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Abstract

We construct a model to explain the phenomenon that in the course of election campaigns,
candidates often use ambiguous language in the early stage of the campaigns while they some-
times make their attitudes clear later. In the model, two candidates obtain opportunities to
make their policies unambiguous, which arrive stochastically until the election at a predeter-
mined time. While there is no incentive to keep policies ambiguous if two candidates are perfectly
symmetric with respect to valence, there is a strategic incentive to keep policies ambiguous if
one candidate is slightly stronger than the other.
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1 Introduction

In elections such as those for the US presidency, candidates�policy announcements are often am-

biguous. Aragones and Neeman (1994) quoted Nicholas Biddle, the manager of William Henry

Harrison�s campaign for the presidency, advising �Let him say not a single word about his princi-

ples, or his creed - let him say nothing - promise nothing. Let no Committe, no convention - no

town meeting ever exract from him a single word, about what he thinks now, or what he will do

hereafter.�More recently, at the beginning of US presidential primary election 2008, John Edwards

criticized Barack Obama in that he abstained from many votes at Senator House, trying not to

clarify his political position. On the process of the election, Barack Obama clari�ed his policies

afterwards.

In this paper, we propose a �policy announcement game,�in which candidates strategically use

ambiguous language, which is sometimes re�ned later in equilibrium. In our model, each of two

candidates obtains opportunities to announce their policies according to a Poisson process. At each

opportunity, candidates can either clarify their policies or remain ambiguous. Once a candidate

has made his policy clear, he cannot change it afterwards. We �rst show that, if two candidates

are perfectly symmetric with respect to valence, there are no interesting strategic considerations.

Speci�cally, each candidate makes their policy clear as soon as possible. Next we show that, if

one candidate is slightly stronger than the other, there are rich strategic considerations involved

in equilibrium. For example, the weak candidate will not make his policy clear in early stages of

the election campaign because if he does so then the strong candidate will simply copy that policy

afterwards, so that the weak candidate loses for sure. In the above example, at the beginning of

the primary, Barack Obama was a �weak�candidate compared to Hillary Clinton, which implies

that he would have losen if he had speci�ed his policies at the beginning and let Hillary Clinton

optimally react to him.

The mechanism that generates ambiguous policy announcement is starkly di¤erent from those

obtained in the existing literature. In the literature on ambiguous policies such as Shepsle (1972)

and Aragones and Postlewaite (2002), it is assumed that candidates choose their policy positions

simultaneously once and for all. Ambiguity obtains because voters are assumed to possess convex

utility functions. Since voters�utility is higher with uncertain policies than with certain policies

when the utility functions are convex, the ambiguity result is not very surprising in their works. Pn
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the other hand, we explicitly model the dynamic aspects of the election campaign. It is a strategic

concern of the weak candidate about the strong opponent�s future play that causes ambiguity.

Especially, we do not assume convexity; rather, in one of the variants of our model, we show

concavity still obtains ambiguity.

Another closely related literature is on elections with valence candidates. First of all, in the

standard simultaneous-move Hotelling model, there exists no pure strategy equilibrium: The strong

candidate always wants to copy the weak candidate�s policy, while the weak candidate does not

want to be copied (This is similar to �matching pennies" game). There are two approaches to

address this issue. The �rst approach is to assume that the strong candidate is the incumbent and

the weak candidate is the entrant (Bernhardt and Ingberman (1985), Berger et al. (2000)). In this

approach, a typical result is that the strong candidate positions close to the median and the weak

candidate positions at a policy slightly away from the strong candidate�s policy, where the distance

between two policies is determined by the degree of assymmetry between candidate�s valences. The

second approach is that of Aragones and Palfrey (2002): They argue that the above �[r]esults

typically depend on order of moves," and �What is the correct sequential model"? Given this

question, they consider a mixed strategy equilibrium in simultaneous-move game. They show that

the strong candidate puts high probability around the median while the weak candidate puts small

probability on it. But the question of the �correct order" is still open. Our policy announcement

game explicitly models the order of policy announcement, so serves as an answer to this question.

To formally model the dynamic policy announcement game, we employ the framework with

continuous time, �nite horizon, and Poisson revision process, which is extensively explored recently.

Kamada and Kandori (2009)�s �revision games�consider this setting, while they consider a little

di¤erent model than ours: In their model, revisions of actions are not restricted, in the sense

that players can freely choose their actions at each of their opportunities to move, as opposed to

our assumption that once a candidate makes his intention clear, he cannot change it afterwards.

