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Abstract

We observe that people perform economic activities within the social setting of a
small group, while they obtain relevant information from a broader source. We cap-
ture this feature with a dynamic interaction model based on two separate social net-
works. Individuals play a coordination game in an interaction network. Meanwhile,
all individuals update their strategies via a naive learning process using information
from a separate influence network through which information is disseminated. In
each time period, the interaction and influence networks co-evolve, and the individu-
als’ strategies are updated through a modified French-DeGroot updating process. We
show that through this updating process both network structures and players’ mixed
strategies always reach a steady state. In particular, conformity occurs in the long run
when the interaction cost is sufficiently low. We also analyze the influence exerted by
a minority group on these outcomes.
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1 Introduction

The Nash equilibrium concept is a widely used and studied tool in game theory. How play-

ers get to those equilibrium states or actually play games, however, remain questions that

motivate many of us. We know that Nash equilibria can be justified by assuming common

knowledge (Aumann and Brandenburger, 1995), but such a strong assumption seems un-

reasonable when we try to understand game play in the cases involving less than perfectly

informed players (Dekel and Fudenberg, 1990; Borgers, 1994; Canning, 1995), less than

perfectly rational players (Simon, 1955; Gabaix, Laibson, Moloche, and Weinberg, 2006),

or consider the complexity of the environment where games take place (Vega-Redondo,

2007).

What all learning models share in common is the accessibility to or observation of

certain information. The information—which can concern strategies, payoffs, or signals

from other players—is collected and used to adjust one’s strategy, i.e., a player learns

from the obtained information based on some rules. As Griliches (1957) already pointed

out, one needs to have a connection in order to obtain such information. So, any learning

process implicitly assumes an underlying social network which serves as a platform for

the dissemination of information.

In this paper we introduce a framework in which game play and learning are explicitly

separated. Hence, we present two separate social spheres: an interaction network that

describes how individual players play a coordination game with each other and a social

information sharing or “influence” network where players learn about the strategies and

success of other players. The two networks are distinct, but correlated. We consider a

learning process in which the interaction network, the influence network, and the selected

strategies are all updated sequentially.

We extend the well-known French-DeGroot naive learning process to our dual network

setting. The naive learning process seminally developed by French (1956) and DeGroot

(1974) is in nature a simple Markovian approach to learning based on the principle that

individuals use weighted averages of observed characteristics of other players.1 We in-

corporate the French-DeGroot updating rule into our dual-network framework by having

a player refer to the achieved payoffs by her endogenously chosen partners in game play

when assigning weights on collected information. In other words, we assume complete

availability of information on all aspects of game play, but then assume that players selec-

tively process this information based on the performance of the observed players and with

1The French-DeGroot process has also been used in related work by Friedkin and Johnsen (1990, 1997);
DeMarzo, Vayanos, and Zwiebel (2003); and Golub and Jackson (2007).
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bounded rationality.

In each time period, two randomly selected players update their interaction neighbor-

hood. This is followed by all players updating their influence weights as well as the mixed

strategy they use in their game play. These updates are based on observations all play-

ers make about other players. Players take the costs of interaction into account in their

decision-making. Only if expected payoffs exceed these costs, interaction (game play)

with another player is initiated or maintained. Throughout we assume that observation of

other players’ strategies and payoffs is costless, although the game play activity is not.

We show that if interaction costs are sufficiently low, this naive learning process con-

verges to a state of full conformity. This state is one in which all players play the same

mixed strategy, interact with all other agents, and assign equal weights to observations

made about all players. On the other hand, if the interaction costs are relatively high,

no interaction takes place and all players remain autarkic. Finally, for cost levels in the

mid-range, there emerges a myriad of outcomes in this naive learning process. Computer

simulations show that there exist multiple steady states in these circumstances.

This observed conformism for low interaction costs coincides with the empirical stud-

ies on influence in social networks, which indicate that individuals’ decision-making pro-

cesses, opinions, and behavioral patterns are affected by their (social) neighbors. For

instance, studies show similarity in investment patterns (Duflo and Saez, 2002) and behav-

iors of neighborhood peers appear to substantially affect youth behaviors (Case and Katz,

1991). However, the steady state under conformism is usually not a Nash equilibrium.

This is as argued by Blume and Easley (2006): Naive learning is limited in nature and

does not necessarily converge to a steady state satisfying rational expectations.

Finally, we consider the influence of minority groups of individuals who are interpreted

to be persistent. Following a similar model developed in Pan (2008), we define a player

to be persistent if she does not modify her initially assigned mixed strategy in the given

coordination game. Persistent players, however, remain subject to the other aspects of the

naive learning process. They update their interaction neighborhood as well as the influence

weights that they assign to other players, which are not used to update the strategy.

We look at two types of persistency. First, we consider the case that all persistent play-

ers use exactly the same strategy in their game play. In this case of uniform persistency, for

sufficiently low interaction costs the whole society converges to full conformity in which

all players play the strategy adhered to these persistent players. As a corollary, a single

persistent player can sway the whole community to select her initial strategy. Second, we

consider a heterogeneous group of persistent players. In this case, for low enough inter-

action costs, the non-persistent players converge in their game play to a strategy that is a
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convex combination of the strategies used by members of the group of persistent players.

Computer simulations show that with both types, increased interaction costs breaks down

this conformity and a complex situation with multiple steady states emerges.

Relation to the existing literature

Within our novel dual network setting, we use three principles in our updating rules that

distinguishes our model from previous studies. First, the nature of the French-DeGroot

learning process requires the use of a continuous state space, thus restricting us to the

use of mixed strategies in a 2 × 2 coordination game. While many have used coordina-

tion games in studying evolutionary learning process (Foster and Young, 1990; Kandori,

Mailath, and Rob, 1993; Ellison, 1993), these studies mainly focus which pure strategies

are used by the players in the population.

Second, the interaction network where game play takes place evolves endogenously

over time, determined by cost-benefit evaluation and consent on new and existing links.

Alternatively, Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2009) introduced a

model of game play in networks with learning, but in their model game play and learning

are not differentiated and there is no endogenous mechanism for changing the network

structure. Network dynamics in Jackson and Watts (2002) is similar to ours, but based on

costless interaction and shows that there emerge fully connected networks. We consider

positive interaction costs and analyze the outcomes based on cost levels, which do not

always converge to a fully connected network.

Third, our learning process takes into account the network structure and results of game

play when updating influence weights. Weights placed on information are the main factor

in naive learning and are in many cases assumed to be constant over time (French, 1956;

Bala and Goyal, 1998; DeMarzo, Vayanos, and Zwiebel, 2003; Friedkin and Johnsen,

1997; Golub and Jackson, 2007). Pan (2008), Hegselmann and Krause (2002) and Weis-

buch, Deffuant, Amblard, and Nadal (2002) presented several naive learning models with

time-varying weights to capture the change in players’ attitudes in social communication.

