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Abstract

This paper analyzes an auction which allocates a perfectly divisible good
among competing agents by granting them access in the order of their bids.
The highest bidder is granted the first opportunity to purchase as many units
as desired; if any remains, the next highest bidder is then given access, and
so forth. This auction has immediate application to rent seeking behavior and
waiting as a rationing mechanism.

With homogeneous agents, bidding fully dissipates all rent, and expected
bid revenue is maximized when exactly one customer is left unable to procure
the good. This mimics the behavior of a two-part tariff with the same per-unit
price. With heterogeneous agents, similar results occur; in addition, the agent
with more to gain from winning first priority is more likely to do so if agents
are more distinct.

The auction is also compared to raffles for priority access, which is an ex-
tension of the single prize contest. The auction raises more bid revenue than
the raffle, provided that agents are not too different. Also, the auction is more
likely to award first priority to the agent who gains the most from it.
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1 Introduction

A simple method for allocating a perfectly divisible good among several agents is to

conduct an auction for priority access. Each agent simultaneously submits a bid, and

then the agent with the highest bid is given the first opportunity to procure some of

the good. If any remains, access to the good is then granted to the second highest

bidder, and so forth. Any ties are randomly broken.

Of course, if the highest bidder always intends to procure the entire available

supply, the auction would be no different from a standard auction of a single indivisible

item. However, there are a number of interesting environments in which some supply

is left over for second place (and beyond).

For example, consider the grant application process. The organization offering the

grants has some pool of money available. The applicant’s bid for this grant money can

be seen as the effort in drafting a proposal, with the best proposals (those with the

highest bid) given first priority on the pool of monies. Even so, the best grant seldom

absorbs the entire pool. This is because there is some marginal cost in justifying a

larger budget for the proposal.

A similar competition describes consumer’s queuing decisions for a good in short

supply (such as with gasoline or holiday door-buster sales). If the retailer opens at

a particular time, each consumer bids by choosing how early to arrive and stand in

line. The earliest arrival will be the first to make purchases, but does not typically

purchase the whole supply; perhaps capacity or credit constraints prevent this.

Another appropriate environment is rent seeking. The politician has some supply

of money or favors that she can distribute. Rent seekers compete through their

campaign contributions, with the largest contributors receiving the first priority. Note

that only in this last environment is the bid actually transferred from one group

to another. In grant writing and queueing, the bid destroys resources rather than

transferring them.

An additional common thread among all three environments is that the competing

agents pay their bids regardless of the auction outcome. The unsuccessful grant

applicant is not refunded his expended effort, nor can the unsuccessful rent seeker

request a refund of campaign donations. In the case of queuing, this could be modeled

either way. It is possible that one only learns she arrived too late after waiting for

the amount of time she bid; it is equally plausible that she can observe the queue on
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arrival and infer that she has arrived too late, thereby sparing herself the cost of her

bid (referred to as balking from a queue). Our model would only apply when balking

is not possible.

The bid is thus a sunk cost of procuring the good. For arbitrary preferences, the

sunk cost would reduce wealth and potentially affect demand for the good. To avoid

any wealth effect, we assume quasi-linear preferences with respect to money. Demand

is thus independent of the bid, which can only reduce surplus from consuming the

good. We also assume that these preferences are fixed and known by all bidders.

We are able to prove existence of equilibrium as well as some basic characterization

of its features; chief among these is that mixed strategies must be used. When all

agents have identical utility, the auction fully dissipates all expected rent as long as

at least one agent will be left unable to procure some of the good. Moreover, the

expected expenditure on bid fees is maximized when there is exactly one agent left

unable to procures any of the good, while all others can be full satiated.

Indeed, this result can explain why a monopolist might hold their output below

market clearing levels. If the seller is able to collect bid fees, the auction for priority

access resembles a two-part tariff. By holding output down, they are able (in expec-

tation) to capture all the consumer surplus from the sale of the item.1 Indeed, this

is typically more profitable than the typical single-price monopoly outcome.

When agents differ in their underlying utility, each may demand a different quan-

tity of the good. Thus, agents must be concerned not only with the probability of

being outbid, but also how much the higher bidder will take of the available supply.

Here, our results are characterized in terms of the net gain in utility when a partici-

pant fully satisfies his demand, rather than being left with partial fulfillment behind

some other agent.

Due to the use of mixed strategies, the auction for priority access will award first

priority randomly, but the agent with higher net gain will always be more likely to

win. Even so, in equilibrium, it is possible for this agent to have lower expected utility

than one with lower net gain — his aggressive bidding dissipates more of the consumer

surplus than the bidding of his opponent. Also, in this environment, a monopolist

1This is similar to the outcome of pay-to-bid auctions, where bidders pay a fee to increase the
current auction price. As modeled by Platt, Price and Tappen (2010), the pay-to-bid auction fully
dissipates expected consumer surplus even though the typical closing price is well below retail.
Several nascent internet sites have implemented such auctions; data from one such site provides
strong evidence confirming the model.
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would do well to limit supply: revenues from bid fees are maximized when the lower

agent would leave no supply available if he happens to win first priority.

