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Abstract

We prove existence of Nash equilibria in all finite games without using fixed point
theorems or path following arguments. To do so we introduce the notion of exchange-
able equilibria, which are correlated equilibria with certain symmetry and factorization
properties. We prove these exist by adapting Hart and Schmeidler’s proof of correlated
equilibrium existence. Modifying Papadimitriou’s correlated equilibrium algorithm in
the same way, we can compute exchangeable equilibria in polynomial time.

In an appropriate limit exchangeable equilibria converge to the convex hull of Nash
equilibria, proving that these exist as well (but not in polynomial time). Exchangeable
equilibria are defined in terms of symmetries of the game, so this method automat-
ically proves the stronger statement that a symmetric game has a symmetric Nash
equilibrium. The case without symmetries follows by a symmetrization argument.

1 Introduction

Nash’s Theorem is one of the most fundamental results in game theory and states that any
finite game has a Nash equilibrium in mixed strategies. Despite its importance, the authors
of the present paper know of only two essentially different proofs. The first and most common
way to prove Nash’s Theorem is via a fixed point theorem, usually Brouwer’s or Kakutani’s.
The fixed point theorem is usually proven combinatorially, say by Sperner’s Lemma [12] or
Gale’s argument using the game of hex [5], or with (co-)homology theory, a suite of powerful
but less elementary tools from algebraic topology [8].

The other known proof of Nash’s Theorem is algorithmic and consists of showing that
the Lemke-Howson path-following algorithm terminates at a Nash equilibrium [9]. In fact
this is not so different from the fixed point proof, because Sperner’s Lemma is also proven
by a path-following argument. Nonetheless, both proofs have provided unique insights into
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the structure of Nash equilibria and it is our hope that a different proof, which uses neither
fixed point theorems nor path-following arguments, will provide further insights.

Hart and Schmeidler have proven the weaker result that correlated equilibria exist by a
clever application of the Minimax Theorem [7]. For games endowed with a group action,
a simple averaging argument then proves that a symmetric correlated equilibrium exists.
We show that for such games Hart and Schmeidler’s proof can be strengthened to produce
correlated equilibria with additional symmetry and factorization properties, which we call
exchangeable equilibria.

To illustrate this idea, consider the case of k × k symmetric bimatrix games (B = AT ).
Let X = {xxT | x ∈ Rk×1

≥0 }. Then we have

Nash

CE ∩X ⊆
convex hull of Nash

conv(CE ∩X) ⊆
exchangeable

CE ∩ conv(X) ⊆
correlated

CE ,

where each type of (symmetric) equilibrium is defined by the set written below it. This
definition shows that in some sense the exchangeable equilibria are a natural mathematical
object. For examples and game theoretic interpretations of exchangeable equilibria , see the
companion paper [13].

It is evident that the set of exchangeable equilibria is convex, compact, contained in the
set of symmetric correlated equilibria, and contains the convex hull of the set of symmetric
Nash equilibria. One can show that these containments can all be strict [13], so proving
existence of exchangeable equilibria is a step in the right direction, but does not immediately
prove existence of Nash equilibria.

However, we can use the same minimax techniques to prove existence of exchangeable
equilibria with stronger incentive compatibility properties, which we call order m exchange-
able equilibria. These converge to mixtures of symmetric Nash equilibria asm goes to infinity.
In particular, this proves that symmetric Nash equilibria exist in symmetric bimatrix games.

Note that symmetry is fundamental in this argument. For example, if we had begun
with a general bimatrix game and let X = {xyT | x, y ∈ Rk×1

≥0 } we would have had

conv(X) = Rk×k
≥0 , so the exchangeable equilibria (even the order m exchangeable equilib-

ria) would have been exactly the correlated equilibria and we would not have strengthened
Hart and Schmeidler’s argument at all. However, there are several ways of turning general
games into symmetric games [6] and applying such a procedure proves existence of Nash
equilibria in general.

Up to the step of taking m to infinity, all the steps of our proof are computationally effec-
tive. Papadimitriou has shown how to apply the ellipsoid algorithm to Hart and Schmeidler’s
proof to efficiently compute correlated equilibria of large games [11]. The same technique ap-
plied to our proof allows one to compute exchangeable equilibria (and order m exchangeable
equilibria for fixed m) in polynomial time, even though the set of these is not polyhedral.
Computing these is interesting in its own right [13] and may be useful for computing approx-
imate Nash equilibria. However, computation is not the focus of this paper and we leave a
detailed investigation of these ideas for future work.

The remainder of the paper is organized as follows. We begin with background material
in Section 2. We cover the definitions of games and equilibria, give an overview of Hart
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and Schmeidler’s existence proof so we can modify it later, and introduce group actions. In
Section 3 we introduce exchangeable equilibria and prove existence of these for games under
arbitrary group actions. We do the same for order m exchangeable equilibria in Section 4.
We complete the argument in Section 5 by showing that the order m exchangeable equilibria
converge to mixtures of Nash equilibria under a certain condition (called player transitivity)
on the symmetries of the game, and then showing that we can symmetrize any game to make
this condition hold. Section 6 concludes and gives directions for future work.

2 Background

This section is divided into three parts. In the first we lay out the basic definitions of finite
games as well as Nash and correlated equilibria to fix notation. We assume the reader is
familiar with these concepts and do not attempt to motivate them. The second part reviews
Hart and Scheidler’s proof of the existence of correlated equilibria [7], preparing for similar
arguments later in the paper. The third part covers symmetries of games.

The concept of a symmetry of a game extends back at least to Nash’s paper [10]. Sym-
metries are fundamental to the present paper, so we spend more time on these and give some
examples. Although we use the language of group theory to discuss symmetries, it is worth
noting that we do not use any but the most basic theorems from group theory (e.g., the fact
that for any h in a group G, the maps g 7→ gh and g 7→ hg are bijections from G to G).
Everything in this section is standard except for Definitions 2.11 and 2.18 and the remarks
following the statement of Nash’s Theorem.

2.1 Games and equilibria

Definition 2.1. A (finite) game has a finite set I of n ≥ 2 players, each with a finite set Ci
of at least two strategies (also called pure strategies) and a utility function ui : C → R,
where C =

∏
Ci. A game is zero-sum if it has two players, called the maximizer (denoted

M) and the minimizer (denoted m), and satisfies uM + um = 0.