Without the layer of game play, the weight updating in these models certainly differs from

ours. Our mechanism also ties the two social spheres together seamlessly.

The remainder of this paper is structured as follows. The next section introduces the

formal setup of the model and the updating process. Section 3 analyzes the outcomes

from the standard setting, while Section 4 discusses the influence of persistent players

in our framework. Finally, Section 5 draws some conclusions for future directions of

research. All proofs are relegated to the appendix.
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2 A network model of social interaction

We consider a finite set of players N = {1, 2, . . . , n} who engage in binary value-generating

activities with their neighbors in a social network. Their engagement is assumed to consist

of playing a specified coordination game. Standard hypotheses usually impose that this

association is based on some form of rational behavior. Here we explicitly restrict these

players’ rationality in that they do not optimize over their strategy set; instead, the players

select a strategy by weighing the information collected on the success of other players and

the strategies that they use.

Furthermore, we assume that these individuals collect this information through a sep-

arate information sharing network. Within the information collection process, players

observe all other players’ actions and payoffs, and assign a certain weight to the observa-

tion for each player. Based on these weights and observations, a player then determines

her own strategy in the coordination games she plays in the social interaction network.

We first introduce a description of the social interaction network, the information shar-

ing network, and subsequently formulate the dynamic interaction process.

2.1 The social interaction network

Each player in N = {1, 2, . . . , n} selectively builds social relationships with other players.

The resulting interaction network at time t ∈ N is represented by an n×n adjacency matrix

Gt with

Gt
i j =

 1 if i, j are connected,

0 otherwise.
(1)

Define Lt
i = { j ∈ N | Gt

i j = 1} as the set of player i’s neighbors at time t in the interaction

network Gt. For technical convenience, we assume that each player is always connected

with herself, i.e., Gt
ii = 1, for all i ∈ N, for all t. Also, Gt

i j = Gt
ji for all i, j ∈ N, for all t,

implying that the interaction network Gt is symmetric.

Throughout we assume that every connection in Gt is consent-based, which means

that permission from both players is required for a link to be formed. On the other hand, a

single player can always sever any link under her control.2

Denote gt as the network representation of the interaction network Gt defined by

gt = {i j | Gt
i j = Gt

ji = 1}. (2)

2This is akin to the concept of pairwise stability seminally introduced in Jackson and Wolinsky (1996)
and the standard stability concept in matching markets (Roth and Sotomayor, 1990).
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From the above, ii ∈ gt for every player i ∈ N and every t ∈ N. We use g0 = {ii | i ∈ N}

to denote the sparsest possible network and gN = {i j | i, j ∈ N} to denote the complete

network. The process of adding and deleting a link between players i and j at time t can

be written as gt + i j and gt − i j, respectively.

We assume that interaction is costly, i.e., both the initiation and the maintenance of a

link between two players imposes the same cost c > 0 on both interacting parties. This

implies that, when a link is initiated, both players pay the common interaction cost c. Also,

each player pays the common interaction cost c for the maintenance of every existing link

i j ∈ gt, j , i, during each time period t. We emphasize that here we assume that each

player i ∈ N has no costs of interacting with herself.

A player i ∈ N only interacts with her neighbors j ∈ Lt
i at time t ∈ N. The association

between each pair of connected players is modelled as a 2×2 symmetric coordination game

shown in Table 1.

A B
A a, a 0, 0
B 0, 0 1, 1

Table 1: The 2 × 2 coordination game played between linked players

In this coordination game, we have two pure strategy Nash equilibria: (A, A) and (B, B).

It is assumed that a > 1, therefore (A, A) is the Pareto optimal equilibrium. (A, A) is

also the risk-dominant equilibrium (Harsanyi and Selten, 1988), which is the pure strategy

equilibrium with a larger basin of attraction than (B, B).3 Although from a strategic point

of view, A is in all respects a superior convention, we study a social learning process in

which the population will usually not settle on the convention to play A.

All players’ actions at time t can be represented by an n-dimensional mixed strategy

vector pt = (pt
1, . . . , pt

n)T ∈ [0, 1]n, where pt
i ∈ [0, 1] is the probability that player i chooses

A. The strategy vector is time-dependent as players modify their actions over time based on

the information they collect. Now, at time t player i receives a payoff of πt
i j by interacting

with player j with

πt
i j = apt

i p
t
j + (1 − pt

i)(1 − pt
j). (3)

Due to the symmetric nature of the coordination game, each pair of players i, j ∈ N re-

3In other words, A is the strategy that is a best response to the largest set of beliefs over possible plays of
the opponent. Specifically, playing A is a player’s best response if the fraction of her opponents who play A
is greater than or equal to 1

a+1 and less than 1
2 .
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ceives identical payoffs from such coordination, i.e., πt
i j = πt

ji, for all i, j ∈ N.

2.2 Information dissemination

In our approach information dissemination is separated from actual game play that takes

place in the interaction network Gt. As mentioned in the introduction, every individual

uses a naive updating process based on the selection of a weighted average of the mixed

strategies of the players that influence her.

The hypothesis that a player can observe another player’s mixed strategy is a very

strong assumption, in particular since players actually only execute the two pure strate-

gies A or B. This hypothesis, therefore, requires justification. We consider two possible

justifications.

First, we can interpret this hypothesis as that players actually communicate their mixed

strategies within the prevailing information sharing network. This is akin to the assumption

that mixed strategies are deliberately selected objects that are intentionally executed by the

players in the set N. This implies in turn that the naive learning process assumed here is

actually a consequence of imperfections in the process of communication and information

sharing between players that deliberately share full information about their selected mixed

strategies.

Second, we can assume that players are actually more boundedly rational and observe

each other’s game play over a sufficiently long period of interaction. This is equivalent to

the assumption that each time period t consists of multiple playing rounds in the given in-

teraction network Gt. Only after observing sufficiently many playing rounds, the updating

process ensues based on the collected information, which for player j observing player i

is assumed to approximate the true value of pt
i. We leave such a playing process in time

period t as unspecified in our model. However, such a specification could be incorporated

into our framework. It is also clear that our main conclusions would not change with

such an extension of our model. Such a modification would therefore just unnecessarily

complicate the exposition.

Within our framework, information sharing is equivalent to observing other players’ ac-

tions and attaching a weight to these observations. Such a weight can be interpreted as

the level of “trust” that a player puts on another player’s decisions. As such this weight

indicates how much influence one player has over another. Therefore, we formally model

the information sharing network as a set of influence weights.

Formally, for every time period t ∈ N we introduce an n × n nonnegative matrix Tt

which we refer to as the influence matrix at time t. For all i, j ∈ N, the number Tt
i j ∈ [0, 1]
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indicates the weight that player i places on player j’s strategic choice at time t and a higher

weight indicates that one player weighs the other more on the choice of her strategy. Thus,

the influence matrix Tt captures the information collection process at time t.

