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Abstract

This paper provides a non-cooperative bargaining game model to
support the n-person asymmetric Nash bargaining solution for the bar-
gaining problem with incomplete information. We show that our bar-
gaining game possesses a stationary sequential equilibrium in which all
types of proposers offer the ex-post efficient, Bayesian incentive com-
patible, budget-balanced mechanism with the “full surplus extraction”
property. Furthermore, the conditionally expected payoff vector in the
stationary sequential equilibrium is characterized as the generalized

asymmetric Nash bargaining solution under incomplete information.
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1 Introduction

This paper present a noncooperative bargaining game model to support the
n-person asymmetric Nash bargaining solution. The key feature of our model
is to consider a bargaining game with incomplete information and with more
than three players. We consider a variation of a noncooperative bargain-
ing game model with random proposers by Hart and Mas-Colell (1996) and
Okada (1996). The bargaining procedure is described as follows. On player
is selected as a proposer according to some probability distribution among
n players in each bargaining round. The selected player proposes a feasible
allocation rule. If the proposal is accepted unanimously, all players plays a
communication game under the mechanism. If some player rejects the pro-
posal, the game ends with some exogenously given breakdown probability.
With the complementary probability, the game goes to the next round.

In the model, each player has a private information about his type and

> when he

he makes a proposal for an allocation rule, so called “mechanism),’
becomes a proposer in the bargaining game. Thus, a informed proposer de-
signs a mechanism. Our bargaining game includes the problem of mechanism
design by a informed principal in Myerson (1983).

The program of establishing a noncooperative foundation for the Nash
(1950) bargaining solution was initiated by Nash (1953). The Nash bargain-
ing solution is the payoff allocation which maximize the product of players’
gain over their disagreement payoffs. He provided a simultaneous-offers de-
mand game with two players who face the uncertainty about the feasibility of
the payoff allocations. In the limit as the uncertainty is vanished, the payoff
allocations in the Nash equilibrium of the game converges to the Nash bar-

gaining solution. Rubinstein (1982) provides the alternating-offer bargaining

game where the payoff allocations in every subgame perfect equilibrium con-



verges to the Nash bargaining solution in the limit as players become perfectly
patient. Binmore, Rubinstein and Wolinsky (1986) obtain the Nash bargain-
ing solution in the limit if the exogenous risk of breakdown is vanishing. The
asymmetric Nash bargaining solution is defined as a payoff allocation which
maximize the weighted product of players’ payoff gains. Binmore (1987)
obtains the asymmetric Nash bargaining solution as a stationary subgame
perfect equilibrium outcome by generalizing the recognition probability over
players to be selected as a proposer.

The extensions to the n-person Nash bargaining solution has been pursued
by Hart and Mas-Colell (1996) and Krishna and Serrano (1996). Krishna and
Serrano (1996) provides a noncooperative bargaining game model in which
players can exit after partial agreements and does not contain the chance
moves and stochastic elements to realize the Nash bargaining solution. On
the other hand, in Hart and Mas-Colell (1996), a proposer is randomly se-
lected with equal probability and the proposal is agreed to by unanimous
consent among the players. If the proposal is rejected by some players,
players face a risk of breakdown of the negotiations to continue the next
bargaining round. The bargaining game model in this paper is an extension
of Hart and Mas-Colell’s model to the general recognition probability distri-
bution. Recently, some noncooperative multilateral bargaining game models
are provided to support the n-person asymmetric Nash bargaining solution
by Miyakawa (2006), Okada (2007), Laruelle and Valenciano (2008), Kultti
and Vartiainen (2009), and Britz, Herings and Predtetchinski (2010). If there
is no private information, our bargaining game model exactly coincide with
the model in Miyakawa (2006).

The Nash bargaining solution for two-person bargaining problem with
incomplete information has been examined by Harsanyi and Selten (1972),

Myerson (1984) and de Clippel and Minelli (2004). They derive the general-



ized Nash bargaining solution in incomplete information bargaining problem
as a Bayesian Nash equilibrium outcome of the bargaining game satisfying
some axioms. We extend two-person bargaining problem with incomplete
information to n-person (more than 3-person) bargaining problem.

We obtain the following results. There exists a stationary sequential
equilibrium in which every player proposes the ex-post efficient, Bayesian in-
centive compatible, budget-balanced mechanism satisfying the “full surplus
extraction” property, as examined in Cremer and McLean (1988), McAfee
and Reny (1992), Kosenok and Severinov (2008) and Severionv (2008). In
order to guarantee the existence of such a desirable mechanism for each pro-
poser, we assume that a prior probability distribution over players’ types
satisfies Cremer-McLean condition and Identifiability condition. We are ne-
cessitated to assume that the game has more than three players and types of
players are correlated in order to satisfy both conditions. Furthermore, the
conditionally expected payoff vector in the stationary sequential equilibrium
is characterized as that payoffs which maximize the weighted product of play-
ers’ “ex-ante” expected payoff gains in the limit as a risk of the breakdown of
the negotiations is vanishing. A stationarity assumption plays an important
role in our bargaining game in contrast to the alternating-offer bargaining
game with two-sided private information in Chatterjee and Samuelson (1987)
and Cramton (1992).