They show that, with some restrictions such as continuous action space, non-static-Nash �collusive�

action pro�les can be played at the deadline. This result is similar to our result that the action

pro�le that is played at the deadline does not correspond to the equilibrium of the stage game (in our

model there is no pure equilibrium but the action pro�le played at the deadline is pure, so this result
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trivially holds in our setting).1 Kamada and Sugaya (2010) propose a new method of equilibrium

selection using the revision game. They show that, even if there are multiple equilibria in a stage

game, the outcome of the revision game can be unique. The driving force of the uniqueness is

also a strategic concern about the opponents�future play. Ambrus and Lu (2009) consider a group

bargaining problem in this framework. The di¤erence from our paper is that in their model the

game stops when the agreement is reached. They show, in particular, that with conditions such

as superadditivity of the characteristic function, a player�s expected payo¤ is proportional to his

arrival rate. We expect that this type of result, i.e. the positive e¤ect of increasing arrival rate,

also holds in our model, but we have not yet veri�ed this property.

As for the idea of being ambiguous expecting the future events, Gale (1995, 2001)�s model of

�monotone games" also considers a similar problem. In his model, in each period, players can

only (weakly) increase their actions. Thus, in e¤ect, in each period players commit to a smaller

and smaller subset of action space, and they will never be able to �expand" that subset. The

main di¤erence from our paper is that they analyze �games with positive spillovers" and show that

collusive outcomes can be achieved, while we analyze a constant sum game, thus his results are not

applicable to our context at all.

The paper proceeds as follows. In Section 2, we introduce the model of policy announcement

game. The key assumption we impose is that one candidate is slightly stronger than the other.

Section 3 analyzes the model. In Subsection 3.1, we estblish that if two candidates are perfectly

symmetric then both candidates would want to be clear as soon as possible. In Subsection 3.2,

we consider the case in which our �key assumption" holds, and demonstrate that there is a rich

strategic consideration in equilibrium. In Section 4, we discuss other variants of the model. These

models have qualitatavely di¤erent result than the model in Section 2. Section 5 concludes.

2 The Model

There are two candidates, S and W , interpreted as a �strong candidate" and a �weak candidate,"

respectively. The policy space is X = f0; 1g, and voters are distributed over this policy space.
1Kamada and Kandori (2009) analyze �unrestricted" �unambiguous" policy announcement game, in which the

policy announcements are not restricted by the previously announced policies, and obtained policy divergence in an
equilibrium.
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Voters�distribution is unknown, but the distribution of the median voter is known, and follows the

probability mass function: f(0) = p, f(1) = 1� p, where p < 1=2. Notice that this is the minimal

environment in which we could potentially have strategic ambiguity. We will consider other (more

complicated) speci�cation of the model later.

Time is continuous, �t 2 [�T; 0] where T is large. Each candidate obtains an opportunity

to announce their �policy sets," which is a subset of X, according to the Poisson proccess with

arrival rate �. Note that we are considering the case of asynchronized announcements. The case

of synchronized announcements is discussed in Section 4. Candidate i�s policy set at time �t, i.e.

what i can say at time �t, is restricted by his previously announced policy sets: If he has already

set f0g in the past, then he can only set f0g; If he has already set f1g in the past, then he can

only set f1g; If he has announced only f0; 1g in the past, then he can announce either f0g, f1g, or

f0; 1g. We let the policy set at time �T be just f0; 1g.

The voter distribution is unknown during [�T; 0), but is revealed at time 0, at which the election

takes place. The candidate who obtains more votes wins, and obtains the payo¤ of 1. If a candidate

loses, he obtains the payo¤ of 0. Hence we are assuming purely o¢ ce-motivated candidates. Each

candidate tries to maximize his expected payo¤, so in essence he tries to maximize the winning

probability.

Let us now specify voters�utility function and behavior rules. Let xi be the policy that candidate

i chooses. Let w(xS ; xW ) 2 fS;Wg be the winner of the election, given the policy pro�le (xS ; xW ).

A voter with position y obtains the payo¤ of

u(jxw(xS ;xW ) � yj) + � � Iw(xS ;xW )=S ;

where u(0) > u(1) and � > 0 is small. In particular, we assume that � < (u(0)� u(1))=2. Small �

makes it possible to investigate the e¤ect of a very slight asymmetry in candidates�valences. We

assume that, given that candidate i is announcing policy set f0; 1g, voters believe that i will take

each of policies 0 and 1 equally likely.2 Each voter votes for the candidate who generates more

payo¤, if elected, than the other. For completeness, we assume that in the case of tie (which does

not occur in equilibrium), each voter randomizes between two candidates. We will analyze subgame

2The model is not a knife-edge case with respect to this assumption. At least for an open set of environments,
our results are basically unchanged.
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perfect equilibria of this game.

