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Abstract

Young’s characterization of the Shapley value is considered. A new
proof of this axiomatization is presented, moreover, as applications of
the new proof, it is demonstrated that the axioms under consideration
characterize the Shapley value on various well-known subclasses of TU
games.

1 Introduction

In this paper we look into one of the well-known characterizations of the Shapley
value [7], into Young’s [8] axiomatization. The Shapley value is probably the
most popular one-point solution of transferable utility (TU) cooperative games
(henceforth games). It is applied in various fields ranging from medicine to
statistics, from engineering to accounting etc. Therefore a solid characterization
could well serve, among others, applications by helping in understanding its very
nature.

Young axiomatized the Shapley value with three axioms: efficiency (Pareto
optimality PO), symmetry or equal treatment property ETP (although sym-
metry and ETP are different axioms, they are equivalent on the class of TU
games), and strong monotonicity. Later Moulin [3] suggested another proof for
Young’s result for the three player case. Both Young’s and Moulin’s results are
applied to the whole class of TU games, however Young also showed that the
given characterization is valid on the class of superadditive games as well.

With respect to other subclasses on which Young’s result is valid we have
to mention three other papers. Neyman [5] showed that for any game, a value
defined on the additive group generated by the given game, is efficient (PO),
symmetric (or ETP ), and strongly monotonic if and only if it is the Shapley
value. Khmelnitskaya [1] provided the same result for the class of non-negative
constant-sum games with non-zero worth of grand coalition and for the entire
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class of constant-sum games. Moroever, Mlodak [2] applied the same method
as Khmelnitskaya to characterize the Shapley value on the class of non-negative
bilateral games.

The main motivation of this paper is mathematical. We provide a new
proof for Young’s axiomatization of the Shapley value. Our new proof makes it
possible to prove the validity of Young’s characterization of the Shapley value
on some other subclasses of games not considered in the literature yet.

The setup of the paper is as follows. In Section 2., we introduce the terminol-
ogy used throughout the paper. Section 3. discusses our main result. Moreover,
some proofs are relegated to the Appendix.

2 Preliminaries

First, some notation: |N | is for the cardinality of set N , and 2N denotes the set
of all subsets of N . A ⊂ B means A ⊆ B, but A 6= B. Moreover, we use |a| as
well for the absolute value of a real number a ∈ R.

Let N 6= ∅, |N | <∞, and v : 2N → R be such a function that v(∅) = 0. Then
N , v are called set of players, and transferable utility cooperative game (hence-
forth game) respectively. The class of games with players’ set N is denoted by
GN .

Let v ∈ GN and i ∈ N be arbitrarily fixed, and ∀S ⊆ N : v′i(S) = v(S ∪
{i})−v(S). Then v′i is called players i’s marginal contribution function in game
v. Put it differently, v′i(S) is player i’s marginal contribution to coalition S in
game v.

In this paper, along with GN , we consider also subclasses of games defined
below. A game v ∈ GN is

• essential, if v(N) >
∑

i∈N

v({i}),

• convex, if ∀S, T ⊆ N : v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ),

• strictly convex, if ∀S, T ⊆ N , S * T , T * S: v(S) + v(T ) < v(S ∪ T ) +
v(S ∩ T ),

• superadditive, if ∀S, T ⊆ N , S ∩ T = ∅: v(S) + v(T ) ≤ v(S ∪ T ),

• strictly superadditive, if ∀S, T ⊆ N , S, T 6= ∅, S ∩ T = ∅: v(S) + v(T ) <
v(S ∪ T ),

• weakly superadditive, if ∀S ⊆ N , ∀i ∈ N \ S: v(S) + v({i}) ≤ v(S ∪ {i}),

• strictly weakly superadditive, if ∀S ⊆ N , S 6= ∅, ∀i ∈ N \ S: v(S) +
v({i}) < v(S ∪ {i}),