Beginning with Tullock (1980), competition for rents has often been modeled as a

contest (or raffle) in which each person’s chance of winning the rents is equal to their

effort divided by the sum of all participants’ effort. For purposes of comparison, we

develop the logical extension: a raffle for priority access. The probability of winning

first priority access is the same as in the standard contest: the person’s bid divided

by the sum of all bids. Second priority is similarly determined from the same bids,

except that the first winner is excluded. This continues until the supply is exhausted.

In the environment with identical utility functions, the raffle always produces less

bid revenue than the auction, but leaves higher expected utility to the participants.

When utility differs across agents, the auction produces higher revenue when the

agents’ net gains are still relatively similar. The agent with lower net gain always

receives greater expected utility under the raffle, while the comparison is ambiguous

for the higher agent. Finally, the auction format is always more likely to award first

priority to the higher agent, which is more efficient than the alternative.

It is worth noting the relationship that the auction for priority access has to other

auction systems. The fact that even losers pay their bid would categorize this as

a form of all-pay auction. These began with the study of awarding a single prize

among various participants who may have the same (Hillman and Samet, 1987) or

differing (Hillman and Riley, 1989; Baye, Kovenock, and de Vries, 1996) valuations

of the prize. Others (Clark and Riis, 1998; Barut and Kovenock, 1998; Siegel, 2009)

have extended the all-pay auction to contests with multiple prizes; still, each prize is

indivisible and each agent can win no more than one prize. Ours is the first in which

agents may choose varying amounts of a perfectly divisible good. The assumption of

full information, while not common in first- and second-price auctions, is frequently

used in all-pay auctions, including all papers mentioned above, as well as in other

models of rent seeking.

Priority auctions are somewhat related. These are queuing models in which a

server must determine an order in which to serve randomly arriving customers, who

can bump themselves up in the queue through their bids. Typically, all of the cus-

tomers can eventually be served; the only question is, in what order? This does not

precisely map to our environment, where order only matters in how much supply will

remain.

4



The paper proceeds as follows: Section 2 defines the environment and mechanism

for the auction for priority access. Section 3 then proves existence of equilibrium and

characterizes its basic features. In Section 4, we analyze equilibrium when all agents

have the same utility function; Section 5 provides similar analysis for a two person

case where utility functions differ. Section 6 defines the raffle for priority access and

compares its equilibrium outcomes to those of the auction, and Section 7 concludes.

2 Model

A seller has S units of a perfectly divisible commodity, to be sold among n buyers

via an auction for priority access. Each buyer submits a sealed bid bi which are

simultaneously opened by the seller. The buyer with the largest bi is then allowed to

purchase any amount q1 ≤ S units of the good at an exogenously set price p ≥ 0 per

unit. If any supply is available after this purchase, the buyer with the second largest

bid is allowed to purchase from the remaining S − q1 units at the same price p. This

continues until supply is exhausted. Ties are broken randomly.

All players forfeit their bid, regardless of whether they obtain any supply (an all-

pay auction). The model is only slightly more complicated if only those who obtain

some supply are required to pay (a pay-as-bid auction). The bid is constrained to be

positive but less than an exogenous maximum M .2

Buyers are assumed to have preferences that are quasi-linear with respect to

money: ui(qi, bi) = vi(qi)− pqi− bi. Moreover, they have diminishing marginal utility

in the auctioned commodity: v′′ < 0. Thus, we can define di(p) ≡ arg maxqi ui(qi, bi)

as the quantity buyer i will attempt to purchase if he gains access to the available

supply.3 With the assumed utility, if available supply is less than di(p), the consumer

would optimally choose to purchase all the available supply.

Thus, for a given profile of bids b = {bi}ni=1, if agent i is not tied with another

2In making use of this model, one would typically set M sufficiently large to never be binding,
such as larger than the maximum value of winning. For existence purposes, the space of actions
must be compact.

3Note that di is independent of bi, which is precisely the purpose of assuming quasi-linear utility.
Eliminating wealth effects on demand greatly simplifies bidding strategies.
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agent (bi 6= bj for all j 6= i), he will obtain:

qi(b) = min

di(p), max

0, S −
∑

j: bj>bi

dj(p)


 (1)

If he is involved in a tie, the tied bidders are randomly ordered (with equal probability

on each permutation) and their demand is filled in order. Thus, if k agents (including

agent i) have a bid of bi, then with probability 1
k!

, the outcome is:

qi(b) = min

di(p), max

0, S −
∑

j: bj>bi

dj(p)−
∑

j: bj=bi,
π(j)<π(i)

dj(p)


 (2)

where π(·) is a permutation that creates a strict order of the k tied bidders. Note

that the tie could be inconsequential, meaning that qi(b) is the same for any of the

permutations. For instance, qi(b) = di(b) for all permutations when there is sufficient

remaining supply for all the tied agents. Similarly, if all supply has been exhausted

by agents with bids higher than bi, qi(b) = 0 for all permutations.

