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1 Introduction

A cooperative game with side-payments is a very summary description of an

underlying game of conflict. It specifies a finite set of players and a worth,

in monetary units, for each coalition of players.

In an application of cooperative game theory, the primary problem for

an analyst would be to identify the player set, and subsidiarily to determine

the worth of each coalition. Players may represent groups of persons, such as

labor unions, towns, nations, etc., or they may be other economic variables

of the situation under consideration, for example factors of production or

objectives of an economic project (Peleg and Sudhölter, 2003, Remark 2.1.3).

Since there is likely to be more than one way of fixing the variables of the

game, it is fundamental for an analyst to understand if or in which way it

matters how the player set itself is determined from the data of the situation.

Players may also be agents who can exit (enter) the game by handing

over (receiving) their assets to (from) other agents, or groups of agents can

merge and then jointly act as one decision unit, e.g. as a household or a firm.

Depending on the specifics of the game and allocation rule, players may have

incentives to merge, or to split themselves into smaller units, i.e., the game

itself may be subject to strategic manipulation.

Manipulation of allocation rules for cooperative game situations has been

a recurrent theme in the literature.1 In the context of cooperative games with

side-payments, the emphasis of the previous research has primarily been on

merge properties of probabilistic values.2 Lehrer (1988) investigates bilateral

mergers (called amalgamations), where two players merge into one player.

1In the context of bargaining problems, Harsanyi (1977) discusses the so-called joint-
bargaining paradox of the Nash bargaining solution. Harsanyi points out that if two
players merge into a single bargaining unit, they tend to weaken their bargaining position.
In bankruptcy problems conditions similar to the joint properties of merging- and splitting-
proofness have been used to characterize the proportional allocation rule, see, for example,
Moulin (2002, p. 298) or Thomson (2003, p. 286).

2Postlewaite and Rosenthal (1974) is a notable exception.
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Lehrer shows that for the Banzhaf value it is always profitable to merge, and

he uses this condition for an axiomatic characterization of this value. Haviv

(1995) uses a consistency property with respect to consecutive mergers for

a characterization of the Shapley value. Derks and Tijs (2000) consider a

given partition of the player set and study the game that evolves when the

players in each compartment merge into one player. They show that if certain

conditions are satisfied then a merger in a given compartment is profitable

when players are rewarded according to the Shapley value. Haller (1994)

investigates collusion properties of the Shapley value, the Banzhaf value, and

other probabilistic values for bilateral proxy- and association agreements. A

bilateral proxy agreement is similar to a bilateral merger, if we disregard

null players. A bilateral association agreement modifies the game such that,

if just one of the players in the association enters some coalition, then the

player’s contribution to its worth is as if both players in the association were

entering. Segal (2003) obtains complete characterizations of the profitability

of three types of integration in a game solved by a probabilistic value.

The present paper considers whether any (core) allocation rule3 – prob-

abilistic or not – can be merging-proof (i.e., robust against manipulations of

the kind where a coalition of players merge into one player) or splitting-proof

(i.e., robust against manipulations of the kind where a player is divided into

several smaller players), and provides impossibility and possibility results in

this direction. The results are collected in Section 2. Briefly, Section 2.1

finds that an anonymous allocation rule cannot simultaneously be merging-

and splitting-proof, even if we restrict attention to strictly monotonic convex

games (a game is convex if the incentives for joining a coalition increase as

the coalition grows, cf. Shapley, 1971). In fact, there exists no splitting-

proof anonymous allocation rule on the class of monotonic convex games.

On the class of monotonic games with a nonempty core, an allocation rule

3An allocation rule specifies, for each game, how the gains from cooperation (that is,
the worth of the grand coalition) is distributed among the players. An allocation is in the
core if the worth of each coalition does not exceed its aggregate payoff.
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can be merging-proof, but we show that then it cannot be a core allocation

rule. Likewise, a splitting-proof allocation rule cannot be a core allocation

rule. Section 2.2 shows that the Fujishige-Dutta-Ray allocation rule (which

selects the most equal allocation in the core) is merging-proof on the class of

monotonic convex games. Moreover, we show that there exists a core allo-

cation rule which is splitting-proof on the class of strictly monotonic convex

games.

1.1 Definitions and notation

Let N = {1, 2, ...} denote the set of potential agents. A cooperative game with
side-payments is a pair (N, v), where N is a finite set of disjoint nonempty

subsets of N and v is a real-valued function defined on the subsets of N and

v(∅) = 0. An element of N is called a player. Thus, a player consists of one

or more potential agents.4

An element x of RN is a payoff vector. For x ∈ RN and S ⊆ N we define

x(S) =
P

i∈S xi and x(∅) = 0. If x(N) = v(N) then x is called an allocation.