All the proofs that are not provided in the text are provided in the Appendix.

3 Analysis

3.1 A Benchmark Case: Perfectly Symmetric Candidates

In this subsection, we consider the case of � = 0 as a benchmark case. It turns out that there are

no interesting dynamics in this case.

Proposition 1 Suppose � = 0. Then, in equilibrium, each candidate announces f1g as soon as

possible.

Proof. Announcing f1g is a strict dominant strategy at every subgame.

This negative result is very general. In particular, the result holds also in the other versions of

models that we will present in Section 4. Hence the assumption of � > 0 is the key to our results

that follow.

3.2 The Cases with Valence Candidates

In this section, we demonstrate that if � > 0, then there are a rich strategic considerations involved

in equilibrium.

Before presenting the characterization of the equilibrium, let us try to provide the intuition for

our result. For the time being, consider the case with p = 1=2, which is actually outside of the

model (Remember that we set p < 1
2). Suppose that at time �t, Both S and W have previously

announced f0; 1g. If there is no further revision, W�s payo¤ is 0. So W needs to do something to

obtain a positive payo¤. Thus W announces f0g or f1g at some point in time, if he can. Since f0g

and f1g are symmetric, assume without loss of generality that W announces f1g when he clari�es

his policy.

S clearly does not have an incentive to say anything until W says something (1=2 is the lowest

possible payo¤). But after W�s announcement, S tries to copy W�s choice as soon as possible,

which gives W the payo¤ of 0.
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If W announces f1g at high t, then the probability that S enters afterwards is high. So W

wants to defer.3 But waiting too much is not very good for W : If he waits until time ��, then he

may have no chance to revise his policy set, which results in the payo¤ of 0. So there should exist

a �cuto¤," �t�, after which W announces f1g when he gets a revision opportunity.

Remember that we did not have this type of strategic considerations when � = 0.

Next, consider the case with p = 0. In this case, S would want to commit to f1g as soon as

possible, because then he can obtain the payo¤ of 1, which is the highest possible payo¤.

A question is what happens when p 2 (0; 12), and the next proposition characterizes the form of

equilibrium for each p.

Proposition 2 The equilibrium of the game is as follows:4

� Suppose that the previous policy sets are both f0; 1g at time �t. Then, if t � tS, S announces

f1g as soon as possible. If t < tS, he announces f0; 1g.

� Suppose that the previous policy sets are both f0; 1g at time �t. Then, if t > tW , S announces

f0; 1g; If t � tW , he does announces f1g as soon as possible.

� Given that S has entered, W enters as soon as possible for all t.

� Given that W has entered, S enters as soon as possible for all t.

Here, �tSe��tS =
p
1�p and tS <

1
� if such tS exists, and tW = tS +

1
2� ln

�
2
�tS

� 1
�
. Otherwise

tS =1 and tW = 1
� .

3By �entering" we mean �clarifying the policy," or �announcing the policy f0g or f1g."
4This is �essentially unique.�
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In the following �gure, we depict the values of tS and tW for various values of p.

As expected, for p close to 1
2 , S does not enter until W enters, and W enters as soon as possible

after a �nite cuto¤. Also, for small p, S enters at high t, but he does not enter at low t, i.e. when

the deadline is close. The intuition for this ambiguity near the deadline is as follows: If S obtains

an opportunity at t in this range, the probability that W has a chance to announce his policy

afterwards is small. So it is likely that W is ambiguous at the deadline. Then, staying ambiguous

is good for S, because by doing so S wins for sure with a high probability.

4 Other Variants of the Model

In this section we present three other variants of the model. The �rst one has a continuous policy

space; the second considers three-point voter distribution; and the third one considers the case of

synchronized policy announcements.

4.1 Continuous Policy Space

The literature on elections often considers the case in which voters ideal points are distributed

uniformly over the interval [0; 1]. Thus we investigate this speci�c context. Ideally, we would assume

that candidates can commit to any types of subintervals of [0; 1], which would result in gradual

resolution of ambiguity. This analysis is complicated, unfortunately. Instead, we consider the case

in which policy set can be either [0; 1] or fxg for 0 � x � 1. Analogous to the previous model,
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the policy set at time �T is [0; 1]. In the next subsection, we will brie�y discuss a speci�cation in

which gradual resolution of ambiguity is potentially possible.

Again, we assume that the valence term is � > 0, but is very small. We assume that the voter

utility function is the same as before, where u�s domain is now [0; 1], and u is continuous and

decreasing on this domain. We also sasume that u is strictly concave. By assuming concavity, we

can purify the e¤ect of dynamic policy annoucement and caniddtates�valence. Let �� = u(0)�u(�).