We assume that for every t ∈ N the influence matrix Tt is row-stochastic, i.e., the

influence weights sum up to unity for each player i ∈ N:

n∑
j=1

Tt
i j = 1 and Tt

i j > 0, for all i, j ∈ N, for all t ∈ N. (4)

Unlike the interaction network Gt,Tt may be asymmetric, so that Tt
i j , Tt

ji for some i, j.

Moreover, one’s information collection is not restricted to one’s neighbors. That is, for

some i, j, Tt
i j > 0 while Gt

i j = 0. On the other hand, the two matrices are correlated

through a dynamic updating process, as will be discussed in the next subsection.

2.3 The updating process

We first assign initial states for both social networks and players’ strategies. Then, after

initialization, two players are randomply selected and each selected player updates her in-

teraction network using rules based on pairwise stability; subsequently, all players update

their influence weights based on observations in the information-sharing network; and,

finally, all players update their mixed strategies and play the game with their partners in

the interaction network. Schematically, this updating process can be represented in a flow

diagram in Figure 1.

Figure 1: Updating process in our dual network framework
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Initialization

At t = 0 we have an initial coordination structure G0 and an initial influence matrix T0.

The initial coordination structure is assumed to be autarkic, i.e., g0 = g0 and given by

G0
ii = 1, for all i ∈ N and G0

i j = 0 for all i , j. (5)

As for the initialization of the information network and the strategies, we assume that

players initially are assigned arbitrary strategies and an arbitrary influence distribution.

That is,

p0
i ∈ [0, 1], for all i ∈ N. (6)
n∑

j=1

T0
i j = 1 for all i ∈ N; T0

i j ∈ [0, 1], for all i, j ∈ N. (7)

Note that although G0
ii = 1 for all i, the case that T0

ii = 0 is not excluded. Thus, it is possible

that one assigns zero weight on oneself during the initialization period even though one

plays the coordination game with oneself according to the hypotheses made so far.

Updating the interaction network

During the updating process in period t, two players i and j are randomly selected to

consider their connectivity. The link i j will be formed (if the two are not connected) or

maintained (if they are connected already) if and only if for both of them, the payoffs from

the link covers at least the interaction cost.4 That is, the updating rule for the interaction

network Gt is given by

Gt
i j =

 1 if πt−1
i j > c

0 if πt−1
i j < c

(8)

and

Gt
hk = Gt−1

hk for all (h, k) , (i, j) (9)

Updating the information-sharing network

After the two randomly selected players i and j update their interaction relationship Gt
i j

described above, all players update their weight assignments in the influence network Tt−1.

We model the updating of the influence matrix Tt−1 to be based on the observed payoffs

4Note here that we assume that player’s mixed strategies (and therefore payoffs) are fully observable and
available. This again, is derived from the principles of naive learning, as discussed earlier.
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from the game play in Gt−1. The principle is that a player’s partners or “neighbors” act as

effective filters for more beneficial links and higher payoffs. The reasoning is that links

are formed and maintained based on a cost-benefit evaluation. Therefore for a player,

the connectedness between one of her neighbors and another player implies a reasonable

potential for collecting sufficiently high payoffs between that player and her neighbor’s

partner.

Namely, when an player decides on how much influence weight to place on another

player, she calculates the total payoffs that her neighbors could obtain from associating

with that player, given all players’ past actions and connectivity. This observation proce-

dure is carried on among all players, while the selected connectivity shows its impact on

processing the collected information.

We recall that the influence matrix is row-stochastic. Thus, each player redistributes

her influence weight assignment proportionally according to the total payoffs and then

normalizes the weights to make sure that the row sum equals to unity. This implies that

the redistribution of influence follows the rules below:

Tt
i j =

wt
i j∑n

k=1 wt
ik

, for all i, j ∈ N and t ∈ N, (10)

where

wt
i j =

∑
l∈Lt

i

Gt
l jπ

t−1
l j .

Consider the weight Tt
i j assigned by i to j. If j’s action does not guarantee a sufficiently

high payoff, j would not be connected with any of i’s neighbors. That is, Gt
k j = 0 for all

k ∈ Lt
i. Consequently, wt

i j = 0, which results to zero weight Tt
i j = 0. That is, a player

does not place any weight on someone who does not provide the potential to generate high

enough payoffs.

Also, we note that if Lt
i = ∅, we have a problem when applying the equations above in

that all weights wt
i j are 0 and the sum of the i-th row of the influence matrix Tt does not

add up to 1. This problem is prevented by the assumption that each player is connected

with herself during initialization at t = 0 and stays connected with herself during any

subsequent period t ∈ N since it is assumed that player i has no costs related to her self-

referential coordination Gt
ii = 1 or ii ∈ gt.

For those who get zero weights in the influence matrix, their actions and information

from them do not count when player i updates her mixed strategy pt
i. In other words, each

player actually takes the weighted average among the beneficial or potentially beneficial
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actions during the updating process.

Strategy updating and game play

Finally, all players update their mixed strategies based on the information collected in

period t − 1. Using the updated influence matrix Tt, all players determine their mixed

strategy using the French-DeGroot updating rule. That is,

pt
i =

∑
j∈N

Tt
i j p

t−1
j for all i ∈ N, t > 0. (11)

So the updating process for all players can be conveniently written as:

pt = Ttpt−1. (12)

After updating her mixed strategy, each player i ∈ N plays the given coordination game

with her neighbors j ∈ Lt
i in Gt and collects payoffs for the period t. Subtracting her

interaction costs for all active links (except the one with herself) in period t we get payoffs

πt
i =

∑
h∈Lt

i

πt
ih − (#Lt

i − 1)c =
∑
h∈Lt

i

[
apt

i p
t
h + (1 − pt

i)(1 − pt
h)
]
− (#Lt

i − 1)c, (13)

where #Lt
i is the number of i’s neighbors during time period t.

The time period t ends when game play is completed. The process repeats in the next

period t + 1.

3 Convergence of Behavior

In the process described above, players update their neighborhood structure, influence

weights, and strategies in a myopic manner in that they do not consider the implications

of updating to the future. Rather, they base their decisions on the success of the mixed

strategies adopted by the players in the past period that they observe. Our examination

of the convergence of this learning process follows studies such as Ellison and Fudenberg

(1993, 1995); Bala and Goyal (1998); Banerjee and Fudenberg (2004); Lorenz (2005); and

Golub and Jackson (2007).

The cost of coordination c > 0 is a critical factor that largely determines the interaction

network structure, which in turn affects the updating of the influence weights and conse-

quently the adjustment of strategies. The next proposition determines the relevant bounds

for the interaction cost c.
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Proposition 3.1 Let p0 be the initialized strategy tuple in the player set N. Denote by
p0 = min{p0

1, . . . , p0
n} its lower bound and by p0

= max{p0
1, . . . , p0

n} its upper bound. Let

π = min{
a

a + 1
, ap0 p0

+ (1 − p0)(1 − p0)} > 0, (14)

π = max{a(p0)2 + (1 − p0)2, a(p0)2 + (1 − p0)2} > 0. (15)

Then π and π are a lower bound and an upper bound, respectively, for the set of all payoffs
{πt

i j | i, j ∈ N and t ∈ N}.

