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Abstract

An agent makes the decision whether to acquire an object. Before making this decision, she

can discover, at some cost, some attributes of the object (or equivalently, some signals about the

object’s value). We characterize the solution to the following problem of sequential discovering

of attributes with the option of stopping at any point of time, and accepting or rejecting the

object.

We also partially solve the problem of simultaneous choice of attributes which are to be

discovered before making the decision regarding the object.

Preliminary and Incomplete

1 Introduction

Many economic decisions have the following form: An agent considers acquiring an object, which

is characterized by several attributes. The agent knows the distribution of each attribute in the

population, but not the particular realization of attributes for the object at hand. Before making

the decision whether to acquire the object, the agent can at some cost discover the realization of each

attribute; the cost of discovering can vary across different attributes. Examples abound, ranging

from everyday goods to marriage. For instance, a potential spouse is characterized by intelligence,

beauty, character, etc. Another example, from the labor markets, will be provided shortly.

Recent studies in decision theory provide additional support to the attribute approach. These

studies argue that decision makers often use sequentially several rationales to discriminate among

∗We would like to thank Hector Chade and Rakesh Vohra for helpful comments and suggestions.
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the available alternatives. (See, for instance, Manzini and Mariotti (2007), although the basic ideas

come yet from Tversky (1972).)

We study two versions of our decision problem: In one version of the model, the agent is allowed

to discover attributes sequentially. In this case, we provide a complete solution for attributes which

are distributed independently, and symmetrically around their means, and for the outside option,

i.e., the value of rejecting the object, is equal to the sum of these means. The solution resembles

Gittins’ (1989) indices and Weitzman’s (1979) Pandora rule. The attributes are attached indices,

independent of other attributes, and it is determined by the largest index among the remaining

attributes which attribute is to be discovered next.

In the other version of the model, the agent must decide up front which attributes to discover,

and then, knowing the realizations of these attributes, decide to accept or reject the object. Here,

we have only partial results. We provide a pseudo polynomial-time algorithms for solving some

special cases, and we show that there is no polynomial-time algorithm solving the problem even in

the binary case in which each attribute can take one of two possible values. The existence of pseudo

polynomial-time algorithm, or another simple and easy to interpret solution in more general cases

is an open problem.

Weitzman (1979) studied a problem similar to the sequential version of our multi-attribute model.

Suppose an agent opens sequentially boxes containing a reward of unknown value. It is costly to

open each box and discover the value of the reward contained in the box. And the agent can take

only one reward. Weitzman shows that the optimal strategy (Pandora rule) assigns to each box

a reservation price, independent of the other boxes, and prescribes to search next the remaining

box with the highest reservation price. The agent terminates search when the highest reward from

already sampled boxes exceeds the highest reservation price across remaining, closed boxes.

An important feature of the Weitzman’s setting is that the rewards hidden in the remaining boxes

are independent of the rewards discovered in the already sampled boxes. In our multi-attribute

model, there is an inter-dependence between the rewards of the already sampled boxes and the still

closed boxes. This makes the problem studied in the present paper more complicated.

The celebrated literature on multi-armed bandits is also closely related. This literature inves-

tigates situations in which an agent chooses which arm to pull in each single period. The reward

obtained in this way depends on the state of the pulled arm, which then transits to another state.

The state of all the other arms remain unaltered. Gittins and Jones (1974) (see Whittle (1980) and

Weber (1992) for simpler proofs) showed that one can attach an index to each arm, which depends
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only on the state of that arm, and that pulling an arm with the largest index at any point in time

is an optimal strategy.

Other related research includes Neeman (1995) and Chade and Smith (2005). Neeman is inter-

ested in an optimal strategy in the following stopping problem: An agent faces a sequence of i.i.d.

multi-attribute products, and can observe only one attribute of each product. At each stage the

agent has to decide whether to stop, taking the best product so far, or to continue by observing

an attribute of the next product. Chade and Smith study the following choice problem: An agent

selects a number of ranked stochastic options. The inclusion of each option to the selected set is

costly. Only one option may be exercised from those that succeed. A leading example is a student

applying to many colleges. They show that the celebrated greedy algorithm finds the optimal set.

1.1 Example

As an illustration, consider the following example. Suppose that an economics department considers

hiring a new assistant professor, say an applied econometrician. The candidate may have, or may

lack having, several types of skills, or attributes, which would be useful for the department We will

consider only three of them: teaching skills, and two attributes related to research: breath and

depth. Breath refers to wide interests and the ability of detecting relevant questions for analysis,

while depth means the formal rigor and correctness of the analysis, as well as the ability of learning

and applying of advanced econometric techniques.

Suppose that checking the candidate’s breath, or teaching skills is relatively easy. It takes just a

couple of professional conversations, or looking at teaching evaluations, syllabi and exam questions.

Say the costs of checking these two attributes are 4 and 6, respectively. Suppose further that the

dispersion of these attributes across the pool of all candidates is smaller than that for the third

attribute, the candidate’s depth. More precisely, normalize the expected value of each attribute to

zero, and let breath take one of two equally likely values: +108 or −108; similarly, let teaching skills

and the candidate’s depth take values +112 or −112 and +160 or −160, respectively. Finally, assume

that checking the candidate’s depth is substantially more expensive, because it requires going into

the technical details of the candidate’s papers, and the cost of doing so is 30. These numbers are

exhibited in Table 1.