• monotonic, if ∀S, T ⊆ N , S ⊆ T : v(S) ≤ v(T ),

• strictly monotonic, if ∀S, T ⊆ N , S ⊂ T : v(S) < v(T ),

• additive, if ∀S, T ⊆ N , S ∩ T = ∅: v(S) + v(T ) = v(S ∪ T ),

• weakly subadditive, if ∀S ⊆ N , ∀i ∈ N \ S: v(S) + v({i}) ≥ v(S ∪ {i}),
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• strictly weakly subadditive, if ∀S ⊆ N , S 6= ∅, ∀i ∈ N \S: v(S)+v({i}) >
v(S ∪ {i}),

• subadditive, if ∀S, T ⊆ N , S ∩ T = ∅: v(S) + v(T ) ≥ v(S ∪ T ),

• strictly subadditive, if ∀S, T ⊆ N , S, T 6= ∅, S ∩ T = ∅: v(S) + v(T ) >
v(S ∪ T ),

• concave, if ∀S, T ⊆ N : v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ),

• strictly concave, if ∀S, T ⊆ N , S * T , T * S: v(S) + v(T ) > v(S ∪ T ) +
v(S ∩ T ).

For the definition of an essential game cf. von Neumann and Morgenstern
[4], and for other types of games cf. Peleg and Sudhölter [6].

It is well known that an equivalent definition of (strictly) convex / (strictly)
concave games might be given as following:

v ∈ GN is a (strictly) convex / (strictly) concave if and only if ∀i ∈ N ,
∀T,Z ⊆ N \ {i} such that Z ⊂ T : v′i(Z) ≤ v′i(T ) (v′i(Z) < v′i(T )) /
v′i(Z) ≥ v′i(T ) (v′i(Z) > v′i(T )).

(1)

The dual of a game v ∈ GN is such a game v̄ ∈ GN that ∀S ⊆ N : v̄(S) =
v(N)− v(N \ S).

Let v ∈ GN be arbitrarily fixed. i ∼v j (i, j ∈ N), if ∀S ⊆ N such that
i, j /∈ S: v′i(S) = v′j(S). It is easy to verify that for any game v ∈ GN : ∼v is a
binary equivalence relation on N ×N .

Furthermore, if S ⊆ N is such that ∀i, j ∈ S: i ∼v j, then we say that S is
an equivalence class in v.

Next we summarize some important properties of dual games. For arbitrary
game v ∈ GN :

If i ∼v j then i ∼v̄ j. Furthermore, the dual of a (strictly) convex
game is a (strictly) concave game, and the dual of a (strictly) concave
game is a (strictly) convex game.

(2)

Throughout the paper we consider single-valued solutions. A function ψ :
A→ RN , defined on A ⊆ GN , is called a solution on set of games A.

For arbitrary game v ∈ GN the Shapley solution φ is given by

φi(v) =
∑

S⊆N\{i}

v′i(S)
|S|!(|N \ S| − 1)!

|N |!
i ∈ N,

where φi(v) is also called player i’s Shapley value [7].
The solution ψ on A ⊆ GN is / satisfies

• Pareto optimal (PO), if ∀v ∈ A:
∑

i∈N

ψi(v) = v(N),

• equal treatment property (ETP ), if ∀v ∈ A, ∀i, j ∈ N : (i ∼v j)⇒ (ψi(v) =
ψj(v)),
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• equal marginality property (EMP ), if ∀v, w ∈ A, ∀i ∈ N : (v′i = w′i) ⇒
(ψi(v) = ψi(w)).

Remark 2.1. It is very important to note that the Shapley solution is (com-
pletely) determined by the marginal contribution functions. Therefore we can
claim that for any EMP solution ψ: if ψi(v) = φi(v) and v′i = w′i then
ψi(w) = φi(w).

It is well known and not difficult to check that the Shapley solution is PO,
ETP , and EMP .

3 The main result

In this section we present our main result. The following example illustrates
the strategy of the proof of Theorem 3.3.
Example 3.1. Let N = {1, 2, 3} and v = (0, 0, 0, 3, 1, 2, 3) ∈ GN , where v =
(v({1}), . . . , v({|N |}), v({1, 2}), . . . , v({|N | − 1, |N |}), . . . , v(N)). Then v is a
superadditive but not convex game, and 1 �v 2, 1 �v 3, 2 �v 3.