For elements of Ci we use Roman letters subscripted with the player’s identity, such as
si and ti. We will typically use the unsubscripted letter s to denote a strategy profile (a
choice of strategy for each player). For a choice of a strategy for all players except i we use
the symbol s−i. To denote the set of Borel probability distributions on a space X we write
∆(X). For most of the paper X will be finite so we can view ∆(X) as a convex subset of the
finite-dimensional vector space RX of real-valued functions on X. For x ∈ X the probability
distribution which assigns unit mass to x will be written δx ∈ ∆(X).

Definition 2.2. A mixed strategy for player i is a probability distribution over his pure
strategy set Ci, and the set of mixed strategies for player i is ∆(Ci). The set of independent
distributions or mixed strategy profiles will be denoted ∆Π(Γ) =

∏
i ∆(Ci).

For independent distributions it is important that we write ∆Π(Γ) rather than ∆Π(C),
because Γ specifies how C is to be thought of as a product. For example, the set S × S × S
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could be viewed as a product of three copies of S, or a product of S with S × S, and these
lead to different notions of an independent distribution – one is a product of three terms
and one is a product of two terms. This distinction will be particularly important when we
define powers of games in Section 4.

To make the notation fit together we will write ∆(Γ) for ∆(C). We may then view
∆Π(Γ) as the (nonconvex) subset of ∆(Γ) consisting of product distributions or as a convex
subset of RtiCi . Which of these views we are using will be clear from context if not explicitly
specified.

As usual we extend the domain of ui from C to ∆(Γ) by linearity, defining ui(π) =∑
s∈C ui(s)π(s). Having done so we can define equilibria.

Definition 2.3. A Nash equilibrium is an n-tuple (ρ1, . . . , ρn) ∈ ∆Π(Γ) =
∏

i ∆(Ci) of
mixed strategies, one for each player, such that ui(si, ρ−i) ≤ ui(ρi, ρ−i) for all strategies
si ∈ Ci and all players i. The set of Nash equilibria of a game Γ is denoted NE(Γ).

Definition 2.4. A correlated equilibrium is a joint distribution π ∈ ∆(Γ) such that∑
s−i∈C−i

[ui(ti, s−i)− ui(s)]π(s) ≤ 0 for all strategies si, ti ∈ Ci and all players i. The set

of correlated equilibria of a game Γ is denoted CE(Γ).

Nash equilibria correspond exactly to the correlated equilibria which are product distri-
butions, so viewing ∆Π(Γ) as a subset of ∆(Γ) we can write NE(Γ) = CE(Γ) ∩∆Π(Γ). We
introduce the existence theorems for correlated and Nash equilibria in Sections 2.2 and 2.3.

We need the Minimax Theorem at this point to define the value of a zero-sum game.
It also plays an important role our proof of Nash’s Theorem. The Minimax Theorem is
perhaps the only result in game theory which could be said to be more fundamenal than
Nash’s Theorem. An elementary proof can be given using the separating hyperplane theorem
[2].

Minimax Theorem. Let U and V be finite-dimensional vector spaces with compact convex
subsets K ⊂ U and L ⊂ V . Let Φ : U × V → R be a bilinear map. Then

sup
x∈K

inf
y∈L

Φ(x, y) = inf
y∈L

sup
x∈K

Φ(x, y),

and the optima are attained.

Definition 2.5. Given a zero-sum game Γ, we can apply this theorem with K = ∆(CM),
L = ∆(Cm), and Φ = uM . The common value of these two optimization problems is called
the value of the game and denoted v(Γ). Maximizers on the left hand side are called
maximin strategies and the set of such is denoted Mm(Γ) ⊆ ∆(CM).

The notion of strategic equivalence gives a way to turn structural information about a
game into structural information about equilibria.

Definition 2.6. Two mixed strategies σi, τi ∈ ∆(Ci) are said to be strategically equiva-
lent if uj(σi, s−i) = uj(τi, s−i) for all s−i ∈ C−i and all players j.

Proposition 2.7. If σi is strategically equivalent to τi for all i, then (σ1, . . . , σn) is a Nash
equilibrium if and only if (τ1, . . . , τn) is a Nash equilibrium.

Proof. Immediate from the definitions.
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2.2 Hart and Schmeidler’s proof

In this section we recall the structure of Hart and Schmeidler’s proof of the existence of
correlated equilibria based on the Minimax Theorem [7]. The goal of this is to frame their
argument in language which will allow us to extend it, redoing as little as possible of the
work they have done. We will use similar arguments to prove Theorems 3.7 and 4.5.

Hart and Schmeidler’s argument begins by associating with a game Γ a new zero-sum
game Γ0 and interpreting correlated equilibria of Γ in terms of this new game.

Definition 2.8. Given any game Γ, define a two-player zero-sum game Γ0 with C0
M = C,

C0
m =

⊔
iC

2
i , and utilities

u0
M(s, (ri, ti)) = −u0

m(s, (ri, ti)) =

{
ui(s)− ui(ti, s−i) if ri = si,

0 otherwise.

Proposition 2.9. Let Γ be any game. For any player i in Γ, ri ∈ Ci, and s ∈ C we
have u0

M(s, (ri, ri)) = 0, so we can bound the value of Γ0 by v(Γ0) ≤ 0. A mixed strategy
σ ∈ ∆(C0

M) = ∆(C) for the maximizer in Γ0 satisfies u0
M(σ, (ri, ti)) ≥ 0 for all (ri, ti) ∈ C0

m

if and only if σ ∈ CE(Γ). Therefore, if v(Γ0) = 0 then Mm(Γ0) = CE(Γ).

Proof. Immediate from the definitions.

The bulk of the work of proving v(Γ0) = 0, and hence the existence of correlated equilibria
(Theorem 2.14), consists of proving Lemma 2.12. We will also use this lemma below to
prove stronger statements in a similar spirit: Lemmas 3.6 and 4.4. These in turn allow us
to strengthen Theorem 2.14, yielding Theorems 3.7 and 4.5.

To state Lemma 2.12, we need to define a family of auxiliary games γ(yi). For the
purposes of the present paper, it is more important to understand the conclusion of the
lemma than to remember the details of this construction.