Notice that if the department were restricted to looking at a single attribute, it would be in-

different between all three of them. The depth is more informative than the teaching skills or the

breath, but the higher cost of discovering it exactly offsets the benefit of doing so. Consequently,
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the expected value is 50 in each case. It is of no help to discover two attributes, since the decision

to accept or reject the object would disregard the signal that is less informative. Finally, checking

all three attributes costs 40, and the optimal strategy in this case is to accept the object when (and

only when) at least two out of three attributes take positive values, which yields the expected value

(including the cost) of 55. Thus, the department should discover all three attributes.

Note here that one of our general results, Proposition 2, implies that in cases in which the agent

restricted to looking at only one out of n attribute is indifferent between all of them, it is optimal

to discover attributes k, ..., n for some k = 1, ..., n, where the attributes are ordered from the most

to the least informative. That is, in order to find out the optimal strategy in the present example

we only need to compare the expected values of: discovering all attributes, learning about teaching

skills and breath, and learning only about breath.

Under the sequential discovering of attributes, an optimal strategy is to discover teaching skills

and breath first, which can be done by reviewing the candidate’s packet and a sequence of short

interviews; to accept the candidate if both these attributes take positive values, and to reject the

candidate if both attributes take negative values; and to learn about the depth otherwise, that is,

when one attribute is positive and the other one is negative, the department should study carefully

the candidate’s papers. This strategy is represented in Figure 1. The optimality of this strategy can

be verified directly, and also follows from one of our general results.

2 Model

The problem we are studying in this paper can be formulated in the following two equivalent ways:

2.1 Attribute version of the model

An agent must decide whether to accept or reject an object that has been offered to her. The object

has n attributes, represented by random variables x1, ..., xn, whose realizations are initially unknown

to the agent. These random variables are distributed according to some cumulative density function

(in abbreviation, cdf ). The distribution is known to the agent. The agent’s utility of having an

object with attributes x1, ..., xn is denoted by u(x1, ..., xn), and the agent’s reservation utility, i.e.,

the utility the agent obtains when she rejects the object, is denoted by V . Before making a decision,

the agent can discover the realization of each attribute x1, ..., xn of the object at the cost c1, ..., cn,

respectively.
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We consider two scenarios. Under one of them, the agent may discover the attributes sequentially.

That is, she decides which attribute (if any) she wants to learn about first, and contingent on the

realizations of the attributes she has already discovered, she decides which of the remaining attributes

(if any) to learn about next. After the discovering of each attribute, the agent may stop the process

of learning the realizations of attributes, in which case she may accept or reject the object. She may

also decide to continue the process, and discover the realization of one of the remaining attributes.

Every time she decides to discover an attribute, she pays the cost associated with this attribute.

Under the other scenario, the agent discovers the attributes simultaneously. That is, she decides

which set of attributes S ⊂ {1, ..., n} to discover. After learning the realizations xi, i ∈ S (at the

cost
∑

i∈S

ci), she makes the decision whether to accept or reject the object.

2.2 Signal version of the model

Suppose that instead of having multiple attributes, the value of the object is uncertain. The agent

has a prior over the value of the object offered to her, and before making the decision to accept

or reject it, she can consult with several sources of information. Each available source i = 1, ..., n

provides a signal xi at a cost ci. The agent knows the value-dependent distributions of signals, and

therefore for any set of signals xi, i ∈ S ⊂ {1, ..., n}, she can compute the expected value of the

object. Again, the agent may consult with the sources of information sequentially or simultaneously.

This model is formally equivalent with the model in which objects have attributes. However,

some assumptions, or payoff functions that are easy to interpret in one version of the model may

be less reasonable in the other version. In this paper, we will focus on the attribute version of the

problem.

2.3 Assumptions

Throughout the paper, we assume that x1, ..., xn are distributed independently with cdfs F1, ..., Fn,

respectively,

u(x1, ..., xn) = x1 + ...+ xn

and

V =

∫
x1dF1 = ... =

∫
xndFn = 0.

We write that y �s.o. z when random variable y that is second-order stochastically dominated by

random variable z. We will often assume that x1 �
s.o. ... �s.o. xn, i.e., that attributes are ordered
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by second-order stochastic dominance.

We will sometimes make even slightly stronger assumptions. A random variable y with the cdf

G is symmetric around the mean (or briefly, symmetric) if for every y ≥ 0,

G(−y) = 1−G(y).

Consider two symmetric random variables y and z with cdfs G and H, respectively. We will say

that y is first-order stochastically dominated by z on positive realizations (briefly, positive first-order

stochastically dominated) if

G(x) ≤ H(x)

for all x ≥ 0. We will then write that z �p.f.o. y.

Notice that by symmetry, if y is positive first-order stochastically dominated by z, then z is

negative first-order dominated by y, i.e.

H(x) ≤ G(x)

for all x ≤ 0. Intuitively, the idea is that variable y is obtained by moving the probability assigned

by variable z from the center to the tails of the distribution. Notice that y is positive first-order

stochastically dominated by z, then it is also second-ordered stochastically dominated.

2.4 Optimization problem

Under sequential discovering of attributes, we will seek simple characterizations of optimal strategies,

i.e. rules that tell the agent the realization of which attribute to discover (or to stop the process

of learning, and to accept or reject the object), contingent on any history of already discovered

realizations.

Under simultaneous discovering of attributes, the agent who checked the values of attributes

from set S will accept the object if
∑
i∈S xi > 0, and reject the object if

∑
i∈S xi < 0. The agent’s

tie-breaking rule when
∑
i∈S xi = 0 will be inessential for the analysis, because we will consider only

continuous distributions or discrete distributions that take values other than zero. Therefore, the

agent’s objective function is

U(S) =

∫
...