Typically, there are no pure strategy equilibria for this game, as will be shown

later. Thus, we define each bidder’s mixed strategy as a probability measure µi on

[0,M ]. By way of notation, let Bi be the support4 of µi. Also let B−i be the cross

product of the strategy support of each agent besides i, and µ−i(b−i) be the product

of µj(bj) for all j 6= i.

The Nash equilibrium of this game is a strategy profile µ∗ such that for all i, any

bid in the support B∗i maximizes i’s expected utility, given other players’ strategies

µ∗−i. That is, for all b∗i ∈ B∗i and all b̂i ∈ [0,M ],

EUi(b
∗
i , µ

∗
−i) ≡

∫
B∗−i

(
vi(qi(b−i, b

∗
i )) − pqi(b−i, b

∗
i )
)
dµ∗−i(b−i) − b∗i

≥
∫
B∗−i

(
vi(qi(b−i, b̂i)) − pqi(b−i, b̂i)

)
dµ∗−i(b−i) − b̂i

4The support of a probability measure µi is the set Bi such that µi(Bi) = 1 and µi(B′) < 1 for
any proper closed subset B′ ⊂ Bi.
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3 Existence and Characterization of Equilibrium

As is often the case for games with continuous action spaces, this game will not have

a Nash equilibrium in pure strategies. This is because payoffs can be discontinuous

if multiple agents choose the same bid. By bidding an infinitesimal amount more, an

agent can avoid the tie and ensure that he gets first access to the goods — and if

supply is constraining, this creates a discrete jump in utility. This is proven formally

later in this section. However, we can prove existence in mixed strategies in full

generality.

Theorem 1. For any p > 0, a mixed strategy equilibrium exists.

Beyond existence, we can also significantly narrow the set of potential equilibria.

Indeed, the observations made in the following proposition are quite useful in practice

as one seeks to calculate such an equilibrium, as is done in the following two sections.

Proposition 1. If µ∗ is an equilibrium strategy in an auction for priority access,

1. B∗i ⊂ ∪j 6=i B∗j ∪ {0}.

2. For all bi > 0, there is no i such that µ∗i ({bi}) > 0.

3. ∪i B∗i is a connected set, and 0 ∈ ∪i B∗i .

4. EUi(µ
∗) ≥ vi(0).

5. If µ∗i (0) > 0 for some i and S ≤
∑

j 6=i dj(p), then EUi(µ
∗) = vi(0).

6. If µ∗i (0) > 0 for some i and
∑

j 6=i dj(p) < S ≤
∑

j dj(p), then

EUi(µ
∗) = ui

(
S −

∑
j 6=i

dj(p), 0

)
.

7. If maxB∗i = max∪j B∗j for some i, then

EUi(µ
∗) = ui (min{di(p), S},maxB∗i ) .

The first claim establishes that an agent will not include a particular bid in his

support unless it also appears in the support of some other player. There is no reason
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to do so, since in such a case, one could reduce his bid without changing the expected

amount of supply available for purchase. The exception, of course, is 0, since it is not

possible to reduce the bid any further.

The next observation is that atoms5 never occur except possibly at zero. If a

consequential tie were to occur with positive probability (i.e. two agents have an

atom on the same bid), at least one of them would strictly prefer to break the tie.

If consequential ties almost never occur, two possibilities exist. On the one hand,

it could be that if the agent with an atom reduced his bid, he would obtain the

same purchases with the same probabilities but lower bid cost. If not, there must be

some other agent bidding just below the atom, whose outcome depends on his order

relative to the first. But this second agent can do strictly better by raising his bid

just above the atom, for then he reduces his chances of purchasing behind the first

while incurring an infinitesimal increase in bid cost.

An immediate corollary of the second claim is that no pure strategy equilibrium

exists. The only exception is when all agents set µi({0}) = 1, and that could only be

sustained if supply is weakly greater than aggregate demand.

The third claim states that there can be no gaps in the aggregate support; oth-

erwise, agents bidding just above the gap would do well to reduce their bid inside of

the gap. By the same reasoning, the aggregate support always includes 0.

The fourth claim identifies that equilibrium expected utility is bounded below by

autarky. This is because agents are always free to bid nothing, bi = 0. The worst that

can happen in such a case is that the agent comes in last and obtains nothing. Note

that this claim only applies to expected utility; once the randomization on mixed

strategies occurs, agents may find themselves having a high bid yet still being beaten

by some other agent and left without any opportunity to make a purchase. Yet other

ex-post realizations may place the agent first in line in spite of a small bid.

The last three claims are particularly useful in computing equilibria, since they

pin down an agent’s utility relative to certain aspects of his strategy. Whenever

an atom occurs in his mixed strategy, his expected utility is the same as if he bid

nothing and won exactly the leftovers after all others are served (or zero if there

is insufficient supply to have leftovers). On the other hand, anyone whose support

includes the highest bid receives an expected utility as if he always wins the first

priority (claiming either his full demand or, if not possible, the entire supply) and

5An atom of a measure µi is a strategy bi such that µi({bi}) > 0.
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bidding his highest bid for certain.

