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Abstract

This paper studies reputation effects in a class of games with imperfect public monitoring and
two long-lived players, both of whom have private information about their own type and uncertainty
over the types of the other player. Players may be either a strategic type who maximizes expected
utility or a (simple) commitment type who plays a prespecified action every period. As in standard
models, the reputation of a strategic type of player for being the commitment type is established by
mimicking the behavior of the commitment type. The distinct feature of our model is that both strategic
players aim to establish a (false) reputation for being the commitment type. The class of games we
consider encompasses a wide range of economic interactions between two parties that involve hidden-
information (e.g. between a regulator and a regulatee) or hidden-action (e.g between an employer and
an employee), where the reputation concerns of both parties are apparent. In both games, one party
(principal) prefers that the other party (agent) play in a specific way and use costly auditing to enforce
this behavior. The principal aims to establish a reputation for being diligent; whereas the agent want
to build a reputation for being virtuous. Extending the techniques of Cripps, Mailath, and Samuelson
(2004), we find that neither strategic player can sustain a reputation for playing a noncredible behavior,
i.e. a behavior which is not optimal given that the opponent is best responding in the stage game.
Hence, in this class, the true types of both players will be revealed eventually in all Nash equilibria
and the asymmetric information does not affect equilibrium analysis in the long-run. In fact, we show
that this is the only class of two-sided incomplete information games (with simple commitment types)
where reputations disappear in the long-run, in all equilibria. To do so, we provide an example where
reputations for noncredible behavior are sustained in a Nash equilibrium.
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1 Introduction

This paper studies long-run effects of reputations in a class of games with imperfect public monitoring1

and two long-lived players, both of whom have private information about their own type and uncertainty
over the types of the other player. Players may be either a strategic type who maximizes expected utility
or a commitment (behavioral) type who plays a prespecified action every period. As in standard models,
the reputation of a strategic type of player for being commitment type is established by mimicking the
behavior of the commitment type.2 The distinct feature of our model is that, since there is uncertainty over
the types of both players, both players aim to establish a false reputation for being the commitment type
in order to induce the opponent player behave in a specific way. We believe that wanting to establish a
reputation is a key concern for all parties involved in several economic interactions. Specifically, in the
economic applications that can be described by the class of games we study (that is to be discussed in
the subsequent sections), the reputation concerns of both parties are apparent. Our paper examines the
sustainability of reputations in these games when both players have concerns about their own reputation
and the reputation of the opponent player. We find that neither (strategic type of) player can sustain a
false reputation for playing a noncredible behavior, i.e. a behavior which is not optimal given that the
opponent player is best responding to this in the stage game where the true types (strategic) were to be
known. Hence, in this class, the true types of both players will be revealed eventually and the asymmetric
information does not affect equilibrium analysis in the long-run.

This class of games encompass a wide range of economic applications between two parties that involve
hidden-information (e.g. between a regulator and regulatee) or hidden-action (e.g. between an employer
and employee). The common feature of these economic interactions is that one party (the principal)
prefers that the other party (the agent) play in a certain way (e.g. to be truthful in a hidden-information
setting, and to exert high effort in a hidden-action setting) and use costly auditing to enforce this behavior.
The principal can choose either to be lazy or diligent in auditing the agent,3 which results in different
probabilities of detecting an undesirable behavior of the agent. The agent prefers the principal to be lazy.
Suppose that the payoffs of the stage game is defined such that if the agent thinks that the principal is
diligent, she is better off by behaving properly, i.e. the way the principal wants her to play. Otherwise, if
she thinks that the principal is lazy, she has an incentive to play some other action, which is not preferred
by the principal. On the other hand, when the principal thinks that the agent chooses the proper action,
he would like to be lazy in auditing. Otherwise, he is better off by being diligent. Suppose that the agent
believes that with some probability the principal is a tough type who always chooses to be diligent in

1The actions of players are not observable; however, players observe a public signal probability of which depends on the
action profile chosen.

2In most studies, a player aims to establish reputation of being the Stackelberg type, by mimicking this type’s commitment
action, i.e. the Stackelberg action (an action one would like to commit given that such a commitment induces a best response
from the opponent player).

3This can be interpreted as principal allocating time and/or resources for auditing the agent among its other tasks
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auditing. Then, the principal aims to establish a reputation for being the tough type, by choosing diligence
every period, in order to enforce the agent to choose the proper behavior. Suppose also that the agent
could be a virtuous type who acts properly every period. Then, the agent aims to establish a reputation for
being the virtuous type to induce the principal to be lazy. The fact that the actions of the two parties are
not observable to each other prevents them learning each other’s true type.

These games belong to a class, which we call one-sided binding moral hazard at the commitment

profile, as only one of the players has an incentive to deviate from the commitment action given that her
opponent is of the commitment type or plays like the commitment type. 4 The properties of these games
will be discussed in detail in subsequent sections. However, we would like to point out that this class
captures games with the following property: The interest of one of the players is aligned with the behavior
of the commitment type of the opponent player; whereas the interest of the other player conflicts with
the behavior of the commitment type of opponent. For instance, the interest of the strategic principal
is aligned with the behavior of the virtuous type of the agent since he prefers the agent act properly.
However, the strategic agent’s interest conflicts with the behavior of the tough principal since she prefers
the principal to be lazy. We study long-run behavior of reputations in games with one-sided binding moral
hazard at commitment profile when the actions of the players are not perfectly observable (imperfect
public monitoring).

Long-run equilibrium analysis requires to examine the evolution of reputations. The theory of reputa-
tions in standard infinitely-repeated games focuses on only one of the players having uncertainty over her
types (call this player the informed player) and wanting to build a false reputation. The main results about
how reputations evolve are: (1) There is a reputation-building phase in which the uninformed player is
eventually convinced to see the commitment action if the informed player has been playing it. (2) There is
a reputation-destruction phase, when the actions of the informed player is not observable, if the reputation
is for a noncredible behavior, i.e. the commitment action that the informed player is mimicking is not
optimal given that the uninformed player is best responding. The reputation is destructed optimally by
the informed player as a trade off between the loss of reputation and the payoff gain by deviating to an
action other that the commitment action, knowing that such a deviation cannot be detected unambiguously
when her actions are not observable. We show that the central results about the evolution of reputations
are robust introducing uncertainty over the types of the second player in games with one-sided binding
moral hazard at the commitment profile. Extending the techniques of Cripps, Mailath, and Samuelson
(2004), we find that neither player can sustain reputation for playing a strategy that is not equilibrium of
the complete-information stage game - the game without uncertainty over the types. Hence, in this class,
the true types of the players will be revealed eventually and the asymmetric information about the types

4The commitment action profile in the principal-agent game is (proper behavior, diligence). The only player who has an
incentive to deviate from this profile is the principal, i.e. the principal wants to deviate to be lazy given that the agent chooses
to behave properly. For the agent, the best reply against a diligent principal is to behave properly.
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of players does not affect equilibrium analysis in the long-run.
In order to illustrate some important features of these games, we provide an example that describes a

hidden-information framework between a regulator and a regulatee in section 1.1. The reader who wants
to continue with a discussion of the general set up and our results may jump to section 1.2.

1.1 Example

Consider the repeated interaction between a regulator and a regulatee 5 where the possible actions for
the regulatee are to be truthful or untruthful about some noisy information she gets regarding the state of
nature (that is realized at the end of the period); and those for the regulator are to be lazy or diligent in
auditing the regulatee. For instance, the regulatee could be a bank which gets a noisy information about its
own financial health and the regulator could be a government official. 6,7 The actions of the regulatee to be
truthful or untruthful are not observable to the regulator. However, the regulator observes if the message
sent by the regulatee is correct or not (i.e. if it matches the realized state of nature or not). Since the
regulatee’s information about the state of nature is noisy; an incorrect message can come from a truthful
behavior, as well as a correct message can come from an untruthful behavior. Similarly, the actions of
the regulator (being lazy or diligent), which induce different probability of audit, are not observable to
the regulatee. 8 However, she observes if there is an audit or not at the end of the period, which may
result after a lazy or a diligent behavior. The probability of correct message is higher if the regulatee is
truthful; similarly, the probability of an audit is higher if the regulator is diligent. The regulator prefers the
regulatee to be truthful and the regulatee prefers the regulator to be lazy.

Table 1: Expected Payoff Matrix

L D
T x, y x− l1, y − c
U x+ g, z x− l2, z − c+ d

where y, z, g, c, d > 0, l2 > l1 ≥ 0 and y > y − c > z − c+ d > z.
5This game can be considered as a variant of inspection games extensively studied in the literature. We refer the reader

Rudolf, Bernhard, and Zamir (2002) for a discussion on inspection games.
6The other possible applications for which these games can be used to model include analyzing tax evasion through the

interaction between a tax payer and tax collecting agency or the asset market manipulation via strategic announcements of an
insider in the presence of a regulator.

7Benabou and Laroque (1992) provide a model of repeated strategic communication that analyzes manipulation in asset
markets, where they extend Sobel (1985)’s model to the case in which the sender (insider) has noisy private information about
the value of an asset. The sender can deceive public and distort the asset price through strategic announcements. However, their
model is missing a strategic receiver who can audit the sender. Ozdogan (2009) provides a model with a strategic receiver.

8One can interpret this as the regulator chooses between two mixed strategies; or allocates some resources or time to auditing
among its other tasks.
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Row player is the regulatee who chooses to be truthful (T ) or untruthful (U) and the column player is
the regulator who chooses to be diligent (D) or lazy (L). The regulatee’s best response against the choice
of being lazy is to be untruthful, since she has an expected gain of g. However, the regulatee’s best response
when the regulator is diligent in auditing is to be truthful, since the expected loss from untruthfulness when
the regulator is diligent l2 is higher than l1. 9 For the regulator, the best response when the regulatee is
truthful is to be lazy, since the diligence in auditing has a cost of c. On the other hand, the regulator’s best
response is to be diligent when the regulatee is untruthful, since there is a expected gain d from possible
detection of the untruthful behavior. The regulator gets his highest payoff when he is lazy and the regulatee
is truthful; whereas the regulatee gets her highest payoff when the regulator is lazy and she is untruthful.
Thus, the regulator wants to convince the regulatee that he is diligent to enforce truthfulness. However,
the best response of the regulator if the regulatee is truthful is to be lazy. On the other hand, the regulatee
prefers the regulator to be lazy, and thus the regulatee wants to convince the regulator that she is truthful
to enforce laziness in auditing. However, the regulatee’s best response once she thinks that the regulator is
lazy is to be untruthful. 10

Let α1 be the strategy of the regulatee and α2 be the strategy of the regulator (in the stage game).
There is unique mixed strategy Nash equilibrium of the stage game, which is α1(T ) = d−c

d
and α2(D) =

g
g+l2−l1 that provides a payoff of x − g.l1

g+l2−l1 to the regulatee and y − c(y−z)
d

to the regulator. We want to
point out that the unique equilibrium profile is Pareto dominated by the profile (Truthful, Lazy) which
gives x and y to the regulatee and regulator, respectively. Also, note that as the expected gain d from
detecting untruthfulness for the regulator approaches to the cost of monitoring c, then the regulatee, in
equilibrium, chooses to be truthful with a smaller probability. On the other hand, as the expected gain g
from untruthfulness increases, the regulator would choose to be diligent with a higher probability.

Suppose that there are private types for both of the players and players have uncertainty over the types
of the other player. More specifically, the regulator believes that the regulatee is a virtuous type, who is
truthful in every period, with some probability. The regulatee wants to use regulator’s uncertainty over
her types and pretend to be the virtuous type (by acting like the virtuous type) to enforce the regulator to
be lazy in the continuation play. On the other hand, the regulatee believes that the regulator is a tough

type, who is diligent in every period, with some probability. Then the regulator may find it worthwhile
to exploit regulatee’s uncertainty over his type by pretending to be the tough type to induce truthfulness.
Since the actions of the players are not observable to each other, they can’t learn each other’s true types
for sure. We would like to point out that the incentives of the regulator is aligned with the virtuous type of

9We allow l1, the expected loss for the regulatee when the regulator is diligent and the regulatee is truthful, to be positive as
well as zero because of the noise in signals regarding her behavior.

10We can define the repeated interaction between an employee and employer via a game with the same stage game expected
payoff matrix, where the available actions for the employee are high effort and low effort, and for the employer are to be diligent
and lazy in auditing. The actions of the players are not observable. The employer observes the output produced by the employee
and the employee observes if there has been an audit or not by the employer.
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the regulatee in the sense that the regulator prefers the regulatee to be truthful and a virtuous regulatee is
always truthful. On the other hand, the incentives of the regulatee conflicts with that of a tough regulator
as the regulatee prefers the regulator to be lazy, but a tough regulator is always diligent. We characterize
the equilibria of the one-shot game with the incomplete-information on both sides and how those depend
on the parameters of the stage-game in the Appendix.

We analyze what happens to the reputations (for being tough and virtuous) of the regulator and the
regulatee in the limit in order to understand long-run equilibrium behavior and payoffs. For instance, if
there were to be a Nash equilibrium where both of the reputations are sustainable, i.e. the types of the
players are not revealed, this means that each player should be seeing similar public signals on average
from both types of the opponent player, since they cannot distinguish between the types (given that the
signals are statistically informative about both players’ actions). But, this is only possible if both types of
the players act the same on average in the limit. Then the regulator should be diligent and the regulatee
should be truthful on average indefinitely, which wouldn’t be efficient since this profile is Pareto inferior
to always playing the profile (Truthful, Lazy). We show this is not the case: neither of the players’
reputation is sustainable, i.e. reputations of being tough and virtuous disappear in the limit, when players
are not indeed those types. Hence, the asymmetric information over the types of players does not affect the
equilibrium analysis, in the sense that any Nash equilibrium of the game converges to the Nash equilibrium
of the game without uncertainty over the types.

1.2 Approach and Result

We present a class of games with imperfect public monitoring 11 and incomplete-information over the
types of both players, which captures the repeated interaction between a regulator and regulatee described
in section 1.1.

Each player, in our model, can be either a commitment type who plays an exogenously specified stage
game action every period independently of the history of the play 12 or a strategic type who maximizes
expected payoffs. The stage games and the stage game commitment action profile we allow are restricted.
We say that a player is subject to binding moral hazard at the commitment action profile if the player
finds it suboptimal to play the commitment action given that the other player is playing her commitment
action or is the commitment type. The key condition of our model is that the stage games we consider
have “one-sided binding moral hazard at the commitment profile,” which requires exactly one player being
subject to binding moral at the commitment action profile. Hence, for only one of the players (say player
2 - the principal), the best response to the commitment action of the opponent is not his commitment

11Actions of the players are not observable to each other; instead, players observe a public signal, distribution of which
depends on the action profile chosen.

12A repeated game (behavior) strategy is called a simple strategy if it is a constant function of histories, i.e. for every period
independent of history of the play, it assigns the same (possibly mixed) stage game action.
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action, while for the other player (player 1 - the agent), her best response to the commitment action of the
opponent player is her commitment action. So, there is only one player who has incentives to deviate to
another action at the commitment action profile. Moreover, we require a monitoring structure that ensures
that the public signals are statistically informative about each player’s actions; and also, that allows players
to infer the opponent’s beliefs about their own type (thus makes the beliefs of each player public). The
assumptions we make on monitoring structure enable players to identify any fixed stage game action of
the other player from frequencies of signals after sufficiently many observations and compute the other
player’s posterior belief about their own types.