Notice that �� converges to 0 as � goes to 0. The next proposition characterizes what happens in

equilibrium:

Proposition 3 tW = 1
� ln

�
1 + 2p

1�2��

�
and tS = tW + 2

�

h
1

1�2�� �
1p

1�2��

i
.

Corollary 4 lim�!0 tW = lim�!0 tS =
1
� ln(3). lim��! 1

2
tW = lim��! 1

2
tS =1.

In the following �gure, we depicted the values of tS and tW for various values of ��.

Notice that the result is qualitatively di¤erent from the two-point distribution model: In the

present model, S prefers waiting in early stages, but chooses to be unambiguous in later stages.

It is worth noting that in the limit that � converges to 0, tW and tS converge to a �nite number.

Remember that if � is exactly equal to 0, both of these values should be in�nity. Hence, the form of

the equilibria are discontinuously di¤erent with respect to � at � = 0. The reason is rather simple:

The payo¤ matrix, in particular the tie-breaking rule, changes discontinously at � = 0.

4.2 Synchronized Policy Announcement

So far we have assumed that candidates�policy announcements are asynchronized. But in practice,

not all the announcements are asynchronized: For example, in televisioned debates, candidates can
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state their intentions at the same time. The most realistic would be to assume that there exist

both synchronized and asynchronized opportunities, but so far we have only considered the case in

which all the opportunities are synchronized.

For su¢ ciently small valence, the stage game payo¤ is

S nW f0g f1g f0; 1g

f0g 1; 0 p; 1� p p; 1� p

f1g 1� p; p 1; 0 1� p; p

f0; 1g 1� p; p p; 1� p 1; 0

where the �rst element is S�s payo¤. Notice that at time 0, if candidates obtain an opportunity,

they should use mixed strategies in equilibrium, as suggested by Aragones and Postlewaite (2002).

The (unique) mixed strategy equilibrium in the stage game is

 
p2

1� p+ p2 ;
(1� p)2

1� p+ p2 ;
p (1� p)
1� p+ p2

!
;

 
(1� p)2

1� p+ p2 ;
p2

1� p+ p2 ;
p (1� p)
1� p+ p2

!

and the expected value is �
2p2 � 2p+ 1
1� p+ p2 ;

p(1� p)
1� p+ p2

�
In time interval [�T; 0], opportunities to �specify�their policy arrive at each player with Poisson

arrival rate �. In these opportunities, if a candidate has not yet speci�ed whether her policy is f0g

or f1g, that is, if she has taken f0; 1g up to then, she can choose f0g, f1g, and f0; 1g. If she has

already speci�ed f0g or f1g, she cannot move at all. We consider the synchronous case, where the

opportunities are common to both candidates. Consider the following subgames: the candidates

have an opportunity at t, when

� S�s current policy choice is f0g and W�s current policy choice is f0; 1g. In this case, it is

optimal for W to choose f1g or stay at f0; 1g. In both cases, the payo¤ is (p; 1� p).

� S�s current policy choice is f1g and W�s current policy choice is f0; 1g. In this case, it is

optimal for W to choose f0g or stay at f0; 1g. In both cases, the payo¤ is (1� p; p).

� S�s current policy choice is f0; 1g and W�s current policy choice is f0g. In this case, it is

optimal for S to choose f0g. The payo¤ is (1; 0).
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� S�s current policy choice is f0; 1g and W�s current policy choice is f1g. In this case, it is

optimal for S to choose f1g. The payo¤ is (1; 0).

� S�s current policy choice is f0; 1g and W�s current policy choice is f0; 1g. In this case, we

have the following. For simplicity, we concentrate on the case where each player mixes all the

actions.

�For t 2 [0; log 2),

0BBB@
pSt

qSt

rSt

1CCCA : =

0BBB@
Probability of S taking f0g

that for f1g

that for f0; 1g)

1CCCA

=

0BBBB@
p2�p

R t
0 e

����VWt��dt

p(1�p)+e��t(1�2p+2p2)�
R t
0 e

����VWt��dt

(1�p)2e��t�(1�p)
R t
0 e

����VWt��dt

p(1�p)+e��t(1�2p+2p2)�
R t
0 e

����VWt��dt

p(1�p)
p(1�p)+e��t(1�2p+2p2)�

R t
0 e

����VWt��dt

1CCCCA
and 0BBB@

pWt

qWt

rWt

1CCCA : =

0BBB@
Probability of W taking f0g

that for f1g

that for f0; 1g

1CCCA

=

0BBBB@
(1�p)

R t
0 e

����V St��dt+(1�p)
2(2e��t�1)R t

0 e
����V St��dt+(1�p+p2)(2e��t�1)
p
R t
0 e

����V St��dt+p
2(2e��t�1)R t

0 e
����V St��dt+(1�p+p2)(2e��t�1)

(1�p)p(2e��t�1)R t
0 e

����V St��dt+(1�p+p2)(2e��t�1)

1CCCCA
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The graph under p = :45 is as follows:
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Calculating S�s strategy
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The intuitive explanation of the shape of the equilibrium is as follows. Since S puts high

probability on f0; 1=2g, W is reluctant to take f0; 1=2g in the early stage of the game.