Furthermore, let ψ be a PO, ETP , and EMP solution on GN . We show
that ψ2(v) = φ2(v).

Fix player 1 and chose player 2. Then there is such a game w = (0, 0, 0, 3, 2, 2,
4) that w′2 = v′2 and 1 ∼w 2 (it is clear that, w is not the only game in which
players 1 and 2 are equivalent and w′2 = v′2).

Next take set {1, 2} and chose player 3. Then there is such a game z =
(0, 0, 0, 2, 2, 2, 3) that z′3 = w′3 and 1 ∼z 2 ∼z 3.

Then PO and ETP imply that ψ(z) = φ(z). Moreover, by EMP ψ3(w) =
φ3(w). Since ψ is PO and ETP , 1 ∼w 2, therefore ψ(w) = φ(w).

By applying EMP again, we get ψ2(v) = φ2(v).
From Example 3.1. it is clear that we can deduce ψi = φi for any i (player).

In other words, we can show that ψ(v) = φ(v). All we need is that, ψ must be
defined on the paths from v to z (different w and z for different i).

The next notion is an important ingredient of our main theorem.

Definition 3.2. Set A ⊆ GN is EMP -closed, if ∀v ∈ A, ∀S ⊆ N equivalence
class in v, and ∀k ∈ N \S: ∃w ∈ A such that S ∪{k} is an equivalence class in
w and w′k = v′k.

The following theorem is our main result.

Theorem 3.3. Let set A ⊆ GN be such that ∀v ∈ A, ∀k ∈ N , and ∀i ∈ N \{k}:
∃B ⊆ A, ∃w ∈ A, and ∃z(i) ∈ B such that

1. B is EMP -closed,

2. w′k = v′k and ∀i ∈ N \ {k}: z(i)′i = w′i.

Then ψ a solution on A is PO, ETP , and EMP if and only if ψ = φ.

The above theorem is not tight. Consider e.g. the subclass of three player
games, N = {1, 2, 3}, which contains only three games: the zero game, the
unanimity game on coalition {1, 2} u{1,2}, and v = (0, 0, 1, 1, 1, 1, 2). It is a slight
calculation to show that this class does not meet the conditions of Theorem 3.3.,
but axioms PO, ETP , and EMP characterize the Shapley value on it.
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The proof of Theorem 3.3. if : It is well-known.
only if: Let v ∈ A be arbitrarily fixed, and n = |N |. Moreover, let i1 ∈ N

be arbitrarily fixed and i2 ∈ N \ {i1} be also arbitrarily fixed. Let B be an
EMP -closed class of games as in the head of the theorem, i.e. it depends on v
and i1, furthermore, let z ∈ B be arbitrarily fixed.

B is EMP -closed therefore ∃z(1) ∈ B such that z(1)′i2 = z′i2 and {i1, i2} is
an equivalence class in z(1). Let i3 ∈ N \ {i1, i2} be arbitrarily fixed.

B is EMP -closed therefore ∃z(2) ∈ B such that z(2)′i3 = z(1)′i3 and {i1, i2, i3}
is an equivalence class in z(2). Let i4 ∈ N \ {i1, i2, i3} be arbitrarily fixed.

...
B is EMP -closed therefore ∃z(n− 1) ∈ B such that z(n− 1)′in

= z(n− 2)′in

and {i1, i2, . . . , in} (= N) is an equivalence class in z(n− 1).
By PO and ETP , ψ(z(n−1)) = φ(z(n−1)) because all players i1, i2, . . . , in

are symmetric in z(n− 1).
Since both values ψ and φ meet EMP and by construction z(n − 1)′in

=
z(n − 2)′in

, it follows that ψin
(z(n − 2)) = ψin

(z(n − 1)) and φin
(z(n − 2)) =

φin
(z(n − 1)) by applying EMP twice to two different games with respect to

two different solutions. Next, all players i1, i2, . . . , in−1 are symmetric in the
game z(n−2), whence by ETP and PO it holds that ψ(z(n−2)) = φ(z(n−2)).

