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Abstract—In this paper we model an electricity market game in
which producer acts as profit taker and consumer is a follower
bounded to a cost function related to comfort of load shifting
from day time to night time. We consider a time-of-use (TOU)
tariff scheme where the night and day pricing differs. We first
analyze the interaction between a single retailer and consumers
and then extend the framework to a two retailer case.

Index Terms—Dynamic Game Theory, Games, Incentive, Com-
petition, Electricity Market, Time of Use Pricing

I. INTRODUCTION

A smart electricity meter identifies consumption with far
greater granularity compared to a conventional meter. More-
over with integrated communication capabilities, such infor-
mation can be transmitted back to the utility via a communi-
cation network for monitoring and billing purposes. Pricing in-
formation from the utility, e.g. due to incentives from retailers,
can be further communicated back to the consumers. Smart
metering, coupled with other information and communication
technologies enables new pricing schemes such as Real Time
Pricing (RTP), Critical Peak Pricing (CPP) and Time of Use
Pricing (TOU) which is the main concern of this study.

In this paper a game between retailers, consumers and
producers is discussed from a deregulation perspective. TOU
tariff is modeled together with incentive models for shifting
load from day time to night time constitutes a game. At first,
a monopoly retailer case is discussed and later two retailers
case is considered. Effect of deregulation of monopoly and
competition is discussed from a game-theoretic perspective,
which is contrary to neo-classical approach.

II. APPLICATION AND LITERATURE REVIEW

Today, a number of countries such as Canada, Australia,
Italy, Netherlands and Japan offer smart metering and time
varying tariff pricing. A number of incumbent utilities are
considering new necessary product and service options (i.e.
TOU contracts, RTP contracts, curtailable service menus, price
risk protection, economic development rates, fixed bill rate
options, two-part tariffs and cross-product bundling) [4].

Utilities have experimented with time differentiated pricing
models for some time now [10]. Hardware availability for real-
time electricity monitoring was considered as a challenge in

early implementations [10]. Despite this fact, both consumer
and utility experience with dynamic pricing was considered
to be positive early on. Today, a number of smart metering
solutions are available in market today enabling dynamic tariff
schemes to be implemented [3].

Equilibrium models based on mixed complementarity to
estimate ex ante TOU prices were proposed in [2]. In [6],
an analysis of pricing and investment decisions on multiple
power plants by a utility under TOU tariff was presented.
A multi-agent simulation approach was considered in [11] to
understand response of different customers to TOU pricing.

In [8] a simple supply chain in an hypothetical electricity
market is modeled and an incentive game is set up. Consumers,
Retailer, Network Operator and Producer are considered as the
stakeholders of the market. An incentive game is described
and the free rider problem arising from the fact that Network
Operator and Retailer share similar objectives is discussed.
The market model is similar to the model used in [8].
The market is examined from the perspective of competition
though.

III. PLAYER DESCRIPTIONS

In this section the basic stakeholders of the Electricity mar-
ket model are considered, which can be listed as consumers,
retailers and producers. Electricity is produced in various ways
and acknowledged as a commodity. We assume monopoly for
production. Retailers purchase electricity from a producer and
sell to the consumer.

We assume different retailers discriminate themselves based
on pricing of the electricity. Homogenous consumers who react
to load shifting incentives based on their comfort is assumed.

A. Producer

The market is cleared at all times, which is indeed the case
in electricity markets because of the fact that storage of energy
is not an interim process yet in electricity transmission and
distribution systems [5]. In order to meet the demand, the
producer may have to produce expensive electricity. Thus load
balancing is to the advantage of the generator. Inherently this
situation results in an incentive scheme for retailers to push
consumers to shift their load to low-demand times, e.g. from



day time to night time. The inherent incentive to the retailer,
which is due to the above described supply-demand relation,
will be modeled in retailer description.

In our model we assume a fully liberalized wholesale
market. The producer is interested in balancing the load. They
are concerned with the total shifted load for load balancing
purposes. Typically load is accumulated during day time in the
network. As more consumers shift their load from day-time to
night-time, the retailer can have cheaper electricity based on
the total load on the network. We model this phenomenon in
the form of incentives for retailers for the load shifted to night-
time. This phenomenon has practical correspondence too. In
many countries the free market offers a similar incentive for
retailers in case the total load is shifted to night time although
peak times may vary [9].