4 Symmetric Valuations

To provide some initial examples of auctions for priority access, we examine the

special case in which all agents have the same underlying utility function, ui. In this

environment, agents have equal demand d for the good; thus, the highest k bidders,

where k · d ≤ S < (k + 1)d, will receive their full demand. The k + 1th bidder will

receive the leftovers, and all others will receive nothing.

With the assumption of equal utilities, our model can be translated into the envi-

ronment of Barut and Kovenock (1998). There, one’s place after bidding determines

which prize is received, and all agents agree on the value of the various prizes. Here,

the top k bidders receive a prize worth w̄ = v(d) − pd. The k + 1th prize is valued

at x̄ = v(r) − pr where r = S − kd, and all others receive a prize of v(0), which we

normalize to 0. An application of their results provides the following characterization.

A symmetric equilibrium always exists, in which all agents play the same mixed

strategy. If S < d, then only the first place bidder receives any amount of the good.

The unique equilibrium strategy, expressed as a cumulative distribution function, is

F (b) =
(
b
x̄

) 1
n−1 , which has support B∗i = [0, x̄].

If a larger supply is available, the symmetric equilibrium strategy F (b) is implicitly

expressed as:

b = x̄

(
n− 1

k

)
F (b)n−k−1(1− F (b))k + w̄

k−1∑
m=0

(
n− 1

m

)
(1− F (b))m(F (b))n−m−1,

where the parenthetical element represents the binomial coefficient of n− 1 choose k.

This will have a support of B∗i = [0, w̄] (or if k = n− 1, B∗i = [0, w̄− x̄]), and has no

atoms.

By applying Claim 1.7, note that EUi(µ
∗) = 0 if k < n − 1 and EUi(µ

∗) = x̄

otherwise. The expected expenditures on bids is R = kw̄ + x̄ if k < n − 1 and

R = (n− 1)w̄ − nx̄ otherwise.

On the topic of allocative efficiency, one might address it on two levels. If we

take as given that the quantities are split into k packages of size d and one of size

r, then since everyone has the same utility from these packages, any distribution of
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them is equally efficient. However, if we allow alternative divisions of the S units,

this allocation is certainly inefficient because v(·) has diminishing marginal utility;

agents who end up with nothing after the auction will value a marginal unit of the

good higher than those who obtained d units.

When 1 ≤ k < n − 1, there are also a continuum of equilibria with asymmet-

ric mixed strategies, where our identical agents nonetheless employ differing mixed

strategies. The defining feature of these strategies is the size of atom placed at 0. Up

to n − k − 2 agents can have an atom at 0, while all others randomize continuously

over [0, w̄]. Those with atoms will have a gap in their support, from 0 to some bid

bi, where the latter depends on the size of their atom. Where two agents’ supports

overlap, their CDF will look the same (with the exception of atoms at 0). To solve

for the continuous portion of the mixed strategy, one employs functions much like for

the symmetric case.

We refer the reader to Barut and Kovenock (1998) for a full characterization of

these strategies. Indeed, despite their complexity, they result in the same expected

utility and expenditure as the symmetric case, and thus add little to the performance

of the auction. When some agents have different utility functions, however, there may

not be a symmetric equilibrium, as we shall see in the next section.

We conclude this section by considering these results in the light of applications of

the model. First, note that since EUi = 0, rent is full dissipated when S ≤ (n− 1)d;

in other words, if at least one agent will be unable to make purchases, they will all

expend effort up to the point that ex-ante, they are indifferent between participating

in the auction or not.

In political rent seeking, the politician is able to extract these rents in the form

of contributions or bribes. If he has discretion as to the size of S, auction revenue is

maximized by setting S = (n − 1)d. Similarly, consider a monopolist producer who

limits production to S and holds price p below market clearing. He then allocates

the short supply according to whichever clients do the most to ingratiate themselves

with the seller. The favors from clients will fully extract their consumer surplus, so

long as some clients are left without any supply. Moreover, he extracts the maximum

favors (for a given p) by setting S = (n− 1)d. If allowed to do so, it will be optimal

to set p equal to marginal cost to maximize profit.

This gives nearly the same result as the Oi two-part tariff (Oi, 1971) with two

exceptions: first, one client is left unfulfilled here, where none would be under the Oi
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Tariff (which seeks to full efficiency by excluding no one). Second, while the per-unit

price is administered equivalently, here the entry tariff is not a fee explicitly set by

the monopolist, but rather the endogenous result of competition among clients.

Of course, in other applications, the bids are not collected by anyone, but are

simply destroyed resources, such as productive time wasted by standing in lines or by

adding fluff to a grant proposal. In such environment when S ≤ (n−1)d, participants

are no better off for having expended the effort, and yet they destroy kw̄ + x̄ dollars

worth of resources in the process. Here, the efficient outcome occurs with price equal

to marginal cost, S approaching nd, and bids falling to zero.

5 Asymmetric Valuations

The auction for priority access becomes even more interesting when bidders differ in

their utility from and/or demand for the good. In addition to the fact that mixed

strategies will differ across households, this heterogeneity also introduces another

complication: agents worry not only about how many people come in ahead of them,

but also how much each of them will take.