A proof of Proposition 3.1 can be found in Appendix A of this paper.

Our first main result states that if the costs of formation of interaction links are suf-

ficiently low, the interaction network converges to a fully connected network. Also, the

steady state strategies show complete conformity.

Theorem 1 If c 6 π, then the updating process converges to a situation in which there
emerge a fully connected interaction network, evenly distributed weights, and all players
choose the same mixed strategy p∗ ∈ [0, 1], i.e., for every ε > 0 there exists some t∗ > 0
such that for all t > t∗ it holds that Gt

i j = 1 as well as |Tt
i j −

1
n | < ε for all i, j ∈ N and

|pt
i − p∗| < ε for all players i ∈ N.

The limit strategy p∗ acts as a convention in the given society, taking the form of a mixed

strategy. We remark that at this low cost level, the society converges to a steady state

that is not necessarily a Nash equilibrium unless we have extreme initial conditions where

p0 = (0, . . . , 0)T or p0 = (1, . . . , 1)T. In particular, even if some of the players select a

pure strategy initially, they will abandon that selection in favor of a purely mixed strat-

egy through the influence of other players. This statement is formalized in Lemma 2 in

Appendix B, where also the proofs for Lemma 2 and Theorem 1 are collected.

The next assertion is a counterpoint to the observations made in Theorem 1. The proof

is rather straightforward and given here.

Theorem 2 If c > π, then the updating process converges to a situation in which there
emerge a autarkic interaction network, the influence matrix is an identity matrix, and all
players choose their initial strategy p0

i .

Proof. Assume that c > π. This implies that no two players will choose to be connected

since the payoffs can never exceed the interaction cost. Therefore, the network remains in

its initial autarkic pattern, where each player is connected to herself only.

Also, at t = 1, T1
ii = 1 and T1

i j = 0 for all i and j , i because w1
i j = 0. This implies that the

influence matrix T1 is an n × n identity matrix I(n) and p1
i = p0

i for all i. Obviously this

pattern does not change, since Gt is always equal to the autarkic pattern.

11



Sensitivity Analysis

Above we have described the outcomes of the updating process when the interaction cost

c is very low or very high. With the arbitrary initial weights and strategies, as well as

the randomness in selecting players to update the interaction network, when cost is in the

medium range determined as π < c < π, the outcomes cannot be effectively analyzed. In

this subsection we examine the outcomes for different cost levels with the help of computer

simulations.

In these simulations we set the highest possible payoff which can be obtain from play-

ing (A, A) at a = 2, implying that the interaction cost c effectively ranges from 0 to 2.

We take δ = 0.05 as the increment in the cost level. We observe that in each of the sim-

ulated cases the dynamic updating process converges to a steady state. The society size

varies among 20, 40, 60, 80, and 100. Recall that during each period t ∈ N, two players

i, j ∈ N are chosen randomly to update their interaction network. Thus, each configuration

of society size, cost, and initial conditions (the arbitrary p0 and T0) is used to run the sim-

ulation 3 times, in order to examine different outcome patterns to capture any randomness

in updating the interaction network.

The change in society size does not show any significant effect on the final outcome.

Therefore, in this subsection we only show the results for n = 20. Results are recorded

when the learning process researches a steady state.5

In Figure 2 the x-axis shows value of cost c. In panel (a), the y-axis indicates the

standard deviation among all strategies at the steady state given by

σp =

√∑
i∈N

(pt
i − µp)2 where µp =

1
n

∑
i∈N

pt
i.

In panel (b), the y-axis shows the mean value of all strategies at the steady state given by

µp.

When standard deviation equals 0, it means that the strategies fully conform. In panel

(a) we see that standard deviation is 0 when cost is relatively low. In these cases the mean

values shown in panel (b) fall into a narrow range—represented by a thin horizontal bar

showing some partially overlapped dots—due to the randomness in updating.

On the other hand, when the interaction costs increase the outcomes are quite random.

The standard deviation could be anywhere between 0 and 0.1. In one case the standard

deviation is 0.2, which suggests widely spread out distribution patterns of strategies. Also,

5Similar to Pan (2008), the computer program determines a steady state when ‖ ∆Tt
x ‖<

1
100n , where

‖ ∆Tt
x ‖ is the norm of ∆Tt

x = Tt − Tt−x.
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(a) Standard deviation (b) Mean value

Figure 2: Cost sensitivity analysis of the basic model

the computed mean values form a cloud and exhibit obvious randomness as well. Note that

in these cases the learning process still converges. However, it may or may not converge

to a conformity pattern. In some cases where π < c < π, we have σp = 0, which implies

conformity. We also observe cases with σp , 0, which implies convergence to a set of

diverse steady states. That is, limt→∞ pt
i = p∗i for all i with p∗i , p∗j for some different

players i and j.

In these cases, the outcome of the updating process depends on the order in which

players are chosen in each updating round, as well as the interaction cost and the initial

conditions. That is, during each period, the state of a link i j depends on the strategies of

the randomly selected players i and j. The resulting interaction network might be fully

or near fully connected if the two randomly chosen players happen to always or almost

always have strategies that lead to high payoffs. Otherwise the network would be sparsely

connected and we have closed groups, where a player only interacts with members in her

group and members in each group conform to the same strategy.

To summarize, when the interaction cost exceeds π, the interaction and influence net-

works as well as the strategies still converge. But the questions of whether the steady state

strategies conform, or whether the patterns of the interaction network are complete, and

the final influence weight distribution depend highly on the initializations as well as which

players are chosen for updating the interaction network in each round.

4 Introducing Persistent Players

Founded on the notion of persistency introduced in the learning model of Pan (2008),

we extend the basic model to include persistent players. A player is called “persistent”

if she does not change her initially assigned mixed strategy over time. It was already
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shown in Pan (2008) that persistent players have a significant influence on the outcome of

a French-DeGroot naive learning process. We confirm this insight in our more elaborate

dual network framework as well.

The set of persistent players is introduced as a subset S ⊂ N, where we assume that

1 6 |S | < n. A persistent player s ∈ S is characterized by the property that pt
s = p0

s for all

t ∈ N. However, we assume that every persistent player updates her interaction network Lt
i

as well as her influence weights {T t
i j | j ∈ N} according to the dynamic updating process

introduced in the previous section. As such, a persistent player does not update her strategy

in every time period as do the other (non-persistent) players in the population.

Our main insight is that the introduction of persistent players into the population alters

the outcome of the social learning process significantly. We first consider the introduction

of persistent players in the population with a common persistent strategy denoted by pα ∈

[0, 1]. This models a uniform group of persistent players in the population.