∫
max

(

0,
∑

i∈S

xi

)

d
∏

i∈S

Fi(xi)−
∑

i∈S

ci. (1)
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The question we are interested in is whether there exists a “nice” way of describing the solution

of the agent’s maximization problem:

max
S⊂{1,...,n}

U(S). (2)

More rigorous versions of this question includes: Can the optimization problem (1) be solved in

polynomial, or pseudo-polynomial time1? Or, can we find an optimal set S by computing U(S) only

at P (n) sets S, where P (n) is a polynomial function of the number of attributes n?

2.5 Comments, questions for future research

The results of this paper easily extend to the utilities of the form u(x1, ..., xn) = α1x1 + ... +

αnxn, where α1, ..., αn are some positive real numbers; in this case, the assumptions regarding the

distributions of x1, ..., xn must be replaced with analogous assumptions regarding the distributions

of x1/α1, ..., xn/αn. The research on related topics (e.g., Gittin’s indices, Weitzman’s Pandora

rule) suggests that the analysis does not generalize, and is intractable without the independence

assumption.

The assumption that the reservation utility V and the means of x1, ..., xn are all equal is more

problematic, because some of the results rely on the assumption that the distributions of x1, ..., xn

are symmetric around both their mean and the reservation utility. Extending the results to arbitrary

values of V and the means is an open question. Moreover, the value of V is endogenous in some

problems, related to one studied in the present paper, e.g., when the agent searches a sequence of

objects, and decides whether to accept the current object and stop searching, or to reject the current

object and search for another one.

Under sequential discovering (and a single object), one might also study the setting in which

the agent decides first about the ordering in which she will discover attributes. She is allowed

to interrupt this process, and accept or reject the object without learning the realizations of the

remaining attributes, but she is not allowed to change the ordering. That is, the agent is allowed

to discover attributes sequentially, but the ordering of attributes may not depend on the already

discovered realizations.

General, even independent distributions of attributes may have the property that the value of

signals about the object they provide depends on the exact subset of attributes which the agent is

going to discover. This makes the optimization problem in the simultaneous case complicated. The

assumptions that the attributes are ordered by stochastic dominance are attempts of capturing the

1Of course, we must restrict attention here to distributions with finite support.
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idea that some distributions provide more valuable signals than others, independently of the exact

subset of attributes which the agent is going to discover.

3 Sequential Discovering of Attributes

We will provide a complete solution of the problem in the case for two symmetrically distributed

attributes x1, x2. We believe this result generalizes to any number n of symmetrically distributed

attributes. The results generalize to possibly asymmetric distributions, but the solution is much less

elegant and harder to interpret.

Let

x∗i = −cj +

∫ +∞

−x∗
i

(x∗i + xj)dFj(xj) (3)

for i, j ∈ {1, 2} and i 	= j. This equation is interpreted as follows: Suppose that the agent discovers

attribute i first and learn that its realization is x∗i . Then, the agent is indifferent between accepting

the object without learning the realization of the other attribute, and discovering the realization of

the other attribute and making then the decision regarding the object.

Notice that equation (3) is equivalent to the equation

0 = −cj +

∫ +∞

x∗
i

(−x∗i + xj)dFj(xj). (4)

Indeed, (3) can be rewritten as

x∗iFj(−x
∗
i ) = −cj +

∫ +∞

−x∗
i

xjdFj(xj), (5)

and (4) can be rewritten as

x∗i [1− Fj(x
∗
i )] = −cj +

∫ +∞

x∗
i

xjdFj(xj). (6)

By the symmetry of xj , the left-hand sides of these two equations coincide. The right-hand sides

coincide as well; indeed, since the mean of xj is zero,

∫ +x∗
i

−x∗
i

xjdFj(xj) = 0

by the symmetry of xj .

Equation (4) says that when the agent learns that the realization of attribute i is −x∗i , she is

indifferent between rejecting the object without learning the realization of the other attribute, and

discovering the realization of the other attribute and making then the decision regarding the object.
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Notice that this equation has a unique solution x∗i > 0. Indeed, for x
∗
i = 0 the left-hand side of

(3) falls below the right-hand side when

0 < −cj +

∫ +∞

0

xjdFj(xj); (7)

this condition means that the agent prefers discovering attribute j to accepting (or rejecting) the

object without learning the realization of any attribute. For sufficiently large values of x∗i , left-

hand side of (3) exceeds the right-hand side. And the difference between the left-hand side and the

right-hand side is increasing in x∗i . Thus, condition (7) guarantees, that equation (3) has a unique

solutions.

Theorem 1. According to every optimal strategy, the agent should discover attribute i first

whenever x∗i < x
∗
j . After discovering the realization xi of attribute i, the agent should accept the

object whenever x∗i < xi; she should reject the object whenever xi < −x∗i ; otherwise, she should

discover the realization xj of attribute j, accept the object when xi + xj > 0 and reject the object

when xi + xj < 0.

The essence of Theorem 1, and the only part which requires a proof is the rule regarding which

attribute to discover first. Suppose that x∗2 < x
∗
1, i.e., i = 2 and j = 1. The payoffs contingent on

any possible pair of realizations of the two attributes are exhibited in Figure 2 (a). The top row of

each area is the payoff from discovering the realization of attribute 1 first, and and the bottom row

is the payoff from discovering the realization of attribute 2 first. In each case, the agent plays an

optimal continuation strategy contingent on the realization of the attribute she has learned first.

We obtain Figure 2 (b) from Figure 2 (a) by deleting the common components of corresponding

top and bottom payoffs. The areas with no payoff appear when this deletion makes the top and

bottom payoff equal to 0, i.e., the payoffs of the two rules are equal contingent on the realizations

of attributes from that area.