The core of a game (N, v) is the set C(N, v) = {x ∈ RN |x(S) ≥ v(S) for

all S ⊂ N and x(N) = v(N)}. Note that ⊂ denotes proper subset.
A game (N, v) is convex if v(S ∪ {i}) − v(S) ≥ v(T ∪ {i}) − v(T ) for

all T ⊂ S ⊆ N, i /∈ S, it is superadditive if v(S ∪ T ) ≥ v(T ) + v(S) for all

S, T ⊆ N, S∩T = ∅, it is monotonic (strictly monotonic) if v(S∪{i}) ≥ (>)
v(S) for all i and S ⊂ N, i /∈ S, and balanced if C(N, v) 6= ∅.
An allocation rule is a function φ that assigns an allocation to any game

(N, v). We say that φ is a core allocation rule if φ(N, v) ∈ C(N, v) whenever

C(N, v) 6= ∅. An allocation rule is anonymous if it is independent of the
names of the players. To be precise, for any game (N, v) and any player set

M, if g is a bijective function from N to M and (M, v0) is the game defined

by v0(g(S)) = v(S) for all S ⊆ N, then φi(N, v) = φg(i)(M,v0) for all i ∈ N .

4For a general treatment of cooperative games, see, e.g., Peleg and Sudhölter (2003).
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For a game (N, v) and a nonempty coalition T ⊂ N we define the T -

merger game (NT , vT ) as follows: NT = {T} ∪ {i ∈ N | i /∈ T} and vT (S) =

v(S) for all S ⊆ NT , where S = {i ∈ N | i ∈ T or i ∈ S\T} if T ∈ S and

S = S otherwise. Note that T is a coalition in (N, v) and a player in the

T -merger game (NT , vT ).5

We say that an allocation rule φ is merging-proof (splitting-proof) on a

given family of games if whenever (N, v) and (NT , vT ) are members of the

family and (NT , vT ) is the T -merger game of (N, v) we have φT (N
T , vT ) ≤

(≥)
P

i∈T φi(N, v). Thus, an allocation rule is merging-proof if the players in

a coalition never gain from acting as one player. Splitting-proofness says that

regardless of how a player can be split up into a number of smaller players,

the player will never gain from doing so. Put differently, an allocation rule

is merging-proof if regardless of how a player is able to divide herself into

a group of smaller players, doing so is always weakly profitable; and it is

splitting-proof if it is always weakly profitable for any given coalition to

merge.

2 Results

2.1 Impossibilities

As mentioned in footnote 1, for bankruptcy problems6 conditions similar to

the combination of merging- and splitting-proofness have been used to char-

acterize the proportional allocation rule (O’Neill 1982, Chun 1988, de Fru-

tos 1999, Ju 2003) and hence imply anonymity. In that context there ex-

5It is readily verified that if T ⊂ U ⊂ N , then the U -merger game obtained from (N, v)
is identical with the {T} ∪ {i ∈ N |i /∈ T, i ∈ U}-merger game obtained from (NT , vT ).
Thus, whether the players in a coalition U merge simultanously or in a sequential manner
does not influence the specification of the U -merger game (NU , vU ).

6A bankruptcy problem is given by a tuple (c, E) ∈ RN+ ×R+, E ≤
P

i∈N ci, where c is
the vector of claims and E is the estate. A bankruptcy rule is a function ϕ that assigns to
every bankruptcy problem a payoff vector x = ϕ(c,E) with

P
i∈N xi = E and 0 ≤ xi ≤ ci.
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ists large classes of allocation rules that are merging-proof or splitting-proof

respectively.We refer to the surveys by Moulin (2002) and Thomson (2003),

and the recent contributions by Ju (2003) and Ju et al. (2006), for a detailed

account.

In the context of allocation rules for cooperative games, the situation is

radically different. Here, the combination of merging- and splitting-proofness

does not imply anonymity. In fact, if we restrict attention to the family of

strictly monotonic convex games, the combination of merging- and splitting-

proofness is inconsistent with anonymity.

Proposition 1 There is no anonymous merging- and splitting-proof alloca-
tion rule on the class of strictly monotonic convex games.

Proof: By contradiction. Suppose that φ is an anonymous, merging- and

splitting-proof allocation rule. Let N = {1, 2, 3}, and let (N, v) be the

game defined by v({1}) = v({2}) = 1, v({3}) = 2, v({2, 3}) = v({1, 3}) =
3, v({1, 2}) = 4 and v(N) = 6. We claim that φ1(N, v) = φ2(N, v) =

φ3(N, v) = 2. For this, notice that by anonymity φ1(N, v) = φ2(N, v).

Moreover, consider a merger by T = {1, 2}. The resulting game (NT , vT )

is then defined by NT = {T, 3}, vT ({T}) = 4, vT ({3}) = 2 and vT (NT ) = 6.

By merging- and splitting-proofness, we must have φT (N
T , vT ) = φ1(N, v)+

φ2(N, v). Further, for the game (N,w) defined by w({i}) = 2 for i ∈ N ,

w({i, j}) = 4 for i, j ∈ N, i 6= j, and w(N) = 6, by merging- and splitting-

proofness, we have φ1(N,w) + φ2(N,w) = φT (N
T , wT ). By anonymity,

φi(N,w) = 2 for i ∈ N and φT (N
T , wT ) = 4, and, because (NT , vT ) =

(NT , wT ), we have φ1(N, v) + φ2(N, v) = 4. Since φ1(N, v) = φ2(N, v) and

φ1(N, v)+φ2(N, v)+φ3(N, v) = 6 we have φ1(N, v) = φ2(N, v) = φ3(N, v) =

2, proving the claim.