Definition 2.10. For any player i in Γ and any nonnegative yi ∈ RCi×Ci , define the zero-sum
game γ(yi) with strategy sets CM = Cm = Ci and utilities

uM(si, ti) = −um(si, ti) =

{∑
ri 6=ti y

si,ri
i if si = ti,

−ysi,tii otherwise.

Definition 2.11. In a zero-sum game Γ, we say that a strategy σ ∈ ∆(CM) for the maximizer
is a good reply to θ ∈ ∆(Cm) if uM(σ, θ) ≥ v(Γ). We say that a set Σ ⊆ ∆(CM) of strategies
is good against the set Θ ⊆ ∆(Cm) if for all θ ∈ Θ there is a σ ∈ Σ which is a good reply
to θ. If Σ is good against ∆(Cm) we say that Σ is good.

Lemma 2.12 ([7]). Fix a game Γ and consider Γ0. If y ∈ ∆(C0
m), then any strategy

π ∈ Mm(γ(y1))× · · · ×Mm(γ(yn)) ⊂ ∆(C0
M) satisfies uM(π, y) = 0. In particular π is good

against y and ∆Π(Γ) is good.

Proof. Omitted. See [7] for a proof using the Minimax Theorem.
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Proposition 2.13. If Γ is a zero-sum game and Σ ⊆ ∆(CM) is good, then Γ has a maximin
strategy in conv(Σ), i.e., conv(Σ) ∩Mm(Γ) 6= ∅.

Proof. Apply the Minimax Theorem with K = conv(Σ) and L = ∆(Cm).

Theorem 2.14 ([7]). For any game Γ, the value v(Γ0) = 0, so Mm(Γ0) = CE(Γ) and a
correlated equilibrium of Γ exists.

Proof. Lemma 2.12 implies v(Γ0) ≥ 0, so by Proposition 2.9 we have v(Γ0) = 0 and
Mm(Γ0) = CE(Γ). Apply Proposition 2.13 to Γ0 with Σ = ∆Π(Γ).

This proof merits two remarks. First of all, since conv(∆Π(Γ)) = ∆(Γ), Proposition 2.13
does not yield any benefit in this case over directly applying the Minimax Theorem to Γ0.
Rather, we have used Proposition 2.13 to illustrate our proof strategy for Theorems 3.7 and
4.5, in which we choose Σ with conv(Σ) ( ∆(Γ).

Second, note that in this case we know that there is a maximin strategy of Γ0 in the good
set ∆Π(Γ): this is just the statement of Nash’s Theorem. However, we cannot conclude this
directly because in general a good set need not include a maximin strategy. For example, in
any zero-sum game the set CM ( ∆(CM) is a good set, but some zero-sum games such as
matching pennies only have mixed maximin strategies.

2.3 Groups acting on games

In this section we recall the notion of a group acting on a game, as defined by Nash [10].
All groups will be finite throughout. In any group e will denote the identity element. The
subgroup generated by group elements g1, . . . , gn will be denoted 〈g1, . . . , gn〉. For n ∈ N we
will write Zn for the additive group of integers mod n and Sn for the symmetric group on n
letters. We will use cycle notation to express permutations. For example σ = (1 2 3)(4 5)(6)
is shorthand for

σ(1) = 2, σ(2) = 3, σ(3) = 1, σ(4) = 5, σ(5) = 4, and σ(6) = 6.

Definition 2.15. A left action of the group G on the set X is a map · : G×X → X
written with infix notation which satisfies the identity condition e·x = x and the associativity
condition g · (h · x) = (gh) · x. A right action of G on X is a map · : X × G → X such
that x · e = x and (x · g) · h = x · (gh).

We say that an action is linear if it extends to an action on an ambient vector space V
containing X and the map x 7→ x · g on V is linear for all g ∈ G. An x ∈ X is G-invariant
if x · g = x for all g ∈ G. The set of G-invariant elements is denoted XG.

Proposition 2.16. If G acts linearly on the convex set X then there is a map aveG : X → XG

given by aveG(x) = 1
|G|
∑

g∈G x · g. In particular if X is nonempty then XG is nonempty.
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Proof. For any x ∈ X, aveG(x) is a convex combination of elements x · g ∈ X, hence
aveG(x) ∈ X. For any h ∈ G we have

aveG(x) · h =

[
1

|G|
∑
g∈G

x · g

]
· h =

1

|G|
∑
g∈G

(x · g) · h =
1

|G|
∑
g∈G

x · (gh)

=
1

|G|
∑
g∈G

x · g = aveG(x),

where we have used linearity, the definition of a group action, and bijectivity of g 7→ gh.

A left action of G on X induces right actions on many function spaces defined on X.
For example RX is the space of functions X → R. For y ∈ RX we can define y · g ∈ RX by
(y ·g)(x) = y(g ·x). The condition that this is a right action of G on RX follows immediately
from the fact that we began with a left action of G on X. For finite X (the case of most
interest to us), the same argument shows that G acts on ∆(X) on the right.

Definition 2.17. We say that a group G acts on the game Γ if the following conditions
hold. The group G acts on the the left on I and

⊔
iCi, making g · si ∈ Cg·i for si ∈ Ci. Such

actions automatically induce a left action of G on C =
∏

iCi defined by (g · s)g·i = g · si.
We require that the utilities be invariant under the induced action on the right: ug·i · g = ui,
i.e., ug·i(g · s) = ui(s) for all i ∈ I, s ∈ C, and g ∈ G. We say that G is a symmetry group
of Γ and call elements of G symmetries of Γ.

Note that an action of G on a game can be fully specified by its action on
⊔
iCi or on C.

One way to do this is to choose G to be a subgroup of the symmetric group on
⊔
iCi or C

satisfying the above properties.

Definition 2.18. The stabilizer subgroup of player i is Gi = {g ∈ G | g · i = i}, and
acts on Ci on the left. We say that the action of G is player trivial if Gi = G for all i, or
in other words if g · i = i for all g and i. We say that the action of G is player transitive
if for all i, j ∈ I there exists g ∈ G such that g · i = j.

We illustrate the notion of group actions on a game using four examples.

Example 2.19. Let Γ be any game and G any group. Define g ·s = s for all g ∈ G and s ∈ C.
This defines a player-trivial action of G on Γ called the trivial action.