Finally, we obtain Figure 2 (c) from Figure 2 by means of (3) and (4). Notice that for any given

value of x2, the component −c1 appears in the top row for every single value of x1 or for no value

of x1. The component −c1 appears for every single value of x1 when x2 > x∗2 or when x2 < −x
∗
2.

In the former case, we can replace −c1 with x
∗
2 + x1 for x1 < −x

∗
2 and 0 for x1 > −x

∗
2. This follows

from (5), because

∫ +∞

−x∗
2

x1dF1(x1) =

∫ +x∗
2

−x∗
2

x1dF1(x1) +

∫ +∞

+x∗
2

x1dF1(x1) = −

∫ −x∗
2

−∞

x1dF1(x1)
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by the symmetry of x1. Similarly, we can replace −c1 with x
∗
2 − x1 for x1 > x

∗
2 and 0 for x1 < x

∗
2

in the latter case, by virtue of (6). And by analogous arguments, we dispense with −c2.

Notice that it is essential for this last step of the proof that x∗i solving (3) is equal to x
∗
i solving

(4). In order to conclude that the agent should discover attribute 2 before discovering attribute 1,

notice that the entry in each top row of Figure 2 (c) is lower than the entry in the corresponding

bottom row.

4 Simultaneous Discovering of Attributes

4.1 Some special cases

We begin with two propositions regarding some special cases in which we will be able to answer the

questions raised in Section 2.4.

Proposition 1. Suppose the attributes x1, ..., xn are ordered by the second-order stochastic

dominance, i.e. x1 �s.o. ... �s.o. xn. Suppose further that all costs are equal, i.e., c1 ≤ ... ≤ cn.

Then a set solving problem (2) has the form S = {1, ..., k}; that is, it consists of a k most dominated

distributions.

This proposition generalizes the observation that stochastically dominated distributions provide

more valuable signals about the object. Therefore, when the cost of discovering the realization

is nondecreasing across attributes, the decision maker should learn first the realizations of most

dominated attributes.

Proposition 2. Suppose the distributions x1, ..., xn are symmetric and ordered by positive

first-order dominance, i.e. x1 �
p.f.o. ... �p.f.o. xn. Suppose further that

ci − ci+1 ≥

∫ +∞

0

xidFi(xi)−

∫ +∞

0

xi+1dFi+1(xi+1). (8)

Then a set solving problem (2) has the form S = {k, ..., n}; that is, it consists of a k most dominant

distributions.

Condition (8) says that the differences in the benefits from discovering single attributes corre-

spond to the differences in the costs of discovering these attributes. That is, suppose the agent were

restricted to discovering the realization of exactly one attribute. Then, she would be better off dis-

covering a stochastically dominated attribute. Condition (8) says that discovering the stochastically

dominant attribute is, however, less expensive, and this lower cost would make the agent at least
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indifferent across all single attributes. Then, if the attributes are ordered by positive first-order

dominance, the decision maker should learn first the realizations of most dominant attributes.

Propositions 1 and 2 imply that under the assumptions of the two propositions, an optimal set

S, solving the maximization problem (2), can be found by computing U(S) at most n sets S. The

propositions follow from the following two lemmas, which seem interesting by themselves, and will

also be useful later, for other purposes.

Lemma 1. Let G0, G1 and G2 be the cdfs of random variables y0, y1 and y2. Suppose that all

three random variables y0, y1 and y2 have mean 0, and y2 second-order stochastically dominates y1.

That is, Ey0 = Ey1 = Ey2 = 0 and y1 �
s.o. y2. Then

∫ ∫

y0+y2≥0

(y0 + y2) dG0(y0)dG2(y2) ≤

∫ ∫

y0+y1≥0

(y0 + y1) dG0(y0)dG1(y1).

This lemma says that the benefit from learning the realizations of attributes will become higher

when the decision maker replaces a second-order stochastically dominant attribute with a stochas-

tically dominated attribute. The following lemma says, however, the marginal benefit from learning

the realization of any additional attribute together with a positive first-order stochastically dom-

inated attribute is lower than the marginal benefit of learning this additional attribute with a

stochastically dominant attribute.

Lemma 2. Let G0, G1 and G2 be the cdfs of random variables y0, y1 and y2. Suppose that all

three random variables y0, y1 and y2 have mean 0, i.e., Ey0 = Ey1 = Ey2 = 0, and are symmetric.

Suppose further that y1 is positive first-order stochastically dominated by y2, i.e., y1 �
p.f.o. y2.

Then ∫ ∫

y0+y1≥0

(y0 + y1) dG0(y0)dG1(y1)−

∫ +∞

0

y1dG1(y1) ≤

≤

∫ ∫

y0+y2≥0

(y0 + y2) dG0(y0)dG2(y2)−

∫ +∞

0

y2dG2(y2)

The following example illustrates Lemmas 1 and 2.

Example 1. Suppose ya with cdf Ga is distributed uniformly on the interval [−a, a], and yb

with cdf Gb is distributed uniformly on the interval [−b, b], where b < a. That is, ya is positively

first-order stochastically dominated, and so is second-order stochastically dominated by yb. Then

∫ +∞

0

yadGa(ya) =
a

4
;

∫ +∞

0

ybdGb(yb) =
b

4
,
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and ∫ ∫

ya+yb≥0

(ya + yb) dGa(ya)dGb(yb) =
a

4
+
b2

12a
. (9)

Suppose first that y0 = ya, and yi = ybi for some b2 < b1 < a. That is, y1 �
s.o. y2. Lemma 1 in

this case says that (9) increases in b.