In turn, since W speci�es his intention with high probability in the early stage of the

game, S has an incentive to take f0; 1=2g with high probability and to wait for the next

opportunity in order to mimic W�s position afterwards.

5 Conclusion and Future Work

We have proposed the model of �policy announcement game" in which candididates stochastically

obtain opportunities to announce their policies. We showed that, if two candidates are perfectly

symmetric, each candidate clari�es their policy positions as soon as possible. On the other hand,

if one candidate is slightly stronger than the other, then candidates may have incentives to defer a
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clear announcement of their policies, depending on the opponent�s current announcement, and the

time left until the election.

Our analysis yields further questions: in future work, we will analyze the case where candidates

can commit to some types of subintervals of [0; 1], which would result in gradual resolution of

ambiguity. The combination of synchronized and asynchronized opportunities is another possible

extension. We will also try to establish the existence and the uniqueness of the equilibrium, in more

general setting than in the two-point distribution case. Also, we will analyze the case in which

canididates are allowed to make inconsistent announcements, while they must incur �reputational

cost" by such announcements. The idea is that if a candidate changes his opinion frequently, voters

would infer that it is likely that the candidate would change his policy even after the election.

In addition, we will analyze the distribution of the outcome at the time of election. A question

that we will ask is if it corresponds to the distribution in the mixed strategy in the simultaneous-

move game. Actually, this type of result may be more general: In general �nite games with generic

payo¤s, we could ask if the distribution of play at the deadline in an �unrestricted" revision game

corresponds to some equilibrium of the stage game when T diverges to in�nity.
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6 Appendix

6.1 Proof of Proposition 2

Proof. We consider the case with �tS � tW � tS . To reduce the notational complexity, let �tS = u,

tW = w, and tS = s. So we are assuming u � w � s.

It can be shown that s satis�es

�se��s =
p

1� p and �s < 1:

Firstly, we solve the indi¤erence condition at w. W�s expected payo¤ from entering is:

e��w(1� p):
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W�s expected payo¤ from not entering is:

(1� p)
Z w�s

0
e�2���e��(w��)d� + p

1� e�2�(w�s)
2

+ (1� p)e�2�(w�s)
Z s

0
e����e��(s��)d�

= e��w(1� e��(w�s)) + p1� e
�2�(w�s)

2
+ (1� p)e�2�(w�s)�se��s:

Hence, entering is a best response i¤:

e��w(1� p) � (1� p)e��w(1� e��(w�s)) + p1� e
�2�(w�s)

2
+ (1� p)e�2�(w�s)�se��s:

Notice that the above equation does not hold at w = 1. We need that the above equation holds

at w = s. So substitute w = s to get:

e��s(1� p) � (1� p)�se��s;

which is equivalent to �s � 1, which is true.

Now, let�s try to solve for w.

e��w � e��w(1� e��(w�s)) + p

1� p
1� e�2�(w�s)

2
+ e�2�(w�s)�se��s:

() 0 � �e��we��(w�s) + �se��s 1� e
�2�(w�s)

2
+ e�2�(w�s)�se��s:

() 0 � �e��we��(w�s) + �se��s 1 + e
�2�(w�s)

2
:

() 0 � �X2e�s + �se��s
1 +X2e2�s

2
; X = e��w:

() 0 � �X2e2�s + �s
1 +X2e2�s

2
:

() X2(1� �s
2
) � �se

�2�s

2
:

() X2 �
�s e

�2�s

2

(1� �s
2 )
:
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e��w �
r

�s

2� �se
��s:

Notice that
q

�s
2��s < 1, so as we have shown, w > s holds, which is consistent with our assumption.

We need to show that at w, S prefers entering to not entering. Since W is indi¤erent between

entering (which gives the payo¤ of e��w(1 � p)) and not entering at w, S must prefer 1 � p, the

payo¤ from entering, to 1� e��w(1� p), the payo¤ from not entering. So we need that

1� p � 1� e��w(1� p);

which is equivalent to:r
�s

2� �se
��s(1� p) � p ()

r
�s

2� �se
��s � �se��s ()

r
�s

2� �s � �s

() �s

2� �s � (�s)
2 () 1

2� �s � �s () 1 � �s(2� �s):

Since �s(2��s) is smaller than 1, we have proved that there exists an equilibrium with u > w > s.