Now, for the game (N, v), consider the merger of coalition U = {2, 3}.
The resulting game (NU , vU) is then given by NU = {1, U}, vU({U}) = 3,

vU({1}) = 1 and vU(NU) = 6. We claim that φU(N
U , vU) = 18

4
and
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φ1(N
U , vU) = 6

4
. For this, let M = {1, 2, 3, 4} and consider the game (M, q)

with q({i}) = 1 for i ∈ M , q({i, j}) = 2 for i, j ∈ M, i 6= j, q({i, j, k}) =
3 for i, j, k ∈ M, i 6= j 6= k, and q(M) = 6. By anonymity we have

φi(M, q) = 6
4
for all i ∈ M . Moreover, let V = {2, 3, 4} and consider the

V -merger game (MV , qV ) obtained from (M, q). Note that MV = {1, V },
qV ({U}) = 3, qV ({1}) = 1 and qV (MV ) = 6. Thus, by anonymity and

merging- and splitting-proofness we have φV (M
V , qV ) = φU(N

U , vU) = 18
4

and φ1(M
V , qV ) = φ1(N

U , vU) = 6
4
, proving our claim. We have now ob-

tained a contradiction, since for the game (N, v) the merger U = {2, 3}
strictly increases aggregate payoff for coalition members.

Finally, we notice that all games that have been considered are convex

and strictly monotonic (as can be verified). ¤

Note that the class of monotonic convex games is a subclass of the

monotonic balanced games and the impossibility of Proposition 1 applies

therefore to allocation rules defined on this family of games as well.7 Exam-

ple 1 shows that anonymity cannot be dispensed with in Proposition 1.

Example 1 Given a player set N, let i∗(N) be the player in N containing

the lowest-numbered potential agent. That is, i∗(N) is the player i in N for

which: if j is a player in N and a is a potential agent in j, then there is a

potential agent b in i such that b < a. Note that i∗(N) is well-defined since

N consists of disjoint nonempty subsets of N. Then, for an arbitrary class
of games, the allocation rule φ∗ defined by φ∗i (N, v) = v(N) if i = i∗(N)

and φ∗i (N, v) = 0 otherwise, is merging- and splitting-proof (as can easily be

verified). ¤

There do exist anonymous merging-proof allocation rules. For example,

the equal split allocation rule that for any game (N, v) divides v(N) equally

among the players is indeed merging-proof on any family of games, but (as

7It is easily verified that if (N, v) is a balanced game and if T ⊂ N is a nonempty
coalition, then (NT , vT ) is balanced.
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verified in the first part of Proposition 2 below) it is no coincidence that on

balanced games this rule sometimes selects allocations outside the core.

On the class of strictly monotonic games we can find anonymous splitting-

proof allocation rules. For example, the allocation rule that for a game (N, v)

divides v(N) equally between the players who have the highest single-player

worth v({i}). Postlewaite and Rosenthal (1974) showed that it is possible
to construct a totally balanced8 (five-player) game (N, v) where the core is a

singleton, and in which there is a (three-player) coalition T , such that, if the

players in T merge into a single player, then in the core of the T -merger game

player T cannot get more than what coalition T gets in the core of (N, v) but

may get the same or less. Consequently, there exists no core allocation rule

on the family of balanced games for which any merger in any game is strictly

profitable. The first part of Proposition 2 strengthens this observation for

anonymous rules.

Proposition 2 (i) There is no splitting-proof anonymous allocation rule on
the class of monotonic convex games. (ii) There is no splitting-proof core

allocation rule on the class of monotonic balanced games. (iii) There is no

merging-proof core allocation rule on the class of monotonic balanced games.

Proof: (i). Suppose that φ is an anonymous splitting-proof allocation rule.

Let MT = {T, 3} denote a player set, where T = {1, 2}, and define the
(monotonic convex) game (MT , wT ) bywT ({T}) = wT ({3}) = 0 andwT (MT ) =

1. By anonymity, φT (w
T ,MT ) = φ3(w

T ,MT ) = 1
2
.

Now, considering the game (MT , wT ), if splitting T into two players,

player 1 and player 2, the (monotonic convex) game (M,w) is obtained with

M = {1, 2, 3}, w({1}) = w({2}) = w({3}) = w({1, 2}) = w({2, 3}) =
w({1, 3}) = 0 and w(M) = 1. Since φ is an anonymous allocation rule we

must have φi(M,w) = 1
3
for i = 1, 2, 3, contradicting that φ is splitting-proof.

8A game (N, v) is totally balanced if for any nonempty coalition S ⊆ N , the game
(S, v|S) is balanced (where v|S denotes the restriction of v to S).
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(ii). Suppose that φ is a splitting-proof core allocation rule. Let M =

{1, ..., 6}, T = {1, 2, 3} and U = {4, 5, 6}. For the setMTU = {T,U} =MUT
,

define the (monotonic superadditive balanced) game (MTU , wTU ) as follows:

wTU ({T}) = wTU ({U}) = 2 and wTU (MTU ) = 5. For either V = T or V = U ,

we have φV (w
TU ,MTU ) ≤ 5

2
. We assume that φT (w

TU ,MTU ) ≤ 5
2
. The case

φU(w
TU ,MTU ) ≤ 5

2
is similar, and thus can be omitted.

