yi(g000; v)
for all i 2 N(h1). Thus, g0 cannot belong to a consistent set.
Suppose that 9h1 2 g(v;N) such that h1 2 C(g0) but @h2 2 g(v;N n N(h1))

such that h2 2 C(g0). Then, in g0 all players who belong to N n N(h1) are strictly
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worse o¤ than the players belonging to N(h2) under the componentwise egalitarian

allocation rule Y ce. Then, we have that the deviation by all members of N(h2) from

g0 to g00 = g0jNnN(h2) [ h2 cannot be deterred. Indeed, g00 is obtainable from g0 via

deviations by N(h2) � N and Yi(g00; v) > Yi(g0; v) for all i 2 N(h2). In addition, for
any g� 6= g00, g� � gNnN(h1), we have that Yi(g00; v) � Yi(g�; v) for all i 2 N(h2). So,
for any g000 2 F (g00) we have Yi(g0; v) < Yi(g00; v) = Yi(g000; v) for all i 2 N(h2). Thus,
g0 cannot belong to a consistent set.

Suppose that 9h1; h2; h3; :::; hk�1 with hl 2 g(v;N n fN(h1) [ ::: [ N(hl�1)g),
l = 2; :::; k�1, and hl 2 C(g0) but @hk 2 C(g0) such that hk 2 g(v;N nfN(h1)[ :::[
N(hk�1)g). Then, in g0 all players who are belonging to N n fN(h1)[ :::[N(hk�1)g
are strictly worse o¤ than the players belonging to N(hk) under the componentwise

egalitarian allocation rule Y ce. Then, we have that the devaition by all members of

N(hk) from g0 to g00 = g0jNnN(hk) [ h2 cannot be deterred. Indeed, g00 is obtainable
from g0 via deviations by N(hk) � N and Yi(g00; v) > Yi(g0; v) for all i 2 N(hk). In
addition, for any g� 6= g00, g� � gNnfN(h1)[:::[N(hk�1), we have that Yi(g00; v) � Yi(g�; v)
for all i 2 N(hk). So, for any g000 2 F (g00) we have Yi(g0; v) < Yi(g00; v) = Yi(g000; v)
for all i 2 N(hk). Thus, g0 cannot belong to a consistent set. And so forth.
Second, we have from Lemma 1 that F (g) = ? 8 g 2 Gv. Hence, each fgg

with g 2 Gv is a consistent set. Thus, Gv is the largest consistent set under the
componentwise egalitarian allocation rule Y ce.

von Neumann-Morgenstern farsighted stability

The von Neumann-Morgenstern stable set (von Neumann and Morgenstern,

1953) imposes internal and external stability. Incorporating the notion of farsighted

improving paths into the original de�nition of the von Neumann-Morgenstern stable

set, we obtain the von Neumann-Morgenstern farsightedly stable set. von Neumann-

Morgenstern farsightedly stable sets do not always exist.

De�nition 6. The setG is a von Neumann-Morgenstern pairwise farsightedly stable

set if (i) 8g 2 G; f(g) \G = ; and (ii) 8g0 2 G nG; f(g0) \G 6= ;.

De�nition 7. The set G is a von Neumann-Morgenstern groupwise farsightedly

stable set if (i) 8g 2 G; F (g) \G = ; and (ii) 8g0 2 G nG; F (g0) \G 6= ;.

Corollary 5 in Herings, Mauleon and Vannetelbosch (2009) tells us that if G is

the unique pairwise (groupwise) farsightedly stable set, then G is the unique von

Neumann-Morgenstern pairwise (groupwise) farsightedly stable set. Hence, the set
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Gv is both the unique von Neumann-Morgenstern pairwise farsightedly stable set

and the unique von Neumann-Morgenstern groupwise farsightedly stable set under

the componentwise egalitarian allocation rule Y ce.

Path dominance core

The concept of path dominance core is due to Page and Wooders (2009). We

give two versions of their concept, one based on pairwise deviations, another based

on groupwise deviations. A network g0 2 G pairwise path dominates network g 2 G,
if g0 = g or if there exists a �nite sequence of networks fgkgKk=0 in G with gK = g0

and g0 = g such that for k = 1; 2; :::; K, gk 2 f(gk�1). Similarly, a network g0 2 G
groupwise path dominates network g 2 G, if g0 = g or if there exists a �nite sequence
of networks fgkgKk=0 in G with gK = g0 and g0 = g such that for k = 1; 2; :::; K,

gk 2 F (gk�1).7

De�nition 8. A network g 2 G is contained in the pairwise (groupwise) path

dominance core C � G with respect v and Y if and only if there does not exist a

network g0 2 G, g0 6= g, such that g0 pairwise (groupwise) path dominates g.