Theorem 3 Consider a situation in which c 6 π and there exists a set of persistent players
S ⊂ N such that |S | > 1 and all s ∈ S have a common persistent strategy given by
p0

s = pt
s = pα ∈ [0, 1] for all t ∈ N. Then the social learning process converges to a fully

connected interaction network, evenly distributed weights, and all non-persistent players’
strategies converge to pα, i.e., for all ε > 0 there exists some t∗ > 0 such that for all t > t∗

it holds that Gt
i j = 1 as well as |Tt

i j −
1
n | < ε for all i, j ∈ N and |pt

si
− pα| < ε for all

non-persistent players si < S .

A proof of Theorem 3 is given in Appendix C.

Theorem 3 states that persistent players possess a form of widespread influence in de-

termining all players’ strategic choices. Namely, the final strategy of all players equals

the persistent players’ initial strategy pα. So, when pα = 1 or pα = 0, the social learning

process converges to the Nash equilibrium outcomes (A, A) and (B, B), respectively. Oth-

erwise the strategy vector of the whole society reaches a steady state given by {pα | i ∈ N}

that is not necessarily a Nash equilibrium. Also, in this case where the persistent players

have uniform initial (persistent) strategies, the total number of them |S | only affects the

speed of convergence, not the final outcome.

If we have diverse persistent players, the social learning process converges to a convex

combination of the persistent strategies adhered to by members of the group of persistent

players. In this case, the final strategy of normal players are significantly influenced by

persistent players’ initial strategies as well.

Theorem 4 Consider a situation in which c 6 π and the subset of persistent players
S ⊂ N is characterized by 2 6 |S | 6 n − 1 such that there are si, s j ∈ S with pt

si
= p0

si

and pt
s j

= p0
s j

for all t ∈ N, where p0
si
, p0

s j
. Then the social learning process converges

14



to a fully connected interaction network, identical weights, and all non-persistent players’
strategies converge to some pβ ∈ [0, 1], i.e., for all ε > 0 there exists some t∗ > 0 such
that for all t > t∗ it holds that Gt

i j = 1 as well as |Tt
ik − Tt

jk| < ε for all i, j, k ∈ N and
|Tt

si s j
− Tt

si sk
| < ε, |pt

si
− pβ| < ε for all non-persistent players si, s j, sk < S .

A proof of Theorem 4 is given in Appendix D. Note the difference in the final Tt with

the two types of persistency. When we have diverse persistent players, the final influence

weights are not even. Namely, we do not have T∗i j =
1
n

for all i, j. Instead, we have

identical weights, i.e., T∗ik = T∗jk. In other words, each column shows elements of the same

value. Besides, all non-persistent players assign the same weight to other non-persistent

players. The key here is that the diverse persistent players do not receive the same weight

in the steady state, because they do not generate the same payoffs (since their strategies

are different).

The assertion of Theorem 4 leaves open the issue where exactly the social learning pro-

cess leads the non-persistent players. Proposition 4.1 below partially solves this issue and

states upper and lower bounds on the mixed strategy to which the non-persistent players

converge.

Proposition 4.1 Consider the situation as stated in Theorem 4. If there are m = |S | diverse
persistent players such that #{p0

s | s ∈ S } = m, then in the social learning process, there
exists some T ′ > 0 such that for all t > T ′ it holds that p

s
6 pt

i 6 ps for every player i ∈ N,
where p

s
= mins∈S p0

s and ps = maxs∈S p0
s .

The proof of Proposition 4.1 is relegated to Appendix E of this paper.

Corollary 4.2 below follows immediately from the French-DeGroot strategy updating

rule pt
i =

∑
j∈N Tt

i j p
t−1
j , and that

lim
t→∞

Tt
ik = lim

t→∞
Tt

jk =
x
[
(a + 1)p∗k − 1

]
+ n

(
1 − p∗k

)
(a + 1)x2 − 2nx + n2 ,

where x =
∑

i∈N p∗i = (n − |S |)pβ +
∑

s∈S p0
s .

Corollary 4.2 Consider the situation with m diverse persistent players stated in Proposi-
tion 4.1, then all non-persistent players’ strategies converge to pβ that satisfies the follow-
ing properties∑

s∈S

(T∗·s p0
s) = pβ

∑
s∈S

T∗·s, (16)

T∗·si

T∗·s j

=
x
[
(a + 1)p0

si
− 1

]
+ n

(
1 − p0

si

)
x
[
(a + 1)p0

s j
− 1

]
+ n

(
1 − p0

s j

) , for all si, s j ∈ S , (17)

where T∗ is the limit influence matrix resulting from the social learning process.
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(a) Standard deviation (b) Mean value

Figure 3: Cost sensitivity analysis with a single persistent player

The influence of persistent players is based on how non-persistent agents are influenced

by them through the information-sharing network Tt. Theorem 5 states that if costs are

prohibitively high, no influence is exerted by any group of persistent players. The proof is

very similar to that for Theorem 2 and is therefore omitted.

Theorem 5 Consider any situation with persistent players. If c > π, then the updating
process converges to a situation in which there emerges an autarkic interaction network,
the influence matrix is equal to the identity matrix, and all players choose their initial
strategy p0

i .

Sensitivity Analysis

We again use simulations to determine how the learning structure with persistent players

behaves for medium interaction costs. We use the same settings as for the basic model,

where a = 2 and c ranges from 0 to 2 in increments of 0.05. Persistent players are each

assigned a random initial strategy. Each configuration is run 3 times.

Similar to the basic model, society size does not affect the final outcomes. Thus, for

both uniform and diverse persistent players, we only show the cases where n = 20 with

the x-axis showing value of cost and y-axis showing standard deviation and mean value of

the final strategies. Figure 3 illustrates the case where we have a single persistent player

which represents the uniform persistent model.

In Figure 4 we have 3 diverse persistent players, assigned 3 different initial strategies.

Simulation results show that learning with different number of diverse persistent strategies

exhibits similar outcome patterns.

Again, when cost is low enough, we observe conformism. Unlike the basic model, now

the final strategy is fixed once initial strategies (of the persistent players) and influence

weights (in case of diverse persistent players) are given. Hence, the mean value of pt
i
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(a) Standard deviation (b) Mean value

Figure 4: Cost sensitivity analysis with 3 diverse persistent players

forms a line instead of a thin bar as in the basic model (Figure 2). The standard deviation

is never 0 when we have diverse persistent players. Indeed, by Proposition 4.1, we know

that p∗ for non-persistent players is in the range of (p
s
, ps). Thus, the standard deviation is

at least
√

(ps − p∗)2 + (p
s
− p∗)2 > 0. In this case, a constant standard deviation and mean

value indicate conformism.

When cost exceeds π, the outcomes are random and determined by the order of players

chosen to update the interaction network, as well as the initial conditions. Same as the

basic model, with higher cost we may have close groups with conformism in each group,

and diverse strategies across groups. When cost is higher than π0, agents choose to stay

isolated.