For the player set MU = {1, 2, 3, U} define the (monotonic superaddi-
tive balanced) game (MU , wU) by wU({1}) = wU({2}) = wU({3}) = 0,

wU({U}) = 2, wU({1, 2}) = wU({2, 3}) = wU({1, 3}) = 2, wU({1, U}) =
wU({2, U}) = wU({3, U}) = 3, wU({1, 2, 3}) = 2, wU ({i, j, k}) = 3 for any
other three-player coalition inMU , and wU(MU) = 5. Note that (MTU , wTU )

is the T -merger game of (MU , wU). Then, C(MU , wU) is a singleton; it is

the element in RMU
given by xU = 2 and x1 = x2 = x3 = 1. Since φ is a core

allocation rule we have φi(M
U , wU) = 1 for i = 1, 2, 3, and φU(M

U , wU) = 2

contradicting that φ is splitting-proof.

(iii). Suppose that φ is a merging-proof core allocation rule. Let N =

{1, 2, 3, 4}, T = {1, 2} and U = {3, 4}, such that we have NT = {T, 3, 4} and
NU = {1, 2, U}. We define the game (NT , vT ) as follows: vT ({i}) = 0 for

all i ∈ NT , vT ({3, 4}) = 0, vT ({T, 3}) = vT ({T, 4}) = 1 and vT (NT ) = 1.

Then, C(NT , vT ) is a singleton; it is the element in RNT
given by xT = 1

and x3 = x4 = 0. Since φ is a core allocation rule we have φT (N
T , vT ) = 1

and φ3(N
T , vT ) = φ4(N

T , vT ) = 0.

Let (NTU , vT
U
) denote the U-merger game of (NT , vT ). Thus, NTU =

{T,U}, vTU ({T}) = 0, vT
U
({U}) = 0 and vT

U
(NTU ) = 1. Since φ is

merging-proof and a core allocation rule, we have φT (N
TU , vT

U
) = 1 and

φU(N
TU , vT

U
) = 0.

For the set NU define the game (NU , vU) as follows: vU({i}) = 0 for all
i ∈ NU , vU({1, 2}) = 0, vU({1, U}) = vT ({2, U}) = 1 and vU(NU) = 1.

Then, C(NU , vU) is a singleton; it is the element in RNU
given by xU = 1

and x1 = x2 = 0. Since φ is a core allocation rule we have φU(N
U , vU) = 1
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and φ1(N
U , vU) = φ2(N

U , vU) = 0.

Now, let (NUT
, vU

T
) denote the T -merger game of (NU , vU). Since φ

is a merging-proof core allocation rule, we have φU(N
UT

, vU
T
) = 1 and

φT (N
UT

, vU
T
) = 0–a contradiction since the games (NUT

, vU
T
) and (NTU , vT

U
)

are identical. ¤

We notice that the proof of part (iii) of Proposition 2, and by implication

from convexity also part (i), involves only (monotonic superadditive) totally

balanced games. The proof of part (ii) relies on games there are superadditive

but not totally balanced.

2.2 Possibilities

For the family of probabilistic values, Haller (1994, Corollary 3.3) gives suf-

ficient conditions for which bilateral proxy agreements are always weakly

(un)profitable. The Shapley value does not satisfy these conditions,9 and

core compatibility was not addressed in Haller’s study. Indeed, the Shap-

ley value is neither merging-proof, nor splitting-proof, even on the class of

strictly monotonic convex games, as verified in Example 2 below. Note that

bilateral merging-proofness (i.e., the property that a T -merger is not strictly

profitable if |T | = 2) does not imply merging-proofness. An analogous state-
ment holds for splitting-proofness.

Example 2 Let (N, v) be the (strictly monotonic convex) game, where

N = {1, 2, 3, 4} and v is given by v (S) = 1 if |S| = 1, v (S) = 3 if |S| = 2,
v (S) = 6 if |S| = 3 and v (N) = 9. The Shapley value is φShi (N, v) = 9

4
for all

i ∈ N . Now for T = {3, 4} consider the T -merger game whereNT = {1, 2, T}
9The Shapley value φSh can be defined as

φShi (N, v) =
X

S⊆N,S3i

(|S|− 1)!(|N |− |S|)!
|N |! (v(S)− v(S\{i})).
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and vT takes the following values: vT ({1}) = vT ({2}) = 1, vT ({T}) = 3,

vT ({1, 2}) = 3, vT ({1, T}) = vT ({2, T}) = 6 and vT
¡
NT
¢
= 9. Then,

φShT
¡
NT , vT

¢
= 14

3
> 9

2
. Thus, for players 3 and 4 (or any other two player

coalition), merging is strictly profitable.

Next, consider the (strictly monotonic convex) game (M,w) where M =

{1, 2, 3}, w(S) = |S| if |S| < 3 and w(M) = 4. Then, φShi (M,w) = 4
3
for

all i. For T = {1, 2}, the T -merger game wT is defined by MT = {T, 3},
wT ({T}) = 2, wT ({3}) = 1 and wT (MT ) = 4. Then, φShT

¡
MT , wT

¢
= 5

2
< 8

3
.