In this setting, we show that reputations of both of the players disappear eventually if the commitment
actions are not part of an equilibrium for the strategic types in the stage game. More precisely, if for both
of the players, their best response to the best response of the opponent to their commitment strategy is
not their commitment strategy, then in any Nash equilibrium of the incomplete-information game, the true
types will be revealed (almost surely).

The techniques of the proofs are borrowed from Cripps, Mailath, and Samuelson (2004), who study
games with imperfect public monitoring in which only one of the players has uncertainty about the types
of the other player. The key condition we require on the stage games, i.e. the one-sided binding moral

hazard at the commitment action profile, makes the long-run behavior of the reputation of the player who
is subject to binding moral hazard (the principal) independent of the reputation of the player who is not
(the agent); whereas, this condition necessitates the behavior of the reputation of the player who is not

subject to binding moral hazard (the agent) depend on the behavior of the reputation of the player who
is subject to binding moral hazard (the principal). Let player 2 (the principal) be the one who is subject
to binding moral hazard at the commitment action profile. For instance, if player 2 were to play the
commitment action all the time, there is no incentive for player 1 (the agent) to play something other
than her commitment strategy since player 1’s best response to the commitment action of player 2 is her
commitment action. Thus, player 1’s type won’t be revealed unless player 2’s type is revealed. In other
words, there won’t be any set of histories with positive probability on which player 1’s type is revealed
but not player 2’s. After establishing that player 2’s type is (almost) revealed in the long-run, we can show
that player 1’s true type should be revealed as well. Hence, the one-sided binding moral hazard condition
allows us to break the analysis of the long-run behavior of the reputations of the two players into two
stages:

1. We first show that the reputation of player 2 is not sustainable in the long-run: Suppose on the
contrary that there is a positive probability set of events in which the type of player 2 is not revealed,
i.e. if both types of player 2 are given strictly positive probability in the long-run. It means that the
play of the strategic type of player 2 is not distinguishable from the play of the commitment type in
the limit (given that the public signals are statistically informative about a player’s actions). Hence,
in the event in which the type is not revealed, the strategic and commitment type must be playing
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the same way on average. The strategic type of player 1 is going to best reply to the commitment
action of player 2, which is the same as her commitment action. Thus, player 1 must be playing
the same strategy on average, too. Hence, the posterior beliefs about player 1’s type will not change
in these histories. For any (fixed) belief about player 1’s type, since the commitment strategy of
player 2 is not his best response to player 1’s commitment action, he can gain by playing the best
response to player 1’s commitment action (which is different than his commitment action), knowing
that the deviations from equilibrium play cannot be unambiguously detected by player 1 (because
of imperfect monitoring). Then, the strategic type of player 2 has a trade off between the loss of
reputation and the current payoff gain. The convergence of beliefs in the limit ensures that any signal
has an arbitrarily small effect on players’ beliefs. And thus, when reputations are public, player 2
eventually knows that player 1’s beliefs have nearly converged and be sure that deviations from the
commitment strategy have arbitrarily small effect on the payoffs from the continuation play (due
to discounting). But then the strategic and the commitment type of player 2 are expected to play
differently, which contradicts to the belief of player 1 about both types of player 1 playing the same
strategy in the limit (on a positive set of histories). This establishes the fact that there cannot be
positive set of events in which player 1’s type is not revealed eventually.

Moreover, the disappearance of player 2’s reputation is uniform across all Nash equilibria, i.e. there
is some period T after which reputation of Player 2 of being the commitment type converges to zero
(almost surely) in all Nash equilibria (according to the probability measure induced by the strategic
type of player 2’s play).

2. Given that player 2’s type is revealed (almost surely) after some T in any Nash equilibria, the game
“approaches” to the one where there is uncertainty over the types of player 1 only. We show that
player 1’s reputation for being the commitment type converges to zero, in the same fashion. The
only problem could be that even though player 2’s type is revealed, he could keep playing the
commitment strategy on average. In this case, the strategic player 1 would give a best response
which coincide with her commitment type and the type wouldn’t be revealed. But this can’t happen
since in the events that type of player 1 is not revealed and the strategic and commitment type
of player 1 play approximately the same way, so the strategic type of player 2 finds it optimal to
play the best response against player 1’s commitment action, which will decrease the reputation of
player 2 even more after T . 13 So, player 1 expects to see a best reply to her commitment strategy
from the strategic type of player 2 with a high probability. Thus, player 1 best responds to the
strategic type of player 2 who gives a best reply to the commitment strategy of player 1 with high
probability. However, as the strategic type player 1’s best response to player 2’s strategy is different
than her commitment strategy, the strategic and the commitment type of player 1 are expected to

13More precisely, the histories for which player 2’s reputation can be rebuilt would have measure 0.
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play differently, which reveals her true type eventually.

Our results imply that the asymmetric information about the types of players does not interfere in
the long-run equilibrium behavior. We show that continuation play in every Nash equilibrium of the
incomplete-information game is converges to an equilibrium of the complete-information game.

The implication of our results for the games between a regulator and a regulatee, presented in Section
1.1, is that the reputation of being tough for the regulator disappears in the long-run (regardless of the
long-run behavior of the regulatee’s reputation of being virtuous) since the regulator is the player who
is subject to binding moral hazard at the commitment profile. After his true type is almost known, the
regulatee starts to take advantage of regulator’s uncertainty over her type and regulatee’s reputation of
being virtuous disappears eventually as well. So, the regulatee waits for the revelation of the regulator’s
type, before revealing her type.

These results suggest that if there is a possibility that the regulator is replaced every period so that the
uncertainty about the regulator’s type renewed every period, then the regulatee is never fully convinced
that the regulator is tough. In this situation, the regulator keeps playing diligent and will not have incentive
to deviate since the regulatee is not convinced. 14 So, one way to sustain the reputations is to introduce
the possibility that keeps the uncertainty over the type of regulator every period. However, this will create
an equilibrium which is not efficient. That is why we believe that the replacements should be strategically
scheduled.

We would like to point out that our model satisfy all the assumptions of Cripps, Mailath, and Samuel-
son (2004), and thus if there is uncertainty about the types of one player only (either of the players), their
result hold and the true type of the informed player is revealed eventually. We are able to show that Cripps,
Mailath, and Samuelson (2004)’s result is robust to introducing uncertainty over the type of the second
player in this class of games. Also, we believe that the existence of a commitment type of player 1 (the
player who is not subject to binding moral hazard) speeds up the revelation of the true type of player 2;
whereas, existence of a commitment type of player 2 postpones the revelation of true type of player 1,
compared to the corresponding one-sided incomplete-information games.

1.3 Related Literature

Most of the early literature on games with reputation concerns focus on settings in which a long-lived
player faces a sequence of short-lived players, each of whom plays only once but observes the previous
play and believes that the long-lived player might be committed to some exogenously specified strategy. In
this environment, Fudenberg and Levine (1989) and Fudenberg and Levine (1992) provide a lower bound

14Mailath and Samuelson (2001) and Phelan (2006) provide models where the long-lived informed player’s type is governed
by a stochastic process that has long-run implications.
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on the long-lived player’s average payoff, namely the Stackelberg payoff, 15 given that she is sufficiently
patient. Following the tradition of long-lived player gains from short-lived players’ uncertainty over her
types, Schmidt (1993) and Celentani, Fudenberg, Levine, and Pesendorfer (1996) show reputation effects
arise in settings that involve two long-lived players and can be stronger than when the uninformed player
is short-lived.

However, Cripps, Mailath, and Samuelson (2004) show that a long-lived player can maintain a per-
manent reputation for playing a commitment strategy in a game with imperfect monitoring only if that
strategy plays an equilibrium of the corresponding complete-information stage game. They also prove that
the continuation play in every Nash equilibrium of the incomplete-information game is Nash equilibrium
of the complete-information game. Thus, the powerful results about the lower bounds on the long-lived
informed player’s average payoff are short-run reputation effects, where the long-lived informed player’s
payoff is calculated at the beginning of the game. Cripps, Mailath, and Samuelson (2007) extend their ear-
lier result to games with two long-lived players where the uninformed long-lived player has private beliefs
over the types of informed long-lived player, so that the reputation of the informed player is private. Also,
an earlier result on the long-run properties of reputations is by Benabou and Laroque (1992), who study
a game with a long-lived player who can be one of two types, honest or opportunist, and a continuum
of myopic players in asset markets. They focus on the Markov perfect equilibrium of this game where
the actions of the long-lived player is not observable. They show that the long-lived player reveals her
type in any Markov perfect equilibrium. All these results are for games with imperfect public monitoring
and uncertainty over the types of only one of the players. We show that this result extends to games with
one-sided binding moral hazard at the commitment action profile.

The paper is organized as follows: Section 2 describes the model, Section 3 states the main results of
the paper and Sections 4 and 5 are devoted to the proofs of Proposition 1 and 2 respectively, which lead to
the proof of our main result Theorem 1.

2 Model

In this section, we first define the complete-information game, the game without uncertainty over the
types of players (i.e. the game when both players are strategic types). Then we present the incomplete-
information game by adding commitment types of players to the model.

15Stackelberg payoff is the payoff players receive in the stage game when they play their Stackelberg action (i.e. the action
players would like to commit given that such a commitment induces a best response from the opponent player) and the opponent
best responds to it. Stackelberg action is the action players would like to choose in an extensive-form game when they move
the first.
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2.1 Complete-information game

We define an infinitely repeated game with imperfect public monitoring. The stage game is a two-player
finite strategic form game. Player 1 (“she”) chooses an action i ∈ I ≡ {1, ..., Ī} and player 2 (“he”)
chooses an action j ∈ J ≡ {1, ..., J̄}. The public signal y is drawn from the finite set Y . The probability
that the public signal is realized under the action profile (i, j) is given by ρyij . The ex post (realized) stage
game payoff to player 1 (resp., 2) from action i (resp., j) and signal y is given by u1(i, y) (resp. u2(j, y)).
The ex ante (expected) stage game payoffs are π1(i, j) =

∑
y u1(i, y)ρyij and π2(i, j) =

∑
y u2(j, y)ρyij .

Both players are long-lived with discount factor δ1 < 1 for player 1 and δ2 < 1 for player 2. The set
of histories is denoted by hft ≡ ((i0, j0, y0), ..., (it−1, jt−1, yt−1)) ∈ Hf

t ≡ (I × J × Y )t. Each player
observes the realization of the public signal and his or her own past actions. Player 1’s private history
is denoted by h1t ≡ ((i0, y0), ..., (it−1, yt−1)) ∈ H1t ≡ (I × Y )t. Similarly, player 2’s private history is
denoted by h2t ≡ ((j0, y0), ..., (jt−1, yt−1)) ∈ H2t ≡ (J × Y )t. And, the public history observed by both
players is ht ≡ (y0, ..., yt−1) ∈ Ht ≡ Y t. The filtration on (I × J × Y )∞ induced by the private histories
of player m = 1, 2 is denoted by {Hmt}∞t=0, while the filtration induced by the public histories is denoted
by {Ht}∞t=0. Player 1’s strategy, σ ≡ {σt}∞t=0, is a sequence of maps σt : H1t → ∆(I). Similarly, Player
2’s strategy, τ ≡ {τt}∞t=0, is a sequence of maps τt : H2t → ∆(J).

The payoffs in the infinitely repeated game are normalized discounted sum of stage game payoffs,
(1− δm)

∑∞
s=0 δ

s
mπm(is, js) for player m = 1, 2. The average discounted payoffs in period t is denoted by

πmt ≡ (1− δm)
∑∞

s=t δ
s−t
m πm(is, js).

We require some conditions on the monitoring technology. We assume that the public signals have full
support (Assumption 1). So, every public signal is possible after any action profile and players can not
infer the actions chosen by the other player perfectly after a signal.

Assumption 1 (Full support) For all (i, j) ∈ I × J and y ∈ Y , ρyij > 0.

Full support assumption prevents perfect inference of actions after any signal. We also assume “indi-
vidual full rank” conditions, so that after sufficiently many observations, any fixed stage game action of
either player can be identified from the frequencies of the signals (Assumptions 2 and 3).

Assumption 2 (Individual 1 full rank) For all j ∈ J , the I columns in the matrix (ρyij)y∈Y,i∈I are linearly

independent.

Assumption 3 (Individual 2 full rank) For all i ∈ I , the J columns in the matrix (ρyij)y∈Y,j∈J are linearly

independent.

Assumption 2 and 3 ensure that, for each player, the distribution of signals generated by any (possibly
mixed) action is statistically distinguishable from any other for any given action of the other player. Note
that these conditions require that |Y | ≥ max{|I|, |J |}.
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A strategy profile (σ, τ) induces a probability distribution P(σ,τ) over Hf
∞ ≡ (I×J ×Y )∞. We denote

the expectation with respect to this distribution by E(σ,τ).

Definition 1 A Nash equilibrium of the complete information game is a strategy profile (σ∗, τ ∗) such that

E(σ∗,τ∗)[π10] ≥ E(σ′,τ∗)[π10] for all σ′ and E(σ∗,τ∗)[π20] ≥ E(σ∗,τ ′)[π20] for all τ ′.

This definition implies that under the equilibrium strategy profile, player m’s strategy maximizes con-
tinuation expected utility after any history that occurs with positive probability. Note that, with the full
support assumption, all public histories occur with positive probability. Hence, any Nash equilibrium
outcome is also the outcome of a perfect Bayesian equilibrium.

2.2 Incomplete-information game

We model uncertainty about players’ preferences with Harsanyi (1967)’s notion of games with incomplete
information by introducing a commitment type for each player. At time t = −1, before the game starts,
nature selects a type for both players and tells each player her or his own type privately. With probability
1 − µ0 > 0, player 1 is a “strategic” type, denoted by n, with the preferences described above and with
probability µ0 > 0, she is a “commitment” type, denoted by c, who plays the action s1 ∈ ∆(I) in each
period regardless of history. Similarly, with probability 1− γ0 > 0, player 2 is a “strategic” type, denoted
by n, whose preferences are described above and with probability γ0 > 0, he is a “commitment” type,
denoted by c, who plays the action s2 ∈ ∆(J) in each period independent of history. 16

The stage games we consider are restricted. We denote the stage game commitment actions by (s1, s2)

and define (s1, s2) to be commitment profile. Let r1 ≡ BR1(s2) and r2 ≡ BR2(s1) be the best responses
of strategic type of player 1 and 2 against the commitment action of their opponent, respectively.

Definition 2 Player m = 1, 2 is subject to binding moral hazard at the commitment profile (sm, s−m) if

rm 6= sm.

Since Assumption 1 ensures that deviations by players are not unambiguously detectable, if player m
is subject to binding moral hazard at strategy profile (sm, s−m), then he has strict incentive to deviate from
the profile (sm, s−m).