The set Gv is both the pairwise and groupwise path dominance core under the

componentwise egalitarian allocation rule Y ce. Indeed, a network g 2 G is contained
in the pairwise path dominance core Cp � G with respect v and Y if and only if

f(g) = ? and a network g 2 G is contained in the groupwise path dominance core
Cp � G with respect v and Y if and only if F (g) = ?. From Lemma 1 we have

that all g 2 Gv belong to the (pairwise or groupwise) path dominance core. From
Lemma 2 we have that for all g0 =2 Gv there exists g 2 Gv such that g 2 f(g0) under
the componentwise egalitarian allocation rule Y ce. Hence, for all g0 =2 Gv we have
? 6= f(g0) � F (g0). Thus, all g0 =2 Gv do not belong to the (pairwise or groupwise)
path dominance core.

7In general, the pairwise (groupwise) path dominace core is contained in each pairwise (group-

wise) farsightedly stable set of networks. However, a path dominance core may fail to exist while

a pairwise (groupwise) farsightedly stable set always exists.

19



6 E¢ ciency and stability

6.1 Strict or weak deviations

The de�nition of pairwise (or groupwise) farsighted stability allows for a deviation

by a pair (or a coalition) to be valid only if all deviating players are strictly better

o¤. However, in some situations the player who is better o¤ at the end network

may be able to convince the indi¤erent player to join her to move towards this end

network. For instance, when small transfers between the deviating pair are allowed.

The notion of weak pairwise farsighted stability captures this idea. Formally, weak

farsighted stability is de�ned as follows. A weak pairwise farsighted improving path

from a network g to a network g0 6= g is a �nite sequence of graphs g1; : : : ; gK with
g1 = g and gK = g0 such that for any k 2 f1; : : : ; K�1g either: (i) gk+1 = gk� ij for
some ij such that Yi(gK ; v) > Yi(gk; v) or Yj(gK ; v) > Yj(gk; v), or (ii) gk+1 = gk+ ij

for some ij such that Yi(gK ; v) > Yi(gk; v) and Yj(gK ; v) � Yj(gk; v). For a given

network g, let fw(g) be the set of networks that can be reached by a weak pairwise

farsighted improving path from g. We have that f(g) � fw(g).

De�nition 9. A set of networks G � G is a weak pairwise farsightedly stable set

with respect v and Y if

(i) 8 g 2 G,

(ia) 8 ij =2 g such that g + ij =2 G, 9 g0 2 fw(g + ij) \ G such that

(Yi(g
0; v); Yj(g

0; v)) = (Yi(g; v); Yj(g; v)) or Yi(g0; v) < Yi(g; v) or Yj(g0; v) <

Yj(g; v),

(ib) 8 ij 2 g such that g � ij =2 G, 9 g0; g00 2 fw(g � ij) \ G such that

Yi(g
0; v) � Yi(g; v) and Yj(g00; v) � Yj(g; v),

(ii) 8g0 2 G nG; fw(g0) \G 6= ;:

(iii) @ G0  G such that G0 satis�es Conditions (ia), (ib), and (ii).

It is straightforward that if fgg is a pairwise farsightedly stable set then fgg
is a weak pairwise farsightedly stable set. The reverse is not true. Notice that if

G is a weak pairwise farsightedly stable set then (i) @G0 � G such that G0 is a

pairwise farsightedly stable set, (ii) @G0 � G such that G0 is a pairwise farsightedly
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stable set as the following example shows. Consider a situation with three players

where the payo¤s are given in Figure 3. It can be veri�ed that fw(g0) = fg1; g3; g7g,
fw(g1) = fg0g, fw(g2) = fg0; g1; g7g, fw(g3) = fg1; g6; g7g, fw(g4) = fg0; g1; g7g,
fw(g5) = fg1; g3; g6; g7g, fw(g6) = fg1; g7g, and fw(g7) = fg6g. Hence, the weak
pairwise farsightedly stable sets are fg0; g7g, fg0; g3; g6g, fg1; g6g, fg1; g7g. It can
also be veri�ed that f(g0) = ?, f(g1) = fg0g, f(g2) = fg0; g1g, f(g3) = ?, f(g4) =
fg0; g1g, f(g5) = fg1; g3g, f(g6) = ?, and f(g7) = fg6g. Hence, the unique pairwise
farsightedly stable sets is fg0; g3; g6g, and pairwise farsighted stability re�nes weak
pairwise farsighted stability.
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Figure 3: Strict versus weak pairwise farsighted stability: an example.