Next, we consider S�s indi¤ernce codition at u. The payo¤ from entering is

1� p:

The payo¤ from not entering is:

(1� e��(u�w))(1� p) + e��(u�w) 1� e
�2�(w�s)

2
(1� p)

+e��(u�w)
Z w�s

0
e�2���(1� (1�p)e��(w��))d� +e��(u�s)e��(w�s)

Z s

0
e����(1� (1�p)e��(s��))d�

+e��(u�s)e��w:

Entering is a best response if:

0 � �e��(u�w)(1� p) + e��(u�w) 1� e
�2�(w�s)

2
(1� p)

+e��(u�w)
Z w�s

0
e�2���(1� (1�p)e��(w��))d� +e��(u�s)e��(w�s)

Z s

0
e����(1� (1�p)e��(s��))d�

18



+e��(u�s)e��w:

e�w(1� p)� e�w 1� e
�2�(w�s)

2
(1� p)� e�w

Z w�s

0
e�2���(1� (1� p)e��(w��))d� � e�se��w

� e��(w�s)e�s
Z s

0
e����(1� (1� p)e��(s��))d� :

Notice that this inequality does not depend on u. Hence, the only way that u � w � s holds is

that the above inequality holds for the already speci�ed w and s.

But we have shown that S�s payo¤ from entering is larger than the payo¤ from not entering at

w. Hence, for other u�s such that u > w, The above equation must hold. Thus, the equilibrium

looks as follows:

� Given that noone has entered, S enters as soon as possible until s.

� Given that noone has entered, W enters as soon as possible after w.

� Given that S has entered, W enters as soon as possible (not entering is also a best response).

� Given that W has entered, S enters as soon as possible.

Now we consider the case with w > u > s. We show that there cannot exist an equilibrium

(probably unique) with this condition.

First, again, we have

�se��s =
p

1� p:

Second, we consider S�s indi¤erennce condition at u. The payo¤ from entering is 1� p. The payo¤

from not entering is:

Z u�s

0
e�2���(1� (1� p)e��(u��))d� + 1� e

�2�(u�s)

2
(1� p)

+e�2�(u�s)
Z s

0
e����(1� (1� p)e��(s��))d� + e��(u�s)e��u

=
1� e�2�(u�s)

2
� (1� p)e��u(1� e��(u�s)) + 1� e

�2�(u�s)

2
(1� p)

+e�2�(u�s)(1� e��s)� (1� p)e�2�(u�s)�se��s + e��(u�s)e��u:
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=
1� e�2�(u�s)

2
� (1� p)e��u(1� e��(u�s)) + 1� e

�2�(u�s)

2
(1� p)

+e�2�(u�s) � (1� p)e�2�(u�s) p

1� p:

= (1� p)
"
1� e�2�(u�s)
2(1� p) � e��u(1� e��(u�s)) + 1� e

�2�(u�s)

2
+ e�2�(u�s)

#
:

So entering is a best reponse i¤:

1 � 1� e�2�(u�s)
2(1� p) � e��u(1� e��(u�s)) + 1 + e

�2�(u�s)

2

() 0 � p

2(1� p) �
p

1� p
e�2�(u�s)

2
� e��u(1� e��(u�s))

() 0 � �se��s 1� e
�2�(u�s)

2
� e��u(1� e��(u�s))

() 0 � �se��s(1�X2e2�s)� 2X(1�Xe�s); with X = e��u

() 0 � e�s(2� �s)X2 � 2X + �se��s

() 0 � (X � e��s)(e�s(2� �s))X � �s)

() �s

2� �se
��s � X � e��s:

Notice that we have used the fact that �s < 1. Hence it must be the case that

e��u =
�s

2� �se
��s;

which is consistent with out assumption that u > s.

Finally, we will prove that, when W uses cuto¤ strategy, we must have w > u. Notice that S is

indi¤erent between entering and not entering at u. This implies that S�s payo¤ from not entering

at u is 1� p. Hence, W�s payo¤ from not entering at u is p. Thus, all we need to show is that W�s

payo¤ from entering at u is higher than p. W�s payo¤ from entering at u is:

e��u(1� p):
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Hence, it su¢ ces to show that

e��u(1� p) � p:

This is equivalent to:

e��u � p

1� p

() �s

2� �se
��s > �se��s () 1 > 2� �s () �s > 1;

which contradicts our earlier conclusion that �s < 1.