Thus, splitting T is strictly profitable for the potential agents 1 and 2. ¤

The nucleolus (Schmeidler 1969) is the allocation rule φNu that to each

game (N, v) assigns an allocation x = φN(N, v) such that x lexicographically

minimizes the vector of excesses e(S, x) = v(S) −
P

i∈S xi, ∅ ⊂ S ⊂ N,

when these are arranged in order of descending magnitude. The per capita

nucleolus φPCNu (Grotte, 1970) is the analog of the nucleolus with excesses

defined on a per capita basis: e(S, x) = v(S)− i∈S xi
S

, ∅ ⊂ S ⊂ N (see, e.g.,

Young 1985). We can use an example discussed in Hokari (2000) to show

that none of these allocation methods are merging-proof:

Example 3 Let N = {1, 2, 3, 4}, and let (N, v) be monotonic convex game

defined by v({i}) = 0 for all i, v({1, 3}) = 0, v({1, 2}) = v({1, 4}) =
v({2, 3}) = v({2, 4}) = v({3, 4}) = 2, v({1, 2, 3}) = 4, v({1, 2, 4}) = v({1, 3, 4}) =
v({2, 3, 4}) = 6, and v({N}) = 10. Hokari (2000) shows that φNu(N, v) =

(2, 2, 2, 4). It is easy to verify that φPCNu(N, v) = φNu(N, v).

Now, consider the merger of coalition T = {1, 2, 3}. The T -merger game
(NT , vT ) is given by NT = {T, 4}, vT ({T}) = 4, vT ({4}) = 0 and vT (NT ) =

10. We then have φNu(NT , vT ) = φPCNu(NT , vT ) = (7, 3). Thus, the merger

is strictly profitable.10 ¤
10From Proposition 1(i) we further know that we can find a monotonic convex game,

such that a split is strictly profitable. Since the nucleolus is continuous in v (cf. Peleg and
Sudhölter, 2003, Chapter 9), we can infer that it fails merging-proofness and splitting-
proofness on the family of strictly monotonic convex games as well. The same conclusion
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Examples 2 and 3 illustrate that merging-proofness is, indeed, a very

restrictive requirement. Thus, one may wonder whether there exists any

merging-proof core allocation rule even on convex games. Lemma 1 below

verifies that the family of convex games is closed under mergers, so requiring

merging-proofness on this domain imposes a profitability restriction on all

possible T -mergers in any convex game.

Lemma 1 Let (N, v) be a (monotonic) (strictly monotonic) convex game

and T ⊂ N a nonempty coalition. Then, the T -merger game
¡
NT , vT

¢
is a

(monotonic) (strictly monotonic) convex game.

Proof: Suppose that (N, v) is convex. Let S, S0 ⊆ NT . First, we claim that

S ∩ S0 = S ∩S0. For this, consider a player i ∈ N\T . Then, i ∈ S ∩ S0 if and
only if [i ∈ S and i ∈ S0] if and only if [i ∈ S and i ∈ S0]. Further, consider

the player T in NT . Then, for any i ∈ T ⊂ N , i ∈ S ∩ S0 if and only if
[T ∈ S and T ∈ S0] if and only if [i ∈ S and i ∈ S0], which proves the claim.

Second, we claim that S ∪ S0 = S ∪ S0. The claim is verified in a similar

way: Consider a player i ∈ N\T . Then, i ∈ S ∪ S0 if and only if [i ∈ S or

i ∈ S0] if and only if [i ∈ S or i ∈ S0]. Further, consider the player T in NT .

Then, for any i ∈ T ⊂ N , i ∈ S ∪ S0 if and only if [T ∈ S or T ∈ S0] if and

only if [i ∈ S or i ∈ S0], which proves the claim.

The game (NT , vT ) is convex if

vT (S ∩ S0) + vT (S ∪ S0) ≥ vT (S) + vT (S0) for all S, S0 ⊆ NT ,

(see, e.g., Peleg and Sudhölter, 2003, p. 13), i.e., if

v(S ∩ S0) + v(S ∪ S0) ≥ v(S) + v(S0) for all S, S0 ⊆ NT .

But, since v(S ∩ S0) = v(S∩S0) and v(S ∪ S0) = v(S∪S0), this is equivalent

holds for the per capita nucleolus.
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to

v(S ∩ S0) + v(S ∪ S0) ≥ v(S) + v(S0) for all S, S0 ⊆ NT ,

which is satisfied since (N, v) is convex and S, S0 ⊆ N.