We provide a complete analysis of two-person auctions, though it is possible (albeit

complicated) to solve for any number of bidders.

When there are exactly two agents bidding, the unique mixed strategy equilibrium

can be characterized in terms of each agent’s value of being first or second. We use

the following notation to represent these:

w̄i ≡ vi(qi)− pqi where qi = min{di(p), S}

x̄i ≡ vi(qi)− pqi where qi = min{di(p),max{0, S − dj(p)}}

Thus, w̄i represents i’s utility from realized consumption when he has first priority,

and x̄i when he has second priority. Note that w̄i ≥ x̄i. On the other hand, com-

parisons between w̄i and either w̄j or x̄j could go either direction. Without loss of

generality, we will assume that w̄1 − x̄1 ≥ w̄2 − x̄2; if this were not the case, we

could just relabel the two agents. The difference w̄i − x̄i indicates the net gain from

consuming first rather than second.

Proposition 2. The unique equilibrium is F1(b) = b
w̄2−x̄2

and F2(b) = b+w̄1−x̄1−w̄2+x̄2

w̄1−x̄1
,

resulting in EU1 = w̄1 − w̄2 + x̄2 and EU2 = x̄2.
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Note that both distributions share the same support [0, w̄2− x̄2], and agent 2 has

an atom at 0. In effect, the agent who has more to lose by being second (bidder 1)

bids more aggressively: his mixed strategy first-order stochastically dominates the

other bidders. Indeed, he is more likely to win the first priority: his bid is higher

than agent 2’s with probability 1− (w̄2−x̄2)
2(w̄1−x̄1)

, and this becomes more likely the larger

the difference in net gains.

This has the flavor of an efficiency result: the total utility generated from con-

sumption is larger when agent 1 consumes first than when agent 2 does(i.e. w̄1 + x̄2 ≥
w̄2 + x̄1), and that outcome is more likely the bigger the gains. However, the less

efficient outcome always occurs with positive probability. Moreover, there is no as-

surance that marginal utilities will be equated even when 1 does consume first.

It is interesting to note that agent 1 may not fare better than agent two in equi-

librium; when w̄1 < w̄2, agent 2 receives higher expected utility. For instance, this

could occur if agent 2 gets a lot of utility from the good, but has minor marginal

utility from the additional units obtained by being first priority instead of second.

Meanwhile, the reverse must hold for agent 1: his total utility is somewhat small, but

the marginal utility from additional units is relatively large.

The expected bid expenditures from the two agents will be R = (w̄2−x̄2)
2
− (w̄2−x̄2)2

2(w̄1−x̄1)
.

This always increases with w̄1 − x̄1, and is maximized when w̄2 − x̄2 = 1
2

(w̄1 − x̄1).

Thus, if a politician is awarding rents via an auction for priority access, he would

want one agent to have as large a net gain as possible, while the other has half that

net gain.

More likely, however, the seller can only indirectly affect the net gain by changing

available supply S. In particular, a reduction in S will reduce x̄i for both agents,

and eventually, w̄i as well; the relative size of the effect will depend on the particular

utility from consumption, vi.

6 Comparisons to Raffles for Priority Access

We now contrast the auction for priority access to the proportional contest, which is

frequently used in models of rent seeking. In this environment, each bidder chooses

a bid bi, and wins the contest with probability biP
j bj

. In this sense, the bid is like a

purchase of raffle tickets, where the participant can improve his odds of winning by

buying more tickets.
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Of course, in our environment, there is not a single prize to win. However, this

same mechanism can be used to establish an order of priority. After each agent

chooses a bid, the first access is awarded to i with probability biP
j bj

. If any supply

remains, the second priority is awarded to k with probability bkP
j 6=i bj

, assuming i won

the first round. This continues until either the supply or the bidders are exhausted.

As before, bids are sunk; an unlucky participant pays his bid even if he is unable to

purchase any of the good.

The key difference is that priority order is no longer a deterministic function of

bids, as it is in the auction. In the raffle, a larger bid produces a proportionately larger

probability of getting first access, but does not guarantee it. Another difference is that

raffles typically result in a unique pure strategy equilibrium. We present this solution

for the cases of n-person symmetric valuations and 2-person asymmetric valuations,

and compare the results to their auction counterparts.

6.1 Symmetric valuation raffle

Since all individuals are identical, we only investigate the symmetric strategies. Let bi

denote i’s bid, while bj denote the bid used by all other agents. The expected utility

of agent i is:

EUi(bi, bj) = w̄

(
k−1∑
s=0

bi
bi + (n− s− 1)bj

s∏
t=1

(
1− bi

bi + (n− t)bj

))

+x̄
bi

bi + (n− k − 1)bj

k∏
t=1

(
1− bi

bi + (n− t)bj

)
− bi

The first summation represents the k opportunities that agent i has to gain access

while there is still enough supply to satisfy his demand. Note that, conditional on

having lost on the first s ≤ k draws, the probability of winning on the s + 1th

draw, bi
bi+(n−s−1)bj

, is increasing in s. This is because those who have already been

given access are removed from the subsequent draws. The second term indicates the

probability of being selected for exactly the k + 1th priority.