Example 2.20. A two-player finite game is often called a bimatrix game because it can be
described by two matrices A and B, such that if player one plays strategy i and player two
plays strategy j then their payoffs are Aij and Bij, respectively. If these matrices are square
and B = AT then we call the game a symmetric bimatrix game. One example is the
game of chicken, which has A = [ 4 1

5 0 ] = BT .
To put this in the context of group actions defined above, let each player’s strategy set

be C1 = C2 = {1, . . . ,m} indexing the rows and columns of A and B. Define g · (i, j) = (j, i)
for (i, j) ∈ C, so g · (g · (i, j)) = (i, j). The assumption B = AT is exactly the utility
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(u1, u2) H2 T2

H1 (1,−1) (−1, 1)
T1 (−1, 1) (1,−1)

Table 1: Matching pennies. Player 1 chooses rows and player 2 chooses columns.

compatibility condition saying that this specifies an action of G = {e, g} ∼= Z2 on this game.
Of course, depending on the structure of A and B there may be other nontrivial symmetries
as well. The element g swaps the players, so the action of G is player transitive.

Example 2.21. Consider the game of matching pennies, whose utilities are shown in Table
1. The labels H and T stand for heads and tails, respectively, and the subscripts indicate
the identities of the players for notational purposes. This a bimatrix game, but it is not a
symmetric bimatrix game in the sense of Example 2.20.

Nonetheless this game does have symmetries. The easiest to see is the map σ which
interchanges the roles of heads and tails. Letting g be the permutation of

⊔
iCi given in

cycle notation as g = (H1 T1)(H2 T2), we define g · si = g(si). Another symmetry is the
permutation h = (H1 H2 T1 T2). These satisfy g2 = e and h2 = g, so G = 〈h〉 ∼= Z4. Note
that g acts on I as the identity whereas h swaps the players, so G acts player transitively,
whereas 〈g〉 ∼= Z2 acts player trivially.

Example 2.22. Now we consider an example of an n-player game with symmetries. Through-
out this example all arithmetic will be done mod n. For simplicity in this example we will
index the players using the members of Zn instead of the set {1, . . . , n}. Each player’s
strategy space will be Ci = Zn as well. Define

ui(s1, . . . , sn) =

{
1, when si = si−1 + 1

0, otherwise.

Then we can define a symmetry g by g(si) = si + 1, which increments each player’s
strategy by one mod n, but fixes the identities of the players. Clearly g is a permutation of
order n.

We can define another symmetry h which maps a strategy for player i to the same
numbered strategy for player i + 1. That is to say, h acts on C by cyclically permuting its
arguments. Again, h is a permutation of order n. Note that g and h commute, so together
they generate a symmetry group G ∼= Zn×Zn. Both 〈h〉 ∼= Zn and G act player transitively,
whereas 〈g〉 ∼= Zn acts player trivially. If n is composite and factors as n = kl for k, l > 1
then 〈hk〉 ∼= Zl acts on Γ but neither player transitively nor player trivially.

The left actions in the definition of a group action on a game induce linear right actions
on function spaces such as ∆(Γ) ( RC and ∆Π(Γ) ( RtiCi . The inclusion map RtiCi → RC

is G-equivariant (commutes with the action of G), so with regard to this action it does not
matter whether we choose to view ∆Π(Γ) as a subset of RtiCi or of RC .

Because of the utility compatibility conditions of a group action on a game, the actions
on ∆(Γ) and ∆Π(Γ) restrict to actions on the sets CE(Γ) and NE(Γ), respectively. This
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allows us to define the G-invariant subsets ∆G(Γ), ∆Π
G(Γ), CEG(Γ), and NEG(Γ). The action

of the stabilizer subgroup Gi on Ci allows us to define the G-invariant subset ∆Gi
(Ci).

The main theorem we set out to prove is the following. This theorem is most often
applied in the case where G is the trivial group, but Nash proved the general case in [10]
and so shall we.

Nash’s Theorem. A game with symmetry group G has a G-invariant Nash equilibrium.

To prove this we will use Hart and Scheidler’s techniques in a new way. We will show
that certain classes of symmetric games have correlated equilibria with a much higher degree
of symmetry than might be expected without knowledge of Nash’s Theorem. To illustrate
what we mean, consider the following trivial improvement on Theorem 2.14.

Proposition 2.23. A game with symmetry group G has a G-invariant correlated equilibrium.

Proof. Apply Proposition 2.16 to a correlated equilibrium, which exists by Theorem 2.14.

A priori we might not expect correlated equilibria with a greater degree of symmetry than
predicted by Proposition 2.23 to exist. But viewing G-invariant Nash equilibria as correlated
equilibria, we see that we can often guarantee much more. Suppose we have an n-player
game which has identical strategy sets for all players and which is symmetric under cyclic
permutations of the players, such as the game in Example 2.22. Then Proposition 2.23 yields
a correlated equilibrium π which is invariant under cyclic permutations of the players, but
need not be invariant under other permutations. On the other hand the Nash equilibrium
ρ = (ρ1, . . . , ρn) given by Nash’s Theorem satisfies ρ1 = . . . = ρn so the corresponding
product distribution π(s1, . . . , sn) = ρ1(s1) · · · ρ1(sn) is a correlated equilibrium which is
invariant under arbitrary permutations of the players.

3 Exchangeable equilibria

In this section we prove the existence of correlated equilibria with this higher degree of
symmetry, as well as a useful factorization property, without appealing to Nash’s Theorem.
The proofs of some of the propositions in this section are direct algebraic manipulations and
these are omitted.

Definition 3.1. Viewing ∆Π
G(Γ) as a nonconvex subset of the convex set ∆G(Γ), we define

the set of G-exchangeable probability distributions

∆X
G (Γ) = conv ∆Π

G(Γ) ⊆ ∆G(Γ).

We use the term “exchangeable” because of the important case where the Ci are all equal
and the group G acts player transitively. Then distributions in ∆X

G (Γ) are invariant under
arbitrary permutations of the players. Furthermore, by De Finetti’s Theorem these are
exactly the distributions which can be extended to exchangeable distributions on infinitely
many copies of C1, i.e., distributions invariant under permutations of finitely many indices.
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De Finetti’s Theorem will not play a role in our analysis; here it merely serves to motivate
Definition 3.1.