B. TOU Retailer

TOU retailer applies two kinds of tariffs during a day,
namely ”night” and ”day” tariff. Typically a very large load
during day is undesirable. During day, electricity consumption
approaches critical levels, which makes the price at night
cheaper.

Then the interest of TOU retailer is in maximizing its
revenue that is bounded to the consumers’ consumption pattern
and the whole sale price of electricity. It sets the night and
day prices, denoted by pN and pD respectively. The retailer
is interested in setting an optimal incentive payment, which
is in the form of discount, r, for night time load. In this
paper we assume the day tariff pD is fixed and the night tariff
differs according to the incentive, r applied by the retailer.
Thus r = pD − pN .

Example: The producer’s incentive to retailers for total
shifted load is modeled as f(L):

f(L) =

{
γ(1− e−

L
θ ) if L > 0

0 otherwise
(1)

where L is the total shifted load on the network and f(L) is
the incentive price per consumer payed to the retailer. Model
parameters γ and θ are positive constants. The total shifted
load, which can be expressed as QTu (assuming all the QT

number of consumers shift u amount of load), is in the interest
of the producer.

Numerical Example: Suppose we take γ = 30 and θ =
600. Then we have the incentive function in terms of the total
shifted load as depicted in Figure 1.

Note that in our model, we assume each consumer consumes
the same, fixed amount of electricity, although they may prefer
to shift some load from day time to night time given the
right amount of incentive to compensate the burden of shifting
the load (e.g. running washing machine at night instead of
day). Let xD and xN be the amounts of consumption of one
typical consumer during day-time and night-time respectively.
The function f(L) corresponds to the decrease in procurement
price of a unit of electricity as seen by the retailer. We assume
a fixed procurement price for retailer, i.e. for both day and
night times the price is assumed to be the same. If we call this
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Fig. 1. Incentive for total shifted load for retailer

price Pp, the price of total generated electricity for the retailer
is Pp(xP + xN )QT , where xP + xN is the total consumption
of one consumer, at status quo. In case some load is shifted by
the consumers, the total price becomes Ppnew(xP + xN )QT ,
where Ppnew < Pp due to efficient generation. In our model
f(L) represents the difference between these two total prices
per consumer, that is (Pp − Ppnew)(xP + xN ).

Since all the consumers consume the same amount, here we
model the incentive per “consumer” instead of per “unit load
consumed by one consumer”. For a more general model, it
may be more appropriate to use the latter though.

This incentive paid to the retailer can be considered as “the
discount of electricity whole sale price”. This function is quite
intuitive in this sense. By shifting the load the most expensive
electricity production is cut off firstly. Hence the discount on
electricity price is steeper for the firstly shifted load amounts.
This discount is reflected as an average discount to the retailer
though. This discount behavior can last up to a point where the
load is balanced. Thus this discount function has an horizontal
asymptote at γ.

Of course one can argue that if load is shifted beyond
“balance point”, which can be defined as the load shift which
brings the night-day balance to the system optimum then the
day time becomes the cheaper period. Hence the discount
function has to drop after the balance point. We assume this
would never be the case in our model. This makes sense since
the cost of shifting too much load to night would be costly
for consumers and even infeasible from a comfort perspective.
This is discussed further in the model for consumer behavior.

C. Consumer

We assume QT number of homogeneous consumers, who
behave the same in terms of reaction to incentives. They follow
the retailer’s demands. The cost of shifting load from day to
night, which is due to comfort and reluctance, is modeled as
a strictly increasing convex function, g(.).



Example: In our example the cost of shifting load can be
modeled as in [8]:

g(u) =

{
−β log α−u

α if u > 0

0 otherwise.
(2)

Here u is the day to night shift of the load of one consumer and
g(u) is the associated cost to one consumer. Model coefficients
α and β are positive constants.

The asymptote at α has a character that matches real
behavior. In practice the total shifted load can never be beyond
a certain amount of load. This is true because of the fact that
some activities such as watching European Champions League
final, using electric oven when you have guests over for dinner
or keeping a reading light on while learning game theory can
never be shifted to night time for a particular consumer. The
steep behavior in the g(.) function gives the corresponding
flavor of reality in our model.