Suppose now that y0 = yb, and yi = yai for some b < a2 < a1. That is, y1 �
p.f.o. y2. Lemma 2

in this case says that

∫ ∫

ya+yb≥0

(ya + yb) dGa(ya)dGb(yb)−

∫ +∞

0

yadGa(ya) =
b2

12a

decreases in a.

Proposition 1 follows immediately from Lemma 1. Proposition 2 is in turn a consequence of

Lemma 2. However, the proof is a little less immediate in this case, so we relegate it, together with

the proofs of Lemmas 1 and 2, to Appendix.

Finally, it is worth mentioning that Propositions 1 and 2 generalize to the sequential discovering

of attributes. That is, if all costs are nondecreasing, then it is an optimal strategy to discover

second-order stochastically dominated attributes earlier; and if the costs satisfy condition (8), then

positive first-order stochastically dominant attributes should be discovered first.

4.2 Greedy algorithm

We will now discuss the greedy algorithm, which is a standard method of solving optimization

problems in the discrete convex analysis. Suppose the objective function U : P (N) → R is defined

on the set P (N) of all subsets of some finite set N = {1, ..., n}. The greedy algorithm recursively

defines a subset S ⊂ N by the following procedure: Suppose we have already defined a subset S; we

begin with S = ∅. We compare the value of U at the set S and all sets S ∪ {k} for all k /∈ S. If

U(S) ≥ U(S ∪ {k})

for every k /∈ S, then the algorithm stops and returns the set S as the output. Otherwise, we take

an arbitrary

k ∈ argmax
k/∈S

U(S ∪ {k}),

replace S with S ∪ {k} and repeat the procedure.

Under some conditions, the output of the greedy algorithm is an optimum of the objective

function. Since the greedy algorithm refers to the values of U at only 1+ n(n+1)/2 subsets, it is a
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pseudo-polynomial algorithm. It turns out that the greedy algorithm solves the problems raised in

Section 2.4 in some special cases, but not in the general case.

Indeed, suppose that the distributions x1, ..., xn are symmetric and ordered by positive first-order

dominance, i.e. x1 �
p.f.o. ... �p.f.o. xn. To make the exposition more transparent, assume that the

values of of U on different sets S sets are different. Let S denote the output set of the greedy

algorithm, and let T denote the maximum of (1). Suppose that U(T ) > U(S). Consider the case

that S − T 	= ∅ and T − S 	= ∅. (The other cases T ⊂ S and S ⊂ T are analogous and require

no additional assumption.) Take j := min(S − T ) and any k ∈ T − S. It cannot happen that

xj �p.f.o. xk and cj < ck, because then replacing k with j in the set T would increase the value of

the objective function by Lemma 1; that is, we would have U(T ∪ {j} − {k}) > U(T ). It cannot

happen either that xk �
p.f.o. xj and ck < cj , because then, also by Lemma 1, the greedy algorithm

would include k instead of j to the set S. Therefore, there are only two other cases:

(a) xk �
p.f.o. xj and cj ≤ ck;

(b) xj �
p.f.o. xk and cj ≥ ck.

Assume that

Condition 1. For any S ⊂ {1, ..., n} and k, j /∈ S such that k < j,

xk +
∑

i∈S

xi �
p.f.o. xj +

∑

i∈S

xi.

Notice that the fact that x1 �
s.o. ... �s.o. xn implies that xj +

∑
i∈S xi �

s.o. xk +
∑
i∈S xi, but

Condition 1 does not hold for some distributions x1, ..., xn such that x1 �p.f.o. ... �p.f.o. xn. However,

the condition seems to be a mild requirement, which is satisfied by many distributions of interest,

including normal or uniform.

Under Condition 1, case (a) is impossible by Lemma 2. Indeed, the fact that the greedy algorithm

included j not k implies that

U(T ∩ S ∪ {j}) > U(T ∩ S ∪ {k}). (10)

Let y1 =
∑
i∈T∩S∪{k} xi, y2 =

∑
i∈T∩S∪{j} xi, and y0 =

∑
i∈T−[S∪{k}] xi. Condition 1 implies that

y1 �
p.f.o. y2. Thus, by Lemma 2,

U([T − {k}] ∪ {j})− U(T ∩ S ∪ {j}) ≥ U(T )− U(T ∩ S ∪ {k}). (11)

Properties (10) and (11) together yield that

U([T − {k}] ∪ {j}) > U(T ).
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Making case (b) impossible requires stronger assumptions regarding the distributions and costs.

Intuitively, the greedy algorithm may include a stochastically dominated distribution xj despite

the fact that its cost is higher that the cost of a stochastically dominant distribution xk, because

it increases by more the integral component of the objective function. However, when we include

other attributes, it may well happen that they are adding more to the integral component of the

objective function if we include xk instead of xj . This is actually what Lemma 2 suggests. And

this higher value added may offset the direct benefit from including xj instead of xk. Therefore, in

order to make the greedy algorithm deliver a solution to problem (2), we must impose assumptions

preventing this sort of scenario.

4.3 Polynomial-time algorithms

A naive algorithm solving problem (2) would be to compare the values of our objective function

across all sets S ⊂ {1, ..., n}, and select the highest, but this would take 2n time, and would be

impractical except small values of n. We would prefer to have an algorithm whose time of running

is polynomial in n.

The running time of an algorithm depends not only on the number of values U(S) we have

to compute, but also on the parameters of the model. These parameters include the number of

values each random variable x1, ..., xn is allowed to take, the size of these values, measured by the

number of digits in their 0− 1 expansions, and the size the costs c1, ..., cn. Suppose the size of the

parameters is commonly bounded by a number M . Then, an algorithm that is polynomial in M

and n is called pseudo polynomial. To be truly polynomial, an algorithm must have running time

that is independent in M and polynomial in n (strongly polynomial), or polynomial in logM and

n (weakly polynomial). Polynomial-time algorithms (strongly or weakly) are considered practical in

discrete convex analysis, while pseudo polynomial time algorithm are practical only for restricted

sets of parameters.