6.2 Proof of Proposition 3

Proof. Suppose �rst that tW � tS . Given that noone has entered, S�s payo¤ from entering at tS

is:

1� (1
2
� ��)(1� e��tS ):

Given that noone has entered, S�s payo¤ from not entering at tS is:

1�
�Z tS

0
e�2���e��(tS��)d� + (

1

2
� ��)

Z tS

0
e�2���(1� e��(tS��))d�

�

Since S is indi¤erent between entering and not entering at tS , these two should be equal. So we

have:

(
1

2
� ��)(1� e��tS ) =

Z tS

0
e�2���e��(tS��)d� + (

1

2
� ��)

Z tS

0
e�2���(1� e��(tS��))d�

() (
1

2
� ��)

�
1� e��tS � 1� e

�2�tS

2
+ e��tS (1� e��tS )

�
= e��tS (1� e��tS )

() 1

2
(
1

2
� ��)

h
1� e�2�tS

i
= e��tS (1� e��tS )

() 1

2
(
1

2
� ��)

h
1 + e��tS

i
= e��tS

() e��tS =
1
2(
1
2 � �

�)

1� 1
2(
1
2 � �

�)
:
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For tW � tS to be true, it must be the case that entering is a best response for W at tS . W�s payo¤

from entering at tS is:

e��tS :

W�s payo¤ from not entering at tS is 1 minus S�s payo¤ from not entering at tS , which is equal to

1 minus S�s payo¤ from entering at tS , since S is indi¤erent at tS . Hence we need that

e��tS � 1� (1� (1
2
� ��)(1� e��tS )) = (1

2
� ��)(1� e��tS ):

Substituting the value that we have solved, this is equivalent to:

1
2(
1
2 � �

�)

1� 1
2(
1
2 � �

�)
� (1

2
� ��)(1�

1
2(
1
2 � �

�)

1� 1
2(
1
2 � �

�)
):

() 1

2
(
1

2
� ��) � (1

2
� ��)(1� (1

2
� ��))

() 1

2
� 1

2
+ ��

() �� � 0;

which contradicts oua assumption that �� > 0. Hence we cannot have tW � tS .

Now we consider the case with tS > tW . Given that noone has entered, W�s payo¤ from entering

at tW is

e�tW :

Given that noone has entered, W�s payo¤ from not entering at tW is

Z tS

0
e�2���e��(tS��)d� + (

1

2
� ��)

Z tS

0
e�2���(1� e��(tS��))d�:

Since W is indi¤erent between entering and not entering at tW , these two should be equal. So we

have:

e�tW =

Z tW

0
e�2���e��(tW��)d� + (

1

2
� ��)

Z tW

0
e�2���(1� e��(tW��))d�

() e�tW = e��tW (1� e��tW ) + (1
2
� ��)

�
1� e�2�tW

2
� e��tW (1� e��tW )

�
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() e�2tW =
1

2
(
1

2
� ��)

h
1 + e�2�tW � 2e��tW

i
() 1 =

1

2
(
1

2
� ��)( 1

e��tW
� 1)2

()
s

2
1
2 � �

� =
1

e��tW
� 1

() e��tW =
1

1 +
q

4
1�2��

() tW =
1

�
ln

�
1 +

2p
1� 2��

�
:

Next, consider S�s indi¤erence at tS . S�s payo¤ from entering at tS is:

1� (1
2
� ��)(1� e��tS ):

S�s payo¤ from not entering at tS is:

1�
�
(
1

2
� ��)

Z tS�tW

0
e����(1� e��(tS��))d� + e��(tS�tW )e��tW

�

= 1�
�
(
1

2
� ��)

�
1� e��(tS�tW ) � �(tS � tW )e��tS

�
+ e��tS

�
:

Here, we used the fact that W�s expected payo¤ at tW equal to his payo¤ from entering (since he is

indi¤erent), which is equal to e��tW , and S�s payo¤ and W�s payo¤ needs to sum up to 1. Hence,

we need to have:

1� (1
2
� ��)(1� e��tS ) = 1�

�
(
1

2
� ��)

�
1� e��(tS�tW ) � �(tS � tW )e��tS

�
+ e��tS

�

() (
1

2
� ��)(1� e��tS ) = (1

2
� ��)

�
1� e��(tS�tW ) � �(tS � tW )e��tS

�
+ e��tS

() �(1
2
� ��) = (1

2
� ��)

�
�e�tW � �(tS � tW )

�
+ 1

() 3� 2��

1� 2�� = e
�tW + �(tS � tW )