As suggested in the previous subsection, this asymptote also
explains the logic behind the assumption, which says that the
night time usage never exceeds day time usage.

Suppose we have a g(.) as in equation (2) with α = 2 and
β = 4. This function is depicted in Figure 2.
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Fig. 2. Consumer cost for load shifting

Numerical Example: We assume the total consumption of
the consumer, assumed to be constant, is 19 kWh. Furthermore
we assume the day and night consumptions are 16 kWh and 3
kWh respectively. Day time to night time shift of this total load
matters in terms of marginal costs of generation, distribution
and so on. The shift is the main focus of this study.

IV. DECISION MODEL

The market works such that the producer produces and
serves electricity to the retailer, which in turn transfers it to
the consumers.

First let us consider the producer. In our market model,
the producer is the monopoly providing a commodity. It sells

electricity for one fixed price regardless of the time of the
day. However deviation from the standard price can occur
depending on the load balance. The change is modeled as
an incentive or discount function as explained in the previous
section.

We can also consider the producer as a ”wholesale market”.
By wholesale market, here we mean a mechanism, which
offers electricity for a price.

Now let us consider the consumer. The consumer’s interest
is to minimize her cost function, resulting in the following
optimization problem

min
u

{g(u) + pD(xD − u) + pN (xN + u)}. (3)

xD + xN is assumed to be constant. The shifted load u
can be adjusted by the consumer for her own interest. At all
cases we assume the consumer is perfectly rational and follows
the offered incentive. Although this assumption of rational
consumer seems unreasonable at first sight, one can consider
it as an approximation of the collective consumer behavior,
coupled with the comfort cost mentioned in equation (2).

Now if we write the relation between pD and pN as follows

pN = pD − r (4)

where we can consider r as a form of incentive to push
consumer to shift the load to night time, then we can cast
equation (4) into the following form for a given r:

min
u

{g(u)− ru+ pDxD + (pD − r)xN}. (5)

Then the optimal amount of shifted load, ū, satisfies the
following equation:

∂g(u)

∂u
|u=ū − r = 0 (6)

If we take g(.) as in equation (5), following our Example
the optimal shift for a given r is found as

ū =
−β + rα

r
. (7)

Now consider the TOU retailer. The producer imposes an
incentive for the load shifted by consumer, which is related
to load balancing purposes of the producer as previously
explained. For our Example, we assume an f(L) as in
equation (4).

Then a TOU retailer, assuming it is the sole retailer in
the market, is interested in maximizing the following profit
function

max
pN

{f(ū(r)QT )QT+pD(xD−ū(r))QT+pN (xN+ū(r))QT }
(8)

under the constraint pN = pD − r, with pD being constant.
The equation (8) can be cast in the following form

max
r

{f(ū(r)QT )QT−rū(r)QT+pDxDQT+(pD−r)xNQT )}
(9)

or equivalently,

max
r

{f(ū(r)QT )− r(ū(r) + xN ) + pD(xD + xN )}. (10)



Equation (10) results in the following optimality condition:

[
∂f(ūQT )

∂u
QT − r]

∂ū

∂r
− (ū+ xN ) = 0. (11)

At this point if we consider (6) and take derivative with
respect to r, we have

∂2g(ū)

∂u2

∂ū

∂r
= 1. (12)

Following equation (12), equation (11) can be written as

∂f(ūQT )

∂u
QT − r =

∂d2g(ū)

∂u2
(ū+ xN ). (13)

Proposition 1. For equation (13) only one solution may exist.

Proof: f(.) is a concave function, which implies
∂2f()
∂u2 < 0; hence ∂f(ūQT )

∂u is a decreasing function of ū.
−r is also a decreasing function of ū by definition. Thus the
left hand side of the equation (13) is strictly decreasing.

On the other hand since ∂g(.)
∂u is assumed as a convex

function, the right hand term ∂2g(ū)
∂u2 (ū + xN ) is strictly

increasing. Thus these two curves can intersect at most at one
single point.

For illustration purposes we follow our Example and take
f(.) as in equation (1) and g(.) as in equation (2).