Definition 3 A game has one-sided binding moral hazard at the commitment profile if there is only one

player who is subject to binding moral hazard at the commitment strategy profile (s1, s2).

16Instead of modelling the incomplete-information by behavioral types, we could have modeled the commitment types as
agents whose payoffs are different from those of the strategic ones, as in Koren (1992). Then players would know their own
payoffs and have uncertainty over the payoffs of the other player.
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From thereafter, when we use the term one-sided binding moral hazard, it refers to the one at the
commitment profile. An example of a stage game with one-sided binding moral hazard is given in Table
2.2. It is a specific example of the games we discussed in section 1.1 between a regulator and regulatee with
numerical values for the parameters. The commitment profile is (T,D) (which corresponds to Truthful
and Diligent). This game has one-sided binding moral hazard, since only player 2 is subject to binding
moral hazard at (T,D). However, for a prisoners’ dilemma game, if the commitment profile is given by
(C,C), both players are subject to binding moral hazard at the commitment profile.

The stage games we allow have one-sided binding moral hazard at the commitment profile. The im-
portance of this condition will be discussed in the following sections. We make the following assumption
on expected stage game payoffs.

Assumption 4 The stage game satisfies the following:

1. The stage game has one-sided binding moral hazard at the commitment profile (s1, s2).

2. Each player has a unique best reply rm to s−m and (s1, r2) and (r1, s2) are not stage game Nash

equilibria.

Table 2: Regulatee-Regulator game: One-sided binding moral hazard at (T,D)

L D
T 2, 3 0, 2
U 3, 0 -1, 1

Table 3: Prisoners’ dilemma: Two-sided binding moral hazard at (C,C)

C D
C 2, 2 -1, 3
D 3, -1 0, 0

Note that the first requirement already implies that either (s1, r2) or (r1, s2) is not Nash equilibrium,
depending on who is subject to binding moral hazard at (s1, s2). For instance, if player 2 is the one who
is subject to binding moral hazard, then r1 = s1 and (r1, s2) is not a Nash equilibrium. Moreover, the
second condition necessitates s1 to be a pure action, whereas the commitment action of player 2 could be
a mixed-action.

13



Let σ̂ denote the repeated game strategy of playing s1 in each period independent of history and τ̂
denote the repeated game strategy of playing s2 in each period independent of history. Since r1 is unique
best response to s2, by Assumption 4, the best response of player 1 in the repeated game, i.e. BR1(τ̂),
is a singleton and prescribes playing r1 in each period for every history. Similarly, the best response
of player 2 against the commitment strategy of player 1, BR2(σ̂), is a singleton and prescribes playing
r2 in each period for every history. Since (s1, r2) and (r1, s2) are not stage game Nash equilibrium,
(σ̂, BR2(σ̂)) and (BR1(τ̂), τ̂) are not Nash equilibrium of the complete-information infinitely repeated
game. The unique stage game best responses guarantee that there are no multiple best responses to the
commitment strategies in the infinitely repeated game. Since (σ̂, BR2(σ̂)) and (BR1(τ̂), τ̂) are not Nash
equilibrium in the complete-information infinitely repeated game, each player has an incentive to deviate
to a strategy other than the repeated game commitment strategy, given that opponent is best responding to
the commitment strategy.

The first requirement of Assumption 4 implies that the commitment profile (s1, s2) is not a Nash
equilibrium of the stage game, thus repetition of this commitment profile in every period independent of
history can not be a Nash equilibrium of the complete-information infinitely repeated game (when the
types are known and indeed strategic). So, at least one of the players has a profitable deviation from
the repeated commitment profile. Since only one player is subject to binding moral hazard, for only one
player, there is a profitable deviation in the complete-information repeated game. This condition requires
that one of the players best response against the commitment action of the opponent player should be the
same as her commitment action, i.e. rm = sm for one of the players. Hence, for one player the best
response in the complete-information infinitely repeated game is the same as her commitment strategy in
the repeated game. For notational clarity, we let player 2 be the player who is subject to binding moral
hazard at (s1, s2) and player 1 be the one whose best response to τ̂ in repeated game is the same as her
commitment strategy σ̂.

Example given by Table 2.2 illustrates the stage games we allow. Note that it is a numerical example
of the games we discussed in section 1.1 between a regulator and regulatee. The stage game has a unique
Nash equilibrium in mixed strategies. Let α1 ∈ ∆(I) be the strategy of player 1 (regulatee) and α2 ∈ ∆(J)

be the strategy of player 2 (regulator). The unique Nash equilibrium of the stage game is α1(T ) = 1
2

and
α2(D) = 1

2
, providing a payoff vector of (1, 1.5) to player 1 and player 2, respectively. The minmax value

for player 1 is 0 (the action that minmaxes player 1 is D) and the minmax value for player 2 is 1 (the
action that minmaxes player 2 is U ). We introduce incomplete information about the types of both players
by assuming there is a probability µ0 > 0 that player 1 is the Stackelberg type who plays her Stackelberg
action 17 T in every period and there is a probability γ0 > 0 that player 2 is the Stackelberg type who
plays his Stackelberg action D in every period. 18 This game satisfies the conditions of Assumption 4.

17This is an action to which a player would like to commit given that such a commitment induces a best response from the
opponent player, i.e. this is the action a player would like to choose in an extensive-form game when she/he moves the first.

18Note that the commitment types in the game between a regulatee and regulator, i.e. virtuous and tough, are indeed their
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The first requirement of Assumption 4 is met since the unique best response for player 1 against D, the
commitment action of player 2, is T and (T,D) is not a Nash equilibrium of the stage game; and for
player 2, the unique best response against the commitment action of player 1 is L and (T, L) is not a Nash
equilibrium of the stage game. It is easy to check that the commitment profile (T,D) is not Nash equilib-
rium of the stage game and only player 2 is subject to binding moral hazard at (T,D). Thus, player 1’s
best response to D is the same as her commitment action (Stackelberg action) T . Hence, only player 2 has
an incentive to deviate from the commitment profile in the infinitely repeated complete-information game.

LetK = {c, n} and L = {c, n} be the type spaces for player 1 and player 2, respectively. The repeated
game strategy for player 1, σ, is a sequence of maps σt : H1t × K → ∆(I). For player 2, the repeated
game strategy is denoted by τ is a sequence of maps τt : H2t×L→ ∆(J). Let σ be denoted as σ ≡ (σ̂, σ̃)

where σ̂ is the strategy of the c type of player 1 that prescribes playing s1 in each period independent of
history and σ̃ is the repeated game strategy of n type of player 1. Similarly, we denote the repeated game
strategy of c type of player 2 by τ̂ which prescribes playing s2 every period regardless of history and τ̃
is the strategy of n type of player 2, and τ ≡ (τ̂ , τ̃). A state of the world in the incomplete information
game, ω, is a type for player 1, a type for player 2, and a sequence of actions and public signals. The set
of states is Ω ≡ K × L×Hf

∞, where Hf
∞ = (I × J × Y )∞. The priors (µ0, γ0), the strategies σ ≡ (σ̂, σ̃)

of player 1, and the strategies τ ≡ (τ̂ , τ̃) of player 2 jointly induce a probability measure Q(σ,τ ;µ,γ) on
(Ω,F) ≡ (K×L×Hf

∞, 2
K⊗2L⊗Hf

∞). The probability measureQ(σ,τ ;µ,γ) describes how an uninformed
observer of the game expects the play to evolve. We denote the expectation with respect to Q(σ,τ ;µ,γ) by
E(σ,τ). Let E(σ,τ)[.|H1t] and E(σ,τ)[.|H2t] denote players expectations with respect to Q(σ,τ) conditional on
the filtration induced by the private histories,H1t andH2t, respectively.

The strategy profile (σ̂, τ) and (σ̃, τ), where τ = (τ̂ , τ̃), induce probability measure Qc. and Qn.,
which describes how the play evolves when player 1 is the commitment and strategic type, respectively.
The probability measureQk. ≡ Q(σk,τ), where σk is the strategy of the k type of player 1, describes how the
game evolves if player 1 is of type k. The associated expectation is denoted by Ek. ≡ E(σk,τ). Similarly,
the strategy profile (σ, τ̂) and (σ, τ̃), where σ = (σ̂, σ̃), induce probability measure Q.c and Q.n, which
describe how the play evolves when player 2 is the commitment and strategic type, respectively. So, the
probability measureQ.l ≡ Q(σ,τl), where τl is the strategy of the l type of player 2, describes how the game
evolves if player 2 is of type l, and the associated expectation is E.l ≡ E(σ,τl).

We will denote Q(σ,τ), E(σ,τ), Q(σk,τ), E(σk,τ), Q(σ,τl) and E(σ,τl) by Q, E, Qk., Ek., Q.l and E.l, respec-

Stackelberg types and the commitment profile (Truthful,Diligent) are the Stackelberg actions of regulatee and regulator,
respectively.
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tively. Players’ payoffs in the repeated game is then

Ek.[π10] = Ek.
[
(1− δ1)

∞∑
t=0

δt1π1(it, jt)
]

E.l[π20] = E.l
[
(1− δ2)

∞∑
t=0

δs2π2(it, jt)
]

We analyze the game assuming that players are indeed “strategic.”

Definition 4 A Nash equilibrium of the incomplete information game is a strategy profile (σ̃, τ̃) such that

En. ≡ Eσ̃,τ [π10] ≥ Eσ′,τ [π10], ∀σ′

E.n ≡ Eσ,τ̃ [π20] ≥ Eσ,τ ′ [π20], ∀τ ′

Player 1’s posterior belief in period t about player 2’s type is given by H1t - measurable random
variable

γt ≡ Qk.(c | H1t) : Ω→ [0, 1],

and player 2’s posterior belief in period t about player 1’s type is given by H2t - measurable random
variable

µt ≡ Q.l(c | H2t) : Ω→ [0, 1].

Our main theorem will establish that the reputations for being the commitment types cannot be sus-
tainable indefinitely, i.e. µt → 0 and γt → 0 almost surely (with respect to the probability distribution
induced by the strategies of the strategic type of the players). We should point out that players’ beliefs
about each other’s type is private. This means players do not know the beliefs of the other player about
their own types perfectly. We impose a condition on the public monitoring structure that rules out the
dependence of beliefs on player’s own past actions, and thus enables players to infer opponent’s beliefs
about their own types. We assume that the monitoring structure is such that the informativeness of the
public signal about any player’s action is independent of the other player’s action (Assumption 5), and as
a consequence, the reputations become public. Let Prob(i | y, j, α1) be the posterior probability of “player
1 having chosen pure action i”, given mixed α1 and given that player 2 observed signal y after playing
action j, and Prob(j | y, i, α2) is the corresponding posterior probability of player 2’s action.

Assumption 5 (Independence) For any α1 ∈ ∆(I) and α2 ∈ ∆(J), and any signal y ∈ Y ,

Prob(i | y, j, α1) = Prob(i | y, j′, α1), for all j, j′

Prob(j | y, i, α2) = Prob(j | y, i′, α2), for all i, i′.
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Assumption 5 implies that for all α1 ∈ ∆(I) and j, j′ ∈ J ,

Prob(y | i, j)α1(i)∑
i∈I α1(i)Prob(y | i, j)

=
Prob(y | i, j′)α1(i)∑
i∈I α1(i)Prob(y | i, j′)

(1)

Similarly, for all α2 ∈ ∆(J) and i, i′ ∈ I ,

Prob(y | i, j)α2(j)∑
j∈J α2(j)Prob(y | i, j)

=
Prob(y | i′, j)α2(j)∑
j∈J α2(j)Prob(y | i′, j)

(2)

Assumption 5 ensures that public signals allow players to infer the other player’s beliefs about their
type since the information that public signal provides about the player’s action is independent of the
opponent’s behavior. In other words, this monitoring structure allows players to calculate opponent’s
inference about their reputation without knowing the opponent’s action, thus reputations of both players
becomes public and beliefs are common knowledge.

Assumption 5 holds if each player has individual specific signals, i.e. the public signal y is such that
y = (y1, y2) ∈ Y = Y1 × Y2 where y1 is a signal of player 1’s action and y2 is a signal of player 2’s, with

ρyij = ρy1i ρ
y2
j , ∀i, j, y.

Such monitoring structure is called product structure. In the motivating example game presented in
section 1.1, each player had separate public signal, distribution of each depended only on player’s own
action, independent of the other players action. 19,20

For games with product structure, every sequential equilibrium payoff in the complete-information
infinitely repeated game (equilibrium when private histories are used as beliefs) is also a public perfect
equilibrium payoff. 21 We can show that Assumption 5 implies every sequential equilibrium payoff in the
complete-information game (equilibrium when private histories are used as beliefs) is also a public perfect
equilibrium payoff, in the same spirit of Fudenberg and Levine (1994). Thus, we believe there is no loss
of generality if we restrict attention to public strategies. A public strategy σ ≡ {σt}∞t=0 for player 1 is a
sequence of maps σt : Ht → ∆(I) and that for player 2, τ ≡ {τt}∞t=0, is a sequence of maps τt : Ht →
∆(J). The strategy profile (σ, τ) induces a probability distribution Q(σ,τ) over Hf

∞ ≡ (I × J × Y )∞. Let
E(σ,τ)[. | Ht] denote players expectations with respect to Q(σ,τ) conditional on the filtration induced by the
public history,Ht.

19For regulatee, the public signals are correct and incorrect message; whereas, for regulator, the public signals are there has
been an audit or no audit; probability of which depends on their own actions only.

20In games with product structure, pure-action profiles satisfy pairwise identifiability condition of Fudenberg, Levine, and
Maskin (1994) Folk theorem result for games with imperfect public monitoring. Hence, any feasible and Pareto efficient payoff
dominating a Nash equilibrium payoff of the stage game can be attained as an equilibrium payoff of the repeated (complete-
information) game if players are sufficiently patient.

21See Mailath and Samuelson (2006) (p.330) and Fudenberg and Levine (1994) (Theorem 5.2) for further discussion.
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Note that due to Assumption 5 (i.e. under a monitoring structure such as the product structure), γt
and µt can be viewed as Ht - measurable random variable Q(c | Ht) on Ω. This property enables both
players to calculate the opponent player’s beliefs about themselves. So, in period t, strategic type of player
1 is maximizing Eσ̃,τ [π1t | Ht], and a strategic player 2 is maximizing Eσ,τ̃ [π2t | Ht], that depend on the
information sets generated by public histories.

At any Nash equilibrium of the incomplete information game, γt is a bounded martingale with respect
to the measure Q and filtration {H1t}t (and also with respect to filtration {Ht}t by Assumption 5). There-
fore, γt converges Q-almost surely (and also Q.n - almost surely and Qnn - almost surely, since Q.n and
Qnn are absolutely continuous with respect to Q) to a random variable γ∞ on Ω. Similarly, at any Nash
equilibrium of the incomplete information game, µt is a bounded martingale with respect to the measure
Q and filtration {H2t}t (and also with respect to filtration {Ht}t), and thus converges Q-almost surely
(and hence Qn. - almost surely and Qnn - almost surely, since Qn. and Qnn are absolutely continuous with
respect to Q) to a random variable µ∞ on Ω. 22

Our main theorem states that the reputations disappears eventually (cannot be sustained indefinitely),
that is µ∞ = 0 and γ∞ = 0.