() tS = tW +
1

�

�
3� 2��

1� 2�� � e
�tW

�
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() tS = tW +
1

�

�
1 +

3� 2��

1� 2�� �
2p

1� 2��

�

() tS = tW +
2

�

�
1

1� 2�� �
1p

1� 2��

�

6.3 Derivation for Section 4.2

Suppose S�s current policy choice is f0; 1g and W�s current policy choice is f0; 1g. Given the

analysis in Section 4.2, the expected payo¤ matrix for the last event can be writen as

S nW f0g f1g

f0g 1; 0 p; 1� p

f1g 1� p; p 1; 0

f0; 1g (1� p)e��t + (1� e��t); pe��t pe��t + (1� e��t); (1� p)e��t

S nW f0; 1g

f0g p; 1� p

f1g 1� p; p

f0; 1g
R t
0 e

����V St��d� + e
��t;

R t
0 e

����V Wt��d�

with
�
V S0 ; V

W
0

�
=
�
2p2�2p+1
1�p+p2 ;

p(1�p)
1�p+p2

�
. Here, V it is the value for player i when the opportunity to

move arrives at period �t. Let us call the game de�ned by the above payo¤matrix �reduced game�

as Abreu, Pearce, and Stacchetti. Note that the continuation payo¤ is also included.

Note that a mixed strategy equilibrium in this reduced game is

S :

0BBBB@
p2�p

R t
0 e

����VWt��d�

p(1�p)+e��t(1�2p+2p2)�
R t
0 e

����VWt��d�

(1�p)2e��t�(1�p)
R t
0 e

����VWt��d�

p(1�p)+e��t(1�2p+2p2)�
R t
0 e

����VWt��d�

p(1�p)
p(1�p)+e��t(1�2p+2p2)�

R t
0 e

����VWt��d�

1CCCCA

W :

0BBBB@
(1�p)

R t
0 e

����V St��d�+(1�p)
2(2e��t�1)R t

0 e
����V St��d�+(1�p+p2)(2e��t�1)
p
R t
0 e

����V St��d�+p
2(2e��t�1)R t

0 e
����V St��d�+(1�p+p2)(2e��t�1)

(1�p)p(2e��t�1)R t
0 e

����V St��d�+(1�p+p2)(2e��t�1)

1CCCCA
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V St =

�
1� p+ p2

� R t
0 e

����V St��d� +
�
1� 2p+ 2p2

� �
2e��t � 1

�R t
0 e

����V St��d� + (1� p+ p2) (2e��t � 1)
;

V Wt = 1� V St :

Consider V St case:

V St =

�
1� p+ p2

� R t
0 e

����V St��d� +
�
1� 2p+ 2p2

� �
2e��t � 1

�R t
0 e

����V St��d� + (1� p+ p2) (2e��t � 1)

=
�
1� p+ p2

�
�

p2 (1� p)2
�
2e��t � 1

�R t
0 e

����V St��d� + (1� p+ p2) (2e�t� � 1)

, Z t

0
e����V St��d� +

�
1� p+ p2

� �
2e�t� � 1

�
= �

p2 (1� p)2
�
2e�t� � 1

�
V St � (1� p+ p2)

Changing variables in the integration by s := t� � , since ds = �d� ,

Z 0

t
e��(t�s)�V Ss (�ds) +

�
1� p+ p2

� �
2e�t� � 1

�
= �

p2 (1� p)2
�
2e�t� � 1

�
V St � (1� p+ p2)

;

or

�
Z 0

t
e��(t��)�V S� d� +

�
1� p+ p2

� �
2e�t� � 1

�
= �

p2 (1� p)2
�
2e�t� � 1

�
V St � (1� p+ p2)

, Z t

0
e���V S� d� +

�
1� p+ p2

� �
2� et�

�
= �

p2 (1� p)2
�
2� et�

�
V St � (1� p+ p2)

Taking derivative with respect to t yields

e�t�V St � �
�
1� p+ p2

�
�et� = �

��p2 (1� p)2 et�(V St �
�
1� p+ p2

�
)� V S0t p2 (1� p)

2 �2� et��
(V St � (1� p+ p2))2

,

�e�tV St (V
S
t �

�
1� p+ p2

�
)2 � �

�
1� p+ p2

�
�et�(V St �

�
1� p+ p2

�
)2

= �p2 (1� p)2 et�(V St �
�
1� p+ p2

�
) + p2 (1� p)2

�
2� et�

� dV St
dt
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,

dV St
dt

=
�V St (V

S
t �

�
1� p+ p2

�
)2

p2 (1� p)2 (2e�t� � 1)
�
�
1� p+ p2

�
�2(V St �

�
1� p+ p2

�
)2

p2 (1� p)2 (2e�t� � 1)
�
�(V St �

�
1� p+ p2

�
)

(2e�t� � 1)

Solving this di¤erential equation numerically yields the result.
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