We refer the reader to McCormick (2008) or Fujishige (2005) for a more-detailed discussion. These

texts are to large extent devoted to the discussion of polynomial-time algorithms for minimization of

submodular functions, or equivalently, the maximization of supermodular functions. In turn, there

may not exist polynomial-time algorithms for maximization of submodular functions. Our objective

function is (in the general case) neither supermodular nor submodular.

Theorem 2. There is no polynomial-time algorithm solving problem (2) even in the case in which

each xi is a binary variable taking value ai with probability 1/2 and value −ai with probability 1/2.
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Let g(n) denote the expected value of

max

(

0,
n∑

i=1

xi

)

.

The proof shows that if there exists a polynomial-time algorithm for evaluating g(n) for every positive

natural numbers a1, ..., an, then P=NP. This result in turn follows from the fact that the following

problem of partitioning is NP-complete (see (Garey and Johnson 1979)):

Given positive natural numbers a1, ..., an, is there an S ⊂ {1, ..., n} such that

∑

i∈S

ai =
1

2

n∑

i=1

ai.

We relegate the details of the proof to Appendix.

Proposition 3. If there exists an algorithm solving problem (2) which requires computing U(S)

only for P (n) sets S, where P (n) is a polynomial function of n, then there also exists a pseudo

polynomial-time algorithm solving problem (2).

This proposition follows immediately from the following lemma:

Lemma 3. There exists a pseudo polynomial-time algorithm for computing g(n).

The proof of this lemma is relegated to Appendix.

Propositions 1-3 imply the existence of pseudo polynomial-time algorithm in some special cases.

The existence of a pseudo polynomial-time algorithm in the general case is an open question, even

when the attributes are ordered by positive first-order stochastic dominance. It is also an open

question whether there exists an approximate polynomial-time algorithm solving problem (2). Recall

that an approximation algorithm A with an approximation ratio r is a polynomial-time algorithm

with the property that for any set of parameters of the model,

U∗ − V

U∗
≤ r,

where U∗ := maxS⊂{1,...,n} U(S) and V denotes the returned value of algorithm A.

5 Appendix

5.1 Proofs of Lemmas 1 and 2, and Proposition 2

Proof of Lemma 1. Notice that
∫ ∫

y0+yi≥0

(y0 + yi) dG0(y0)dGi(yi) =
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=

∫ +∞

−∞

[∫ +∞

−yi

(y0 + yi) dG0(y0)

]
dGi(yi) =

=

∫ +∞

−∞

[(∫ +∞

−yi

y0dG0(y0)

)
+ yi(1−G0(−yi))

]
dGi(yi) =

=

∫ +∞

−∞

[(∫ +∞

−yi

y0dG0(y0)

)
− yiG0(−yi)

]
dGi(yi) =

=

∫ +∞

−∞

[∫ +∞

−∞

max(y0,−yi)dG0(y0)

]
dGi(yi),

where the third equality follows from the assumption that Eyi = 0.

So, it suffices to observe that

∫ +∞

−∞

max(y0,−yi)dG0(y0)

is a convex function of yi. This, however, follows from the fact that

α
′

max(y0,−y
′

i) + α
′′

max(y0,−y
′′

i ) ≥ max(y0,−α
′

y
′

i − α
′′

y
′′

i )

for every y0, y
′

i, y
′′

i , and α
′

, α
′′

≥ 0 such that α
′

+ α
′′

= 1.

In the proof of Lemma 2, we will need the following straightforward claim.

Claim 1. If a function h : R → R is increasing on (−∞, 0) and decreasing on (0,+∞), and y1

with cdf G1 is positive first-order stochastically dominated by y2 with cdf G2, where y1 and y2 are

symmetric, then ∫ +∞

−∞

h(y1)dG1(y1) ≤

∫ +∞

−∞

h(y2)dG2(y2).

The claim follows from the fact that a positively first-order stochastically dominated variable is

obtained from a stochastically dominant variable by moving the probability from the center to the

tails of the distribution, where the values of h are lower.

Proof of Lemma 2. Notice that

∫ ∫

y0+yi≥0

(y0 + yi) dG0(y0)dGi(yi)−

∫ +∞

0

yidGi(yi) =

=

∫ +∞

−∞

[∫ +∞

−yi

(y0 + yi) dG0(y0)−max(0, yi)

]
dGi(yi) =

=

∫ +∞

−∞

[(∫ +∞

−yi

y0dG0(y0)

)
+ yi(1−G0(−yi))−max(0, yi)

]
dGi(yi) =

=

∫ +∞

−∞

[(∫ +∞

−yi

y0dG0(y0)

)
+ f(yi)

]
dGi(yi),

16



where

f(yi) = yi(1−G0(−yi))−max(0, yi) =






−yiG0(−yi) if yi ≥ 0

yi(1−G0(−yi)) if yi ≤ 0

.

Since the distribution of y0 is symmetric around zero, f(yi) = −f(−yi); and hence, since the

distribution of yi is also symmetric around zero,

∫ +∞

−∞

f(yi)dGi(yi) = 0.