Twice differentiating g(u) in equation (2) for u > 0 we
have

∂2g(ū)

∂u2
=

β

(α− ū)2
. (14)

Using equations (14), (13) we come up with the ū, r pair
satisfying following two equations

r =
β

α− ū
(15)

γQT

θ
e−

uQT
θ − r =

β

(α− ū)2
(ū+ xN ). (16)

Numerical Example:
Continuing our Numerical Example and assuming the con-
sumer nominally consume xN = 3 kWh at night, we find
r = 3.29 EUR and u = 0.78 kWh for a single retailer and
a population of QT = 1000 consumers using equations (15)
and (16).

If we compare this state to the no-incentive state, for which
all the time electricity is priced with pD, the consumer’s profit
can be calculated as

ConProfit =− {g(ū) + pD(xD − ū) + (pD − r)(xN + ū)}
+ {pD(xD + xN )} (17)

=r(xN + ū)− g(ū) (18)

which would be 10.46 EUR. The retailer’s profit per consumer
would be 9.43 EUR/consumer. These values are the optimal
values both retailer and consumer would get for the described
market. The producer also enjoys a load shift of u = 0.78
kWh in this case. These results are obtained in case there
is a retailer monopoly. However in the current liberalized
electricity market, the retailer no longer has monopoly. Thus

in the next section we will describe a game where two retailers
are interested in pushing their customers shift to profit from
generator’s incentive.

V. GAME

In the previous section, we discussed the tactical maneuvers
of consumers and a single retailer in the modeled electricity
market. The consumer is interested in minimizing electricity
cost by shifting load to night time. However while doing this,
she has to find a compromise between her comfort and gained
surplus. From the perspective of the retailer, the situation is
a bit more complicated as it has to consider the amount of
incentive coming from the producer while taking the reaction
from the consumer into account.

In this section, we assume two identical TOU retailers,
namely retA and retB, each of which has half of the market
share, i.e. QA = QT

2 and QB = QT

2 . These retailers share the
same electricity pool to procure electricity. Thus the incentive
that is expected from the producer is dependent on the rival
retailer’s actions due to the equation (1).

A. Producer and Consumer

In this case the producer behaves according to the shifted
load as previously described in equation (1). The producer is
interested in the total load shift and pays the incentive based
on that.

The situation for a single consumer also does not change.
The consumer follows her associated retailer’s incentive based
on the cost function (2). In this respect we can consider her
as a follower in a Stackelberg game [1].

B. Retailers

From the perspective of the retailers, the incentive expected
from the producer varies according to the opponent’s move.
Thus the retA, without loss of generality, confronts the follow-
ing optimization problem:

max
rI

{f(L)QA−rI ūIQI+pDxDQI+(pD−rI)xNQI} (19)

where the total shifted load L is

L =
∑

I∈A,B

(ūIQI). (20)

rI is the strategy of retI for this game, where I ∈ {A,B}.
The strategies rA and rB are two strategies chosen from the

interval [0, α) according to our Example. pD is fixed as in the
one retailer case. The game is a continuous non-cooperative
game.

In the next sub-section we will find a Nash Equilibrium
(NE) for this game.

C. Nash Equilibrium

In this section we assume the retailers have perfect informa-
tion about their cost and incentive functions and the customers’
cost and incentive functions, but do not know about their
opponent’s strategy. The consumers of both retailers behave in
the same manner as in the first part since from the consumer’s



perspective the situation has not changed at all. Then the
consumer group for each retailer reacts to a particular uI in
the following way by choosing

rI =
β

α− ūI
. (21)

With a similar reasoning, we can inherit the equations (12)
and (14) directly as

∂2g(ūI)

∂u2
I

∂ūI

∂rI
= 1, (22)

∂2g(ūI)

∂u2
I

=
β

(α− ūI)2
. (23)

However the situation for retailers is different than in
the monopoly retailer case. As the retailers share the same
producer, the rival retailer’s action affects the payoff. The
incentive per consumer, f(L), that the producer would pay
can be written analytically as follows using equation (20)

f(L) = γ(1− e−
(ūAQA+ūBQB)

θ ). (24)

retA wishes to choose rA that solves the equation (19),
which gives the following condition

∂f(L)