Finally, we notice that since a convex game (N, v) is superadditive, it is

monotonic (strictly monotonic) if and only if v({i}) ≥ 0 (v({i}) > 0) for all
i ∈ N . This condition implies that vT ({i}) ≥ 0 (vT ({i}) > 0) for all i ∈ NT

since v(T ) ≥ v({i}) for all i ∈ T , i.e., (NT , vT ) is also monotonic (strictly

monotonic). ¤

Dutta and Ray (1989) showed that in the core of a convex game there

is one and only one allocation which is more equal than any other core al-

location, in a Lorenz sense. The allocation rule that for any convex game

selects this allocation was introduced independently by Fujishige (1980) and

Dutta and Ray (1989). Suppose that f is a strictly concave function on R.
By a result in Hardy et al. (1934, Theorem 108) (see, e.g., Hougaard, Peleg

and Thorlund-Petersen, 2001), we can define the Fujishige-Dutta-Ray allo-

cation rule φFDR on the class of convex games as follows: φFDR(N, v) is the

maximizer of
P

i∈N f(xi) subject to the constraint x ∈ C(N, v).

For bankruptcy problems, the constrained equal awards bankruptcy rule

is merging-proof (de Frutos 1999, Ju 2003). As pointed out in Thomson

(2003), the allocation chosen by the constrained equal awards rule corre-

sponds to the payoff vector chosen by the Fujishige-Dutta-Ray allocation

rule for the associated bankruptcy game.11 Thus, the Fujishige-Dutta-Ray

allocation rule is merging-proof on the class of bankruptcy games. We shall

prove the following more general result:

Proposition 3 On the class of monotonic convex games, the Fujishige-Dutta-
Ray allocation rule is merging-proof.

11Given a bankruptcy problem (c, E) ∈ RN+ ×R+ , the bankruptcy game is the game
(N, v(c,E)) defined as v(c,E)(S) = max

n
0, E −

P
i∈N\S ci

o
for all S ⊆ N . The class of

such bankruptcy games is a subclass of the monotonic convex games (Curiel et al. 1987).
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For the proof of Proposition 3, we formulate a lemma which says that it is

possible to go from one core allocation to another by a sequence of bilateral

transfers (which can be ordered in certain ways) for which any intermediate

allocation is also in the core. We make use of the following concepts and

definitions (see also Hougaard and Østerdal, 2008). Suppose that x, y ∈ RN ,

and for some i, j ∈ N and some γij ≥ 0, we have yi + γij = xi , yj − γij = xj

and xk = yk for k 6= i, j. We then say that y is reached from x after a

bilateral transfer (of the amount γij) from player i to j. A transfer matrix

is a nonnegative |N | × |N | matrix Γ =
£
γij
¤
i,j∈N such that, if γij > 0 then

γj0i = 0 for all j
0 ∈ N . Thus, a transfer matrix induces a tri-partition of N in

payers, receivers, and unaffected players. For a finite set D (which could, for

example, be a player set or a set of bilateral transfers), a bijective function

σ : D → {1, ..., |D|} is an ordering (of D). If d, e ∈ D and σ(d) < σ(e), we

say that d is before e (according to σ).

Lemma 2 Let (N, v) be a convex game and x, y ∈ C(N, v). Then, there

is a transfer matrix Γ =
£
γij
¤
i,j∈N leading from x to y and an ordering σ

of the bilateral transfers γij in Γ such that after each bilateral transfer the

resulting allocation is in C(N, v). In particular, for any given ordering τ of

the receivers (payers) i, the ordering σ can be chosen such that, if τ(i) < τ(j)

then all transfers to (from) player i are made before any bilateral transfer to

(from) player j is made.

Proof: Let P = {i|xi > yi} and R = {i|xi < yi} denote the sets of payers
and receivers respectively.

First, we claim that for any player i in P , we can always find some player

j in R such that the transfer of some amount 0 < εij ≤ min{xi− yi, yj − xj}
from i to j leads to a new allocation which is also in C(N ,v). For this,

consider a player i ∈ P, and suppose to the contrary that there is no player

j in R for which there can be transferred some amount 0 < εij ≤ min{xi −
yi, yj − xj} from i to j (upholding the core constraints). This means that

14



for any j ∈ R, there must be a zero-excess coalition Sj at x (i.e., x(Sj) =

v(Sj)) for which i ∈ Sj and j /∈ Sj. By Shapley (1971), the set of zero-

excess coalitions in a convex game is a ring (i.e., closed under union and

intersection). In particular, ∩j∈RSj is a zero-excess coalition and note that

i ∈ ∩j∈RSj. Since i ∈ ∩j∈RSj and since the set ∩j∈RSj has empty intersection

with R, it contradicts that y is a core allocation (because if ∩j∈RSj is a zero-

excess coalition at x we would have y(∩j∈RS) < v(∩j∈RS)).
Second, we claim that for an arbitrary player j in R, we can always find

some player i in P such that the transfer of some amount 0 < εij ≤ min{xi−
yi, yj − xj} is possible (upholding the core constraints). For this, consider a
player j ∈ R, and suppose to the contrary that there is no player i in P for

which there can be transferred some amount 0 < εij ≤ min{xi − yi, yj − xj}
from i to j. This means that for any i ∈ P , there must be a zero-excess

coalition Si at x for which i ∈ Si and j /∈ Si. Since ∪i∈PSi is then also a

zero-excess coalition, P ⊆ ∪i∈PSi and j /∈ ∪i∈PSi it contradicts that y is a

core allocation (because if ∪i∈PSi is a zero-excess coalition at x we would

have y(∪i∈PSi) < v(∪i∈PSi)).