This paper is organized as follows. Section 2 defines the Bayesian bargain-
ing problem and a solution concept of our noncooperative bargaining game
with incomplete information. Section 3 provides the generalized asymmet-
ric Nash bargaining solution. Section 4 characterizes a stationary sequential
equilibrium of the noncooperative bargaining game. Section 5 discusses re-
lationships between the conditionally expected payoff allocation in the sta-

tionary sequential equilibrium and the generalized Nash bargaining solution.



2 Model

2.1 Bayesian Bargaining Problem

We consider n-person bargaining problem with n(> 3) private informed play-
ers. We denote the set of players by N = {1,2,...,n} and a generic element
by i € N. As in Myerson (1983, 1984), a n-person bargaining problem I' is

characterized by the following form

F = (D, d*, {@z’}iENa {vi}iENap)a

where D is the set of public decisions or feasible outcomes and d* € D is the
disagreement point. For each player, ©; is the set of possible types and a
generic element of ©; is denoted by #; € ©,. We also denote the set of type
profile by © = HjeN ©; and a element by 6 € ©. We let ©_; denote the set
of types of the players other than ¢ and 6_; € ©_; = H#i ©;. We assume
that D and © are finite sets'.

Probability measure p is a common prior on © and p;(f;) denote the
marginal probability distribution of player i’s type 6;. The conditional prob-
ability of type profile _; for other than player ¢ by player ¢ with type 6;
is

o p(0)

Each v; is a payoff function from D x R x © to the real number R. We

assume that a payoff function for each player 7 is quasi-linear in decision d

Tt is well-known that no a priori finite bound on the number of types exists to model
a game with incomplete information (Mertens and Zamir, 1985). Moreover, it should be
assumed that the type space has the “beliefs-determine-preference” property, thus, there
is a one-to-one correspondence between a player’s preferences and a player’s beliefs about
other types. Heifetz and Neeman (2006) pointed out that information structures with this

property are “small” among all conceivable common prior information structure.



and transfer t;, i.e., v;(d,t;,0) = u;(d,0) + t;. A payoff for each player at
disagreements is normalized to zero. That is, it is assumed that v;(d*,0,0) =
u;(d*,0) = 0 for all # € ©. The choice rule is represented by the combination
of the decision rule x : © — D and the transfer rule £ : © — R". We denote
that ¢(-) = (t1(-), ..., ta()).

We impose the following conditions on the prior distribution p. The first
one is introduced by Cremer and McLean (1988), so it is called “Cremer-

McLean condition.”

Definition 1. A probability distribution p satisfies Cremer-McLean condi-
tion if there are no i € N, §; € ©; and \; : ©; \ {6;} — R, such that

pi0il6:) = > N(6))pi(6i]6}), forall 6_; € O_,;.
0;€0;\{0;}

This condition means that vectors p;(-|0;) can not be expressed as a convex
combination of all other vectors p;(-|0.), 0 # 0; with weights \;(6}).
We add identifiability condition by Kosenok and Severinov (2008).

Definition 2. A probability distribution p satisfies identifiability condition
if for all ¢ € A(O); g # p, there exists i € N and 6; € ©; such that ¢;(6;) > 0

and for any collection of nonnegative coefficients {Ag g, }, we have

gi(0510;) # > Noro.pi(6-416})

0l€0;

for at least one A_; € ©_,.

Note that Cremer-McLean condition rules out the case that types of play-
ers are independent and each player’s conditional beliefs are independent of
his type. Thus, prior p have some correlation among types. Cremer-McLean
condition holds generically when the number of types for each player is less

than or equal to the number of types of all other players. Moreover, as shown



in Kosenok and Severinov (2008), identifiability condition holds generically
when there are at least three players (n > 3) and in case that n = 3, at least
one of the players has at least three types. Cremer-McLean condition and
identifiability condition will be used to ensure the existence of an ex-post
efficient, acceptable (interim individually rational), ex-post budget balanced
Bayesian incentive compatible mechanism which is offered by a proposer in a
bargaining game. This result has been established by Kosenok and Severinov

(2008).

2.2 Non-cooperative Bargaining Game

We present a noncooperative bargaining game to realize the generalized Nash
bargaining solution as an equilibrium outcome. The key feature of our bar-
gaining game is that a player who is selected as a proposer offers a mecha-
nism to determine a public decision and transfers among players and, then,
all other players accept or reject the mechanism. Thus, negotiations about a
mechanism are conducted among players. A mechanism y is formally defined
as a combination of message spaces S, ..., 5, for all players and an outcome
function g : [],cy Si = D x R" mapping from the set of message profiles to
the set of public decisions and transfers. We write p = (Sy,...,S,,9) € M
and ¢(-) = (d(-),¢(-)), where 9t is the set of feasible mechanisms. Without
loss of generality, we can focus on deterministic outcome functions because
the payoff function is quasi-linear.