Solving for the symmetric equilibrium, we take the first-order condition, setting

the derivative with respect to bi equal to zero. Then symmetry is imposed, replacing
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bj with bi. This yields the equilibrium strategy:

b∗i =
x̄− w̄ + ((n− k)w̄ − x̄)

∑k
t=0

1
n−t

n

which produces expected utility

EU∗i =
kw̄ + x̄

n
− b∗i .

Since pure strategies are employed, bid revenue is deterministic, and is equal to nb∗i .

Comparing the outcomes of a raffle to those of the auction, note that expected

utility must be higher in the raffle whenever k ≤ n−1, since the auction gives expected

utility of 0. The raffle, on the other hand, produces strictly positive utility; indeed,

this is evidenced by the fact that bi = 0 was available but not selected.

Expected bid revenue, on the other hand, is always higher under the auction

format. If we compare the two formats, the auction produces more revenue when

(k + 1)w̄

(n− k)w̄ − x̄
>

k∑
t=0

1

n− t
.

But note that:

(k + 1)w̄

(n− k)w̄ − x̄
>

k + 1

n− k
=

k

n− k
+

1

n− k
>

k

n− k − 1
+

1

n− k

>
1

n
+

1

n− 1
+ · · ·+ 1

n− k − 1
+

1

n− k
=

k∑
t=0

1

n− t
.

6.2 Asymmetric valuation raffle

Again, we consider a two-person environment using the same notation as in Section

4. As before, let w̄1 − x̄1 > w̄2 − x̄2. Bidder i has expected utility:

EUi(bi, bj) = w̄i
bi

bi + bj
+ x̄i

bj
bi + bj

− bi

First-order conditions reveal that the unique Nash equilibrium is

b∗1 =
(w̄1 − x̄1)2(w̄2 − x̄2)

(w̄1 − x̄1 + w̄2 − x̄2)2
and b∗2 =

(w̄1 − x̄1)(w̄2 − x̄2)2

(w̄1 − x̄1 + w̄2 − x̄2)2
,

14



with equilibrium payoffs:

EU∗1 = x̄1 +
(w̄1 − x̄1)3

(w̄1 − x̄1 + w̄2 − x̄2)2
and EU∗2 = x̄2 +

(w̄2 − x̄2)3

(w̄1 − x̄1 + w̄2 − x̄2)2
.

Regarding efficiency, the probability that agent 1 receives first priority after the

raffle is w̄1−x̄1

w̄1−x̄1+w̄2−x̄2
; thus, a larger difference in the net gain of the two bidders will

create a higher probability of the more efficient ordering. However, an auction for

priority access will achieve that outcome with even higher probability:

1− (w̄2 − x̄2)

2 (w̄1 − x̄1)
>

w̄1 − x̄1

w̄1 − x̄1 + w̄2 − x̄2

⇐⇒ w̄1 − x̄1 > w̄2 − x̄2,

which holds by assumption. This demonstrates that even though mixed strategies are

employed in the auction, the atom in agent 2’s bid skews the outcome so that agent

1 wins more frequently than in the raffle.

Since bids are chosen in a pure strategy, the expected revenue from bids is simply

their sum. This is computes to R = (w̄1−x̄1)(w̄2−x̄2)
w̄1−x̄1+w̄2−x̄2

. The auction generates more

revenue than the raffle if and only if w1 − x̄1 <
1√
2−1

(w̄2 − x̄2). In words, bidder 1’s

net gain cannot be too large relative to bidder 2’s net gain (i.e. at most 140% more).

Finally, a comparison of expected utility reveals that bidder 2 fares strictly better

under the raffle, rather than the auction. The comparison is ambiguous for bidder

1, who prefers the raffle whenever (w̄1 − x̄1)3 > (w̄1 − w̄2)(w̄1 − x̄1 + w̄2 − x̄2)2. In

particular, if w̄1 < w̄2, this will always hold. Note that this coincides with when agent

2 gets more utility from the auction than agent 1 does, as discussed in Section 4.

7 Conclusion

The auction for priority access provides a method of allocating a good in short supply

among potential buyers, allowing customers to make purchases in the order of their

bids. Since there is still a marginal cost of procurement even after access is awarded,

the first customer may not exhaust supply. We have shown that this auction can

be an effective method for the seller to extract consumer surplus from his patrons,

similar to a two-part tariff.

From an efficiency standpoint, in one sense the auction for priority access is

doomed from the start. Some agents can be left without any of the good, even
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though their marginal utility from consumption is well above those who did pro-

cure a portion. Of course, this is where competitive markets excel, since prices align

marginal incentives. These incentives do not arise in our auction because bids are a

fixed cost, reflecting total surplus rather than marginal.

Even so, the more agents differ, the more likely our auction is to award first

priority in a way that yields highest total surplus. Moreover, the auction performs

strictly better on this dimension than the raffle for priority access.