And ∫ +∞

−∞

(∫ +∞

−yi

y0dG0(y0)

)
dGi(yi) =

∫ 0

−∞

(∫ +∞

−yi

y0dG0(y0)

)
dGi(yi)+

+

∫ +∞

0

(∫ +yi

−yi

y0dG0(y0) +

∫ +∞

+yi

y0dG0(y0)

)
dGi(yi) =

=

∫ 0

−∞

(∫ +∞

−yi

y0dG0(y0)

)
dGi(yi) +

∫ +∞

0

(∫ +∞

+yi

y0dG0(y0)

)
dGi(yi) =

=

∫ +∞

−∞

h(yi)dGi(yi),

where

h(yi) =






∫+∞
+yi

y0dG0(y0) if yi ≥ 0

∫+∞
−yi

y0dG0(y0) if yi ≤ 0

.

The second equality follows from the symmetry of y0, since the symmetry implies that

∫ +yi

−yi

y0dG0(y0) = 0.

Notice that h(yi) = h(−yi), is increasing in yi for yi ≤ 0, and decreasing in yi for yi ≥ 0. Thus,

Lemma 2 now follows from Claim 1.

Proof of Proposition 2. Suppose that some set T solving problem (2) does not have the form

T = {k, ..., n}. Consider the set R obtained from T by replacing any i ∈ T with any i+j /∈ T , where

j > 0. By Lemma 2,

∫
...

∫

xi,i∈R

max

(

0,
∑

i∈R

xi

)

−

∫
...

∫

xi,i∈T

max

(

0,
∑

i∈T

xi

)

≥

≥

∫ +∞

0

xi+jdFi+j(xi+j)−

∫ +∞

0

xidFi(xi).
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Apply Lemma 2 to the variable

x0 =
∑

i∈T−{i}

xi =
∑

i∈R−{i+j}

xi.

By assumption,

∫ +∞

0

xi+jdFi+j(xi+j)−

∫ +∞

0

xidFi(xi) ≥ ci+j − ci.

Therefore, since the cost of the attributes in R and the cost of the attributes in T differ only by

ci+j − ci, it follows that the value of (1) for R is no lower than the value of (1) for T .

Replacing recursively the attributes in T by attributes that stochastically dominate them, we

obtain a set of the form S = {k, ..., n} for which the value of (1) is no lower than that for T .

5.2 Proof of Theorem 2

Suppose that a1, ..., an > 0. Notice that for S = {i : xi = −ai} and T = {i : xi = ai}, we have

n∑

i=1

xi =
∑

i∈T

ai −
∑

i∈S

ai =

(
n∑

i=1

a−
∑

i∈S

ai

)

−
∑

i∈S

ai+i = −2
∑

i∈S

ai +
n∑

i=1

ai,

and so
n∑

i=1

xi ≥ 0 ⇔
∑

i∈S

ai ≤
1

2

n∑

i=1

ai.

Thus,

g(n) =
1

2n

∑
{(

−2
∑

i∈S

ai +
n∑

i=1

ai

)

: S ⊂ {1, ..., n},
∑

i∈S

ai ≤
1

2

n∑

i=1

ai

}

=

=
1

2n−1

∑
{(

1

2

n∑

i=1

ai −
∑

i∈S

ai

)

: S ⊂ {1, ..., n},
∑

i∈S

ai ≤
1

2

n∑

i=1

ai

}

Define a = (a1, ..., an), a = (a1, ..., an, 1),

M =M(a) :=
1

2

n∑

i=1

ai,

and for any ∅ 	= S ⊂ {1, ..., n},

a(S) :=
∑

i∈S

ai.

Define in a similar manner: a(S) and M . Assume, without loss of generality, that M is an integer.

Further, define

h(a) :=
∑

S⊂{1,...,n}:a(S)≤M

(M − a(S)),

18



f(a) :=
∑

S⊂{1,...,n}:a(S)≤M

1,

h(a,−1) =
∑

S⊂{1,...,n}:a(S)≤M−1

(M − 1− a(S))

and

f(a,−1) :=
∑

S⊂{1,...,n}:a(S)≤M−1

1.

Since all numbers a(S) are integers,M−a(S) = 0 in the expression for h(a) unless a(S) ≤M−1.

This yields that

h(a) = h(a,−1) + f(a,−1). (12)

Further, observe that

−1 = f(a) + f(a,−1)− f(a). (13)

Indeed, there are three cases: (i) If n + 1 /∈ S ⊂ {1, ..., n + 1}, then a(S) = a(S) ≤ M + 1/2 ⇔

a(S) ≤M ; (ii) If n+1 ∈ S 	= {n+1}, then for S := S−{n+1}, we have a(S) = a(S)+1 ≤M+1/2

⇔ a(S) ≤M − 1; (iii) If S = {n+ 1}, then a(S) = 1. This yields that f(a) = f(a) + f(a,−1) + 1.

We also have

h(a) =
∑

S⊂{1,...,n+1}:a(S)≤M

(M − a(S)) =

=
∑

S⊂{1,...,n}:a(S)≤M

(M − a(S)) +
∑

{n+1}∈S⊂{1,...,n+1}:a(S)≤M , S �={n+1}

(M − a(S)) +
(
M − 1

)
=

=
∑

S⊂{1,...,n}:a(S)≤M

(M + 1/2− a(S)) +
∑

S⊂{1,...,n}:a(S)≤M−1

(M + 1/2− a(S)) + (M − 1/2) =

= h(a) +
1

2
f(a) + h(a,−1) +

1

2
f(a,−1) +M − 1/2.