To get a feel for these sets, we will look at them in the context of some examples.

Example 2.19 (cont’d). Since G acts trivially we can ignore it entirely. Not all distributions
are independent so ∆Π

G(Γ) ( ∆G(Γ) = ∆(Γ), but ∆X
G (Γ) = ∆G(Γ). As we have seen, one

inclusion is automatic. To prove the reverse note that for any s ∈ C, δs = δs1 · · · δsn ∈
∆Π(Γ) = ∆Π

G(Γ). But for any π ∈ ∆(Γ) we can write π =
∑

s∈C π(s)δs, and such a convex
combination of the δs is in ∆X

G (Γ) by definition.

Example 2.20 (cont’d). For a symmetric bimatrix game Γ withm strategies per player, we can
view probability distributions over C as m×m nonnegative matrices with entries summing
to unity. The nontrivial symmetry g ∈ G acts by swapping the players. From the definitions
we see that ∆G(Γ) consists of symmetric matrices and ∆Π

G(Γ) of matrices which are outer
products xxT for nonnegative column vectors x ∈ Rm. The elements of ∆X

G (Γ) = conv ∆Π
G(Γ)

are exactly the (normalized) completely positive matrices studied in [1]. Clearly all such
matrices are symmetric, elementwise nonnegative, and positive semidefinite; it turns out the
converse holds if and only if m ≤ 4 [3].

Example 2.21 (cont’d). The map on C induced by h is the permutation

((H1, H2) (T1, H2) (T1, T2) (H1, T2)).

In particular, a G-invariant probability distribution must assign equal probability to all
four outcomes in C1 × C2. There is only one such distribution and it is independent, so
∆Π
G(Γ) = ∆X

G (Γ) = ∆G(Γ).

Example 2.22 (cont’d). Recall that in this game there are n players and the Ci are the same
for all i. The group G permutes the players cyclically. Therefore the elements of ∆Π

G(Γ) are
invariant under arbitrary permutations of the players, hence so are the elements of ∆X

G (Γ).
(The converse statement is false; that is to say, there are probability distributions over C
which are invariant under arbitrary permutations of the players but are not in ∆X

G (Γ). This
is analogous to the presence in Example 2.20 of symmetric elementwise nonnegative matrices
which are not positive semidefinite, hence not completely positive.) On the other hand, an
element of ∆G(Γ) need only be invariant under cyclic permutations of the players.

Definition 3.2. The set of G-exchangeable equilibria of a game Γ is

XEG(Γ) = CE(Γ) ∩∆X
G (Γ).

When G can be inferred from context we simply refer to exchangeable equilibria.

It is immediate from the definitions that conv(NEG(Γ)) ⊆ XEG(Γ) ⊆ CEG(Γ). There are
examples in which all of these inclusions are strict [13], so proving non-emptiness of XEG(Γ)
does not immediately prove non-emptiness of NEG(Γ). Nonetheless, this is an important
step and the main result of this section.

The proof that a G-exchangeable equilibrium exists proceeds along the same lines as the
correlated equilibrium existence proof in Section 2.2. We again consider the zero-sum game
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Γ0 and prove that a certain set is good in this game (Lemma 3.6). The difference is that the
action of G yields a smaller good set, ∆Π

G(Γ). To prove this lemma we need the following
three symmetry results, which have straightforward proofs.

Proposition 3.3. If G acts on Γ then G acts player trivially on Γ0 by g · (s, (ri, ti)) =
(g · s, (g · ri, g · ti)).

Proposition 3.4. If G acts player trivially on a zero-sum game, then a set Σ ⊆ ∆G(CM)
is good if and only if it is good against ∆G(Cm).

Proof. For all g ∈ G, σ ∈ ∆G(CM), and θ ∈ ∆(Cm) we have uM(σ, θ · g) = uM(σ · g, θ · g) =
uM(σ, θ), so uM(σ, θ) = uM(σ, aveG(θ)).

Proposition 3.5. The map y 7→ Mm(γ(y)) is natural in the sense that if σ : Ci → Cj is a
bijection and yi = yj ◦ (σ, σ), then composition with σ maps Mm(γ(yj)) to Mm(γ(yi)).

Lemma 3.6. If G acts on the game Γ then in the game Γ0 the set ∆Π
G(Γ) is good.

Proof. By Proposition 3.3 and Proposition 3.4, it suffices to consider only y ∈ ∆G(C0
m),

and show that there is a π ∈ ∆Π
G(Γ) which is good against y. Lemma 2.12 states that any

π ∈ S(y) = Mm(γ(y1))× · · · ×Mm(γ(yn)) ⊂ ∆Π(Γ) is good against y.
By Proposition 3.5 the action of G on ∆Π(Γ) restricts to an action of G on S(y) since

y ∈ ∆G(C0
m). Viewing S(y) as a convex subset of RtiCi , Proposition 2.16 shows the invariant

subspace SG(y) ⊆ ∆Π
G(Γ) is nonempty, so ∆Π

G(Γ) is good.

Theorem 3.7. A game with symmetry group G has a G-exchangeable equilibrium.

Proof. By Theorem 2.14, Mm(Γ0) = CE(Γ). Lemma 3.6 shows we can apply Proposition
2.13 to Γ0 with Σ = ∆Π

G(Γ), proving that Mm(Γ0) ∩∆X
G (Γ) = XEG(Γ) is nonempty.

4 Higher order exchangeable equilibria

In this section we begin with a game Γ and artificially add symmetries to produce games
ΠmΓ and ΞmΓ with larger symmetry groups for each m ∈ N. Having constructed these
games, we can exploit our knowledge of their structure to improve Theorem 3.7 and show
that there are distributions which are simultaneously exchangeable equilibria of both ΠmΓ
and ΞmΓ. We call such distributions order m exchangeable equilibria.

We then use a compactness argument to exhibit a distribution which is simultaneously an
order m exchangeable equilibrium for all m ∈ N, called an order∞ exchangeable equilibrium.
We will see in the next section that for player-transitive symmetry groups, an order ∞
exchangeable equilibrium is just a mixture of symmetric Nash equilibria.

Most of the work in this section consists of making the proper definitions. Once that is
done, the proofs are rather short.
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4.1 Order m G-exchangeable equilibria

To define order m G-exchangeable equilibria we will need two notions of a power of a game.