By applying a similar reasoning as above, and by employing that in−2 was
arbitrarily chosen, we get ψ(z(n− 3)) = φ(z(n− 3)).

...
Then that, i2 ∈ N \ {i1} was arbitrarily fixed, ψ is defined on B, it is PO

and EMP imply that ψ(z) = φ(z).

Let k = i1, w, z(i) be as in the head of the theorem. Since ∀i ∈ N \ {i1}:
w′i = z(i)′i, ∀z ∈ B: ψ(z) = φ(z), ψ is defined on A, and it is PO and EMP ,
therefore ψ(w) = φ(w).

w′i1 = v′i1 , and ψ is EMP , hence ψi1(v) = φi1(v).
i1 was arbitrarily fixed, therefore ψ(v) = φ(v). Q.E.D.

Next, we show that the above theorem implements Young’s [8] result.

Theorem 3.4 (Young). ψ a solution on GN is PO, ETP , and EMP if and
only if ψ = φ.

To prove Theorem 3.4. it is enough to show that GN is EMP -closed.

Proposition 3.5. GN is EMP -closed.

First we prove the next lemma.

Lemma 3.6. Let v ∈ GN be arbitrarily fixed. Then S ⊆ N is an equivalence
class in v if and only if ∀T,Z ⊆ N such that T \ S = Z \ S and |T | = |Z|:
v(T ) = v(Z).

Proof. if: It is left for the reader.
only if: W.l.o.g. we can assume that T \Z 6= ∅, and let T \Z = {l1, . . . , lm}

and Z \ T = {q1, . . . , qm}. Since T \ Z ⊆ S and Z \ T ⊆ S, S is an equivalence
class in v, hence ∀i, 1 ≤ i ≤ m:
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v((T ∩ Z) ∪ {l1, . . . , li})
= v((T ∩ Z) ∪ {l1, . . . , li−1}) + v′li((T ∩ Z) ∪ {l1, . . . , li−1})

= v((T ∩ Z) ∪ {q1, . . . , qi−1}) + v′qi
((T ∩ Z) ∪ {q1, . . . , qi−1})

= v((T ∩ Z) ∪ {q1, . . . , qi})

Therefore v(T ) = v(Z). Q.E.D.

Next, we consider a direct corollary of Lemma 3.6.

Corollary 3.7. Let v ∈ GN be arbitrarily fixed, S ⊆ N be an equivalence
class in v, and k ∈ N \ S be also arbitrarily fixed. Then ∀T,Z ⊆ N such that
T \ S = Z \ S and |T | = |Z|: v′k(T ) = v′k(Z).

The proof of Proposition 3.5. Let v ∈ GN be such that S ⊂ N is an equivalence
class in v, and k ∈ N \ S be arbitrarily fixed.

If T = ∅ then let w(T ) = 0. If T ∩ (S ∪ {k}) = ∅, T 6= ∅ then let w(T ) be
arbitrarily fixed. In the other cases (T ∩ (S ∪ {k}) 6= ∅), let

w(T ) $ w(T \ (S ∪ {k})) +
m∑

i=1

v′k((T \ (S ∪ {k})) ∪ {l1, . . . , li−1}) , (3)

where m = |(S ∪ {k}) ∩ T |, and li ∈ S ∩ T , i = 1, . . . ,m− 1. Notice that from

Corollary 3.7.
m∑

i=1

v′k((T \ (S ∪ {k})) ∪ {l1, . . . , li−1}) does not depend on the

ordering of the elements of S ∩ T , i.e. w is well-defined.
It is easy to verify that w′k = v′k, furthermore, from Lemma 3.6. S ∪ {k} is

an equivalence class in w. Q.E.D.

The proof of Theorem 3.4. See Theorem 3.3. and Proposition 3.5. Q.E.D.

Next, we show that Young’s axiomatization is also valid on all the considered
subclasses of games.