This is equivalent to

2 (h(a)− h(a) + 1/2−M) = f(a) + f(a,−1) + 2h(a,−1). (14)

Finally, define u(a) as the number of sets S such that a(S) =M(a). Clearly,

u(a) =
∑

S⊂{1,...,n}:a(S)=M

1 =
∑

S⊂{1,...,n}:a(S)≤M

1−
∑

S⊂{1,...,n}:a(S)≤M−1

1 = f(a)− f(a,−1);

that is,

0 = −u(a) + f(a)− f(a,−1). (15)
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We also have

∑

S⊂{1,...,n}:a(S)≤M−1

1 +
∑

S⊂{1,...,n}:a(S)=M

1 +
∑

S⊂{1,...,n}:a(S)≥M+1

1 = 2n − 1.

Since a(S) ≤M − 1 ⇔ a(T ) ≥M + 1, where T := {1, ..., n} − S,

2
∑

S⊂{1,...,n}:a(S)≤M−1

1 +
∑

S⊂{1,...,n}:a(S)=M

1 = 2n − 1;

that is,

2n − 1 = 2f(a,−1) + u(a) (16)

If we were able to compute g(n) in polynomial time, then we would able to compute h(a).

However, then we would also be able to compute f(a), f(a), f(a,−1), h(a,−1), u(a) in polynomial

time, by solving the system of equation (12)-(16). Indeed, the matrix





0 0 1 1 0

1 −1 1 0 0

1 0 1 2 0

1 0 −1 0 −1

0 0 2 0 1






is nonsingular.

However, the condition u(a) = 0 is equivalent to the existence of an S that solves the problem

of partitioning.

5.3 Proof of Lemma 3

Suppose that variable xi, i = 1, ..., n, takes values ai from a finite set Si.

For t = 1, ..., n and a = (a1, ..., at), define

pt(a) :=
t∏

i=1

Pr {xi = ai} ,

and for any t = 1, ..., n, define

Vt(b) =
∑

{

pt(a) ·

(
t∑

i=1

ai

)

:
t∑

i=1

ai ≥ b

}

.

We will develop a recursive definition of Vt(b):

Vt(b) =
∑

{

pt(a) ·

(

at +
t−1∑

i=1

ai

)

:
t∑

i=1

ai ≥ b

}

=
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=
∑

{

pt(a) · at +Pr{xt = at}pt−1(a1, ..., at−1) ·

(
t−1∑

i=1

ai

)

:
t∑

i=1

ai ≥ b

}

=

=
∑

{

pt(a) · at :
t∑

i=1

ai ≥ b

}

+
∑

at

Pr{xt = at}Vt−1(b− at).

Let

Ut(b) :=
∑

{

pt(a) · at :
t∑

i=1

ai ≥ b

}

.

Then

Ut(b) =
∑

at

at Pr{xt = at}Vt−1(b− at) ·

(
∑

{

pt−1(a1, ..., at−1) :
t−1∑

i=1

ai ≥ b− at

})

.

Let

zt(b) :=
∑

{

pt(a) :
t∑

i=1

ai ≥ b

}

.

Then

zt(b) =
∑

at

Pr{xt = at} ·

(
∑

{

pt−1(a1, ..., at−1) :
t−1∑

i=1

ai ≥ b− at

})

=

=
∑

at

Pr{xt = at} · zt−1(b− at).

Therefore zt(b) can be computed recursively, and so Ut(b) and Vt(b) can be computed recursively.

Let

α :=
n∑

i=1

max
ai∈Si

|ai|

and

s := max
i=1,...,n

|Si| .

The recursive definition of Vt(b) provides an algorithm for computing g(n) = Vn(0) which is

polynomial-time in α, s, and n.
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Check. 
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Value of 
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Outcome 

+108 +112 +160 

Value of 
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Outcome 

-108 -112 -160 
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Figure 2 (a). 

 

 

 

 

 

 

 

 

 



 

 

                 -c1 

             x1+x2-c2 

 

 

         -c1                                 -c1                                                -c1                                    -c1         
     x1+x2-c2                              0                                                   0                                    -c2    
 

 

                              -c1 

                             x1+x2 

                                                                              x2
* 

                                                                                                                   

          0                                                                                                                                          0 

         -c2                                                                                                                             -c2 

 

 

                       -x1
*
                                                                                                 x1

* 

          0                                                                                                                                             0 

         -c2                                                                                                                            -c2 

                                                                                    
                                                                                                                                   

                                                                      -x2
* 

                                                                                                             x1+x2-c1 

                                                                                                                   0 

 

         -c1                                -c1                                             -c1                              x1+x2-c1         
         -c2                                 0                                                0                                   -c2    
 

 

                                                                                                 

                                                                                                                                x1+x2-c1 

                                                                                                                                    -c2 

 

Figure 2 (b). 

 

 

 

 

 

 

 



 

 

               x1+x2
* 

                x1+x1
* 

     x1+x2
*
                    x1+x2

*
                                            

 

     x1+x1
*
                        0                                    x1

* 

 

                                    x1+x2
*
 

                                       0 

  x1+x2
*
               x1+x2

*  
       

      x1+x2             x1+x2            

                                                                         

                                                                              x2
* 

                                                                                                                   

           

 

 

 

                       -x1
*
                        -x2

*
                                     x2

*
                         x1

* 

 

 

                                                                                                                                    

                                                                      -x2
* 

                                                                                                             x2+x2
* 

                                                                                                                 0 

                                                                                                   -x1+x2
*
                      x2+x2

*
 

                                                                                                        0                              0        
                                                                    

                                                                      -x1
*
                                                                        

 

 

                                                                                                    -x1+x2
*
                                x2+x2

*
                                                                        

                                                                                                        0                                      x1
*
+x2 

                                                                                                                                   x2+x2
*
  

                                                                                                                                   x1
*
+x2 

 

Figure 2 (c). 

 


	OlszewskiPaper.pdf
	OlszewskiFigures