3 Main Results

Our main result is that neither player can sustain a reputation for playing a strategy that is not part of a
Nash equilibrium of the complete-information stage game, for games with one-sided binding moral hazard
at the commitment profile, under imperfect public monitoring.

Theorem 1 Suppose Assumptions 1-5 hold. In any Nash equilibrium of the incomplete-information game,

reputations of players cannot be sustained indefinitely:

µt → 0, Qn. − almost surely,

γt → 0, Q.n − almost surely.

Moreover, the convergence is uniform. 23

We prove Theorem 1 with the help of two propositions. The first proposition argues that reputation of
player 2, who is subject to binding moral hazard at the commitment profile, disappears uniformly in any
Nash equilibrium of the incomplete-information game, i.e. γt → 0, Q.n−almost surely and convergence
is uniform across all Nash equilibria. The second proposition argues that if player 2’s reputation disappears
uniformly, then player 1’s reputation disappears uniformly in any Nash equilibrium as well.

22The proof is presented in the Appendix, Lemma 7.
23Note that µt → 0 Qnn − almost surely, and γt → 0 Qnn − almost surely, since Qnn is absolutely continuous with

respect to Qn. and Q.n.
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One-sided binding moral hazard condition implies that the player whose reputation disappears in the
long-run, independent of the asymptotic behavior of the other player’s reputation, is the one who is sub-
ject to binding moral hazard at the commitment profile. After establishing that player’s type is (almost)
revealed in the long-run, we can show that other player’s true type should be revealed as well. Hence, the
one-sided binding moral hazard condition allows us to break the analysis of the long-run behavior of the
reputations of the two players into two stages.

The proof of Theorem 1 is immediate by Proposition 1 and 2. Sections 4 and 5 are devoted to the
proofs of Proposition 1 and 2.

Proposition 1 Suppose monitoring technology satisfies Assumptions 1, 3 and 5, and the stage game sat-

isfies one-sided binding moral hazard at the commitment profile. Then, in any Nash equilibrium of the

incomplete-information game, reputation of player 2, who is subject to binding moral hazard at the com-

mitment profile, cannot be sustained indefinitely:

γt → 0, Q.n − almost surely.

Moreover, the disappearance of player 2’s reputation is uniform. That is for all ε > 0, there exists T , such

that for all Nash equilibria (σ̃, τ̃) of the incomplete-information game,

Q.n
σ,τ̃ (γt(σ, τ̃) < ε,∀t > T ) > 1− ε,

where Q.n
σ=(σ̂,σ̃),τ̃ is the probability measure induced on Ω by (σ, τ̃) and the strategic type of player 2 and

γt(σ, τ̃) is the associated reputation of player 2.

We should point out that the disappearance of player 2’s reputation is independent of the asymptotic
behavior of player 1’s reputation, whether player 1’s reputation of being commitment type disappears or
not. So, player 2’s reputation of being the commitment type converges to zero Q.n-almost surely, whether
the uncertainty over the types of player 1 is resolved or not. This leads to the following corollary.

Corollary 1 Suppose monitoring technology satisfies Assumptions 1, 3 and 5, and the stage game satisfies

one-sided moral hazard at the commitment profile. Suppose there exists a Nash equilibrium (σ̃, τ̃) that

induces a set of histories on which the reputation of player 2 (who is subject to binding moral hazard)

does not disappear, i.e. there exists A ∈ Ω such that γt(ω) → γ∞ > η for some η > 0, given that the

reputation of player 1 is sustained on these histories, µt(ω) → µ∞ > ε for some ε > 0 for all ω ∈ A.

Then Q.n(A) = 0, where Q.n denotes Q(σ,τ̃).

Suppose that there exists a Nash equilibrium profile that induces histories (with positive measure)
on which the reputation of player 1 does not disappear. This means that player 2 believes that player 1

19



plays the commitment action s1 on average in the long-run, which induces him to deviate from (s1, s2)

eventually. Also, the other immediate corollary of Proposition 1 is that there is no histories with positive
measure where player 1’s reputation disappears in the long-run, but player 2’s not.

Corollary 2 Suppose monitoring technology satisfies Assumptions 1, 3 and 5, and the stage game satisfies

one-sided moral hazard at the commitment profile. Suppose there exists a Nash equilibrium (σ̃, τ̃) that

induces a set of histories on which player 1’s reputation disappears but not player 2’s (who is subject to

binding moral hazard), i.e. there exists A ∈ Ω such that µt(ω)→ 0, but γt(ω)→ γ∞ > η for some η > 0

and for all ω ∈ A. Then Q.n(A) = 0, where Q.n denotes Q(σ,τ̃).

Having established that player 2 reveals his true type eventually regardless of the asymptotic behavior
of player 1’s reputation, the game can be considered to be the one with “almost” one-sided incomplete-
information where the uncertainty is about the types of player 1 only. The next proposition gives the
sufficient conditions for the disappearance of player 1’s reputation.

Proposition 2 Suppose the monitoring technology satisfies Assumptions 1, 2 and 5, and player 2’s repu-

tation γt converges uniformly to zero Q.n-almost surely in any equilibrium. Suppose also (s1, r2) is not a

Nash equilibrium of the stage game. Then, in any Nash equilibrium of the incomplete-information game,

player 1’s reputation disappears eventually:

µt → 0, Qn. − almost surely

where the convergence is uniform, i.e. for all ε > 0, there exists T , such that for all Nash equilibria (σ̃, τ̃),

Qn.
σ̃,τ (µt(σ̃, τ) < ε,∀t > T ) > 1− ε,

where Qn.
σ̃,τ=(τ̂ ,τ̃) is the probability measure induced on Ω by (σ̃, τ) and the strategic type of player 1 and

µt(σ̃, τ) is the associated reputation of player 1.

Proposition 2 implies that the sustainability of player 1’s reputation depends on that of player 2’s
reputation. If player 2’s reputation disappears, player 1’s reputation disappears eventually, given that
(s1, r2) is not a Nash equilibrium of the stage game (and thus (σ̂, BR2(σ̂)) is not a Nash equilibrium of
the repeated complete-information game).

Corollary 3 Suppose the monitoring technology satisfies Assumptions 1, 2 and 5. Suppose there exists

a Nash equilibrium that induces a set of histories A ∈ Ω with Q(A) > 0 on which the reputation of

player 2 does not disappear, i.e. γt(ω) → γ∞ > η for some η > 0 and for all ω ∈ A. Suppose also the

stage game best reply of player 1 against s2 is the same as her commitment action, i.e. r1 = s1. Then,

µt(ω)→ µ∞ > ε for some ε > 0 and Qn.-almost surely in A.
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Corollary 3 says that if the uncertainty over player 2’s type persists, the uncertainty over player 1’s type
persists as well, since then player 1 expects to see s2 on average in the long-run and gives a best response
to it (r1 = s1). However, by Proposition 1, the uncertainty over player 1’s type can persist only if either
(s1, s2) a Nash equilibrium of the stage game or there is a mechanism that replenish the uncertainty over
player 2’s type. One such mechanism can be introducing a possibility for replacing the type of player 2
every period. With such a mechanism, player 2 need to mimic the commitment type always to convince
player 1, since player 1 is never fully convinced because of the replacement possibility. Hence, player 2’s
type will not be revealed. As player 2’s type is not revealed, player 1’s type will not be revealed as well.

The implication of these results for the regulatee-regulator game presented in Section 1.1 is that the
reputation of being tough for the regulator disappears in the long-run since regulator is the player who is
subject to binding moral hazard at the commitment profile (by Proposition 1). After his true type is almost
known, the regulatee starts to take advantage of regulator’s uncertainty over her type and regulatee’s repu-
tation of being virtuous disappears eventually as well (by Proposition 2). Furthermore, the set of histories
where the regulatee’s true type is almost known, but regulator’s true type is not revealed has measure zero.
We can interpret this as the regulatee waits for the revelation of the true type of the regulator to exploit
regulator’s uncertainty over her types. One way to make both reputations sustainable is to introduce the
possibility that the type of the regulator changes every period (with some probability). Then, the regulator
can never convince the regulatee perfectly that he is tough, so he needs to be diligent every period. Both
reputations can be made permanent this way. However, from the welfare point of view, this is inefficient.
In order to get the efficient stage game outcome played (frequently), we need a mechanism that allows
for some deterioration for the reputation of the regulator up to a lower bound, so that the regulatee will
not start exploiting this deterioration. By strategically scheduled replacement periods, there are periods
of (Truthful, Lazy) which Pareto dominates (Truhful,Diligent). There is an optimal schedule for
replacement periods that depends on the parameter values of the payoffs, as well as the values for the prior
beliefs and discount factors.

3.1 One-sided binding moral hazard at the commitment profile

The condition of one-sided binding moral hazard at the commitment profile (s1, s2) is crucial for our
results. If none of the players has an incentive to deviate at (s1, s2) in the complete-information stage
game, it means (s1, s2) is a Nash equilibrium of the stage game and thus repetition of (s1, s2) every period
independent of history is a Nash equilibrium of the repeated complete-information game. Hence, the
reputations can be sustained in that situation as the commitment strategies (σ̂, τ̂) is a Nash equilibrium
for strategic types. If, on the other hand, the stage game has two-sided binding moral hazard at the
commitment profile, i.e. both players have an incentive to deviate at (s1, s2) in the stage game, then
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the results are not clear. We can construct a Nash equilibrium where the reputations do not necessarily
disappear.

Consider the following stage game and suppose that there are cooperative types for both players
and both strategic players have an incentive to deviate from the commitment action profile (C,C). Let
µ1 = µ2 = µ0 be the prior belief that the players are cooperative type.

Table 4: Two-sided binding moral hazard at (C,C)

C D1 D2

C 4, 4 0, 0 0, 5
D1 5, 0 1, 3 0, 0
D2 0, 0 0, 0 1, 3

Let Y1 = {H,L} and Y2 = {h, l} be the public signal spaces for player 1 and 2, y ∈ Y1 × Y2, and the
probability distributions over signals are given as below:

prob(H|C) = p, prob(H|D1) = r, prob(H|D2) = q

prob(h|C) = p, prob(h|D1) = q, prob(h|D2) = r

where p > 1/2 > q > r.
The strategy profile represented by the following automaton is a public perfect equilibrium for the

complete-information infinitely repeated game. The states are W = {wCC , w1, w2} and the initial state is
wCC , and players choose the following action profiles corresponding to each state:

f(wCC) = CC,

f(w1) = D1D1,

f(w2) = D2D2.

and the transition is

t(y) =


wCC if y = Hh or Ll,

w1 if y = Lh,

w2 if y = Hl,

Note that w1 is the punishment state for player 1 and w2 is the punishment state for player 2. The equi-
librium path can be described by an ergodic Markov chain on the state space with stationary distribution
putting more weight on wCC . This strategy profile is also an equilibrium profile for low enough µ0, and
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the types will not be revealed because of frequent play of CC.
However, one can also construct Nash equilibria on which the uncertainty over the types of both players

is going to be revealed eventually. In fact, if one of the player’s type is revealed, the other’s type is going
to be revealed as well.

We want to point out that Cripps, Mailath, and Samuelson (2004) show that if there is uncertainty
over the types of only one of the players, the true type (which is strategic) of this player will be revealed
eventually in any Nash equilibria. Adding uncertainty over the types of the other players may change this
result in some Nash equilibria.

3.2 Equilibrium behavior

After establishing that the true types will be (almost) known in the long-run and the information structure
of the game approaches to that of the complete-information game, we expect to see such a convergence re-
sult holds for the equilibrium behavior. We show that any Nash equilibrium of the incomplete-information
game converges to a public perfect equilibrium of the complete-information game, following the defi-
nitions and the methods provided by Cripps, Mailath, and Samuelson (2004) for one long-lived and a
sequence of short-lived players.

We will introduce some notation before stating the result about long-run equilibrium behavior. Let
t′ = 0, 1, ... denote the time periods of the continuation play of the game that starts at some period t.
A pure public (continuation game) strategy ς1 for player 1 is a sequence of maps ς1t′ : Ht′ → I for
t′ = 0, 1, .... Similarly, a pure public strategy for player 2 in the continuation game t′ is ς2, a sequence of
maps ς2t′ : Ht′ → J for t′ = 0, 1, .... Let S1 = I

⋃∞
t′=0 Y

t′ and S2 = J
⋃∞

t′=0 Y
t′ be the set of pure strategies

for player 1 and player 2, respectively. 24 Note that S1 and S2 include the pure strategies in the original
game as well. Player m’s payoff is given by, 25

Um(ς1, ς2) = E(ς1,ς2)

[
(1− δm)

∞∑
t′=0

δt
′

mπm(it′ , jt′)

]

We now define the mixed strategies (of the repeated continuation game) as the probability distributions
over the set of pure strategies, i.e. ϑm be probability measures on (Sm,Sm). 26 Let Θm denote the set of
all probability measures ϑm, m = 1, 2. Note that Θm is sequentially compact with respect to the product
topology. Since players’ payoffs are discounted, the utility function Um : Θ1 × Θ2 → < is continuous
for each m = 1, 2 with this topology. We refer Fudenberg and Tirole (1991) for a detailed discussion and
proof of the continuity of the utility function (due to discounting δ1, δ2 < 1).

24The sets S1 and S2 are countable products of finite sets I and J . Define σ-algebras for each set that are generated by
cylinder sets and denote by Sm, m = 1, 2. (Sm,Sm) is equipped with the product topology.

25Even though the strategies are pure, the payoffs are random because of imperfect public monitoring.
26Note that by Kuhn’s theorem, we can replace mixed strategies by behavior strategies for games with perfect recall.
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A sequence of measures ϑn1 converges to ϑ̂1 if the following holds: For every T ≥ 0,

ϑn1 |IY T → ϑ̂1|IY T

and, similarly, ϑn2 converges to ϑ̂2 if for every T ≥ 0,

ϑn2 |JY T → ϑ̂2|JY T

Pick an equilibrium (σ̃, τ̃) of the incomplete-information game and a public history ht. These strategies
specifies behavior strategies in the continuation game, σ̃ht and τ̃ht , which are realization equivalent to the
mixed strategies ϑ̃ht

1 and ϑ̃ht
2 (for the continuation game), by Kuhn’s Theorem. The following theorem

states that the limit of every convergent subsequence of (ϑ̃ht
1 , ϑ̃

ht
2 ) is a Nash equilibrium of the complete-

information game. Similar convergence result about the asymptotic equilibrium behavior can be found
Cripps, Mailath, and Samuelson (2004) for one long-lived and a sequence of short-lived players. We
present the appropriate modifications of their proofs for our model in the Appendix.

Theorem 2 Suppose Assumptions 1-5 are satisfied. For any Nash equilibrium of the incomplete-information

game and for almost all sequences of public histories {ht}t (with respect to measure Qnn), the limit of ev-

ery convergent subsequence of continuation equilibrium profiles (ϑ̃ht
1 , ϑ̃

ht
2 ) is a public perfect equilibrium

of the complete-information game (game with strategic types of players).