Definition 4.1. For m ∈ N, the mth power of Γ, denoted ΠmΓ, is a game in which m
independent copies of Γ are played simultaneously. More specifically, ΠmΓ has mn players
labeled by pairs i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, strategy spaces ΠmCij = Ci for all i, j and
utilities Πmuij(s11, . . . , snm) = ui(s1j, s2j, . . . , snj).

The contracted mth power of Γ, denoted ΞmΓ, is a game in which m copies of Γ
are played simultaneously, but all by the same set of players. Specifically, ΞmΓ has n play-
ers, strategy spaces ΞmCi = Cm

i with generic element (si1, . . . , sim) for all i, and utilities
Ξmui(s11, . . . , snm) =

∑
j ui(s1j, s2j, . . . , snj).

To motivate the definition of an order m G-exchangeable equilibrium, we first need to
establish a few properties of these powers. One can construct examples showing that in gen-
eral none of the inclusions in this proposition can be reversed. In particular, no containment
holds between XEG×Sm (ΠmΓ) and XEG×Sm (ΞmΓ) in either direction. This is connected to
the fact that the inclusion between the sets of correlated equilibria of ΠmΓ and ΞmΓ goes in
the opposite direction from the inclusion between the sets of Nash equilibria.

Proposition 4.2. Let Γ be a game with symmetry group G and fix m ∈ N. Then both powers
ΠmΓ and ΞmΓ are games with symmetry group G× Sm and they satisfy:

• ∆X
G×Sm

(ΠmΓ) ⊆ ∆X
G×Sm

(ΞmΓ) and

• NEG×Sm (ΠmΓ) ⊆ NEG×Sm (ΞmΓ) ⊆ CEG×Sm (ΞmΓ) ⊆ CEG×Sm (ΠmΓ).

Proof. Both powers are invariant under arbitrary permutations of the copies and under
symmetries in G applied to all of the copies simultaneously. In fact in the case of ΠmΓ we
can apply a different symmetry in G to each copy independently so that ΠmΓ is invariant
under the larger group G o Sm (the wreath product of G and Sm), but we will not need this
fact.

Since G × Sm acts on ΠmC and ΞmC in the same way, ∆G×Sm (ΠmΓ) = ∆G×Sm (ΞmΓ).
The game ΠmΓ has more players than ΞmΓ, so ∆Π

G×Sm
(ΠmΓ) has stronger independence

conditions than ∆Π
G×Sm

(ΞmΓ). Therefore ∆Π
G×Sm

(ΠmΓ) ( ∆Π
G×Sm

(ΞmΓ). Taking convex
hulls yields the relation between the exchangeable distributions.

To prove the containments between the equilibrium sets, it is easiest to consider the
third containment first. Any strategy deviation available to a copy of player i in ΠmΓ can be
applied by player i in ΞmΓ to the corresponding copy of the game, proving (the contrapositive
of) the containment of the correlated equilibrium sets.

Call strategy deviations of this type “limited”. If players of ΞmΓ choose mixed strategies
independently, then the correlated equilibrium constraints for limited deviations suffice to
imply these constraints for all deviations, due to the additive separability of the utility
functions in ΞmΓ. That is to say,

CEG×Sm (ΠmΓ) ∩∆Π
G×Sm

(ΞmΓ) = CEG×Sm (ΞmΓ) ∩∆Π
G×Sm

(ΞmΓ) .
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Combined with the definitions and the containments already proven, this proves the rest of
the containments.

Suppose (ρ1, . . . , ρn) were a G-invariant Nash equilibrium of Γ. Taking the product of
the independent distribution ρ = ρ1 · · · ρn with itself m times, we obtain a distribution ρm

which is clearly a (G× Sm)-invariant Nash equilibrium of both ΠmΓ and ΞmΓ. This serves
to motivate the following definition in the sense that we should expect it not to be vacuous.

Definition 4.3. The set of order m G-exchangeable equilibria of Γ is

XEm
G (Γ) = XEG×Sm (ΠmΓ) ∩ XEG×Sm (ΞmΓ) = ∆X

G×Sm
(ΠmΓ) ∩ CE (ΞmΓ) .

We discuss some properties of these before proving they exist. To unpack the definition,
let Xj

i , 1 ≤ i ≤ n, 1 ≤ j ≤ m be random variables distributed according to π ∈ ∆X
G (ΠmΓ),

so Xj
i takes values in Ci. Then π is an order m G-exchangeable equilibrium if and only if X1

i

is a best response for player i to X1
−i given that player i knows X1

i , . . . , X
m
i . Equivalently

by the symmetry of π, Xj
i is a best response to Xk

−i given X1
i , . . . , X

m
i for all j and k.

Averaging over possible values of Xm
i , we see that these conditions imply X1

i is also a best
response to X1

−i given only X1
i , . . . , X

m−1
i . So the marginalization map from ∆X

G×Sm
(ΠmΓ) to

∆X
G×Sm−1

(Πm−1Γ) sends XEm
G (Γ) into XEm−1

G (Γ). In this way we can view the sets of higher
order exchangeable equilibria as being nested.

We will show that the set of order m G-exchangeable equilibria approaches the closure
of the convex hull of the set of Nash equilibria in some sense as m increases (Theorem 5.1
below). The corresponding statement with the set of (G × Sm)-exchangeable equilibria of
either the mth power or of the mth contracted power in place of the order m G-exchangeable
equilibria is false.

To see this, consider the natural marginalization map which sends an element of ∆G×Sn (ΠmΓ) =
∆G×Sn (ΞmΓ) to ∆G(Γ). One can show that for all Γ, G, and m, both the image of
XEG×Sm (ΠmΓ) and the image of XEG×Sm (ΞmΓ) under this map are equal to XEG(Γ).
One can also give an explicit example showing that XEG(Γ) may be strictly larger than
conv(NEG(Γ)) [13]. The lack of convergence of XEG×Sm(ΠmΓ) or XEG×Sm(ΞmΓ) to the con-
vex hull of the Nash equilibria is the motivation for the definition of order m G-exchangeable
equilibria.

Lemma 4.4. If G acts on the game Γ then in the game (ΞmΓ)0 the set ∆Π
G×Sm

(ΠmΓ) is
good.