Consider another situation with three players where the payo¤s are given in

Figure 4. It can be veri�ed that fw(g0) = fg1; g3; g7g, fw(g1) = fg0g, fw(g2) =
fg0; g1; g7g, fw(g3) = fg1; g7g, fw(g4) = fg0; g1; g7g, fw(g5) = fg1; g3; g4; g7g, fw(g6) =
fg1; g7g, and fw(g7) = fg4g. The weak pairwise farsightedly stable sets are fg0; g7g,
fg0; g3; g4; g6g, fg1; g4g, fg1; g7g. It can also be veri�ed that f(g0) = ?, f(g1) = fg0g,
f(g2) = fg0; g1g, f(g3) = ?, f(g4) = fg0; g1g, f(g5) = fg1; g3g, f(g6) = fg1; g7g,
and f(g7) = fg4g. Hence, the pairwise farsightedly stable sets are fg0; g3; g7g,
fg0; g3; g4; g6g, fg0; g1; g3; g4g. Thus, in general, there are no relationships between
pairwise farsighted stability and weak pairwise farsighted stability. However, a pair-

wise farsightedly stable set always contains a weak pairwise farsightedly stable set
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Figure 4: Strict versus weak pairwise farsighted stability: another example.

(but some weak pairwise farsightedly stable set may not be contained in a pairwise

farsightedly stable set as illustrated by the example of Figure 3).

Proposition 4. A pairwise farsightedly stable set of networks always contains a

weak pairwise farsightedly stable set of networks.

Proof. TakeG � G such thatG is a pairwise farsightedly stable set. We have to show
that there exists G0 � G such that G0 is weak pairwise farsightedly stable set. Notice
that f(g) � fw(g) for all g 2 G. Then, since G satis�es condition (ii) of a pairwise
farsightedly stable set, it also satis�es condition (ii) of a weak pairwise farsightedly

stable set. In addition, since the set G is immune to external deviations, then it is

immune to external weak deviations. Indeed, for all g 2 G, (a) for all ij 2 g such that
g+ ij =2 G, 9g00 2 F s(g+ ij)\G such that Yi(g00; v) < Yi(g; v) or Yj(g00; v) < Yj(g; v)
or Yi(g00; v) = Yi(g; v) and Yj(g00; v) = Yj(g; v). Since f(g + ij) � fw(g + ij), the

same network g00 can be reached by a weak farsighted improving path from g + ij.

(b) idem for link deletion leading to a network outside the set G. We have shown

so far that since G satis�es conditions (i) and (ii) of a pairwise farsightedly stable

set, then it satis�es conditions (i) and (ii) of a weak pairwise farsightedly stable set.

It then follows that either G satis�es condition (iii) of a weak pairwise farsightedly

stable set (minimality), in which case G is not only a pairwise farsightedly stable set
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but also a weak pairwise farsightedly stable set; or it does not satisfy condition (iii)

of a weak pairwise farsightedly stable set, which means that there exists a subset

G0 of G satisfying conditions (i), (ii) and (iii) of a weak pairwise farsightedly stable

set.

Corollary 2. Consider any anonymous and component additive value function v.

There exists a subset G � Gv such that G is a weak pairwise farsighted stable set

under the componentwise egalitarian allocation rule Y ce.

6.2 Primitive conditions on value functions

Grandjean, Mauleon and Vannetelbosch (2009) have shown that the set of strongly

e¢ cient networks E(v) is the unique weak pairwise farsightedly stable set under Y ce

if and only if the value function v is top convex. Remember that weak pairwise

farsighted stability is the counterpart of the version of pairwise farsighted stability

we use here when deviations are valid if both deviating players are at least as well

o¤ and one of them is strictly better o¤. A value function v is top convex if some

strongly e¢ cient network also maximizes the per capita value among players. Let

�(v; S) = maxg�gS v(g)=#S. The value function v is top convex if �(v;N) � �(v; S)
for all S � N .
Top convexity implies that all components of a strongly e¢ cient network must

lead to the same per-capita value (if some component led to a lower per capita value

than the average, then another component would have to lead to a higher per capita

value than the average which would contradict top convexity). It follows that under

the componentwise egalitarian allocation rule any g 2 E(v) Pareto dominates all
g0 =2 E(v) Then, it is immediate that g 2 f(g0) for all g0 2 G n E(v) and that
f(g) = ?. Using Theorem 5 in Herings, Mauleon and Vannetelbosch (2009) which

says that G is the unique pairwise farsightedly stable set if and only if G = fg 2 G j
f(g) = ?g and for every g0 2 G nG, f(g0)\G 6= ?, we have that E(v) is the unique
pairwise farsightedly stable set. Thus, if v is top convex then the set of strongly

e¢ cient networks E(v) is the unique pairwise farsightedly stable set under Y ce.