Theorem 3.8. ψ a solution on the class of essential / (strictly) convex /
(strictly) superadditive / (strictly) weakly superadditive / (strictly) monotonic /
additive / (strictly) weakly subadditive / (strictly) subadditive / (strictly) con-
cave games is PO, ETP , and EMP if and only if ψ = φ.

In order to apply Theorem 3.3 we need the following lemmata (the proofs
are relegated to the Appendix):

Lemma 3.9. The class of the strictly convex / additive / strictly concave games
is EMP -closed.

Lemma 3.10. Let v ∈ GN be an arbitrarily fixed essential / convex / (strictly)
superadditive / (strictly) weakly superadditive / (strictly) monotonic game, and
k ∈ N be arbitrarily fixed. Then ∃w essential / convex / (strictly) superadditive
/ (strictly) weakly superadditive / (strictly) monotonic game, and ∀i ∈ N \ {k}:
∃z(i) strictly convex games such that w′k = v′k and ∀i ∈ N \ {k}: z(i)′i = w′i.
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Lemma 3.11. Let v ∈ GN be an arbitrarily fixed (strictly) weakly subadditive
/ (strictly) subadditive/ concave game, and k ∈ N be arbitrarily fixed. Then
∃w (strictly) weakly subadditive / (strictly) subadditive / concave game, and
∀i ∈ N \ {k}: ∃z(i) strictly concave games such that w′k = v′k and ∀i ∈ N \ {k}:
z(i)′i = w′i.

The proof of Theorem 3.8. See Theorem 3.3., and Lemmata 3.9., 3.10., 3.11.
Q.E.D.

The importance of Lemmata 3.10. and 3.11. is that not all the considered
classes of games are EMP -closed.

Remark 3.12. The proof of Lemma 3.9. shows that the classes of (strictly)
convex, (strictly) weakly superadditive, (strictly) monotonic, additive, (strictly)
weakly subadditive, (strictly) concave games are EMP -closed. It is common in
these games that they can be characterized completely by the properties of the
players’ marginal contribution functions. This fact is responsible for that their
classes are EMP -closed.

However, the classes of essential, (strictly) superadditive, (strictly) subaddi-
tive games are not EMP -closed. The next example shows this fact.

Example 3.13. (1) Let v = (0, 0, 10, 50, 0, 0, 20), where S = {1, 2} is an equiva-
lence class in v. v is an essential game, however the only game w such that N
is an equivalence class in w, and w′3 = v′3 is w = (10, 10, 10, 10, 10, 10,−20), but
that is not essential.

(2) Let v = (0, 0, 0, 10, 51, 51, 51, 51, 51, 51, 62, 62, 62, 62, 103), where S =
{1, 2, 3} is an equivalence class in v. v is a strictly superadditive game, how-
ever the only game w such that N is an equivalence class in w, and w′4 = v′4,
is w = (10, 10, 10, 10, 61, 61, 61, 61, 61, 61, 72, 72, 72, 72, 113), but that is not su-
peradditive. For the subadditive case take −v.

Remark 3.14. If |N | ≤ 3 then the classes of (strictly) superadditive, (strictly)
subadditive games coincide with the classes of (strictly) weakly superadditive,
(strictly) weakly subadditive games respectively, hence they are EMP -closed.
Furthermore, if |N | = 2 then the class of essential games coincides with the
class of strictly superadditive games, hence it is EMP -closed.

4 Appendix

The proof of Lemma 3.9. Let v ∈ GN be such that S ⊂ N is an equivalence
class in v, and k ∈ N \ S be arbitrarily fixed. The proof of Lemma 3.5. shows
that ∃w ∈ GN such that S ∪ {k} is an equivalence class in w and w′k = v′k.
Moreover, ∀T such that T ∩ (S∪{k}) = ∅, T 6= ∅: w(T ) can be arbitrarily fixed.
Therefore, the only thing we have to do (except the trivial case of additive
games) is to show that we can give such values to these coalitions that w be in
the considered class of games.

(1) The class of additive games: It is well known that game z ∈ GN is
additive if and only if ∀i ∈ N : ∃ci ∈ R such that ∀T ⊆ N \ {i}: z′i(T ) = ci.