Proof. By Lemma 3.6, ∆Π
G×Sm

(ΞmΓ) is good. The utilities in ΞmΓ are additively separable,
so any mixed strategy in ∆Π

G×Sm
(ΞmΓ) is strategically equivalent for the maximizer in (ΞmΓ)0

to a mixed strategy in ∆Π
G×Sm

(ΠmΓ).

Theorem 4.5. A game with symmetry group G has an order m G-exchangeable equilibrium
for all m ∈ N.

Proof. By Theorem 2.14, Mm((ΞmΓ)0) = CE(ΞmΓ). Lemma 4.4 shows we can apply Propo-
sition 2.13 to (ΞmΓ)0 with Σ = ∆Π

G×Sm
(ΠmΓ), so Mm((ΞmΓ)0)∩∆X

G×Sm
(ΠmΓ) = XEm

G (Γ) is
nonempty.
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4.2 Order ∞ G-exchangeable equilibria

Next we use a compactness argument to prove existence of an order ∞ G-exchangeable
equilibrium, a distribution which is in some sense an order m G-exchangeable equilibrium
for all finite m. As we have defined them the XEm

G (Γ) are distributions over different numbers
of copies of C, so they are not directly comparable and we can’t just take their intersection.

Define a map µm : ∆(∆Π
G(Γ)) → ∆X

G×Sm
(ΠmΓ) as follows. For π ∈ ∆(∆Π

G(Γ)), let R be

a random variable taking values in ∆Π
G(Γ) distributed according to π. Let Xj

i , 1 ≤ i ≤ n
and 1 ≤ j < ∞ be random variables taking values in Ci which are independent given R
and distributed according to Ri. Let µm(π) be the joint distribution of Xj

i for 1 ≤ i ≤ n
and 1 ≤ j ≤ m. In terms of equations, the set of strategy profiles of ΠmΓ is Cm and for
(s1, . . . , sm) ∈ Cm we have

[µm(π)] (s1, . . . , sm) =

∫
R(s1) · · ·R(sm)dπ(R).

DefineAm = µ−1
m (XEm

G (Γ)). Elements ofAm are representations of ordermG-exchangeable
equilibria as mixtures of independent G-invariant distributions.

Definition 4.6. The set of order ∞ G-exchangeable equilibria is XE∞G (Γ) =
⋂∞
m=1Am.

Theorem 4.7. A game with symmetry group G has an order∞ G-exchangeable equilibrium.

Proof. Endow ∆(∆Π
G(Γ)) with the topology of weak convergence, which makes it into a

compact metric space since ∆Π
G(Γ) is (11.5.4 and 11.5.5 in [4]). For any (s1, . . . , sm) ∈ Cm

the map ∆Π
G(Γ) → R given by R 7→ R(s1) · · ·R(sm) is a polynomial, hence continuous, so

the map µm is continuous by definition of weak convergence.
Each Am is convex and nonempty by definition of order m exchangeable equilibria and

Theorem 4.5. Each set XEm
G (Γ) is closed so the Am are compact. They are also nested

A1 ⊇ A2 ⊇ A3 ⊇ . . . as per the discussion after Definition 4.3, so they have nonempty,
compact, convex intersection.

5 Nash’s Theorem

5.1 The player-transitive case

Theorem 5.1. If G acts player transitively on Γ, then XE∞G = ∆(NEG(Γ)).

Proof. If σ ∈ NEG(Γ) then σm ∈ XEm
G (Γ), so δσ ∈ Am for all m and δσ ∈ XE∞G (Γ). But

XE∞G (Γ) is convex and weakly closed, so ∆(NEG(Γ)) = conv{δσ | σ ∈ NEG(Γ)} ⊆ XE∞G (Γ).
For the converse let π ∈ XE∞G (Γ) and define R and Xj

i as above. By definition of an order
m G-exchangeable equilibrium, for any 1 ≤ j ≤ m the strategy Xj

i is a best response to the
random conditional distribution Pm

i = P(X1
−i | X1

i , . . . , X
m
i ) almost surely. Let Y m

i be the
random variable taking values in ∆(Ci) which is the empirical distribution of X1

i , . . . , X
m
i .

Then Y j
i is a best response to P k

i whenever j ≤ k.
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Let Σi be the completion of the σ-algebra generated by X1
i , X

2
i , . . . and define P∞i =

P(X1
−i | Σi). Then P k

i → P∞i almost surely as k goes to infinity (Theorem 10.5.1 in [4]).

Therefore Y j
i is a best response to P∞i for all j. By the strong law of large numbers, Y j

i

converges almost surely to Ri as j goes to infinity, so Ri is a best response to P∞i and is
measurable with respect to Σi.

Since G acts player transitively, for any player j we have Rj = Ri ·g for some g ∈ G, hence
Rj is measurable with respect to Σi and so is R. But the Xj

i are independent conditioned on
R, so P∞i = E(P(X1

−i | R) | Σi) = P(X1
−i | R) = R−i. This shows that Ri is a best response to

R−i almost surely for all i, so R ∈ NEG(Γ) almost surely. In particular, π ∈ ∆(NEG(Γ)).

If G is the trivial group one can show that µ1(XE∞G (Γ)) = CE(Γ) and µ1(∆(NEG(Γ))) =
conv(NE(Γ)). These sets are different for some games (e.g., chicken), so the above theorem
can fail without the player-transitivity assumption.

Nash’s Theorem (player-transitive case). A game with player-transitive symmetry group
has a G-invariant Nash equilibrium.

Proof. Combine Theorems 4.7 and 5.1, noting that ∆(∅) = ∅.

5.2 Arbitrary symmetry groups

In this section we show how to embed an arbitrary game Γ with symmetry group G in a
game ΓSym with a player-transitive symmetry group, preserving the existence of G-invariant
Nash equilibria. This allows us to drop the player-transitivity assumption from the previous
section, proving Nash’s Theorem in full generality.

There are a variety of ways to symmetrize games. The one we have chosen is a natural
n-player generalization of von Neumann’s tensor sum symmetrization discussed in [6]. The
idea is that each of the n players in ΓSym plays all the roles of the players in Γ simultaneously.
The players in ΓSym play n! copies of Γ, one for each assignment of players in ΓSym to roles
in Γ. A player’s utility in ΓSym is the sum of his utilities over the copies.