In the context in which bids are collected by the seller, such as political rent

seeking or key deposits to circumvent rent control, the auction represents a means

for the seller to capture rents. On the other hand, when applied to situations such

as grant writing and queuing, the bids represent wasted resources (from a social

standpoint). Indeed, applying our same results regarding expected bid revenue, the

maximum amount of waste occurs when all but one customer will be able to buy

what he wants. Indeed, society may benefit by having fewer units available so as to

reduce the incentive to queue.
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A Proofs

A.1 Proof of Theorem 1

Proof. Existence is proven by applying Corollary 5.2 of Reny (1999). Three conditions

are required to apply this result; the first two are clearly satisfied.

• The space of pure strategies [0,M ]n must be compact and Hausdorff.

• The payoff function in pure strategies vi(qi(b−i, bi)) − pqi(b−i, bi)− bi must be

bounded and measurable on [0,M ]n.

• The mixed strategy game is better-reply secure. Formally, let µ̄ be any non-

equilibrium mixed strategy profile. Let ū be a profile of expected payoffs such

that for some sequence µk → µ̄, u(µk)→ ū. The game is better reply secure if

there exists some player i and strategy µ̂i such that ui(µ−i, µ̂i) > ūi for all µ−i

within some open neighborhood of µ̄−i.

The third condition is easily satisfied if µ̄ has no consequential ties occurring with

strictly positive probability. If so, there is no discontinuity at u(µ̄). Since µ̄ is not

an equilibrium profile, some agent i has a best response to µ̄−i that strictly increases

his utility above ui(µ̄). By keeping the neighborhood of µ̄−i sufficiently small, i’s

utility remains bounded above ui(µ̄): even if nearby µ−i introduce a consequential tie

(and hence a discontinuity), the probability of that tie occurring is limited as small

as needed. Hence, any drop in utility at such discontinuities can be kept arbitrarily

small, and changes elsewhere are continuous.

Suppose instead that a consequential ties occurs with strictly positive probability

under µ̄. In this case, it is not necessarily the case that ū = u(µ̄). Since µ̄ is not an

equilibrium profile, there still exists some i with a best response to µ̄−i that strictly

increases his utility above ui(µ̄). If he is not involved in any of the consequential ties,

the analysis from before still applies.

If the only agents not playing a best reply are involved in a consequential tie, the

danger is that ū may treat some of them as if they always win the tie — and there

may not be a µ̂i for such a person that strictly provides more utility. However, since

this is a consequential tie, at least one of the agents involved has positive probability

of not receiving his full demand. That agent can strictly improve on µ̄i by shifting

the strictly positive atom he placed on the consequential tie(s) to ε higher. There can
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only be a countable number of consequential ties, so he can do this without entering

another tie. By doing so, he strictly wins each tie and obtains his full demand, but

with an insignificant increase in his expected bid, thus obtaining a strictly higher

payoff that ūi.

With i playing the µ̂i so constructed, we can contain µ−i to a small enough neigh-

borhood so that i still receives more than ūi. Even if they move some positive prob-

ability to the atoms of µ̂i, we can restrict it to be small enough that it only slightly

decreases the expected utility of i.

A.2 Proof of Proposition 1

Proof of claim 1.1. Assume there is some interval (a1, a2) ⊂ [0,M ] such that for all

b ∈ (a1, a2), b /∈ B∗j for all j 6= i. Suppose that agent i considers choosing some

bi ∈ (a1, a2). If instead he chooses b′i = bi − ε ∈ (a1, a2), then for any b−i ∈ B∗−i,

qi(bi, b−i) = qi(b
′
i, b−i). In words, whichever bid profile is selected by the other players,

both bi and b′i will have the same rank compared to the other bids, and thus obtain

the same quantity for agent i.

But then EUi(b
′
i, µ
∗
−i) = EUi(bi, µ

∗
−i) + ε, since both integrate over the same out-

comes, but b′i does so with a smaller bid. Thus, no strategy bi ∈ (a1, a2) can be utility

maximizing; hence bi /∈ B∗i .

Proof of claim 1.2. Suppose there exists a bid a ∈ (0,M ] such that µ∗i ({a}) > 0 for

some agent i. Note that there can only be a finite number of atoms among the n

agents; thus, there is some range (a− ε, a+ ε) in which there is no other atom, though

other agents might have an atom at a.

Let q̃i(b) and q˜i(b) denote the most and least agent i could receive under bidding

profile b. These only differ when a consequential tie occurs — if so, there is enough

remaining supply to satisfy some but not all of those who bid the same as i, and the

randomly selected permutation π determines who is served first.

Denote the set of bids where a is consequential to i as:

Ci(a) ≡
{
b−i ∈ B∗−i : bi = a and q̃i(b) > q˜i(b)

}
(3)

Suppose µ∗−i(Ci(a)) > 0. Then agent i can increase his expected utility by shifting his
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atom µ∗i (a) from a to a+ ε. By doing so, he ensures that he will always obtain q̃i(b)

for all b ∈ Ci(a), rather than sometimes obtaining q˜i(b). Moreover, for all b /∈ Ci(a),

his quantity obtained will weakly increase. Thus, for ε sufficiently small, the strict

increase in utility from added consumption will outweigh the small increase in bid.