We consider the following noncooperative bargaining game G(T',w, p)

with incomplete information.

Stage 0: A nature selects a type profile # € ©. Each players learn his own
types #; privately.

Stage 1: At the beginning of each round ¢, one player is selected as a

7



proposer according to a probability distribution w € A(N). In other
words, player ¢ is randomly chosen as a proposer with probability w;

among N.
Stage 2: The selected proposer i offers a mechanism y* € 9.
Stage 3: All other players accept or reject the mechanism simultaneously.

Stage 4: If all players accept it, u’ is implemented, i.e., each player sends a
message s; € S; and then g(s) € D x R” is determined. If some player
reject it, the game continues to the next round with probability p and
the game returns to stage 1. Otherwise, the negotiation breaks down
with probability 1 — p and the game ends. In this case, all players get
their disagreement payoff of 0.

The bargaining game is regarded as an extension of the informed principal
game by Myerson (1983). If a proposer is predetermined and the game always
ends when the proposal is rejected, i.e., p = 0, our game is the same game in
Myerson (1983). If the game is in complete information, in other words, © is
singleton, our game is reduced to a bargaining game to realize the asymmetric
Nash bargaining solution as stationary equilibria when p — 1 in Miyakawa
(2006) and Okada (2007).

We adopt a sequential equilibrium by Kreps and Wilson (1982) with a
stationary property as a solution concept. When the game is in complete in-
formation, the solution solution concept corresponds to a stationary subgame
perfect equilibrium.

The bargaining game model can be represented by an infinite-length ex-
tensive form game. All nodes in an information set of player ¢ in the ex-
tensive form at round ¢ is determined by a sequence of past actions z =

(21,-..,2t-1,2), where z;, t = 1,2,..., denotes the sequence of actions in



round ¢. It describe a history about who became a proposer, what a mecha-
nism was offered by the proposer and which of an acceptance or a rejection
responders selected. A posterior belief 5;(0;) about other players’ types for
player ¢ with type 6; at round t is represented by a probability measure on
©_;. The beliefs for all players is denoted by {5;}ien = {{(5:(6:))o.co, }ien},
where (3;(6;) € A(O_;). As aresult, a state at round ¢ is given by (z, {3; }ien)-
We denote a strategy for player i a sequence o; = {o!}22,, where o! is the
tth round strategy. A strategy combination o = (074, ...,0,) determines the

payoffs for all players.

Definition 3. A pair of a strategy combination and a belief system (o, /3)
is called a stationary sequential equilibrium if o is a sequential equilibrium
and o! in each period t (t = 1,2,...) depends only on a belief system (3; and

history z; within round ¢.

In a stationary sequential equilibrium, every player’s action does not de-
pend on the whole history of actions. Moreover, any player’s behavior in
each bargaining round does not change even if agreements were rejected in

past periods.

3 Mechanism and Nash Bargaining Solution

3.1 Bayesian incentive compatible mechanism

Before characterizing our solution of the bargaining game, we present some
notions of mechanism and assumptions.

We assume that all mechanisms in the set of feasible mechanisms 93t have
a finite set of outcomes. It is sufficient to consider all feasible mechanisms in

the case that the type space is finite. Moreover, we assume that 901 is finite



in order to apply the concept of sequential equilibrium to our bargaining
appropriately?.

Let p' denotes a mechanism which is proposed by player i. We call a
mechanism in which the message space S; for each player is the type space
©; direct mechanism. Thus, a direct mechanism is represented by p' =
(O X -+ X O,,4(+)), where ¢ : ©; x --- x ©, — D x R*. Moreover,
g'(-) = (d'().1'(-))-

Under any direct mechanism g, we can define the conditionally expected
payoff for player j, given that his type is 6;, if all players report their types
truthfully as follows:

U('16;) = > [ui(d'(0-5,05),(0-5,0;)) + t5(6-5,0;)] p; (0 ;16;)
9_;€0_;
Moreover, the conditionally expected payoff for player j; when he reports
éj € O; and all other players report their types honestly is

Ui(1,0,10;) == [uj(di(e,j,éj), (0-5,05)) +t5(0-5,0;) | p;(05105)-

0_;€0_;

Let us introduce three notions about a direct mechanism.

Definition 4. A direct mechanism p' is Bayesian incentive compatible if for

all j € N and for all € ©;,
U;(1'105) > Us (', 0;10;).

Definition 5. A direct mechanism p(-) = (d'(-),t(:)) is budget balanced if
for V0 € ©,

> (0) =0.