5 Concluding remarks

The social learning model discussed in this paper has a dynamic double-layer network

structure. Namely, players play a coordination game with selected partners in an interac-

tion network; on the other hand, they collect information about the resulting payoffs and

the executed strategies in an influence network. Subsequently they update their interaction

network, their influence weights, as well as the mixed strategy according to an extended

variation of the naive social learning rule developed by French (1956) and DeGroot (1974).

It is a novel idea to separate the interaction network from the information collection

framework, with the consideration that individuals first tend to collect abundant infor-

mation and then process the information, before making a decision on a task or activity

that is affiliated with chosen partners. Previous work with similar setting to either social

sphere often assumed that the networks are exogenous and/or time-invariant; whereas in
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our framework both networks are endogenous and change over time. There is also a clear

correlation between the two networks that ties them together in a sensible way.

In this study our focus is only on the cases where the interaction structure is com-

pletely open and freely determined. However, in realistic settings such open structures are

rare; usually interaction is restricted by geographical and social distances. Many network

structures have been categorized and investigated, in particular small-world and scale-

free networks. In Pan (2009), different network structures are imposed on the learning

population, with a network-distance combination learning rule in a similar dual network

framework. Further research is necessary to delineate the various influences that affect

boundedly rational or “naive” decision makers.
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Appendices

A Proof of Proposition 3.1
Denote for each t,

pt = min{pt
1, . . . , pt

n}, pt
= max{pt

1, . . . , pt
n}.

Thus pt
i ∈ [pt, pt] for all i. Moreover, pt+1

i ∈ [pt, pt] for all i since pt+1
i is a convex

combination of pt
i. That is, {pt}∞t=0 is a sequence in a compact set [p0, p0]n.

Recall that πt
i j = apt

i p
t
j + (1− pt

i)(1− pt
j). We have

∂πt
i j

∂pt
j

= (a + 1)pt
i − 1. So πt

i j increases

with pt
j when pt

i >
1

a+1 and decreases with pt
j when pt

i <
1

a+1 .

1. 1
a+1 6 p0 6 p0.

In this case, define π1
min = a(p0)2 + (1 − p0)2, π1

max = a(p0)2 + (1 − p0)2. Then for all

i, t, pt
i > p > 1

a+1 ,
∂πt

i j

∂pt
i
> 0. Thus, πt

i j > π
1
min, for all i, j, t. Similarly, πt

i j 6 π
1
max, for all

i, j, t

2. p0 6 p0 < 1
a+1 .

In this case, define π2
min = a(p0)2 + (1 − p0)2, π2

max = a(p0)2 + (1 − p0)2. Then for all

i, t, pt
i 6 p < 1

a+1 ,
∂πt

i j

∂pt
i
< 0. Thus, πt

i j > π
2
min, π

t
i j 6 π

2
max, for all i, j, t.

3. p0 < 1
a+1 6 p0.

In this case, define π3
min = ap0 p0

+ (1 − p0)(1 − p0). For arbitrary i, j, t, without loss
of generality, assume that pt

i 6 pt
j. We have 2 possible scenarios in this case.

(i) pt
i <

1
a+1 6 p0. Then since

∂πt
i j

∂pt
j
< 0, p0 > pt

j, we have πt
i j > apt

i p
0

+ (1 −

pt
i)(1 − p0). And

∂πt
i j

pt
i
> 0, p0 6 pt

i, so

apt
i p

0
+ (1 − pt

i)(1 − p0) > ap0 p0
+ (1 − p0)(1 − p0) = π3

min,

which implies that πt
i j > π

3
min.

Similarly, πt
i j > apt

i p
0 + (1 − pt

i)(1 − p0) > a(p0)2 + (1 − p0)2 = π2
max

(ii) 1
a+1 6 pt

i 6 p0. Then similar to the previous case,

πt
i j > apt

i p
0 + (1 − pt

i)(1 − p0) > ap0 p0
+ (1 − p0)(1 − p0) = π3

min,

πt
i j 6 apt

i p
0

+ (1 − pt
i)(1 − p0) 6 a(p0)2 + (1 − p0)2 = π1

max.
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That is, in all cases, we can find a πk
min such that πt

i j > π
k
min for all i, j, t. In particular, in

the first 2 cases, πk
min = aρ2 + (1 − ρ)2 > a

a+1 , for 0 6 ρ 6 1. So πt
i j >

a
a+1 in these 2 cases.

Otherwise, πt
i j > ap0 p0

+ (1 − p0)(1 − p0).Define π = min{ a
a+1 , ap0 p0

+ (1 − p0)(1 − p0)},
then it holds that πt

i j > π for all i, j, t in all cases. Since 0 6 p0 6 p0 6 1, ap0 p0
+ (1 −

p0)(1 − p0) > 0. Also a
a+1 > 0. Thus π > 0; the equality holds only when p0 = 0 and

p0
= 1.
Also, in all cases, we can find a πmax such that πt

i j > πmax for all i, j, t. We have 2
candidates for πmax, namely π1

max and π2
max. Therefore, define π = max{π1

max, π
2
max} >

a
a+1 >

0, we have πt
i j 6 πmax for all i, j, t.

B Proof of Theorem 1

B.1 Preliminaries
We first state and prove a set of required intermediate results.

Lemma 1 If c 6 π, then with the updating process the interaction network gt converges to
be fully connected, i.e., gt → gN as t → ∞.

Proof. From Proposition 3.1 it follows that πt
i j > π > c for all i, j, t. Every pair i, j ∈ N

is selected randomly, and, thus, in the long term each pair is selected with probability 1.
So in this case, πt

i j > c is always true and any randomly chosen link i j at time t is always
formed if i j < gt−1 or stays formed if i j ∈ gt−1. Thus, gt → gN in probability 1. Hence,
there exists some t̄ > 0, such that for t > t̄ we have gt = gN .

Lemma 2 If c 6 π and there are i, j ∈ N such that p0
i , p0

j , then with the updating process
defined for the basic model, there exists t̂ > 0, s.t. for all t > t̂, 0 < pt

k < 1 for all k ∈ N.

Proof. First, the conditions stated in the assertion indicate that the elements of p0 cannot
be all 0s or all 1s, in which case we won’t have i, j ∈ N such that p0

i , p0
j .

As shown in the proof of Proposition 3.1, {pt}∞t=0 is a sequence in a compact set
[p0, p0]n. So if 0 < p0

i < 1 for all i, then the assertion of Lemma 2 is true.
Next, consider the case where there exists γ ∈ N such that p0

γ is either 0 or 1. Then in
order to have pt

γ = p0
γ, it must hold that Tt

γ j > 0 if p0
γ = p0

j and Tt
γ j = 0 otherwise. Suppose

that T0 satisfies that condition. Recall that

Tt
i j =

wt
i j∑n

k=1 wt
ik

, for all j ∈ N, t > 0,

where wt
i j =

∑
l∈Lt

i

Gt
l jπ

t−1
l j .