Theorem 2 implies that the equilibrium of the incomplete-information regulatee-regulator game con-
verges to a public perfect equilibrium of the complete-information regulatee-regulator game, and thus
the the equilibrium payoff in the complete-information game converges to an equilibrium payoff of the
complete-information game. We would like to point out that by our assumptions on the monitoring tech-
nology (Assumptions 2, 3 and 5), the imperfect public monitoring Folk theorem holds.27 Hence, any
feasible and individually rational payoff vector of stage game in the complete-information game can be
attained as an equilibrium payoff of the complete-information repeated game, if players are sufficiently
patient. However, Theorem 2 neither constrain the possible set of equilibrium payoffs, nor answers if any
particular Nash equilibrium strategy profile (or payoff) of the complete-information game can be achieved
as a limit of a Nash equilibrium of the incomplete-information game.

However, we are able to provide a lower bound for the equilibrium payoff vector if we allow the
discount factor of player 2 (who is subject to one-sided binding moral hazard) to vary, i.e. for any fixed
prior beliefs (µ0, γ0), if player 2’s discount factor is above some δ̄2(µ0, γ0) → 1, the lower bound on his
equilibrium payoff converges to π2(s1, s2) = π2(r1, s2), whereas player 1’s payoff converges to π1(r1, s2).

27We refer the reader to Fudenberg, Levine, and Maskin (1994).
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Theorem 3 Suppose Assumption 3 holds. Let the game satisfies one-sided binding moral-hazard, with

player 2 being subject to binding moral hazard at the commitment action s2 ∈ ∆(J). Then there exists

a constant k(µ0, γ0), independent of player 2’s discount factor, such that in any Nash equilibrium of the

incomplete-information game, strategic type of player 2’s payoff in any is at least

δk2 min
α1∈BR1(s2)

π2(α1, s2) + (1− δk2) min
(i,j)

π2(i, j)

Suppose, in addition, s2 minmaxes player 1. Then player 1’s temporary payoff is close to her minmax

payoff, π1(r1, s2).

Proof. To be completed.

Theorem 3 says that if player 2 is sufficiently patient, he can get a payoff of at least minα1∈BR1(s2) π2(α1, s2),
i.e. for any ε > 0, there exists a δ∗2(µ0, γ0) ∈ (0, 1) such that for all δ2 ∈ (δ∗2, 1), strategic type of player
2’s payoff is at least minα1∈BR1(s2) π2(α1, s2)− ε. However, we should point out that the lower bound on
equilibrium payoffs given by Theorem 1 is a “temporary” lower bound on player 2’s equilibrium payoff,
in the sense that for any fixed discount factor δ2 of player 2, γt will eventually be small enough so that
δ2 < δ∗2(µt, γt). Hence, at the beginning of the game, there will be a period of (s1, s2) where players
collect their payoffs π1(s1, s2) and π2(s1, s2)), but eventually player 2 cannot resist to deviate which will
reveal his true type.

We would like to make a couple observations. First, note that player 2’s commitment action is allowed
to be a mixed-action. In fact, if player 2 can commit to a mixed stage game action, he can get a higher lower
bound for his equilibrium payoffs. Consider the regulator-regulatee game given in Table 2.2. Suppose the
commitment action of the regulator is s2 = D. Then minα1∈BR1(s2) π2(α1, s2) = π2(r1, s2) = 2. However,
instead, if the regulator’s commitment action randomizes between L and D, giving a weight on D a little
more than 1

2
, then the best reply of the regulatee is still T and the regulator can achieve 5

2
. The regulatee’s

payoff, on the other hand, is bound by her minmax payoff (if s2 = D).
The following graph is the set of feasible payoff vectors of the regulatee-regulator game, depending on

the parameters of the stage game, where the origin (x− l1, z− c+ d) is the minmax payoff of each player.
Suppose the commitment action of the regulator is D. Then, the regulator collects a payoff of y − c and
the regulatee collects her minmax payoff x− l1 at the beginning of the game. If the discount factor of the
regulator is very high, the equilibrium payoffs they get in the beginning of the game is inefficient.
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4 Player 2’s reputation disappears uniformly

We first show that either the true type of player 2 is revealed or player 1’s expectation of the strategy played
by the strategic type of player 2 is in the limit the same as the strategy played by the commitment type,
given that the public signals are statistically informative about player 2’s behavior (Lemma 1). In other
words, if player 1 is not eventually convinced that player 2 is strategic, she must be convinced that player
2 is mimicking the commitment type on average in the long-run. We show this with the extensively used
merging of beliefs argument modified for imperfect public monitoring games.28 Then, we show that if
there is a set of histories with positive measure in which player 2’s reputation does not disappear, in those
histories, player 1 must be convinced that player 2 will play the commitment strategy in the continuation
play; and moreover, reputations being public implies that player 2 knows about player 1’s beliefs about his
behavior (Lemma 2). Hence, player 2 believes that the strategic type of player 1 should be best responding
to the commitment strategy of player 2 (Lemma 3), which also coincide with the strategy of commitment
type of player 1 (since player 1 is not subject to binding moral hazard at the commitment type, and thus
r1 = s1). Then player 2 has an incentive to deviate from his commitment strategy (as player 2 is subject to
binding moral hazard at the commitment profile), knowing that these deviations will not be detected due
to imperfect monitoring 29 and player 1’s beliefs have nearly converged, and thus the effect of deviations
on player 1’s beliefs will be arbitrarily small. However, the long-run effect of many such deviations,

28See Sorin (1999) and Cripps, Mailath, and Samuelson (2004).
29Player 2’s incentive to deviate from the commitment strategy is stronger in two-sided incomplete-information game com-

pared to one-sided incomplete information game where there is uncertainty only over the types of player 2.
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which generate different distributions over the public signals (Assumption 3), reveals that player 2 plays a
strategy different than the commitment strategy. This provides the ground for the desired contradiction to
the hypothesis of having a positive measure set of histories in which player 1 is convinced that player 2 is
playing the commitment strategy on average in the long run.

4.1 Player 1’s posterior beliefs about player 2

The following Lemma and Corollary establish that either player 1’s expectation of the strategy played by
the strategic type of player 2 is in the limit the same as the strategy played by the commitment type of
player 2, or player 1’s posterior probability that player 2 is the commitment type converges to zero (given
that player 2 is indeed strategic). The proof is as the one provided by Cripps, Mailath, and Samuelson
(2004).

Lemma 1 Suppose Assumptions 1, 3 and 5 are satisfied. In any Nash equilibrium of the incomplete-

information game,

lim
t→∞

γt(1− γt)‖τ̂t − E.n[τ̃t|Ht]‖ = 0, Q− a.s. (3)

Note that since τ̂t is a simple strategy, it can be replaced by s2.
Proof. Let γt+1(ht; it, yt) denote player 1’s belief in period t+ 1 after playing it and observing public

signal yt in period t, given public history ht. By Bayes’ rule,

γt+1(ht; it, yt) =
γtprob[yt | ht, it, c]

γtprob[yt | ht, it, c] + (1− γt)prob[yt | ht, it, n]

Since the probability of observing the signal yt from the commitment type of player 2 is
∑

j∈J s
j
2ρ
yt

itj

and from the strategic type is E.n[
∑

j∈J τ̃
j
t ρ

yt

itj
| ht], we can rewrite the above expression as,

γt+1(ht; it, yt) =
γt
∑

j∈J s
j
2ρ
yt

itj

γt
∑

j∈J s
j
2ρ
yt

itj
+ (1− γt)E.n[

∑
j∈J τ̃

j
t ρ

yt

itj
| ht]

=
γt
∑

j∈J s
j
2ρ
yt

itj∑
j∈J ρ

yt

itj

(
γts

j
2 + (1− γt)E.n[τ̃ jt | ht]

)
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The difference between γt+1(ht; it, yt) and γt(ht) gives,

|γt+1(ht; it, yt)− γt(ht)| =

∣∣∣∣ γt
∑

j∈J s
j
2ρ
yt

itj∑
j∈J ρ

yt

itj
(γts

j
2 + (1− γt)E.n[τ̃ jt | ht])

− γt
∣∣∣∣

=

∣∣∣∣γt(1− γt)
∑

j∈J s
j
2ρ
yt

itj
− γt(1− γt)

∑
j∈J ρ

yt

itj
E.n[τ̃ jt | ht])∑

j∈J ρ
yt

itj
(γts

j
2 + (1− γt)E.n[τ̃ jt | ht])

∣∣∣∣
=

γt(1− γt)
∣∣∣∣∑j∈J ρ

yt

itj
(sj2 − E.n[τ̃ jt | ht])

∣∣∣∣∑
j∈J ρ

yt

itj
(γts

j
2 + (1− γt)E.n[τ̃ jt | ht])

Note that the denominator
∑

j∈J ρ
yt

itj
(γts

j
2 + (1− γt)E.n[τ̃ jt | ht]) < maxj∈J ρ

yt

itj
< 1. Thus,

|γt+1(ht; it, yt)− γt(ht)| ≥ γt(1− γt)
∣∣∣∣∑
j∈J

ρyt

itj
(sj2 − E.n[τ̃ jt | ht])

∣∣∣∣
which implies

max
y∈Y
|γt+1(ht; it, yt)− γt(ht)| ≥ γt(1− γt)

∣∣∣∣∑
j∈J

ρyt

itj
(sj2 − E.n[τ̃ jt | ht])

∣∣∣∣
Since the stochastic process γt is a martingale on [0, 1] (with respect to Q and filtration {Ht}t by

Lemma 7) and bounded martingales converge almost surely, thus |γt+1 − γt| → 0 Q-almost surely. This
implies, for any y ∈ Y ,

γt(1− γt)
∣∣∣∣∑
j∈J

ρyt

itj
(sj2 − E.n[τ̃ jt | ht])

∣∣∣∣→ 0, Q− a.s. (4)

Since (4) holds for all y, it can be restated as

γt(1− γt)
∥∥∥∥Πit(s2 − E.n[τ̃t | ht])

∥∥∥∥→ 0, Q− a.s.

where Πit is a |Y | × |J | matrix that contains the values for ρyt

itj
. Since for all it and y ∈ Y , ρyt

itj
> 0 by

Assumption 1 and J columns are linearly independent by Assumption 3, the unique solution to Πitx = 0

is x = 0 and there exists a strictly positive constant k = infi∈I,x6=0
‖Πix‖
‖x‖ . Thus, ‖Πix‖ ≥ k‖x‖, which

implies

γt(1− γt)
∥∥∥∥Πit(s2 − E.n[τ̃t | ht])

∥∥∥∥ ≥ γt(1− γt)k
∥∥∥∥(s2 − E.n[τ̃t | ht])

∥∥∥∥→ 0, Q− a.s.
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This implies (3).
Note that Lemma 1 holds also Qn. almost surely, since γt is also a bounded martingale with respect

to Qn., which is the probability measure that describes how the game evolves from the perspective of the
strategic type of player 1. Note that any statement that holdsQ almost surely, also holdsQn. almost surely.

The immediate implication of Lemma 1 is Corollary 4:

Corollary 4 At any Nash equilibrium of the incomplete-information game satisfying Assumptions 1, 3

and 5,

lim
t→∞

γt

∥∥∥∥s2 − E.n[τ̃t | ht]
∥∥∥∥→ 0, Q.n − a.s.

Corollary 4 says that if player 2 is indeed strategic and the game evolves according to the play of
strategic type of player 2, either his reputation for being the commitment type disappears, i.e. γt → 0, Q.n

- almost surely, or he is expected to play the commitment action in the limit.
Proof. We first show that γt

(1−γt)
is a Q.n-martingale (with respect to filtration {H1t}t and {Ht} due to

Assumption 5). For all ht+1, it and for all i,

E.n[
γt+1

(1− γt+1)
|Ht+1] =

∑
y∈Y

prob[yt|ht, n].
γt+1(ht, it, yt)

1− γt+1(ht, it, yt)

=
∑
y∈Y

E.n[
∑
j∈J

τ̃ jt ρ
yt

ij | ht]
γt
∑

j∈J s
j
2ρ
yt

itj

(1− γt)E.n[
∑

j∈J τ̃
j
t ρ

yt

itj
| ht]

=
∑
y∈Y

γt
∑

j∈J s
j
2ρ
yt

ij

(1− γt)

=
γt
∑

j∈J s
j
2

∑
y∈Y ρ

yt

ij

(1− γt)
=

γt
(1− γt)

The third equation is due to Assumption 5 and the last step is by Assumption 1. Thus, for all t,

E.n[
γt

(1− γt)
] =

γ0

(1− γ0)
(5)

Note that γt converges to some random variable Q - a.s. implies γt converges Q.n - a.s. (since Q.n is
absolutely continuous with respect to Q). Since γ0

(1−γ0)
is finite, we must have limt→∞ γt < 1 Q.n - a.s.

Suppose on the contrary, there is a set D ∈ Ω with Q.n(D) > 0 such that γt(ω)→ 1 for all ω ∈ D. Then,
γt

(1−γt)
→∞ on D, which contradicts to (5).

We want to point out that limt→∞ γt‖s2 − E.n[τ̃t | ht]‖ → 0, also Qnn − a.s.
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4.2 Player 2’s beliefs about player 1’s beliefs

We have shown that if player 1 does not eventually learn that player 2 is strategic (when player 2 is strategic
and the histories are induced by the play of strategic player 2), then player 1 must think that strategic type
of player 2’s strategy should be close to that of commitment type of player 2’s. Now, we want to show that
player 2 will know that (since reputations are public by Assumption 5) player 1 eventually expects to see
the commitment action of player 2 in the continuation game on these histories.

Lemma 2 Suppose Assumptions 1, 3 and 5 hold and suppose there existsA ∈ Ω such thatQ.n(A) > 0 and

γ∞(ω) > 0 for all ω ∈ A, i.e. there exists a set of events with strictly positive measure in which reputation

of player 2 does not necessarily disappear. Then, there exists η > 0 and F ⊂ A with Q.n(F ) > 0 (and

Q(F ) > 0) such that, for any ξ > 0, there exist T for which,

γt > η, ∀t ≥ T,

E

[
sup
s≥t
‖s2 − E.n[τ̃s | Hs]‖

∣∣∣∣Ht

]
< ξ, ∀t ≥ T (6)

for all ω ∈ F ; and for all ψ > 0

Q

(
sup
s≥t
‖s2 − E.n[τ̃s | Hs]‖ < ψ | Ht

)
→ 1 (7)

where the convergence is uniform on F . 30

Proof. First observe that on set A, 0 < limt→∞ γt(ω) < 1 by Corollary 4. Since Q.n(A) > 0 and
γ∞(ω) > 0 for all ω ∈ A, there exist sufficiently small ν > 0 and η > 0 such that Q.n(D) > 2ν,
where D := {ω ∈ A : 2η < limt→∞ γt(ω) < 1}. Note that D has positive measure under Q, i.e.
there exists ν such that Q(D) > 2ν (since Q.n is absolutely continuous with respect to Q.) Then, by
Lemma 1, ‖s2 − E.n[τ̃t | Ht]‖ converge Q - almost surely to zero on D. 31 So, the random variables
Zt := sups≥t ‖s2 −E.n[τ̃s | Hs]‖ also converge Q - almost surely (also Q.n - almost surely) to zero on D.
Thus, on D, by an extension of Hart (1985) Lemma 4.24, given in Mailath and Samuelson (2006) 32

E[Zt|Ht]→ 0, Q− a. s. and Q.n − a. s.

and also E.n[Zt|Ht]→ 0, Q.n − a. s.