The following example reveals that under the notion of pairwise farsightedly

stable set, top convexity is not necessary to sustain the set of strongly e¢ cient

networks as the unique pairwise farsightedly stable set. Let #N = 5. Consider a

component additive value function where the value to a component is 30 if it is a
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line of 3 players, is 10 if it is a line of 2 players, and is 0 otherwise. The set of

strongly e¢ cient networks E(v) is the set of networks composed of two lines, one of

3 players and another of 2 players. Suppose that the value is allocated to the agents

according to the componentwise egalitarian allocation rule Y ce. The value function

of this game is not top convex. As such, E(v) is not the unique weak pairwise

farsightedly stable set of networks. However, the pairwise farsightedly stable set of

networks coincide with E(v).

We now show that under the componentwise egalitarian allocation rule Y ce, the

set of strongly e¢ cient networks E(v) is contained in the unique pairwise farsightedly

stable set of networks Gv if and only if v is weakly top convex. Take an e¢ cient

network g 2 E(v). A value function is weakly top convex if for each network g0 6= g
and each component h0 of g0, the per capita value of the component h0 is not greater

than the one generated by some component h that belongs to the set of components

of g for which at least one player belongs to h and to h0. That is, a value function v is

weakly top convex if for all g0 6= g and for all h0 2 C(g0) such that N(h0)\N(g) 6= ;,
v(h0)=#N(h0) � v(h)=#N(h) for some h 2 C(g) such that N(h)\N(h0) 6= ;. Weak
top convexity is a weaker condition than top convexity. The example above with

�ve players shows that a value function may satisfy weak top convexity but not top

convexity.

Proposition 5. Consider any anonymous and component additive value function

v. If v is top convex then v is weakly top convex.

Proof. Let v be an anonymous and component additive value function. Let v also

satisfy top convexity. Let g 2 E(v). Top convexity implies that all components
of a strongly e¢ cient network must lead to the same per-capita value. Thus, for

all h; h0 2 C(g), v(h)=#N(h) = v(h0)=#N(h0). It follows that each component

of a strongly e¢ cient network generates at least the same per capita value than

any component of any other network; otherwise, top convexity would be violated.

Hence, for all h 2 C(g) and h0 2 C(g0) where g0 6= g, we have that v(h)=#N(h) �
v(h0)=#N(h0). It implies that the value function v is weakly top convex.

Proposition 6. Consider any anonymous and component additive value function

v. The set of strongly e¢ cient networks E(v) is contained in the unique pairwise

farsightedly stable set Gv under the componentwise egalitarian allocation rule Y ce if

and only if v is weakly top convex.
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Proof. Consider any anonymous and component additive value function v. Notice

that Gv is the unique pairwise farsightedly stable set of networks under the compo-

nentwise egalitarian allocation rule Y ce. (() From Theorem 5 in Herings, Mauleon

and Vannetebosch (2009), we have that Gv = fg 2 G j f(g) = ;g. Thus, we only
have to show that f(g) = ; if g 2 E(v) when v is weakly top convex. Without
loss of generality, let g = [ki=1hi be such that v(hl)=#N(hl) � v(hm)=#N(hm) if

l < m. Notice that under the componentwise egalitarian allocation rule, the payo¤of

player i in component h00 of network g00 2 G is given by Y cei (g00; v) = v(h00)=#N(h00).
Players from N(h1) do not take part in any pairwise farsighted improving path em-

anating from the network g since in every other network g0, low convexity implies

that Y cei (g
0; v) � Y cei (g; v) for all i 2 N(h1). The rest of the proof proceeds by

induction. Suppose players from N(h1) to N(hl) do not participate in a pairwise

farsighted improving path emanating from the network g. We have to show that

players from N(hl+1) do not take part in a pairwise farsighted improving path from

g. Let S = N(h1) [ ::: [ N(hl). Every network g0 = gjS [ eg where eg � gNnS is

such that Y cei (g
0; v) � Y cei (g; v) for all i 2 N(hl+1) by low convexity. Thus, if agents

from S do not take part in a pairwise farsighted improving path, then agents from