If instead µ∗(Ci(a)) = 0, then when i bids a, two possibilities exist. First, bidding

a − ε could give the same outcomes with equal probability. This is to say, for any

quantity q,

µ∗−i({b−i ∈ B∗−i : qi(a, b−i) = q}) = µ∗−i({b−i ∈ B∗−i : qi(a− ε, b−i) = q}).

This would happen if no other agents have (a − ε, a) ⊂ B∗j , or if those who do

have no effect on the remaining supply available for i (because the supply is already

exhausted, or is so plentiful that both i and j can be satisfied). In such a case,

EUi(a, µ
∗
−i) = EUi(a − ε, µ∗−i) − ε; i can reduce his bid cost while maintaining his

average benefit from his opportunities to purchase.

Alternatively, if bidding a− δ for any δ ∈ (0, ε) would have some impact on agent

i’s outcomes, then there must exist some agent j with (a− ε, a) ⊂ B∗j . If so, agent k’s

outcomes are also affected by whether agent i is allowed to purchase before him or

not. Also, because they are part of an equilibrium best response, any bk ∈ (a− ε, a)

produces the same expected utility EUk(bk, µ
∗
−k). However, by bidding a + δ for

some arbitrarily small δ > 0, agent k can strictly increase his utility, because he has

reduced by µi({a}) the probability of being outbid by agent i, which allows him the

opportunity to purchase strictly more of the good, while incurring a slightly higher

bid.

Thus, in all cases, we obtain a contradiction if agent i has an atom at a. Note

that if an atom were at a = 0, the first case regarding consequential bids still apply ;

however, if bids are almost always inconsequential bids, the latter arguments cannot

be replicated since there is no bid below 0.

Proof of claim 1.3. Suppose that there is some interval (a1, a2) such that for all b ∈
(a1, a2), b /∈ B∗j for all j. Pick an agent i such that a2 ∈ B∗i . By claim 2 of Proposition

1, there are no atoms at a2. Thus, if agent i were to bid b ∈ (a1, a2), he would achieve

the same outcomes with the same probability as when bidding b = a2, but with a

lower bid. Hence this cannot be an equilibrium.

Thus, the aggregate support ∪iB∗i must be connected, having ruled out any gaps.
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Moreover, the same logic applies to an interval (0, a2), hence 0 ∈ ∪i B∗i .

Proof of claim 1.4. For any strategy µ−i, EUi(0, µ−i) ≥ vi(0); the worst that can

happen when bi = 0 is that agent i never wins the opportunity to purchase any

amount, but made no expenditure to get there. Thus, since bi = 0 is always a feasible

choice, then EUi(µ
∗
i , µ

∗
−i) ≥ EUi(0, µ

∗
−i) ≥≥ vi(0) in equilibrium.

Proof of claim 1.5. Suppose µ∗i (0) > 0 for some i,
∑

j 6=i dj(p) < S ≤
∑

j dj(p), and

EUi(µ
∗) > vi(0). This also means that EUi(0) > vi(0); in other words, with positive

probability, agent i is able to buy some positive amount of the good even when bidding

bi = 0.

If there were almost never consequential ties at b = 0, all agents j 6= i would bid

strictly more than 0 with probability 1. If so,
∑

j 6=i dj(p) < S ≤
∑

j dj(p) implies

that agent i would almost always receive 0 of the good, which contradicts.

So consequential ties must occur at b = 0 with positive probability; thus, some

subset of the bidders also have an atom at 0. But then the same logic applies as in

the proof of Claim 1.2: Any one of the agents who ties at 0 would strictly benefit by

shifting their atom from 0 to ε. This ensures access to a strictly larger amount of the

good and only requires an arbitrarily small increase in the bid. Thus µ∗ would not

be an equilibrium.

Proof of claim 1.6. Suppose S <
∑

i di(p),
∑

j 6=i dj(p) < S ≤
∑

j dj(p). Again, we

can rule out consequential ties at 0, because if they occurred with positive probability,

any tied agent would have an incentive to raise his bid slightly.

Instead, suppose that there are almost never consequential ties at b = 0. Again, all

other agents must bid strictly more than 0 with probability 1. That means when i bids

0, he receives S−
∑

j 6=i dj(p) almost surely. Hence, EUi(µ
∗) = ui

(
S −

∑
j 6=i dj(p), 0

)
.

Proof of claim 1.7. Let b̂i ≡ maxB∗i = max∪j B∗j . Bidding b̂i will almost always

result in i receiving first priority. Recall that there are no atoms if b̂i > 0, and if

b̂i = 0 then there are no consequential ties and S >
∑

j dj(p). Thus qi(b̂i, b−i) =

min{di(p), S} for almost all b−i ∈ B∗−i. Hence, i’s expected utility must equal

EUi(b̂i, µ
∗
−i) = ui

(
min{di(p), S}, b̂i

)
.
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