∂rA
− (ūA + xN )− rA

∂ūA

∂r
= 0, (25)

where
∂f(L)

∂rA
=

γQA

θ
(e−

ūAQA+ūBQB
θ )

∂ūA

∂r
. (26)

Then equation (25) becomes

(
γQA

θ
e−

ūAQA+ūBQB
θ − rA)

∂ūA

∂r
= ūA + xN . (27)

Using equation (27), (22) and (23) we get

γQA

θ
e−

ūAQA+ūBQB
θ − rA =

β

(α− ūA)2
(ūA + xN ). (28)

Similarly, for retB, we obtain

γQB

θ
e−

ūAQA+ūBQB
θ − rB =

β

(α− ūB)2
(ūB + xN ). (29)

Then the NE solution for both retailers must satisfy the
following four equations

rA =
β

α− ūA
(30)

γQA

θ
e−

ūAQA+ūBQB
θ − rA =

β

(α− ūA)2
(ūA + xN ) (31)

rB =
β

α− ūB
(32)

γQB

θ
e−

ūAQA+ūBQB
θ − rB =

β

(α− ūB)2
(ūB + xN ). (33)

Numerical Example:
If we continue with our Numerical Example with QA = QB =
QT

2 = 500 then we have ui = 0.57 and ri = 2.79 for both
consumers as the Nash Equilibrium of this game by solving

the corresponding equations in the previous section. Each
consumer’s profit becomes 8.62 EUR and profit per consumer
of each retailer becomes 8.38 EUR/consumer

This point is indeed the NE [7] as unilateral deviations from
the Equilibrium constitutes loss for the corresponding player.
To illustrate this, we can consider the total profit function of
RetA in terms of rA in case RetB plays NE, i.e. for rB = 2.79.

The total profit of RetA in terms of RetA:

ProfA ={pD(xD − ūA) + (pD − rA)(xN + ūA)) + f(L)}
− pD{(xD + xN )} (34)

=− rA(xN + uA) + f(L) (35)

which is shown in Figure 3.
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Fig. 3. RetailerA Total profit function if RetailerB plays NE

This result shows that when monopoly is divided into two
identical retailers, the global welfare gets worse since the
optimal incentive drops in this case. The decrease in the
retailer incentive causes less load shift, which is not beneficial
for generators.

One can also analyze collusion situation where both retailers
offer an incentive on agreement. In this case both retailers
apply r = 3.29 EUR. Then we obtain the load shift of u =
0.78 kWh. If the retailers defect and break up the agreement,
the incentive in equilibrium drops to r = 2.79 EUR for both
retailers. This analysis s the subject of further research.

VI. CONCLUSIONS AND REMARKS

Current ongoing deregulation of Electricity markets in many
Western countries face many challenges due to transition.
Many researchers argue the effect of the change from various
perspectives. In this paper the effect of competition in a hy-
pothetical electricity retail market for load balancing purposes
is examined from a game-theoretic perspective.

An incentive game between fundamental stakeholders of a
hypothetical supply chain in an electricity market is set up.
Firstly the decision model in which only one retailer operates



is formed. In this decision model, the optimal incentive
for load shifting for a monopolistic retailer is determined.
Secondly we divided the monopolistic retailer into two equal
retailers, each of which is contracted with half the number
of total consumers and examined the Nash equilibrium. The
game revealed that the Nash Equilibrium solution gives a
worse global welfare in the oligopolistic case compared to
the monopolistic case. All the stake holders leave worse off
in case the number of retailers are increased.

Classically competition in a market is encouraged from an
economic perspective. The pillars of this thought stem from
the idea that competition increases efficiency and allocates
productive resources to their most highly-valued uses. In
our model we did not consider labor efficiency or price
competition but ignoring these phenomenon we observe the
effect on an incentive scheme for generation efficiency. These
incentives are the true determinants of the global welfare since
load balancing is directly proportional to these incentives.

The aforementioned results provide new insights into effi-
ciency discussions in deregulation of electricity markets. The
current work can be extended to perfect competition case in
which large number of retailers share the same market. The
possible shifts of the consumer profile among the retailers can
be modeled which would imply taking the price efficiency into
account. The consumers are modeled uniformly which could
be extended to various types of consumers.
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