To complete the proof, we will show that we can obtain y from x by

a finite number of any such bilateral transfers. For this, it is sufficient to

show that for any x, y ∈ C(N, v) and sets P and R as described, any player

i ∈ P can transfer a total amount xi− yi to players in R in at most |R| steps
(upholding the core constraints in each step). The argument showing that

any player j ∈ R can obtain a total amount of yj − xj from players in P in

at most |P | steps (upholding the core constraint in each step) is similar and
thus can be omitted.

Consider therefore an arbitrary player i ∈ P, and let mi, 0 < mi ≤
xi − yi, denote the supremum of the total amounts of payoff that can be

transferred from player i to one or more players in R by an ordered (finite

or countable infinite) sequence of core compatible bilateral transfers, such

that each receiver j does not receive more than yj − xj and i does not pay
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more than xi− yi. Denote the final allocation obtained in the limit of such a

sequence of bilateral transfers with y0. First, we will observe that the same

final allocation y0 can be obtained by an ordered sequence of at most |R|
transfers. Second, we will observe that we cannot have mi < xi − yi. Note

that the combination of these two observations will complete the proof.

To verify the first observation, let mij, 0 ≤ mij ≤ mi, denote the supre-

mum of the total amount transferred from i to j. Since C(N, v) is a closed

set, the allocation y0 is in the core. In particular, we can transfer the entire

amountsmij from i to j in an arbitrary sequence of bilateral transfers involv-

ing at most |R| steps. The reason is that if the core constraint for a coalition
S, i ∈ S, were violated after some step, then the final allocation would also

violate this constraint for coalition S – a contradiction.

To verify the second observation, note that y0 ∈ C(N, v) implies, by

a previous argument, that there is an additional core-compatible bilateral

transfer from i to some j player in R for which y0j < yj – a contradiction. ¤

We are now ready to prove Proposition 3.

Proof of Proposition 3: Let (N, v) be a convex game, and let x = φFDR(N, v).

Let T ⊂ N, T 6= ∅, and let y = φFDR(NT , vT ). Note that x ∈ C(N, v) and

y ∈ C(NT , vT ), and thus x ∈ RN and y ∈ RNT
. We want to show that

x(T ) ≥ yT . For this, we shall demonstrate that if x(T ) < yT , then x cannot

be chosen by the Fujishige-Dutta-Ray allocation rule for the game (N, v) –

a contradiction.

From x define the following allocation ex in RNT
: exT = x(T ) and exi = xi

for i ∈ NT\{T}. We have ex(N) = v(N), and for any coalition S ⊆ NT we

have ex(S) = x(S) ≥ v(S) = vT (S). Thus, ex ∈ C(NT , vT ).

We define the following two sets of players in NT : P = {i ∈ NT\{T}|yi <
xi} and R = T ∪ {i ∈ NT\{T}|yi > xi}. Hence, in C(NT , vT ) we can obtain

y from ex by bilateral transfers from players in P to players in R. By Lemma
2, there exists a sequence of these bilateral transfers, such that after each
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step in this sequence, the allocation obtained is in C(NT , vT ) and player T

first begins to receive payoff from the players P when all other players in R

have obtained all their payoff (i.e., each player i ∈ R\T has received yi−xi).

Given this sequence of bilateral transfer, let P 0 denote the subset of players

in P which transfer a positive amount of payoff to player T . By Lemma 2,

these bilateral transfers from players in P 0 to player T can be made in an

arbitrary order (upholding the core constraints before and after each step).

Hence, each of these transfers from players in P to player T must increase

the value of the allocation measured by the objective function
P

i∈NT f on

RNT
.

Consider now the game (N, v) and C(N, v). Since (N, v) and (NT , vT )

are monotonic games, C(N, v) ⊆ RN
+ and C(NT , vT ) ⊆ RNT

+ . Thus, exT ≥
xi for all i ∈ T. In particular, since f is strictly concave, for any player

i in P 0 it follows that there is a (sufficiently small) amount of payoff pi

such that a bilateral transfer of pi from i to any player in T increases the

value of the allocation measured by the objective function
P

i∈N f on RN .

Since x = φFDR(N, v) any such transfer must violate a core constraint. In

particular, for an arbitrary player i ∈ P 0, for any player j in T there must

be a zero-excess coalition Sj ⊆ N at x such that i ∈ Sj and j /∈ Sj. Hence,

i ∈ ∩j∈TSj ⊆ N\T and ∩j∈TSj is a zero-excess coalition (since the set of

zero-excess coalitions is a ring), contradicting that y is in C(NT , vT ) since

vT (∩j∈TSj) = v(∩j∈TSj) = x(∩j∈TSj) > y(∩j∈TSj). ¤

Example 4 below shows that monotonicity cannot be dispensed with

in Proposition 3. It shows, more generally, that there does not exist an

anonymous allocation rule on the class of (not necessarily monotonic) con-

vex games.