JEN

2The concept of sequential equilibrium by Kreps and Wilson (1982) is defined for finite

games only.
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Definition 6. A direct mechanism pi(-) = (d*(+),t!(+)) is ex-post efficient if
for all 6 € O,

d'(0) € arg max u;(d, 0).
ieN

3.2 The generalized Nash bargaining solution

Let us introduce some Nash bargaining solutions. Focus on the set of all
incentive compatible mechanisms to define the conditionally expected payoff
for each player. Given any mechanism pu, we let U(u) denote the vector of
all conditionally expected payoffs U;(1u|6;) for each type of each player. That

U(p) = ((Ui(pli)o;co.)ien-

Harsanyi and Selten (1972) proposed the generalized Nash bargaining solu-
tion for games with incomplete information as a solution of

Ilfgg?(ieN (0ile_(lai Ui(MGi)piwi)) ,
where p;(0;) = >3y co_,P(0-i,0;). Nash (1950) presented the symmetric
Nash bargaining solution to a bargaining problem under complete informa-

tion as a solution of

tep L1 ()
where V' is the set of feasible payoff allocations. Harsanyi and Selten’s solu-
tion is one of natural generalizations of the Nash (1950) bargaining solution.
The symmetric Nash bargaining solution can be extended to the asym-

metric Nash bargaining solution.

Definition 7. A payoff allocation v* is called the asymmetric Nash bargain-

ing solution with weight w = (wy,...,w,) € A(N), w; > 0 if v* is a solution

11



of the maximization problem:

L\ Wi
max (v3)*, (1)
1EN

where V' is the set of feasible payoff allocations.

Recently, some noncooperative bargaining game models has been pre-
sented to realize the asymmetric Nash bargaining solution as a stationary
subgame perfect equilibrium (SSPE) outcome by Miyakawa (2006), Okada
(2007), Laruelle and Valenciano (2008), Kultti and Vartiainen (2009) and
Britz, Herings and Predtetchinski (2010).

We introduce another generalization of the asymmetric Nash bargaining
solution with weight w under incomplete information, which is different from

that by Harsanyi and Selten (1972).

Definition 8. The vector of all conditionally expected payoffs U(u) is the
asymmetric Nash bargaining solution with weight w to a n-person Bayesian
bargaining problem I if U(u) is a solution of the maximization problem:
(OU: (1110
‘316%351_[ (Z pi(0:)Ui(p| z)) ,
iEN \0;€0;

where 971 is the set of all feasible mechanisms.

4 Characterization of Equilibria

4.1 Inscrutability Principle

Let us start to characterize a stationary sequential equilibrium in our bar-
gaining game model.

First, there is no loss of generality in considering only direct incentive
compatible mechanisms on the equilibrium path of G(T',w, p) by the reve-

lation principle in Myerson (1979). For any sequential equilibrium of any

12



mechanism p¢ € 9 which is proposed by player 7, there exists an outcome-
equivalent direct Bayesian incentive compatible mechanism.

Second, there is no loss of generality in assuming that all types of the
proposer should offer the same mechanism on the equilibrium path, so that
the proposer’s actual choice of mechanism will convey no information about
the type of the proposer to other players. This assumption is called the
inscrutability principle by Myerson (1983).

As a result, we can assume that on the stationary sequential equilib-
rium path of G(T',w,p), all types of the proposer i offer a direct mecha-
nism (z°(+),#(-)) which is incentive compatible under the beliefs p;(0_;|6;),
j € N. Moreover, the equilibrium beliefs of any player at stage 2 of G(T', w, p)
are equal to p;(f_;|0;) by the inscrutability principle. We possess a sta-
tionary sequential equilibrium such that the belief system {f3;}icny on the

equilibrium path remains unchanged at the initial posterior belief system

{(pi(0-;10:))9,co, }ien by the Bayes’s rule.

4.2 Existence of Sequential Equilibrium

In this section, we will show that our noncooperative bargaining game G(T', w, p)
has a stationary sequential equilibrium in which each proposer offers a mech-
anism with the “full residual surplus extraction” property. Here, the “full
residual surplus extraction” property means that a proposer gets all residual
surplus after giving only their expected continuation payoffs of all respon-
ders if they reject the proposal. The proposal with this property plays a
key role in our noncooperative bargaining game. For example, consider the
ultimatum game. In this case, the continuation payoff of a responder is zero
because the game ends if he rejects the proposal. So that, the proposer of-

fers a proposal to extract all surplus of their cooperation and this proposal

13



consists of a subgame perfect equilibrium in the bargaining game. Even in
Rubinstein’s alternating-offer bargaining or other bargaining game models, a
player offers a proposal to assign responders only their continuation payoffs
that they can get if they reject it in equilibrium. If the residual surplus after
removing the responder’s continuation payoff is negative, the proposer will
select a delay of agreement.