30The same statements of the Lemma hold for E.n and Q.n. In subsequent sections, both versions are going to be used.
31Note that ‖s2 − E.n[τ̃t | Ht]‖ also converge Q.n and Q.c - almost surely to zero on D.
32 This lemma states that if {Xn}∞n=1 is a bounded sequence of real random variables on some (Ω,F , P ), converging 0 as

n→∞ and {Fn}∞n=1 is a nondecreasing sequence of σ - fields, then E[Xn | Fn]→ 0 P -a.s.
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Egorov’s Theorem (Chung (1974)) 33 then implies that there exists an F ⊂ D such that Q.n(F ) > ν

(note that Q(F ) > 0) on which the convergence of γt and E[Zt|Ht] (and E.n[Zt|Ht]) is uniform. The
uniform convergence of E[Zt|Ht] on F implies that, for any ξ > 0, there exist a T such that on F , for all
t > T , γt > η and

E[Zt|Ht] = E

[
sup
s≥t
‖s2 − E[τ̃s | Hs]‖

∣∣∣∣Ht

]
< ξ (8)

In order to show (7), fix ψ > 0. Then, for all ξ′ > 0 such that ξ = ξ′ψ, (8) holds. Hence,

E[Zt|Ht] = E[Zt|Zt < ψ,Ht].Q(Zt < ψ | Ht) + E[Zt|Zt ≥ ψ,Ht].Q(Zt ≥ ψ | Ht) < ξ′ψ.

Since the first part of the sum is greater and equal to 0 and E[Zt|Zt ≥ ψ,Ht] ≥ ψ, we have,

Q(Zt ≥ ψ | Ht) < ξ′,

or Q(Zt < ψ | Ht) > 1− ξ′ for all t > T on F . This implies (7) and completes the proof. 34

4.3 Player 1’s best response to player 2

If player 1 were to be short-lived, as long as she thinks that she is facing a commitment strategy, she gives
the myopic best reply to the commitment strategy of the opponent, which is s1. This may not be true if
player 1 is long-lived. She may have an incentive to play something other than the best response to the
commitment action of player 2. But, note that in this case, as long as player 1 discounts, any losses from
not playing a current best response should be recovered within a finite period of time. However, if player
1 is convinced that the commitment action will be played not only now, but also in the future, there will
be no opportunity to accumulate subsequent gains, and hence she might as well play the stage-game best
response.

The next lemma, which follows from Lemma 4 of Cripps, Mailath, and Samuelson (2004), explores
this intuition. It shows that if the commitment type and strategic type of player 2 play sufficiently similar
from some time on, strategic type of player 1 will be best responding to the commitment type’s strategy
for arbitrarily many periods.

33Egorov’s Theorem states that if {Xn} converges on the set C, then for any ε > 0, there exists C0 ⊂ C with measure
P(C\C0) < ε such that Xn converges uniformly in C0.

34The other way to show this: Q(Zt ≥ ψ | Ht) ≤ E[Zt|Ht]
ψ < ξ

ψ by Chebyshev-Markov inequality since Zt has a finite
mean and Zt ≥ 0. Since ψ > 0 and ξ = ξ′ψ, we get Q(Zt ≥ ψ | Ht) < ξ′ for all ξ′ > 0.
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Lemma 3 Suppose τ̂ be a simple pure public strategy and BR1(τ̂) is the set of best replies of strategic

type of player 1 to τ̂ .35 Let (σ̃, τ̃) be Nash equilibrium strategies in the incomplete-information game. If

σ̃ is a pure strategy, 36 then for all T > 0, there exists ψ > 0 such that if the strategic player 1 observes a

(public) history ht so that

Q

(
sup
s≥t
‖s2 − E.n[τ̃s | Hs]‖ < ψ | ht

)
> 1− ψ (9)

then for σ̂ ∈ BR1(τ̂), the continuation strategy of σ̃ after the history ht agrees with σ̂ for the next T

periods.

Proof. Fix T > 0 and a (public) history h′t. Let τ̂(hs) = s2 denote the continuation play of committed
player 2 after the public history hs, where h′t is the initial segment of hs.

Since player 1 is discounting, there exist T ′ ≥ T and ε > 0 such that if for s = t, ..., t+ T ′ and for all
hs with initial segment h′t

‖s2 − E.n[τ̃s | hs]‖ < ε, (10)

is satisfied, then the continuation strategy of σ̃ after the history h′t agrees with σ̂ ∈ BR1(τ̂), for the next T
periods.

Now, we want to show (10) holds for s = t, ..., t + T ′ and for all hs with initial segment h′t. Suppose
not, i.e. there exist hs, for some s = t, ..., t+ T ′ such that

‖s2 − E.n[τ̃s | hs]‖ ≥ ε,

For a contradiction, define ρ̄ ≡ miny,i,j ρ
y
ij and ψ = 1

2
min{ε, ρ̄T ′}. Since player 1 is playing a pure

strategy, the probability of the continuation history hs, conditional on the history h′t, is at least ρ̄T ′ . Thus,

Q

(
‖(s2 − E.n[τ̃s | Hs])‖ ≥ ε | h′t

)
≥ ρ̄T

′
,

Since ψ < ε, we get

Q

(
sup
s≥t
‖(s2 − E.n[τ̃s | Hs])‖ ≥ ψ | h′t

)
≥ ρ̄T

′
,

contradicting (9), since ρ̄T ′ > ψ.

35Remember that τ̂ assigns s2, which is a pure action, in each period independent of history and the repeated strategy best
response σ̂ ≡ BR1(τ̂) is a singleton, which assigns r1 in every period after any history.

36We don’t need σ̃ to be pure. Instead, we could assume that there exists k > 0 such that for all ht, if σ̃i(ht) > 0, then
σ̃i(ht) > k.
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4.4 Proof of disappearance of player 2’s reputation

We wave the complications created by the two-sided incomplete information by using the fact that only
player 2 is subject to binding moral hazard at the commitment profile. On a subset of states F in Lemma 2,
the strategic type of player 1 believes that she should be playing a best response to the commitment strategy
of player 2, which also coincides with the strategy of commitment type of player 1. So, the strategic type
of player 2, knowing what player 1 thinks about his future behavior, will best respond to both the strategic
type and the commitment type of player 1’s strategy with high probability. Since, player 2’s best response
to player 1’s strategy is different than his commitment strategy, the strategic and the commitment type of
player 2 are expected to play differently, which will provide the desired contradiction to γt 9 0 on F .

So, what we need to show is that player 1 eventually assigns high probability to player 2 believing with
high probability that player 1 believes player 2’s strategy is very close to commitment strategy (when the
game evolves according to the play of the strategic type of player 2). And thus player 1 believes that the
strategic and the commitment type of player 2 act differently, since he believes that the strategic player 1 is
giving a best response, which coincides with the play of the commitment type of player 1. Thus player 1’s
second order beliefs about the future behavior of player 2 contradicts with her first order beliefs, leading
to a contradicting to γ∞ > 0 on F .

More specifically, we are going to show that player 1 assigns a probability 1− ζ to player 2 believing
with probability at least 1−η that player 1 thinks player 2’s strategy is within ξ of the commitment strategy
when the probability measure over the histories are induced by the play of the strategic type of player 2,
37 i.e.

Q.n

(
Q.n

(
sup
s≥t
‖s2 − E.n[τ̃s | Hs]‖ < ξ | Ht

)
> 1− η | Ht

)
> 1− ζ

We pick ξ, η and ζ such that we arrive to the contradiction we are after. We choose ξ and ζ such that
ζ < 1 and ξ < min{ψ, 1 − ζ}. First, we make a couple of observations that provide the basis for the
contradiction.

Since the commitment strategy of player 2, τ̂ (i.e. playing always s2), is a simple pure strategy, by
Lemma 3, for any T ′ > 0, there exists ψ > 0 such that if player 1 observes a public history ht so that

Q

(
sup
s≥t
‖s2 − E.n[τ̃s | Hs]‖ < ψ | ht

)
> 1− ψ, (11)

then the continuation strategy of σ̃ after the history ht agrees with σ̂ ∈ BR1(τ̂) for the next T ′ periods,

37In other words, player 1 assigns at most probability ζ to the commitment strategy of player 2. This is because player 2
believes with high probability player 1 thinks he is going to act like a commitment type and best respond to it. Since player
2 is subject to binding moral hazard at the commitment profile, player 1 eventually expects player 2 playing the commitment
strategy with no more than ζ probability. But, this contradicts her initial belief of player 2’s strategy being ξ close to the
commitment strategy if we choose ξ and ζ properly.
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where σ̂ = {r1}∞t=0.
Now, suppose for a contradiction, that there is a set of states A with Q.n(A) > 0 and γ∞(ω) > 0 for

all ω ∈ A (note that γ∞(ω) < 1 on A by Corollary 4). Then, by Lemma 2, there is a set F ⊂ A with
Q.n(F ) > 0 such that for any ξ > 0, there exists a T such that for any t > T and ω ∈ F ,

Q

(
sup
s≥t
‖s2 − E.n[τ̃s | Hs]‖ < ξ|Ht

)
→ 1 (12)

Hence, there exists a subset G ∈ F with Q.n(G) > 0 such that on G,

‖s2 − E.n[τ̃t | Ht]‖ < ξ Q− a.s.

Note that (13) implies, for any ξ > 0 and any t > T , on G,

‖s2 − E.n[τ̃t | Ht]‖ < ξ Q.n − a.s. (13)

Also, by following the same argument in Lemma 2 (through extension of Hart’s lemma given in foot-
note 32), we conclude that for some η and ζ , on G,

Q.n

(
sup
s≥t
‖s2 − E.n[τ̃s | Hs]‖ < ξ|Ht

)
> 1− ηζ. (14)

This shows that with a high probability (1− ηζ), player 2 believes that player 1 assigns player 2’s strategy
to be ξ close to the commitment strategy for any t > T .

Define
gt := Q.n

(
sup
s≥t
‖(s2 − E.n[τ̃s | Hs]‖ < ξ|Ht

)
κt := Q.n(gt > 1− η|Ht)

We want to show κt > 1− ζ . 38 Since, E.n[gt | Ht] > 1− ηζ by condition (14), and

E.n[gt | Ht] = E.n[gt | gt ≤ 1− η,Ht](1− κt) + E.n[gt | gt > 1− η,Ht]κt

≤ (1− η)(1− κt) + κt

we get,

1− ηζ < (1− η)(1− κt) + κt

38Note that reputations are public and both players useHt as their information sets.
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which implies κt > 1− ζ on F . So,

Q.n

(
Q.n

(
sup
s≥t
‖(s2 − E.n[τ̃s | Hs]‖ < ξ | Ht

)
> 1− η | Ht

)
> 1− ζ

This says that player 1 assigns a probability of at least 1− ζ (after observing histories generated by the
play of strategic type of player 2) to strategic type player 2 believing with probability at least 1 − η that
player 1 believes player 2’s strategy is within ξ of the commitment strategy and thus is going to give a best
response to the commitment strategy of player 2 for at least next T ′ periods if player 1 is strategic type and
play the commitment strategy if player 1 is the commitment type, both of which are the same strategy.

At time t > T , player 2 believes that with probability µt, player 1 is the commitment type who plays
s1 every period, and with probability 1 − µt, he is the strategic type who believes that player 2’s strategy
is within ξ of the commitment strategy from then on and hence plays the best reply to it (since we have
picked ξ < ψ) thereafter. That is why, after t > T , both types of player 1 is expected to play r1 thereafter,
there won’t be any revision of posterior about player 1’s type, and hence µt>T = µT .

Since s2 is not a best response to r1 (the myopic best reply of strategic player 1 to s2 and also the
strategy of the commitment type of player 1) for strategic type of player 2, there exists ηµ > 0 such that for
any repeated game strategy of the strategic type of player 1 that attaches probability at least 1− ηµ to σ̂ (to
always playing r1), s2 is suboptimal for the strategic type of player 2 (by the upper-hemicontinuity of the
best response correspondence) in period 0. Note that since player 2 believes that player 1 is commitment
type who plays s1 = r1 with probability µ, η depends on µ. Let η̄ ≡ supµ∈(0,1) ηµ such that s2 is suboptimal
for the strategic player 2 in period 0 if strategic type of player 1 attaches 1 − η̄ to σ̂, regardless of player
2’s belief about player 1’s type. Define ρ̄ := miny,i,j ρ

y
ij (> 0 by Assumption 1). So, if player 2 assigns

probability at least 1− ρ̄η̄ ≡ 1− η to σ̂, then he assigns at least probability 1− η̄ to σ̂ after any deviation
that leaves the probability of σ̂ (conditional on any signal) unchanged. Note that s2 is suboptimal for any
belief µ, in particular µt>T = µT .

Since we have picked ξ such that ξ < ψ, and condition (11) holds for all t > T , strategic type of player
1 chooses to play r1, the unique best response to the commitment action thereafter, whenever he believes
that player 2’s strategy is within ξ of the commitment strategy. Hence, in any period t > T , player 1
assigns a probability of at least 1− ζ to player 2 believing that player 1’s subsequent play is r1 thereafter
with at least probability 1− η. Thus, player 1 assigns probability at least 1− ζ to player 2’s play in period
t being a best response to σ̂. Since s2 is pure, it specifies an action ĵ with probability 1. However, player
1 must believe that that action is played with no more than ζ probability in period t. But since, 1− ζ > ξ,
this contradicts (13). Player 1’s second order beliefs about strategic player 2’s behavior (after observing
the relevant game has been evolving and histories have been generated by the play of strategic player 2)
contradicts with her first order beliefs. This completes the proof of the first part of Proposition 1, i.e.
γt → 0 Q.n - almost surely, which implies γt → 0 Qnn - almost surely.
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4.5 Uniform disappearance of player 2’s reputation

Uniform convergence of γt → 0, Q.n-almost surely means that there exists some period T after which
reputation converges to zero across all Nash equilibria. Suppose, on the contrary, there is a Nash equilib-
rium for each T after which reputation of player 2 survives. Then the sequence of these Nash equilibria
where the reputation lasts beyond T converges to a limiting Nash equilibrium with a sustainable reputation,
which contradicts to disappearance of reputation result for any Nash equilibria.

The uniform disappearance of player 2’s reputation, can be proved as the proof of Theorem 3 of Cripps,
Mailath, and Samuelson (2007). We present the proof here for the sake of completeness. We need to show
that for all ε > 0, there exists T , such that for all Nash equilibria (σ̃, τ̃) of the incomplete-information
game,

Q.n
σ,τ̃ (γt(σ, τ̃) < ε,∀t > T ) > 1− ε,

where Q.n
σ=(σ̂,σ̃),τ̃ is the probability measure induced on Ω by (σ, τ̃) and the strategic type of player 2 and

γt(σ, τ̃) is the associated reputation of player 2.
Proof. Suppose for a contradiction, there exists ε > 0 such that for all T , there is a Nash equilibrium

profile αT such that

Q.n
αT

(γt(αT ) < ε, ∀t > T ) ≤ 1− ε,

where Q.n
αT

is the measure induced by the strategic type of player 2 and Nash equilibrium profile αT , and
γt(αT ) is the posterior about player 2’s type under αT .