Consider two players γ, j such that p0
γ , p0

j . With Lemma 1, there exists t̂γ, s.t. for t > t̂γ,
j ∈ L(γ)t and j ∈ L( j)t. πt

j j = k(pt
j)

2 + (1 − pt
j)

2 > 0, which means that wt
γ j > 0. Thus,
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Tt
γ j > 0 even though p0

γ , p0
j . In other words, player γ cannot remain her initial strategy

of 0 or 1. We can repeat this process for all {λ | λ ∈ N, p0
λ = 0 or 1}. Thus ∃t̂ = maxλ t̂λ,

s.t. ∀t > t̂, 0 < pt
k < 1 for all k ∈ N.

B.2 Proof of Theorem 1
With Lemma 1, we know that Gt converges to a fully connected network. As for the
final strategy patterns, first consider the special cases where p0 = (0, . . . , 0)T and p0 =

(1, . . . , 1)T. Obviously, in these cases, strategy vector never changes via updating. So
p∗ = p0

i .
Then, consider other cases. First, we show that

∑n
k=1 |Tt

ik − Tt
jk| < 2 − τ̃, where τ̃ is a

positive number that has a lower bound.
By Lemma 2, we know that there exists t̂ > 0, s.t. for all t > t̂, we have 0 < pt

i < 1 for
all i ∈ N. Denote

pt̂ = min
i∈N

pt̂
i > 0, pt̂

= max
i∈N

pt̂
i < 1.

Then it holds that for all t > t̂ + 1, for all i, pt
i ∈ [pt̂, pt̂]. Define πt̂

min = min{ a
a+1 , apt̂ pt̂

+

(1 − pt̂)(1 − pt̂)}. We have πt̂
min > 0 since 0 < pt̂ 6 pt̂ < 1. Then we can mimic the proof

of Proposition 3.1 and prove that that πt
i j > π

t̂
min, for all i, j and t > t̂.6 Also, πt

i j 6 a for all

i, j, t. Then Tt
i j >

πt̂
min

an2 > 0.7 Denote τ̃ =
πt̂

min
an2 > 0. Then we have

n∑
k=1

|Tt
ik − Tt

jk| < 2 − 2τ̃.

Theorem 3.1 in Seneta (1981) states that,

max
i, j
|pt+1

i − pt+1
j | 6 µt(T){max

i, j
] | pt

i − pt
j|},

where µt(T) = 1
2 maxi, j

∑n
k=1 |Tt

ik − Tt
jk|.

Since
∑n

k=1 |Tt
ik − Tt

jk| < 2 − 2τ̃ for t > t̂,

µt(T) =
1
2

max
i, j

n∑
k=1

|Tt
ik − Tt

jk| < 1 − τ̃, for t > t̂.

That is, µt(T) 6 1 for all t and it is strictly less than and bounded away from 1 for t > t̂.
Since maxi, j |pt+1

i − pt+1
j | 6

∏t
τ=1 µτ(T) maxi, j |p0

i − p0
j |, we have limt→∞ |pt+1

i − pt+1
j | = 0

As shown in the proof of Lemma 1, {pt}∞t=0 is a sequence in a compact set [p0, p0]n.
Therefore, pt

i is conforming to the same value p∗.

6Proof omitted here.
7This is induced from wt

i j ≥ π
t
i j ≥ π

t̂
min and

∑
k wt

ik =
∑

k
∑

l∈Lt
i
Gt

lkπ
t−1
lk ≤ an2. The equality of the latter

formula holds if and only if: Lt
i = N; and Gt

lk = 1 for all l ∈ Lt
i = N; and πt−1

lk = a for all l ∈ Lt
i = N.
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As for the influence matrix Tt. Recall equation (10) that

Tt
i j =

wt
i j∑n

k=1 wt
ik

, for all j ∈ N, t > 0,

where wt
i j =

∑
l∈Lt

i

Gt
l jπ

t−1
l j .

Then if pt
i converges to p∗i for all i, the fully connected network results in such a Tt that

lim
t→∞

Tt
i j = T∗i j =

∑
k∈N[ap∗k p∗j + (1 − p∗k)(1 − p∗j)]∑

l∈N
∑

k∈N[ap∗k p∗l + (1 − p∗k)(1 − p∗l )]
,∀i, j ∈ N.

The expression of T∗i j can be simplified as

T∗i j =
x[(a + 1)p∗j − 1] + n(1 − p∗j)

(a + 1)x2 − 2nx + n2 , where x =
∑
k∈N

p∗k.

The simplified function shows that all the elements in each column j converges to the same
value T∗

· j =
x[(a+1)p∗j−1]+n(1−p∗j)

(a+1)x2−2nx+n2 which depends on p∗j. Since limt→∞ pt
i = p∗, for all i ∈ N,

T∗
·i = T∗

· j for all i, j ∈ N, which implies that limt→∞ Tt
i j = 1

n for all i, j.

C Proof of Theorem 3
With Lemma 1, we know that Gt converges to a fully connected network. Denote m = |S |
as the total number of persistent players. Rearrange the players in such an order that num-
ber 1 to n−m are normal players and the last m players are persistent. Essentially, the only
step during updating that differs from the basic model is when players modify their strate-
gies by taking weighted averages. Since persistent players do not change their strategies,
their influence weight assignments do not affect their choices or the final outcome. Thus
the strategy updating process can be rewritten as:

pt = T̃tpt−1,

where

T̃t =



Tt
11 . . . Tt

1 j . . . . . . Tt
1n

...
...

...
Tt

n−m,1 . . . Tt
n−m, j . . . . . . Tt

n−m,n

0 . . . 0 1
m . . . 1

m
...

...
...

...
0 . . . 0 1

m . . . 1
m


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In this case, define τ̂ = min{π
t̂
min

an2 ,
1
m }, then µt(T̃) = 1

2 maxi, j
∑n

s=1 |T̃t
is − T̃t

js| < 1 − τ̂ still
holds. Thus from the proof of Proposition 1, we have that Tt

i j →
1
n , and that pt

i → p∗ for
all i.

Next, we need to prove that pt
i → pα. Suppose that pt

i → p∗ and p∗ , pα. Then for
ε∗ = 1

2 |pα − p∗|, since for all s ∈ S , pt
s = pα, for all t, |pα − p∗| > ε∗ for all t. However, it is

assumed that pt
i → p∗, which implies that ∀ε > 0,∃t > 0, s.t. |pt

i − p∗| < ε for all i. Thus
we have a contradiction, which means that p∗ = pα. In other words, limt→∞ pt

i = pα, for
all i.

Similar to the basic model, with fully connected interaction network and conforming
strategies, Tt

i j →
1
n , for all i, j. The influence matrix exhibits equal distribution patterns at

the stable state.

D Proof of Theorem 4
With Lemma 1, we know that Gt converges to a fully connected network. Similar to proof
of Theorem 2, denote m = |S | as the total number of persistent players and rearrange the
players in such an order that number 1 to n − m are normal players and the last m players
are persistent.

Define

T̃t =



Tt
11 . . . Tt

1 j . . . Tt
1n

...
...