We apply the same idea to the bargaining game with incomplete infor-
mation. In the context of mechanism design, the full surplus extraction
has been examined by Cremer and McLean (1988), McAfee and Reny (1992)
and Kosenok and Severinov (2008). They identified a necessary and sufficient
condition for the full surplus extraction by the uninformed principal through
Bayesian incentive compatible, individually rational, ex-post efficient mecha-
nisms without or with ex-post budget balancing. The necessary and sufficient
condition is a pair of Cremer-McLean condition and identifiability condition
for a prior probability distribution, which was defined in Definition 1 and
2. Severinov (2008) showed that there exists a ex-post efficient, interim in-
dividually rational, ex-post budget balanced, Bayesian incentive compatible
mechanism with full surplus extraction property if a prior distribution about
types satisfies Cremer-McLean and identifiability condition even in the in-
formed principal setting. The individually rationality constraint implies the
requirement for accepting the proposal by the principal. Then, designing a
mechanism with “full surplus extraction” property is the same to the “full
residual surplus extraction” proposal in the ultimatum bargaining game. We
will consider a sequential equilibrium of G(I',w, p) such that every player
offers the “full residual surplus extraction” proposal when she becomes a
proposer.

In order to explain a proposal with the “full residual surplus extraction”

property formally, let us firstly define the expected social surplus from an

14



ex-post efficient mechanism for type 6; of player i by

Wi(0;) = Z lglggizug (0-5,0:) | pi(0-i | 6:).
0_;€0_; JEN

In addition, we impose an assumption about the expected social surplus as

follows:

Assumption 1. It is assumed that the expected social surplus from an

ex-post efficient mechanism for every type of every player is positive; i.e.,

Wl(gl) >0 for all §; € ©, and i € N.

Applying Corollary 1 of Theorem 1 in Kosenok and Severinov (2008), we

have the following theorem:

Theorem 1. (Kosenok and Severinov (2008)) Under Identifiability and Cremer-
McLean condition, there exists an ex-post efficient, Bayesian incentive com-
patible, budget-balanced mechanism p™ = (d**(-),t"*(+)) in which the expected
payoff of type 0; of player i (proposer i) Vi(6;) is equal to

Vi(6:;) = Wi(0;) — p Z (0165 > v;(6)

0_;c0; JEN,j#i

and the expected payoff for each type of player j(# i), V;(0;), is pv;(6;),
where it is assumed that V;(0;) > 0 for all i € N and §; € ©;.

Proof. See Appendix. O

If pvj(0;), j # i, are regarded as continuation payoffs for type 8; of player
4, the mechanism p** corresponds to player i’s proposal with the “full residual
surplus extraction” property.

We examine whether the following strategies and beliefs can be supported
as a part of sequential equilibrium of G(T',w, p). First, all types of player i

offer the mechanism p%* in stage 2 if he is selected as a proposer. Then, all

15



types of all other players accept the proposal in stage 3. In stage 4, all players
report their types truthfully. As a result, the mechanism z%* is implemented.
Beliefs in stage 3 after p’* is offered and beliefs in stage 4 after all types
accept #* when they report their types are given by the initial conditionally
beliefs p;(+|6;) for any type 6; € ©; of agent i € N.

In conclusion, we succeed in supporting the above strategies as a station-

ary sequential equilibrium of G(T", w, p).

Theorem 2. Suppose that probability distribution p satisfies Identifiability
and Cremer-McLean conditions for all i € N and that V;(6;) in Theorem 1
is nonnegative for all i+ € N and all 0; € ©;. Then, there exists a stationary
sequential equilibrium of G(T', w, p) in which all types of playeri as a proposer

offers the ex-post efficient mechanism p*.

Proof. See Appendix. O

Applying the same argument in Severinov (2008), we obtain that the
mechanism z%* for each proposer i is a neutral optimum of Myerson (1983).

See Severinov (2008) for detailed proof.

5 Relationships to the Nash Bargaining So-
lution

We clarify a relationship between the Nash bargaining solution and the ex-
pected payoff vector which is realized in the stationary sequential equilibrium
which was provided in Theorem 2.

As seen in a proof of Theorem 2, every player i proposes the mecha-
nism z* and the proposal is accepted by all other players at the initial
round. On the other hand, if he is not a proposer, he accepts mecha-

nism p/* proposed by player j. Thus, type 6; of player i gets a payoff of

16



Wi0:) — >y .co_, Pi(0-il0:) D_jcn jzi Pvi(0;) if he is a proposer and obtains
pv;(6;) if he is a responder. Recall that player i is selected as a proposer with
probability w; and becomes a responder with probability 1 —w; in the nonco-
operative bargaining game. All types of player i offers the same mechanism
by Inscrutability principle, so that every responders’ belief is unchanged at
the initial belief p;(6_;|6;). In addition, even if some player rejects the pro-
posal, the beliefs of all players have no change because the acceptance and
rejection are indifferent for every responder in the sequential equilibrium. By
stationarity assumption, every player plays the same strategy in next round
because the belief system is unchanged and their strategies does not depend
on actions in the previous round. By the rule of the game, the expected equi-
librium payoffs of type 6; of player 7 should satisfy the following equation:
For all € N and for all §; € ©;,

vil0;) = wi |Wi0:) — > pi0-i16) D pvi(05)] + (1= wy)pvi(8).