Example 4 Suppose that φ is an anonymous allocation rule. Let (N, v) be

the convex game, where N = {1, 2, 3} and v is given by v (S) = −2 if
S 6= ∅, N , and v (N) = −1. By anonymity, φi (N, v) = −1

3
for all i ∈ N .
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Let T = {1, 2}, and consider the T -merger game (NT , vT ) (with NT =

{T, 3}, vT ({T}) = −2, vT ({3}) = −2 and vT (NT ) = −1). By anonymity,
φi
¡
NT , vT

¢
= −1

2
for all i ∈ NT . Thus, the T -merger is strictly profitable.

¤

Proposition 2(i) observed that there is no splitting-proof anonymous allo-

cation rule on the class of monotonic convex games. For the family of strictly

monotonic convex games, such allocation rules do, in fact, exist. The proof

of Proposition 4 is constructive. It specifies an anonymous splitting-proof

core allocation rule.

Proposition 4 On the class of strictly monotonic convex games, there exists
an anonymous splitting-proof core allocation rule.

Proof: We define a core allocation rule, called φ∗, and show that a merger

is always weakly profitable; that is, for any strictly monotonic convex games

(N, v) and any T ⊂ N, T 6= ∅, then φ∗T (N
T , vT ) ≥

P
i∈T φ

∗
i (N, v).

For any game (N, v), there is 1 ≤ k ≤ |N | and a partition P1, ..., Pk of

N , classifying players according to non-decreasing contribution to the grand

coalition, i.e., for any 1 ≤ m < n ≤ k, if i ∈ Pm and j ∈ Pn then v(N) −
v(N\{i}) < v(N)− v(N\{j}).
Let σ be an ordering of the players in N such that i is before j if there is

m < n where i ∈ Pm and j ∈ Pn. Given σ, let

p(σ) = (v({i}), v({i, j})− v({i}), v({i, j, h})− v({i, j}), ...)

be the vector (in RN) of marginal contributions associated with the ordering

σ. We define φ∗ to be the center of gravity of the |P1|!|P2|! · · · |Pk|! vectors
of marginal contributions that can be generated by all such orderings σ, i.e.,

φ∗(N, v) =
p(σ1) + p(σ2) + ...

|P1|!|P2|! · · · |Pk|!
,
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where σ1, σ2, ... are all possible orderings ranking players according to non-

decreasing contribution to the grand coalition as described above (where each

ordering appears precisely one time).

Consider the allocation rule φ∗. We claim that for any T ⊂ N , T 6= ∅, a
T -merger is always weakly profitable for the players in T .

Note that by strict monotonicity, v(N)− v(N\{i}) > 0 for each player i
in coalition T in the game (N, v). For 1 ≤ m ≤ k, let T ∩Pm = {i ∈ N |i ∈ T

and i ∈ Pm}. Let λT∩Pm ≥ 0 be the aggregate payoff in the game (N, v) to

the players in T ∩ Pm when these players occupy the last possible positions

taken over all orderings σ as described above (i.e., λT∩Pm is the sum of the

marginal contributions of the players in T ∩ Pm when these take the last

|T∩Pm| positions among the |Pm| positions available in an ordering σ ranking
players according to their contribution to the grand coalition). Note that the

sum of marginal contributions of the players in T ∩ Pm does not depend on

which specific positions they occupy, as long as they together occupy the last

|T∩Pm| positions among the |Pm| possible positions, so λT∩Pm is well-defined.
We then have X

i∈T
φ∗i (N, v) ≤

X
m=1,...,k

λT∩Pm.

Now, consider an arbitrary player i in N\T which belongs to a set Ph for

which Ph∩T 6= ∅ or for which there is some j ∈ T and g > h such that j ∈ Pg.

(Note that Ph and T are subsets of N). Then, in the partition bP1, ..., bPk0 of

NT , classifying players in the T -merger game (NT , vT ) according to their

contribution to the grand coalition, there is g0 > h0 such that i ∈ bPh0 and

T ∈ bPg0, since vT (NT )−vT (NT\{T}) > v(N)−v(N\{j}) for all j ∈ T . (Note

that no player in T is a null-player in (N, v), and vT (NT ) − vT (NT\{i}) =
v(N)− v(N\{j}) for all j ∈ N\T ). Since this holds for any player i in N\T ,
for the T -merger game (NT , vT ) we have

φ∗T (N
T , vT ) ≥

X
m=1,...,k

λT∩Pm ,
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because by convexity every marginal contribution for player T in (NT , vT ),

for which the players are ordered according to non-decreasing contribution to

the grand coalition, is greater than or equal to
P

m=1,...,k λT∩Pm. This proves

our claim. ¤

2.3 Final remarks and open questions

Two specific existence problems remains unanswered. We do not know

whether there exists a splitting-proof core allocation rule on the class of (not

necessarily strictly) monotonic convex games, and we do not know whether

there exists a merging-proof core allocation rule on the class of (not neces-

sarily monotonic) convex games. But, in both cases we know that any such

allocation rule would fail to be anonymous.

The merging-proofness property of the Fujishige-Dutta-Ray allocation

rule appeared to be closely connected to the defining property of this alloca-

tion rule of selecting the most equal allocation subject to the core constraints.

We leave it as an open question whether the Fujishige-Dutta-Ray allocation

rule is the only anonymous merging-proof core allocation rule on the class of

monotonic convex games.
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