Let c∗ $ v′k(∅). Moreover, ∀T ⊆ N let

w(T ) = c∗|T | . (4)
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It is easy to see that w′k = v′k, w is additive, and N is an equivalence class
in w.

(2) The class of strictly convex games: Game z ∈ GN is strictly convex if and
only if ∀i ∈ N , ∀T,Z ⊆ N \ {i} such that Z ⊂ T : z′i(Z) < z′i(T ) (see equation
(1)).

Let M > max
T⊂N

|v′k(T )| be arbitrarily fixed. Moreover, let

w(T ) = M |N |3|T | , (5)

where T ∩ (S ∪ {k}) = ∅, T 6= ∅, and let w(∅) = 0.
Let l ∈ N \ (S ∪ {k}) be arbitrarily fixed, and T,Z ⊆ N \ {l} such that

Z ⊂ T . Then

w′l(T ) = w(T ∪ {l})− w(T )

= w((T ∪ {l}) \ (S ∪ {k})) +
m∑

i=1

w′li(((T ∪ {l}) \ (S ∪ {k})) ∪ {l1, . . . , li−1})

−w(T \ (S ∪ {k}))−
m∑

i=1

w′li((T \ (S ∪ {k})) ∪ {l1, . . . , li−1}) ,

and

w′l(Z) = w(Z ∪ {l})− w(Z)

= w((Z ∪ {l}) \ (S ∪ {k})) +
n∑

i=1

w′li(((Z ∪ {l}) \ (S ∪ {k})) ∪ {l1, . . . , li−1})

−w(Z \ (S ∪ {k}))−
n∑

i=1

w′li((Z \ (S ∪ {k})) ∪ {l1, . . . , li−1}) ,

where m = |(S∪{k})∩T |, n = |(S∪{k})∩Z|, and {l1, . . . , ln} = (S∪{k})∩Z =
(S ∪ {k}) ∩ (Z ∪ {l}) ⊆ (S ∪ {k}) ∩ (T ∪ {l}) = (S ∪ {k}) ∩ T = {l1, . . . , lm}.

Notice that, if T \ (S ∪ {k}) = Z \ (S ∪ {k}), then the proof is complete.
Therefore, w.l.o.g. we can assume that Z \ (S ∪ {k}) ⊂ T \ (S ∪ {k}). That v is
a strictly convex game, S ∪ {k} is an equivalence class in w, and n < |N | imply
that

m∑
i=1

w′li(((T ∪ {l}) \ (S ∪ {k})) ∪ {l1, . . . , li−1})

−
m∑

i=1

w′li((T \ (S ∪ {k})) ∪ {l1, . . . , li−1})

−
n∑

i=1

w′li(((Z ∪ {l}) \ (S ∪ {k})) ∪ {l1, . . . , li−1})

+
n∑

i=1

w′li((Z \ (S ∪ {k})) ∪ {l1, . . . , li−1}) > −2M |N | .

(6)
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On the other hand, from (5)

w((T ∪ {l}) \ (S ∪ {k}))− w(T \ (S ∪ {k})) = 2M |N |3|T\(S∪{k})| ,

and

w((Z ∪ {l}) \ (S ∪ {k}))− w(Z \ (S ∪ {k})) = 2M |N |3|Z\(S∪{k})| ,

hence Z ⊂ T implies (remember Z \ (S ∪ {k}) ⊂ T \ (S ∪ {k}))

w((T ∪ {l}) \ (S ∪ {k}))− w(T \ (S ∪ {k}))
−w((Z ∪ {l}) \ (S ∪ {k})) + w(Z \ (S ∪ {k}))

= 2M |N |3|Z\(S∪{k})|(3|(T\Z)\(S∪{k})| − 1) > 2M |N | .
(7)

Summing up (6) and (7)

w′l(T )− w′l(Z) > 0 . (8)

w′k = v′k, v is strictly convex, ∀i ∈ S ∪ {k}: i ∼w k, moreover l ∈ N \ (S ∪ {k})
and T,Z ⊆ N \ {l}, Z ⊂ T were arbitrarily fixed, hence w is strictly convex.