9_;€0_; JEN,j#i

(2)
This consists of Y, |©;] equations. We denote a solution of (2) by v/ (6;)
for each p. If the above equation has a solution v/(¢;) > 0, i € N for
any p, we can show the existence of the corresponding stationary sequential
equilibrium to the expected payoffs v/(6;), i € N in the same way as in
Theorem 2. Note that the above simultaneous equation does not necessarily
have a nonnegative solution for any p. If the ex-post core is non-empty, in
other words, if the ex-post efficient payoff allocation is consistent, then, there
exists a nonnegative solution v?(6;) for any p. However, under Assumption
1, there exists some p such that the simultaneous equation has a nonnegative

solution for any p < p.
We are now ready to state the main theorem. This theorem holds in the

case that the ex-post core is nonempty.
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Theorem 3. Let ((v7(6;))g,co,)ien be the conditionally expected payoff vector
in a stationary sequential equilibrium of the bargaining game G (T, w, p) and
let ((vi(0:))a,)ien be a limit point of ((vP(6;))e,co,)ien as p — 1. Then,

((vF(6:))9, )ien is a solution of

max H <Z pi(0:)U;(14]0; ) (3

~—

0;€0;
subject to Z Zpl( i (1]6;) ZmaXZuz (d,0)p
iEN 0;€0 0co ieN
vi= Y pi(0)Us(uls), forie N.
0;€0;

Proof. Let us define

Us(™0:) == Wi(0:) = Y pi(0416) > pvf(0)).

0_;€0_; JEN.j#i

Rearranging (2), we have

. 1—
Ui(p16:) = — Lol (8;) + pu?(6;), for 6, € ©;, i € N. (4)

From lim,_,; v/(0;) = v}(0;) and (4), we have lim, ,; U;(u™*|0;) = v}(6;) for
all 9; € ©; and for all i € N. Moreover, lim,_,; pv!(6;) = v} (6;) trivially.
Because the mechanism p* satisfies the full residual surplus property, we

have

U(10:) + > pil0-il6;) > pvf(0;) = Wi(6;), for all §; € ©;.

0_;€0_; JEN.j#i

Multiplying the above equation by each p(;) and adding them up together,

we obtain
5 00000+ 5 S0y =5 T e v
0,€0; JEN,jF#i 0; 0cO JEN

(5)
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For other j € N, j # i, we also have

S pi@)U 05 + D Y pi0:)pvl(6:) =D [Iggfgi u;(d, 9)] p(6).

0;€0; 1ENi#£] 0; 0co 1EN
(6)

Let us define the n-dimensional vector by

Zpl 01 PU1 01 Z pz z HJZ*|9) ) Z pn(en)pvfb(en))a

0;€0; 0,€0,

where Y7, o pi(0;)Us(11"*|6;) is the ith element of the vector. Using the
vectors, we represent (5) and (6) by H(2(p)) = 0 and H(2’(p)) = 0. Note
that lim, ,1 2°(p) = lim,_; 27(p) and H(2'(p)) — H(2/(p)) = 0. By Taylor’s

theorem, we have for some ¢, 0 < t < 1,

H(z'(p)) — H( ()

_ Lo P;(Z i) (gl)gZ(tzi(p) +(1—1)2(p))

 2yee, Pil05)v5(0)) oH

wl 0z;

(t2'(p) + (1 = )27 (p)) = 0. (7)
As a result, we obtain from (5) and (7) that as p — 1,
> o,co, Pil0i)v; (6:) . Zeje@j p;(0;)v;(6;)
w; N w;

INZICH) max > u;(d, 0)p(6). 9)
iEN 0;€0 0cO 1EN

. forijeNi#£j, (8)

The vector v} (6;) satisfies the Kuhn-Tucker condition of the maximization

problem (3). O

Note that the equilibrium expected conditionally payoff for each type
v¥(#) as p — 1 does not correspond to the asymmetric Nash bargaining solu-
tion with weight w to a Bayesian bargaining problem I' in the precise sense.

This is caused from a constraint that all types of player i proposes the same
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mechanism by Inscrutability principle. This means that it is difficult to char-
acterize the equilibrium payoffs from the viewpoint of the Nash bargaining

solution. But, by (8), we have

2.0, Pil0i) (0:) _ 2;ce, Pi0)V; (0)

w; wj

, fori,j € N,i#j.

This says that the equilibrium payoff allocation is fair between players in the
sense that their w-weighted ex-ante expected payoffs should be equal.