Since the space of strategy profiles is compact in the product topology, there is a convergent subse-
quence {αTk

} with limit α∗. Relabel this sequence so that αk → α∗ and

Q.n
k (γkt < ε, ∀t > k) ≤ 1− ε, or

Q.n
k (γkt ≥ ε, for some t > k) ≥ ε.

Since each αk is a Nash equilibrium, γkt → 0, Q.n
k - almost surely. So, there exists Kk > k such that

Q.n
k (γkt < ε, ∀t ≥ Kk) ≥ 1− ε/2.

So, for all k, we have

Q.n
k (γkt ≥ ε, for some t, k < t < Kk) ≥

ε

2
.
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Let χk denote the stopping time

χk = min{t > k : γkt ≥ ε}

and Zk
t be the associated stopped process,

pkt =

γkt if t < χk,

ε if t ≥ χk.

Note that pkt is a supermartingale under Q.n
k and for t < k, pkt = γkt . So, for all k and t ≥ Kk,

E.n
k p

k
t ≥ εQ.n

k (χk ≤ t)

≥ ε2

2
.

On the other hand, since α∗ is a Nash equilibrium, γ∗t → 0, Q.n
α∗- almost surely. So, there exists s such

that

Q.n
α∗(γ

∗
s < ε2/12) > 1− ε2/12.

Then,

E.n
α∗γ

∗
s ≤

ε2

12

(
1− ε2

12

)
+
ε2

12
<
ε2

6

Since αk → α∗ in the product topology, there exists a k′ > s such that for all k ≥ k′,

E.n
k γ

k
s <

ε2

3
.

But since k′ > s, pks = γks for k ≥ k′ and so for any t ≥ Kk,

ε2

3
> E.n

k γ
k
s = E.n

k p
k
s ≥ E.n

k p
k
t ≥

ε2

2
,

which is a contradiction.

5 Player 1’s reputation disappears uniformly

In this section, we provide the proof for Proposition 2. Suppose that player 2’s reputation disappears
uniformly in any Nash equilibrium of the two-sided incomplete information game, i.e. for all ε > 0, there
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exists T2 such that for all Nash equilibria (σ̃, τ̃),

Q.n
σ,τ̃ (γt(σ, τ̃) < ε,∀t > T2) > 1− ε,

whereQ.n
σ,τ̃ is the probability measure induced on Ω by (σ, τ̃) and the strategic type of player 2 and γt(σ, τ̃)

is the associated reputation of player 2. So, after T2 on, player 1 attaches a very high probability to be
facing the strategic type of player 2, i.e. facing the commitment type no more than ε probability,

Q.n
σ,τ̃ (γt(σ, τ̃) ≥ ε, for some t > T2) ≤ ε,

Player 1 thinks she will be seeing a strategy by the strategic type of player 2 after T2. We proceed by
a similar argument as the one provided for the proof of Proposition 1 in Section 4. The counterparts of
Lemma 1, 2 and 3 hold for player 1. With these results at hand and the above assumption, we derive that
player 1’s reputation disappears (uniformly) as well.

The following Lemma argues that either player 2’s expectation of the strategy played by the strategic
type of player 1 is in the limit the same as the strategy played by the commitment type of player 1, or
player 2’s posterior probability that player 1 is the commitment type converges to zero (given that player
1 is indeed strategic). The key idea is the same: Strictly positive beliefs about player 1’s types can exist in
the long-run only if both types of player 1 play identically in the limit provided that the public signals are
statistically informative about player 1’s actions.

Lemma 4 Suppose Assumptions 1, 2 and 5 are satisfied. In any Nash equilibrium of the incomplete-

information game,

lim
t→∞

µt(1− µt)‖σ̂t − En.[σ̃t|Ht]‖ = 0, Q− a.s. (15)

Note that since σ̂t is a simple commitment strategy, it can be replaced by s1. The proof is the same as the
one given for Lemma 1.

Corollary 5 At any Nash equilibrium of the incomplete-information game satisfying Assumptions 1, 2

and 5,

lim
t→∞

µt‖s1 − En.[σ̃t|Ht]‖ = 0, Qn. − a.s.

Note that limt→∞ µt‖s1 − En.[σ̃t|Ht]‖ = 0, also Qnn - a.s.
Corollary 5 says that if player 2 does not eventually learn that player 1 is strategic, then player 2

must think that strategic type of player 1’s strategy should be close to that of commitment type since the
distributions of public signals induced by the two types are not distinguishable. We now show that strategic
type of player 1 will know that player 2 believes this, since reputations are public by Assumption 5.
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Lemma 5 Suppose Assumptions 1, 2 and 5 hold and suppose there existsA ∈ Ω such thatQn.(A) > 0 and

µ∞(ω) > 0 for all ω ∈ A, i.e. there exists a set of events with strictly positive measure in which reputation

of player 1 does not necessarily disappear. Then, there exists η > 0 and F ⊂ A, with Qn.(F ) > 0, such

that, for any ξ > 0, there exist T1 for which,

µt > η, ∀t ≥ T1,

E

[
sup
s≥t
‖s1 − En.[σ̃s | Hs]‖

∣∣∣∣Ht

]
< ξ, ∀t ≥ T1 (16)

for all ω ∈ F ; and for all ψ > 0

Q

(
sup
s≥t
‖s1 − En.[τ̃s | Hs]‖ < ψ | Ht

)
→ 1 (17)

where the convergence is uniform on F .

The next lemma shows that if the commitment type and strategic type of player 1 play sufficiently
similar, strategic type of player 2 will be best responding to the commitment type’s strategy for arbitrarily
many periods.

Lemma 6 Suppose σ̂ be a simple pure public strategy and BR2(σ̂) is the set of best replies of strategic

type of player 1 to σ̂.39 Let (σ̃, τ̃) be Nash equilibrium strategies in the incomplete-information game. If τ̃

is a pure strategy, then for all T > 0, there exists ψ > 0 such that if player 2 observes a (public) history

ht so that

Q

(
sup
s≥t
‖s1 − En.[σ̃s | Hs]‖ < ψ | ht

)
> 1− ψ (18)

then for τ ′ ∈ BR2(σ̂), the continuation strategy of τ̃ after the history ht agrees with τ ′ for the next T

periods.

We argue for a contradiction that if there is a set of states with positive measure that is induced by
the play of the strategic type of player 1 on which µt 9 0, then, on a subset of states F in Lemma 5,
the strategic type of player 2 believes that player 1’s strategy is very close to her commitment strategy
and thus he should be playing a best response to the commitment strategy of player 1 (after T1), which is
different than the strategy of the commitment type of player 2. Since the both players can compute what
the other player believes about themselves and their future play, the strategic type of player 1 will know
how player 2 thinks her future behavior is going to be and act accordingly. By Proposition 1, after some

39Note that σ̂ assigns s1 in every period independent of history. The repeated game best response of player 2 in the complete-
information game is BR2(σ̂) is a singleton that assigns r2 in each period.
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T2, the reputation of player 2 will disappear in all Nash equilibria, and thus after T = max{T1, T2}, player
1 expects to see a best reply to her commitment strategy from the strategic type of player 2 with a high
probability. Since strategic type of player 2’s strategy is different than the commitment type’s strategy, his
reputation will disappear even more after T . More precisely, the histories for which player 2’s reputation
can be rebuilt would have measure 0. Thus, the strategic player 1 best responds to the strategic type of
player 2 (who gives a best reply to the commitment strategy of player 1 which is different than commitment
type of player 2’s strategy) with high probability. However, since the strategic type player 1’s best response
to player 2’s strategy is different than her commitment strategy, the strategic and the commitment type of
player 1 are expected to play differently, which will provide the contradiction to µt 9 0 on F .

More specifically, we are going to show that player 2 assigns a probability 1− ζ to player 1 believing
with probability at least 1−η that player 2 thinks player 1’s strategy is within ξ of the commitment strategy
when the probability measure over the histories are induced by the play of the strategic type of player 1,

Qn.

(
Qn.

(
sup
s≥t
‖s1 − En.[σ̃s | Hs]‖ < ξ | Ht

)
> 1− η | Ht

)
> 1− ζ.

We choose ξ and ζ such that ξ < min{ψ, 1−ζ} and ζ < 1 to arrive the desired contradiction. Suppose
that there is a set of states A with Qn.(A) > 0 and µ∞(ω) > 0 for all ω ∈ A (note that µ∞(ω) < 1 on A
by Corollary 5.) Then, by Lemma 5, there is a set F ∈ A with Qn.(F ) > 0 (also Q(F ) > 0) such that for
any ξ > 0, there exists a T1 such that for any t > T1 and ω ∈ F ,

Q

(
sup
s≥t
‖s1 − En.[σ̃s | Hs]‖ < ξ | Ht

)
→ 1 (19)

Then, there exists a subset G ∈ F with Qn.(G) > 0 such that for any t > T1, on G,

‖s1 − En.[σ̃t | Ht]‖ < ξ, Q− a.s. (20)

Note that (20) implies ‖s1−En.[σ̃t | Ht]‖ < ξ Qn.- a.s., Qnn-a.s. andQ.n-a.s. Also, by the extension
of Hart’s lemma given in footnote 32), we conclude that for some η and ζ ,

Qn.

(
sup
s≥t
‖s1 − E.n[σ̃s | Hs]‖ < ξ|Ht

)
> 1− ηζ. (21)

This shows that with a high probability (1 − ηζ), player 1 believes that player 2 assigns player 1’s
strategy to be ξ close to the commitment strategy. Define,

gt := Qn.

(
sup
s≥t
‖(s1 − En.[σ̃s | Hs]‖ < ξ|Ht

)
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κt := Qn.(gt > 1− η|Ht)

We want to show κt > 1− ζ . Since, En.[gt | Ht] > 1− ηζ by condition (21), and

En.[gt | Ht] = En.[gt | gt ≤ 1− η,Ht](1− κt) + En.[gt | gt > 1− η,Ht]κt

≤ (1− η)(1− κt) + κt

we have,

1− ηζ < (1− η)(1− κt) + κt

which implies κt > 1− ζ on F . So,

Qn.

(
Qn.

(
sup
s≥t
‖(s1 − En.[σ̃s | Hs]‖ < ξ | Ht

)
> 1− η | Ht

)
> 1− ζ

This says that player 2 assigns a probability of at least 1 − ζ (after observing histories generated by
the play of the strategic type of player 1) to player 1 believing with probability at least 1− η that player 2
believes player 1’s strategy is within ξ of the commitment strategy. Note that, by Lemma 6, for all T ′ > 0,
there exists ψ > 0 such that if player 2 observes a (public) history ht so that

Q

(
sup
s≥t
‖s1 − En.[σ̃s | Hs]‖ < ψ | ht

)
> 1− ψ

then for τ ′ ∈ BR2(σ̂), the continuation strategy of τ̃ after the history ht agrees with τ ′ for the next T ′

periods. We have picked ξ < ψ, hence strategic player 2 best responds to the commitment strategy of
player 1 for the next T ′ periods.

Define T := max{T1, T2}. Note that after time t > T , by uniform disappearance of player 2’s
reputation, player 1 believes that player 2 is the commitment type with γt < ε who plays s2 every period,
and with probability 1− γt > ε he is the strategic type who believes that player 2’s strategy is within ξ of
the commitment strategy from then on and hence plays the best reply to it (since we have picked ξ < ψ)
thereafter. That is why, after t > T , the strategic player 2 will give a best response to s1, which is different
than the commitment strategy of player 2, thus it is unlikely for player 2 to rebuilt after T2. We can stop
the process γt at T .

Since s1 is not a best response to r2 6= s2 (i.e. the myopic best reply of strategic player 2 to s1),
there exists η > 0 such that for any repeated game strategy of the strategic type of player 1 that attaches
probability at least 1 − η to τ̂ (to always playing r2), s1 is suboptimal for the strategic type of player
1 (by the upper-hemicontinuity of the best response correspondence) in period 0. Let η̄ such that s1 is
suboptimal for the strategic player 1 in period 0 if strategic type of player 2 attaches 1− η̄ to σ̂, regardless
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of player 2’s belief about player 1 being commitment type. Define ρ̄ := miny,i,j ρ
y
ij (> 0 by Assumption

1). So, if player 2 assigns probability at least 1− ρ̄η̄ ≡ 1−η to σ̂, then he assigns at least probability 1− η̄
to σ̂ after any deviation that leaves the probability of σ̂ (conditional on any signal) unchanged.

Since we have picked ξ such that ξ < ψ, for all t > T , strategic type of player 2 chooses to play r2, the
unique best response to the commitment action thereafter, whenever he believes that player 1’s strategy
is within ξ of the commitment strategy. Hence, in any period t > T , player 2 assigns a probability of at
least 1 − ζ to player 1 believing that player 2’s subsequent play is r2 thereafter with at least probability
1− η. Thus, player 2 assigns probability at least 1− ζ to player 1’s play in period t being a best response
to τ̂ . Since s1 is pure, it specifies an action î with probability 1. However, player 2 must believe that that
action is played with no more than ζ probability in period t. But since, 1 − ζ > ξ, this contradicts (20).
Player 2’s second order beliefs about strategic player 1’s behavior (after observing the relevant game has
been evolving and histories have been generated by the play of strategic player 1) contradicts with his first
order beliefs.

The uniform disappearance of player 2’s reputation follows the same argument as in Section 4.5.
Hence, for all ε > 0, there exists T , such that for all Nash equilibria (σ̃, τ̃) of the incomplete-information
game,

Qnn
σ̃,τ̃ (µt(σ̃, τ̃) < ε,∀t > T ) > 1− ε,

whereQnn
σ̃,τ̃ is the probability measure induced on Ω by (σ̃, τ̃) and the strategic types of players and µt(σ̃, τ̃)

is the associated reputation of player 1.

6 Concluding Remarks

The main result of this paper is that the reputations of players for playing a strategy that is not part of an
equilibrium of the stage game can not be sustainable in the long-run for games with one-sided binding
moral hazard (at the commitment profile) under imperfect public monitoring. The way we prove our
result is by first showing that the reputation of the player who is subject to binding moral hazard at the
commitment profile disappears (uniformly) and then after the type of that player is almost known, the
reputation of the other player should disappear as well. The implication of this result on the regulatee-
regulator game is: First the reputation of being tough for the regulator disappears. After his true type
is almost known, the regulatee starts to take advantage of regulator’s uncertainty over her type and the
regulatee’s reputation of being virtuous disappears eventually, too. Moreover, the continuation equilibrium
of the incomplete-information game converges to an equilibrium of the complete-information game in the
limit.

There are some interesting related questions we would like to study such as how the rate of disap-
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pearance is affected by different priors. For instance, we believe that the existence of a tough regulator
postpones the revelation of the true type of the regulatee; whereas the existence of a virtuous regulatee
speeds up the revelation of the type of the regulator. So, a regulator whose goal is to understand the type
of the regulatee should not pretend to be the tough type.