(3) The class of strictly concave games: Game z ∈ GN is strictly concave
if and only if ∀i ∈ N , ∀T,Z ⊆ N \ {i} such that Z ⊂ T : z′i(Z) > z′i(T ) (see
equation (1)).

Equation (2) implies that v̄ is a strictly convex game and S is an equivalence
class in v̄. Then from point (2), ∃z strictly convex game such that S ∪{k} is an
equivalence class in z, and z′k = v̄′k. From equation (2) z̄ is a strictly concave
game, and S ∪ {k} is an equivalence class in it.

It is a slight calculation to show that z̄′k = v′k. Finally, let w = z̄. Q.E.D.

The proof of Lemma 3.10. Let M > max
T⊂N

|v′k(T )| be arbitrarily fixed. Moreover,

let

w(T ) = 2M |N |3|T | ,

where T is such that k /∈ T , T 6= ∅, and let w(∅) = 0.
If k ∈ T then let w(T ) = w(T \{k})+v′k(T \{k}). It is easy to verify that w is

an essential / convex / (strictly) superadditive / (strictly) weakly superadditive
/ (strictly) monotonic game and w′k = v′k. Furthermore, let l ∈ N \ {k}, and
T,Z ⊆ N \ {l}, Z ⊂ T be arbitrarily fixed. Then we consider three cases.

k ∈ Z: Then

w′l(T )− w′l(Z) = w(T ∪ {l})− w(T )− w(Z ∪ l) + w(Z)
= w((T \ {k}) ∪ {l}) + w′k((T \ {k}) ∪ {l})− w(T \ {k})− w′k(T \ {k})
−w((Z \ {k}) ∪ {l})− w′k((Z \ {k}) ∪ {l}) + w(Z \ {k}) + w′k(Z \ {k}) .

Moreover
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w′k((T \ {k}) ∪ {l})− w′k(T \ {k})
−w′k((Z \ {k}) ∪ {l}) + w′k(Z \ {k}) > −4M .

(9)

Furthermore

w((T \ {k}) ∪ {l})− w(T \ {k}) = 4M |N |3|T |−1 ,

and

w((Z \ {k}) ∪ {l})− w(Z \ {k}) = 4M |N |3|Z|−1 .

Therefore

w((T \ {k}) ∪ {l})− w(T \ {k})− w((Z \ {k}) ∪ {l}) + w(Z \ {k})
= 4M |N |3|Z|−1(3|T\Z| − 1) .

(10)

Summing up (9) and (10)

w′l(T )− w′l(Z) > 0 .

The proofs of the other two cases (k /∈ T and k ∈ T \ Z) go as above.
Let i ∈ N \{k} be arbitrarily fixed. Then we can repeat the above discussion

(v = w, k = i) to get z(i). Then z(i)′i = w′i, and ∀T,Z ⊆ N \ {i} such that
Z ⊂ T : w′i(T )− w′i(Z) > 0 implying that z(i) is strictly convex. Q.E.D.

The proof of Lemma 3.11. The class of the (strictly) weakly subadditive / (strictly)
subadditive / concave games contains the class of the strictly concave games. It
is a slight calculation to show that we can take the dual of any (strictly) weakly
subadditive / (strictly) subadditive / concave game, apply Lemma 3.10., and
take the duals of the the games produced by Lemma 3.10. (it is worth noticing
that the dual of a (strictly) subadditive / (strictly) weakly subadditive game
is not necessarily (strictly) superadditive / (strictly) weakly superadditive, e.g.
v $ (4, 4, 4, 4, 4, 4, 7) is strictly subadditive, but v̄ is not weakly superadditive;
moreover, the dual of a (strictly) superadditive / (strictly) weakly superaddi-
tive game is not necessarily (strictly) subadditive / (strictly) weakly subadditive,
e.g. v $ (0, 0, 0, 3, 1, 2, 4) is strictly superadditive, but v̄ is not weakly subaddi-
tive). Q.E.D.
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