Definition 5.2. Given an n-player game Γ with strategy sets Ci and utilities ui we define
its symmetrization ΓSym to be the n-player game with strategy sets CSym

i = C and utilities

uSym
i (s) =

∑
τ∈Sn

uτ(i) (δ(τ ? s)) ,

where s = (s1, . . . , sn) ∈ CSym = Cn, ? : Sn × CSym → CSym is defined by (τ ? s)k = sτ
−1(k),

and δ : CSym → C is defined by [δ(s)]k = skk.

We now show that ΓSym is a game with player-transitive symmetry group. We will use ?
to denote the action on ΓSym to distinguish it from the action · on Γ.

Proposition 5.3. If Γ is a game with symmetry group G then ΓSym is a game with player-
transitive symmetry group G× Sn, where σ ∈ Sn acts by ? as defined above and g ∈ G acts
by

g ? (s1, . . . , sn) 7→ (g · s1, . . . , g · sn).
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Proof. First note that ? defines an action of G on CSym. For σ, τ ∈ Sn we have

(τ ? (σ ? s))k = (σ ? s)τ
−1(k) = sσ

−1(τ−1(k)) = s(τσ)−1(k) = ((τσ) ? s)k,

so ? is also an action of Sn on CSym. These actions commute, so together they define an
action ? of G × Sn on CSym. Note that the induced actions on players are σ ? i = σ(i) and
g ? i = i.

To show that this is an action of G× Sn on ΓSym it suffices to show that the utilities of
ΓSym are invariant under the action of any σ ∈ Sn and any g ∈ G. To see the former, let
σ ∈ Sn. Then we have

uSym
σ?i (σ ? s) =

∑
τ∈Sn

uτ(σ(i)) (δ(τ ? (σ ? s))) =
∑
τ∈Sn

u(τσ)(i) (δ((τσ) ? s) =
∑
τ∈Sn

uτ(i) (δ(τ ? s))

= uSym
i (s),

where we have used in the penultimate equation the fact that Sn is a group, so the map
τ 7→ τσ is a bijection. To see the latter, let g ∈ G and let γ ∈ Sn be the permutation induced
by g on the set of players in Γ. Then we have δ(g ? s) = g · δ(γ−1 ? s), so

uSym
g?i (s) =

∑
τ∈Sn

uτ(i) (δ(τ ? (g ? s))) =
∑
τ∈Sn

uτ(i) (δ(g ? (τ ? s))) =
∑
τ∈Sn

uτ(i)

(
g · δ(γ−1 ? (τ ? s))

)
=
∑
τ∈Sn

u(γ−1τ)(i)

(
δ((γ−1τ) ? s)

)
=
∑
τ∈Sn

uτ(i) (δ(τ ? s)) = uSym
i (s),

where the third-to-last equation follows because g is a symmetry of Γ. Clearly Sn acts
transitively on the set of players.

Nash’s Theorem. A game with symmetry group G has a G-invariant Nash equilibrium.

Proof. Let Γ be a game with symmetry group G. Then ΓSym is a game with player-transitive
symmetry group G×Sn by Proposition 5.3, so it has a (G×Sn)-symmetric Nash equilibrium
by the player-transitive version of Nash’s Theorem. By definition of the action of G × Sn
on ΓSym, this Nash equilibrium is of the form (ρ, . . . , ρ), with ρ ∈ ∆G(Γ). Notice that for
each player i, each utility uSym

k (s1, . . . , sn) is a sum of functions which only depend on sij
for a single value of j. Thus ρ is strategically equivalent to the product of its marginals
ρ1 × · · · × ρn ∈ ∆Π

G(Γ). Therefore we can take the Nash equilibrium (ρ, . . . , ρ) to be such
that ρ ∈ ∆Π

G(Γ) by Proposition 2.7.
It remains to verify that ρ ∈ NEG(Γ). For any si ∈ C we can compute

uSym
i (ρ, . . . , ρ, si, ρ, . . . , ρ) =

∑
τ∈Sn

uτ(i)

(
ρ1, . . . , ρτ(i)−1, s

i
τ(i), ρτ(i)+1, . . . , ρn

)
= (n− 1)!

n∑
j=1

uj(ρ1, . . . , ρj−1, s
i
j, ρj+1, . . . , ρn).

16



For each value of j we can vary the sij component of si independently and it is a best response
for player i to play ρ in ΓSym if the rest of the players play ρ, so we must have

uj(ρ1, . . . , ρj−1, sj, ρj+1, . . . , ρn) ≤ uj(ρ)

for all players j and all sj ∈ Cj, i.e., ρ ∈ NEG(Γ).

6 Conclusion

We have shown that by studying group actions on games and introducing the notion of
exchangeable equilibrium, we can extend Hart and Schmeidler’s methods and prove Nash’s
Theorem. To the authors’ knowledge, this is the first proof of this theorem which uses
convexity-based methods (i.e., the minimax theorem). Previous proofs use path-following
arguments or fixed-point theorems, which are essentially equivalent to path-following argu-
ments by Sperner’s Lemma.

This new proof invites new approaches for computing or approximating Nash equilibria.
One can rewrite the existence proof above for (order m) exchangeable equilibria in terms
of linear programs and separation arguments instead of the Minimax Theorem and apply
the ellipsoid algorithm, just as Papadimitriou has done for Hart and Schmeidler’s proof of
the existence of correlated equilibria [11]. This shows that exchangeable equilibria can be
computed in polynomial time, at least under some assumptions on the parameters. For
example, order m exchangeable equilibria of symmetric bimatrix games can be computed in
polynomial time for fixed m.

We have seen that in the player-transitive case order m exchangeable equilibria converge
to convex combinations of Nash equilibria as m goes to infinity. There are a variety of
ways one could imagine “rounding” exchangeable equilibria to try to produce approximate
Nash equilibria. We leave the analysis of such procedures, along with the question of which
assumptions on G allow computation of exchangeable equilibria in polynomial time, for
future work.

The power of these methods suggests that exchangeable equilibria should not merely
be viewed as a step on the way to Nash equilibria. Rather, they deserve further study
in their own right. We consider several interpretations of exchangeable equilibria and the
applications they suggest in [13].
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