The other important observation we can make about the regulatee-regulator game is that the reputations
are sustainable for more complicated commitment strategies that are equilibria of the repeated complete-
information game. For instance, if there is a grim trigger type for the regulator; we believe that the
reputations would be sustainable and the equilibrium would be almost efficient, in the sense that players
achieve the highest total payoff (very close to the efficient frontier of the feasible and individually rational
payoff set). Hence, if a regulator could choose to establish a reputation for a type in the presence of a grim
trigger and a tough type, he should choose to mimic the grim trigger type.

The possible applications of such games may help to analyze some important problems such as asset
market manipulation and tax evasion. For a discussion about the asset market manipulation, we refer the
reader to Ozdogan (2009).

7 Appendix

7.1 Posteriors are bounded martingales.

Lemma 7 Suppose Assumption 1 holds. Then γt is a bounded martingale with respect to the measure Q and

filtration {H1t}t. Moreover, Assumption 5 implies that γt is also a bounded martingale with respect to the measure

Q and filtration {Ht}t. Similarly, random variable µt is a bounded martingale with respect to the measure Q and

filtration {H2t}t and {Ht}t.

Proof. We first show γt is a martingale with respect to measure Q and filtration {H1t}t. Let γt+1(ht; it, yt)

denote player 1’s belief in period t + 1 after playing it and observing public signal yt in period t, given public

history ht. Note that γt+1 ≡ prob[c | ht, it, yt]. So, for all h1,t+1,

E[γt+1|H1,t+1] =
∑
y∈Y

prob[yt|ht, it].γt+1(ht; it, yt)

=
∑
y∈Y

prob[yt|ht, it].
γtprob[yt|ht, it, c]

prob[yt|ht, it]

=
∑
y∈Y

γt
∑
j∈J

ςj2ρ
yt

itj

= γt.

The random variable γt is also a martingale with respect to measure Q and filtration {Ht}t under Assumption 5. In

this case, for all ht+1 and for all it and i,
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E[γt+1|Ht+1] =
∑
y∈Y

prob[yt|ht].γt+1(ht; it, yt)

=
∑
y∈Y

prob[yt|ht].
γtprob[yt|ht, it, c]

prob[yt|ht, it]

=
∑
y∈Y

∑
j∈J

ρyt

ij

(
γtς

j
2 + (1− γt)E.n[τ̃ jt | ht]

)
γt
∑

j∈J ς
j
2ρ
yt

itj∑
j∈J ρ

yt

itj

(
γtς

j
2 + (1− γt)E.n[τ̃ jt | ht]

)
=

∑
y∈Y

∑
j∈J

prob[yt|i, j]γtςj2ρ
yt

itj

prob[yt|it, j]

=
∑
y∈Y

∑
j∈J

ρyt

ij γtς
j
2ρ
yt

itj

ρyt

itj

=
∑
y∈Y

γt
∑
j∈J

ςj2ρ
yt

ij

= γt

Note that the forth equality follows from Assumption 5 and the last line is due to Assumption 1. 40

By the same argument, we can show that µt is a bounded martingale with respect to the measure Q and filtration

{H2t}t (and also with respect to filtration {Ht}t by Assumption 5), thus converges Q-almost surely (and hence Qn.

and Qnn - almost surely) to a random variable µ∞ on Ω.

7.2 Proof of Theorem 2

We modify the proof of Cripps, Mailath, and Samuelson (2004) for two long-lived player with uncertainty over the

types of both players. Since (ϑ̃ht
1 , ϑ̃

ht
2 ) are continuation equilibrium profile, for each public history ht and pure

40For the case of product structure,

E[γt+1|Ht+1] =
∑
y∈Y

prob[yt|ht].γt+1(ht; it, yt)

=
∑
y∈Y

prob[yt|ht].
γtprob[yt|ht, it, c]

prob[yt|ht, it]

=
∑
y∈Y

ρyij
γtprob[yt|ht, it, c]

ρyitj

=
∑

(y1,y2)∈Y

ρy1i ρ
y2
j

γt
∑
j∈J ς

j
2ρ
y1
it
ρy2j

ρy1it ρ
y2
j

= γt

.
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strategies ς ′1 ∈ S1 and ς ′2 ∈ S2, the continuation expected payoffs should satisfy:

E
(ϑ̃

ht
1 ,γtϑ̂

ht
2 +(1−γt)ϑ̃

ht
2 )

[U1(ς1, ς2)] ≥ E
γtϑ̂

ht
2 +(1−γt)ϑ̃

ht
2

[U1(ς ′1, ς2)] (22)

E
(µtϑ̂

ht
1 +(1−µt)ϑ̃

ht
1 ,ϑ̃

ht
2 )

[U2(ς1, ς2)] ≥ E
µtϑ̂

ht
1 +(1−µt)ϑ̃

ht
1

[U1(ς1, ς ′2)] (23)

where ϑ̂ht
1 and ϑ̂ht

2 are the commitment mixed strategies corresponding to commitment behavior strategies σ̂ht and

τ̂ht in the continuation game. By Theorem 1, µt → 0 Qn.-almost surely and γt → 0 Q.n-almost surely

which imply γt → 0 and µt → 0 Qnn- almost surely, by absolute continuity of Qnn with respect to Qn. and

Q.n. Suppose {ht}t is a sequence of public histories on which γt, µt → 0 and {(ϑ̃ht
1 , ϑ̃

ht
2 )}∞t=1 → (ϑ̃∗1, ϑ̃

∗
2) on

this sequence. We need to show (ϑ̃∗1, ϑ̃
∗
2) satisfies (22) and (23), which suffices to show expectation E(ϑ1,ϑ2) is

continuous in (ϑ1, ϑ2). The continuity of this expectation is given by Theorem 4.4 of Fudenberg and Tirole (1991)

and it is due to discounting (since δ1, δ2 < 1).

7.3 Equilibrium of the one-shot regulatee-regulator game

Let I = {T,U} be the action space of the regulatee and J = {D,L} be that of the regulator. Suppose α1(T ) denote

the probability the regulatee puts on Truthful and α2(D) denotes the probability the regulator puts on Diligence.

Let µ be the prior belief of the regulator about the regulatee being virtuous; and γ be the prior that the regulatee

thinks the regulator is tough, where the prior beliefs are common knowledge. The equilibrium of the one-shot game

is given by Proposition 3.

Proposition 3 The equilibrium (α1, α2) ∈ ∆(I)×∆(J) is given as follows:

1. If γ > g
g+l2−l1 and µ ∈ [0, 1], α1(T ) = 1 and α2(D) = 0 ;

2. If γ = g
g+l2−l1 and

(a) If µ > d−c
d , α1(T ) ∈ [0, 1] and α2(D) = 0;

(b) If µ = d−c
d , α1(T ) ∈ [0, 1] and α2(D) = 0;

(c) If µ < d−c
d , α1(T ) ∈ [1− c

(1−µ)d , 1] and α2(D) = 0.

3. If γ < g
g+l2−l1 and

(a) If µ > d−c
d , α1(T ) = 0 and α2(D) = 0;

(b) If µ = d−c
d , α1(T ) = 0 and α2(D) ∈ [0, 1− l2−l1

(1−γ)(g+l2−l1) ];

(c) If µ < d−c
d , α1(T ) = 1− c

(1−µ)d and α2(D) = 1− l2−l1
(1−γ)(g+l2−l1) ;
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Corresponding equilibrium expected payoff vectors are: 41

(π1, π2) =



(x− γl1, y) Case 1: γ > g
g+l2−l1 and µ ∈ [0, 1]

(x− g.l1
g+l2−l1 , [µy + (1− µ)z, y]) Case 2.a : γ = g

g+l2−l1 and µ > d−c
d

(x− g.l1
g+l2−l1 , [y −

c(y−z)
d , y]) Case 2.b : γ = g

g+l2−l1 and µ = d−c
d

(x− g.l1
g+l2−l1 , [y −

c(y−z)
d , y]) Case 2.c : γ = g

g+l2−l1 and µ < d−c
d

(x+ g − γ(g + l2), µy + (1− µ)z) Case 3.a : γ < g
g+l2−l1 and µ > d−c

d

([x− g.l1
g+l2−l1 , x+ g − γ(g + l2)], y − c(y−z)

d ) Case 3.b : γ < g
g+l2−l1 and µ = d−c

d

(x− g.l1
g+l2−l1 , y −

c(y−z)
d ) Case 3.c : γ < g

g+l2−l1 and µ < d−c
d

We can summarize the equilibrium strategies depending on the priors by the following graphs.
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41We denote the payoff correspondence for a player with a bracket [ ].
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So, the equilibrium strategy for the regulatee (for being truthful) is nonincreasing in the prior on her type of being

virtuous µ, for any given prior on the regulator’s type; and it is nondecreasing with in the prior on the toughness

of the regulator γ for any fixed prior µ. Moreover, if the prior on the toughness of the regulator is sufficiently high

(greater than g
g+l2−l1 ), the regulatee always chooses to be truthful as she thinks she faces a tough regulator with

a high enough probability. Note that that threshold decreases as as the expected gain from being untruthful (g)

decreases or the expected loss (l2) increases.

The regulatee can get her highest possible payoff x + g only if she thinks that it is more likely she faces a

strategic regulator and the prior on her being virtuous is high enough (µ > d−c
d ) so that a strategic regulator chooses

to be lazy.
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The regulator’s strategy of being diligent is nonincreasing both in the prior γ of being tough type (for any fixed

prior on the regulatee being virtuous) and in the prior µ on the regulatee’s type (for a given prior on the regulator’s

type). It is intuitive in the sense that the regulator chooses to be diligent less and less often as he thinks that with a

high probability he faces a virtuous regulatee who is truthful; or as he thinks that the regulatee thinks he is tough, so

that she chooses to be truthful. Note that the regulator never (for no prior beliefs) chooses to be diligent for sure and

when the prior on his toughness is above g
g+l2−l1 , he always chooses to be lazy, knowing that the regulatee is going

to choose to be truthful. He randomizes between being lazy and diligent only when γ < g
g+l2−l1 and µ ≤ d−c

d , i.e.

he thinks that it is more likely he faces a strategic regulatee and the regulatee also thinks that it is more likely she

faces a strategic regulator.

Proof. We find the best responses of players for each case.

The expected utility of the regulatee from being truthful, i.e. choosing α1 = 1 is

π1(T, α2) = γ(x− l1) + (1− γ)[α2(x− l1) + (1− α2)x]

Her expected utility from being untruthful, i.e. α1 = 0, is

π1(U,α2) = γ(x− l2) + (1− γ)[α2(x− l2) + (1− α2)(x+ g)]

Hence, the regulatee’s best response is given by the following:

BR1(α2) =


1 if α2 > 1− l2−l1

(1−γ)(g+l2−l1)

[0, 1] if α2 = 1− l2−l1
(1−γ)(g+l2−l1)

0 if α2 < 1− l2−l1
(1−γ)(g+l2−l1)

(24)

Note that the strategy of the regulator that makes the regulatee indifferent between being truthful and untruthful,

α2 = 1 − l2−l1
(1−γ)(g+l2−l1) , is greater than 0 if γ < g

g+l2−l1 and equals to 0 if γ = g
g+l2−l1 . If γ > g

g+l2−l1 , then

BR1(α2) = 1 for any α2.

The expected utility of the regulator by choosing to be diligent, i.e. choosing α2 = 1, is

π2(α1, D) = µ(y − c) + (1− µ)[α1(y − c) + (1− α1)(z − c+ d)]

The expected utility of the regulator by choosing to be lazy, i.e. choosing α2 = 0, is

π2(α1, L) = µy + (1− µ)[α1y + (1− α1)z]

Regulator’s best response is given by the following:

BR2(α1) =


1 if α1 < 1− c

(1−µ)d

[0, 1] if α1 = 1− c
(1−µ)d

0 if α1 > 1− c
(1−µ)d

(25)
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Note that the strategy of the Sender that makes the Receiver indifferent between choosing to be diligent and lazy,

α1 = 1 − c
(1−µ)d , is greater than 0 if µ < d−c

d and equals to 0 if µ = d−c
d . If µ > d−c

d , then BR2(α1) = 0 for any

α1.

Case 1 γ > g
g+l2−l1 and µ ∈ [0, 1].

In this case,BR1(α2) = 1 for any τ . The unique fixed point of the best response correspondenceBR1×BR2

is α1 = 1 and α2 = 0 (Regulator is truthful and Receiver is lazy). The equilibrium payoff vector (π1, π2)

corresponding to this strategy profile is (x− γl1, y).

Case 2 γ = g
g+l2−l1 . The strategy that makes the Sender indifferent between telling the truth and lying is τ = 0. For

α2 > 0, BR1(α2) = 1.

2.a µ > d−c
d : BR2(α1) = 0 for any α1. So, the equilibria in this case are α1 ∈ [0, 1] and α2 = 0.

Corresponding equilibrium payoffs for the regulatee is x − g.l1
g+l2−l1 and for the regulator lies in [µy +

(1− µ)z, y].

2.b µ = d−c
d : Regulator is indifferent between choosing to be lazy and diligent when α1 = 0. Otherwise,

BR2(α1) = 0. The equilibria in this case are α1 ∈ [0, 1] and α2 = 0. Corresponding equilibrium

payoffs for the regulatee is x− g.l1
g+l2−l1 and for the regulator lies in [y − c(y−z)

d , y].

2.c µ < d−c
d : Best response correspondence of the regulator is given by the expression 25. Sender is

indifferent if α2 = 0 and BR1(α2) = 1 if α2 > 0. The fixed point of BR1 × BR2 are α1 ∈
[1 − c

(1−µ)d , 1] and α2 = 0, providing a payoff of x − g.l1
g+l2−l1 to regulatee and [y − c(y−z)

d , y] to

regulator.

Case 3 γ < g
g+l2−l1 . The best response correspondence of the regulatee is given by expression 24.

3.a µ > d−c
d : BR2(α1) = 0 for any α1. The unique equilibrium for these values of beliefs is α1 = 0

and α2 = 0, providing a payoff of γ(x − l2) + (1 − γ)(x + g) = x + g − γ(g + l2) to regulatee and

µy + (1− µ)z to regulator.

3.b µ = d−c
d : The regulator is indifferent between choosing to be diligent and lazy when α1 = 0. Other-

wise, BR2(α1) = 0. The equilibria are α1 = 0 and α2 ∈ [0, 1 − l2−l1
(1−γ)[g+l2−l1] ] with the associated

equilibrium payoff in [x− g.l1
g+l2−l1 , x+ g − γ(g + l2)] to the regulatee and y − c(y−z)

d to the regulator.

3.c µ < d−c
d : Best response correspondence of the regulator is given by the expression 25. The unique

equilibrium strategy profile for these values of beliefs is α1 = 1− c
(1−µ)d and α2 = 1− l2−l1

(1−γ)[g+l2−l1] ,

providing equilibrium payoffs x− g.l1
g+l2−l1 to the regulatee and y − c(y−z)

d to the regulator.
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