As you know, the maximization problem (3) does not determine each
Ui(pul0:), but v; = 2y co pi(0:)Ui(11|0;). On the other hand, the stationary
sequential equilibrium considered in Theorem 2 uniquely determine the con-
ditionally expected payoffs of each player in the bargaining game G(I', w, p).
Because the equilibrium payoff vector v}(6;) satisfies the “full residual sur-
plus extraction” property and lim, ,; U;(1*|0;) = v}(6;), we obtain that as
p— 1, for all § € O,

;Ui(ﬂwz') = glég(;ui(da 0). (10)
This is equivalent to the ex-post efficiency of the payoff allocation. Further-
more, this condition also means that the equilibrium payoff allocation belongs
to the ex-post core because the sub-coalitions except the grand coalition are
not allowed in the bargaining problem®. Actually, the ex-post core for our
Bayesian bargaining problem might be empty. The above characterization
cannot be applied for the case that the ex-post core is empty. By (10), the
equilibrium payoffs of each type 6, of player 7 as p — 1 is given by a solution
((Ui(12l0:))o;co;)ien of, for 0;,0; € ©;,

max Y u;(d, (0_;,0;)) — Us(p|6;) = maXZu] (0_;,00)) — U (1|00,

JEN JEN

3The relationship between core and the equilibrium payoff allocation of the bargaining
game should be considered in a setting with coalition formations. The first attempt in the

game with incomplete information was made by Okada (2009).
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for each 6 € © and each 7 € N.

Complete information and p — 1: Consider a case in which the bargain-
ing problem is a complete information game, thus, the type set is singleton;

© = {0} and p — 1. In this case, (8) and (9) is rewritten by

(0
= ), for all i,jeN,i%ja

Z ] = max u;(d, ).

1EN zEN

This is the Kuhn-Tucker condition of the maximization problem (1). There-

fore, we get the following Corollary of Theorem 3.

Corollary 1. Fiz © = {0}. Let v*(p) = (v/(0;)) be a stationary subgame
perfect equilibrium payoff vector in the noncooperative bargaining game with
complete information G(w, p) and let lim, ,, v(p) = v* = (v{(6y),...,v5(6,)).

T n

Then, v* 1s the asymmetric Nash bargaining solution with weight w.

This case has been considered by Miyakawa (2006) and Okada (2007).

Incomplete information and p = 0: When p = 0, it is just one time
that a proposer make an offer in the bargaining game. The game ends with
probability one after the proposal irrespective of the acceptance or rejection
of it. In this case, players play the same game as the informed principal
game in Myerson (1983) after one player is selected as a proposer. Applying
the same procedure as in Theorem 2, we can show that this bargaining game
possesses a sequential equilibrium in which type 6; of player 7 as a proposer
offers an ex-post efficient, Bayesian incentive compatible, budget-balanced
mechanism such that the expected payoff of any type 6; of player ¢ is equal
to W;(0;), while that for every type of any other player is zero. This proposal

is accepted and, then, is implemented.
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The vector of conditionally expected payoffs in the sequential equilibrium

is given by

((vi(0:))o.co.)ien = ((WiWi(0;))o.co:)ien -

If weight w = (wy, ..., w,) is a variable on A(N), this is a natural extension
of the contract curve in de Clippel and Minelli (2004) to n-person bargaining
game with unverifiable information. In the case of w; = 1/n, i.e., each player
becomes a proposer and extracts the full social surplus, the above equilibrium

expected payoff allocation satisfies Random dictatorship aziom in Myerson

(1984).

Appendix

Proof of Theorem 1: Kosenok and Severinov (2008) have established the following

surprising result as a Corollary of their main Theorem (Theorem 1):

Corollary 1. (Kosenok and Severinov) Consider any ex-ante socially rational decision

rule d(0), and suppose that the prior p is identifiable and Cremer-McLean condition holds

for all agents. Then for any collection of nonnegative constants v;(0;) satisfying:
D> 0Bapi(0) =D > u(d(6),0)p(), (11)
JEN 0;€0; JEN 0€O

there exists an IC (Bayesian incentive compatible), BB (ex-post budget balanced), and IR
(individually rational) Bayesian mechanism (d(0),t(0)) such that the expected surplus of

type 0; of agent i in this mechanism is equal to v;(6;).

We check that the expected payoff vector ((V;(6;))s;co,)jen in our Theorem 1 satisfies
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the above condition (11). We have

> Vilba)pi(6:)

iEN ;€0

=Y (Wil —p D pi0-il8:) D vi0) | pi6i) + Y pvi(0;)pi(05)

0,€0; 0_;€0_; JEN,j#i JEN,j#i
=> [glag ui(d, (97i,9i))P(97i,9i)-| —p Y, Y p-0) D vi(h)
0;,€0;0_;€0_; [ € JEN J 0;,€0;0_;€0_; JEN,j#i

+p Y vi(0)p;(05)

JEN,j#i
= 3 fmax S s @)p(6) | = 3 3 us(@ (©), (0)p0),
€O JEN JEN €O
where d*(0) € argmaxaep )¢y u;(d,0). Thus, V;(8;) satisfies condition (11). Therefore,

it leads to Theorem 1.