...
Tt

n−m,1 . . . Tt
n−m, j . . . Tt

n−m,n

0, . . . , 0︸  ︷︷  ︸
n−m−1

0 1 0, . . . , 0, . . . , 0︸  ︷︷  ︸
m−1

...
...

...
0 . . . 0 0, . . . , 0︸  ︷︷  ︸

m−1

1


.

That is, a persistent player places weight 1 on herself and 0 on everybody else.

pt = T̃tpt−1. (18)

Next, for normal players i 6 n − m, define

Ct
i = ŤtCt−1

i = (
t∏

θ=1

Ťθ)C0
i , (19)

where C0
i is the i-th column of T0 and

Ťt =


Tt

11 . . . Tt
1,n−m 0 . . . 0

...
...

...
...

Tt
n,1 . . . Tt

n,n−m 0 . . . 0

 .
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Then the j-th element of Ct
i indicate the weight that player j places on the player i during

time t for j 6 n − m. It can be interpreted as player i’s contribution to pt received by j.
Note that the last m elements of Ct

i is always 0, as it is indicated by equation (18).
For Ct

i = (Ct
i1, . . . ,C

t
in)T, we have

|Ct
i j −Ct

ik| = |
∑

l∈N(Ťt
jl − Ťt

kl)C
t−1
l |

≤ |
∑n−m

l=1 (Tt
jl − Tt

kl)C
t−1
l | +

∑n
l=n−m+1 |Tt

jl − Tt
kl|(C

t−1
i −Ct−1

i )
6 µt(T){max j,k |Ct−1

i j −Ct−1
ik |}.

That is, max j,k |Ct
i j − Ct

ik| 6 µt(T){max j,k |Ct−1
i j − Ct−1

ik |}. The trick here is to use the original
row-stochastic matrix Tt. Then for the last m elements, for j, k such that Tt

jl − Tt
kl > 0 we

replace Ct−1
i j with C

t−1
i = maxl∈N Ct−1

il and Ct−1
ik with Ct−1

i = minl∈N Ct−1
il . Vice versa. This

allows us to utilize Seneta’s theorem, which requires a row-stochastic matrix (Ťt is not and
µt(T̃) = 1).

From the proof of Theorem 1 we know that |Ct
i j − Ct

ik| → 0. That is, for players
i, j, k 6 n − m, we have limt→∞ Tt

ik = limt→∞ Tt
jk = T∗

·k. That is, the normal players
converge to have same weight assignment on other normal players.

Then, for each persistent player s, define

T̃t
s =



Tt
11, . . . ,T

t
1,n−m 0, . . . , 0 Tt

1s 0, . . . , 0
...

...
...

...
Tt

s−1,1, . . . ,T
t
s−1,n−m 0, . . . , 0 Tt

s−1,s 0, . . . , 0
0, . . . , 0 0, . . . , 0 1 0, . . . , 0

Tt
s+1,1, . . . ,T

t
s+1,n−m 0, . . . , 0 Tt

s+1,s 0, . . . , 0
...

...
...

...
Tt

n,1, . . . ,T
t
n,n−m 0, . . . , 0 Tt

n,s 0, . . . , 0


.

That is, we set the s-th row of the (original) influence matrix to 1s, where the s-th element
is 1 and the rest are all 0. Also, the value of the i-th element in the s-th column is Tt

is
(except Tt

ss) instead of 0. Whereas the other m − 1 columns numbered after n − m are all
0s.

Then we can now apply equation (19) to persistent players. Namely, Ct
s = T̃t

sCt−1
s .

Note here that for each s we have a specified matrix T̃t
s, unlike the case with normal

players where we use the same matrix for them all.
Next, we use the same technic shown above and have that |Ct

s j−Ct
sk| → 0, which means

that normal players assign the same weight to the same persistent player as well.
Thus, for all i, j < S , Tt

ik = Tt
jk for all k, which implies that |pt

i − pt−1
i | =

∑
k∈N(Tt

ik −

Tt
jk)pt−1

k → 0. That is, pt converges and all normal players’ strategies conform:

lim
t→∞

pt
i = lim

t→∞
pt

j = p∗ for all i, j < S .
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Also, Gt → GN , which means that Tt converges to T∗ where

lim
t→∞

Tt
ik = lim

t→∞
Tt

jk =
x[(a + 1)p∗k − 1] + n(1 − p∗k)

(a + 1)x2 − 2nx + n2 ,

where

x =
∑
i∈N

p∗i = (n − |S |)pβ +
∑
s∈S

p0
s , for all i, j < S , for all k ∈ N.

Since limt→∞ pt
i = limt→∞ pt

j for i < S , actually limt→∞ Tt
i j = limt→∞ Tt

ik as well. That is,
elements in (T∗i j)(n−m)×(n−m) all have the same value.

Finally, we let pβ = p∗, which completes the proof of Theorem 4.

E Proof of Proposition 4.1
Suppose that pt < p

s
for all t, that is, the lowest value of persistent players’ initial strategies

is never a lower bound. From the proof of Theorem 1 we know that there exists t̂ > 0 such

that for t > t̂, for all i, j Tt
i j > τ, where τ =

πt̂
min

an2 ∈ (0, 1] is bounded away from 0. Then we
have that:

pt ≥ (1 − mτ)pt−1 + τ
∑

s∈S p0
s

≥ (1 − mτ)[(1 − mτ)pt−2 + τ
∑

s∈S p0
s] + τ

∑
s∈S p0

s
...

≥ (1 − mτ)t−t̂ pt̂ + τ(
∑

s∈S p0
s)

∑t−t̂
η=0(1 − mτ)η.

We have limt→∞(1 − mτ)t−t̂ pt̂ + τ(
∑

s∈S p0
s)

∑t−t̂
η=0(1 − mτ)η = 1

m

∑
s∈S p0

s > p
s
,8 which is a

contradiction to the assumption that pt < p
s
. Thus there exists t′ > 0 such that p

s
is a

lower bound of pt
i for all t > t′.

Similarly, suppose that ps is never an upper bound of pt
i. Then we have that pt

≥

(1−mτ)t−t̂ pt̂
+ τ(

∑
s∈S p0

s)
∑t−t̂
η=0(1−mτ)η → 1

m

∑
s∈S p0

s < ps, which is a contradiction to the
assumption. Thus ps is an upper bound of pt

i for all t > t′.
Note that both pt ≥ 1

m

∑
s∈S p0

s and pt
≤ 1

m

∑
s∈S p0

s are induced from the invalid as-
sumptions that pt < p

s
and pt > ps. Therefore, they cannot be used to conclude that

pt
i →

1
m

∑
s∈S p0

s . In fact, we see from Corollary 4.2 that it is not true.

8Here 1
m

∑
s∈S p0

s , p
s

because we have diverse persistent players, which implies that there exists at least
one persistent player whose strategy does not equal to p

s
. This reasoning also applies to the statement that

1
m

∑
s∈S p0

s < ps below.
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