N(hl+1) do not take part in such move either. We have shown so far that any pair-

wise farsighted improving path emanating from g does not involve players that are

connected under g. If every player is connected under g, f(g) = ;. If one player is
not connected under g, he does not have the power to change the network without

the consent of another player, but we have just established that each other player

does not take part in a move from g, thus f(g) = ;. Finally, if more than one
agent is not connected under g, then by strong e¢ ciency of g and by component

additivity, v(bg) � v(g;) for any bg � gNnN(g), implying that there are no pairwise

farsighted improving path involving players from NnN(g) only. Thus, f(g) = ;.
()) Suppose that E(v) � Gv but weak top convexity is not satis�ed. Then,

there exists a pair of networks g 2 E(v) and g0 6= g such that v(h0)=#N(h0) >

v(h)=#N(h) for some h0 2 C(g0) such that N(h0) \N(g) 6= ;, for all h 2 C(g) such
that N(h) \ N(h0) 6= ;. Without loss of generality, let g = [ki=1hi be such that
v(hl)=#N(hl) � v(hm)=#N(hm) if l < m. Since g 2 Gv we have that h1 2 g(v;N).
Thus, h0 is such that N(h0)\N(h1) = ;. The rest of the proof proceeds by induction.
Suppose that h0 is such thatN(h0)\N(hj) = ; for all hj � hl. Then, we have to show
that h0 is such that N(h0)\N(hl+1) = ;. Let S = N(h1)[N(h2)[ :::[N(hl). Since
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g 2 Gv we have that hl+1 2 v(v;N n S). Then, v(hl+1)=#N(hl+1) � v(h0)=#N(h0)
sinceN(h0)\S = ;. This establishes thatN(h0)\N(hl+1) = ;. Thus, N(h0)\N(g) =
;, a contradiction.

We now provide a su¢ cient condition on the value function so that pairwise

farsighted stability singles out the set of strongly e¢ cient networks, E(v). A network

g is connected if for all i 2 N(g) and j 2 N(g)nfig; there exists a path in g connecting
i and j. A value function v is convex with respect to connected networks if for any

connected networks g  g0  g00  g000 such that N(g000) = N(g00)[fig with i =2 N(g00)
and N(g0) = N(g) [ fjg with j =2 N(g), we have v(g000) � v(g00) > v(g0) � v(g). A
value function v is truncated convex with respect to connected networks if (i) for

any connected networks g  g0  g00  g000 such that N(g000) = N(g00) [ fig with
i =2 N(g00), N(g0) = N(g) [ fjg with j =2 N(g), and #N(g000) � s (with s 2 N0),
we have v(g000) � v(g00) > v(g0) � v(g), and (ii) for any connected networks g  g0

such that #N(g) � s (with s 2 N0), we have v(g0) � v(g). Notice that, truncated
convexity reverts to convexity if and only if s � n.

Proposition 7. Consider any anonymous and component additive value function

v. If v is truncated convex then E(v) = Gv under the componentwise egalitarian

allocation rule Y ce.

Proof.

Corollary 3. Consider any anonymous and component additive value function v.

If v is truncated convex then E(v) is the unique pairwise farsightedly stable set,

groupwise farsightedly stable set and groupwise myopically stable set under the com-

ponentwise egalitarian allocation rule Y ce.

A value function v may be truncated convex but not top convex. Let #N = 5.

Consider a component additive value function where the value to a component is 10

if it involves 2 players, is 30 if it involves 3 players, is 28 if it involves 4 players, is

25 if it involves 5 players, and is 0 otherwise. This value function is not top convex

but is truncated convex (with s = 3). Conversely, a value function v may be top

convex but not truncated convex. Let #N = 4. Consider a component additive

value function where the value to a component is 4 if it involves 2 players, is 3 if
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it involves 3 players, is 16 if it involves 4 players, and is 0 otherwise. This value

function is not truncated convex but it is top convex.8

7 Conclusion

We have studied the stability of social and economic networks when players are far-

sighted. We have provided an algorithm that characterizes the unique pairwise and

groupwise farsightedly stable set of networks under the componentwise egalitarian

allocation rule. We have then shown that this set coincides with the unique group-

wise myopically stable set of networks but not with the pairwise myopically stable

set. Thus, we can conclude that (i) if group deviations are allowed then whether

players are farsighted or myopic does not matter, (ii) if players are farsighted then

whether players are allowed to deviate in pairs only or in groups does not matter.

Finally, we have provided some primitive conditions on value functions so that the

set of strongly e¢ cient networks belongs to the unique farsightedly stable set or

coincides with the unique farsightedly stable set.
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