Proof of Theorem 2: In our candidate equilibrium strategies, all types of each player
i offer the same mechanism to give each type of other player j € N, j # i, the expected
payoff pv;(#;) in the first round. Then, the belief for every type of the responder j is
unchanged. He is indifferent between the choices of acceptance and rejection because
he gets the same payoff of pv;(f;). Thus, the acceptance of the proposal in stage 3
is sequentially rational for every type of any player j € N, j # i. Furthermore, the
acceptance decision by the responders does not transmit any information about players’
types. Because the mechanism p** is Bayesian incentive compatible under the initial belief
p;j(0-;16;) for all j € N, it is sequentially rational for all players to report their true type in
stage 4. Therefore, it is sufficient to show that there exists a profile of sequentially rational
strategies and consistent beliefs off the equilibrium path such that no type of player i has
an incentive to deviate from p* to other some mechanism p’. We have to assume that
the vector (v;(6;)):cn satisfies the condition
Wi(0:) —p Z pi(0-i10:) Z v;(05) > pvi(6;)
0_,€0_; JEN,j#i

for the proposer i to offer an acceptable proposal. However, the equilibrium payoff vector
would satisfy the condition for sufficiently small p under Assumption 1. I will check it
later.

Fix an arbitrary mechanism p = (S1, ..., Sn;z#(+), t*(-)), where S; is a message space

for player ¢ and consider a finite game G’ () as follows. Given 0 = (6;);en € ©. Player i

23



has been already chosen as a proposer. In the first stage of G*(u), which is corresponding
to stage 2 of the original game G (T, w, p), the proposer 7 has two choices. We also call this
stage stage 2 even if it is the first stage. If she chooses the exit of the game and her type
is 0, she gets Wi(0:) — 325 . co_, Pi(0-il6i) > ;e n j2i Pvi(0;) immediately. Otherwise, she
offers the mechanism p. Let the payoff when she chooses the exit option be denoted by
U;(p*16;). In the next stage (stage 3), all other players accept or reject the proposal u. In
the last stage (stage 4), the mechanism y is implemented if all players accept it. If some
player rejects the proposal, each type 6; including player i get the payoff of pv;(6;).

Since the game G%(u) has only finite periods and the set of feasible mechanism 9 is
assumed to be finite, there exists a sequential equilibrium (7,7, 3) of G*(u), as shown in
Kreps and Wilson (1982). We let (7,7, 3) denote the probability 7;(u|6;) with which type
6; of the proposer i offers mechanism p, the probability 7;(¢|0;) with which type 6; accept
u, the probability measure v;(-|;, ) on S! representing the strategy for type 6; under
mechanism p, the belief BJB(-|0]~, w) of type 6; about 6_; at stage 3 after mu is offered by
player i and the belief ﬂjl(-|0j, u) about other types at implementation stage 4.

Let s = (s1,...,8n) be the profile of messages in implementation of the mechanism.
We will show that the probability with which the proposer i offers u is zero; ;(u|6;) = 0
in the sequential equilibrium. The expected payoff for type 6; of player i conditional on g
being offered in equilibrium (7,7, 8) is given by

Us(r,7, Bl 00) = > B (0:l0i, ) {Z(Ui(l‘“( )+t () TT i1, n } IT =i (ui65)-

0_,€0_; sES JEN JEN\i
From the sequential rationality of player i’s proposal, it follows that
Ti(pl6:) = , (12)
0 if Uz(Ta’Yaﬂ“”aez) < Ul(/“tz*|92)
We will show that U;(u*|8;) > Ui(r,,B|u,0;) for all §; € ©;. The proof is given by
contradiction. Suppose that there exists 6, € ©; such that Ui(0i|u,7','y,6) > Ui (u™)0;).
The sequential rationality implies Tl(u|él) = 1. By the Bayes rule, the beliefs of type 6;
at stage 3 is

7i(10:)p(0—,6;)
Yoreo, Ti(1l0)pi; (07,05)

BF6-416,1) = for j#ie N,

where p;;(6;,0;) is the marginal probability distribution of type 6; and 6.
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We have the following inequalities:

Y 3 (6)EegeeiTi(u|9§)pij(9i,9j)
pu; (0
JEN i 0,0, T Yce, Ti(ul0))pi(6])
i i (1|6:)p(6;)
+ Ui(p'™16:)
ei;ai | > orco, Til1lb)pi(0;)
Yoo, Ti(1l0:)pi; (8}, 6;)
> U; Ta%ﬂﬂya‘ < .
2 2 U I %5) > orco, Ti(1l0p)pi(0;)

jGN,j¢i0j€9]'
7; (p|0:)pi (0;)
+ UZ T,%ﬂ :uagz
2 Un Bl s @)
> oco, Ti(1l0:)pi; (6;,6;)
> Z Z Uj(ﬂ%ﬂm,ﬁj) Zg’eev Tz(u|9;)pl(9;)

jGN,j¢i0j€9]'
i 7; (p|0:)pi(0:)
+ Ui (1" |05 .
og(:ai (! )Zogeei 7i(p|0})pi(0})

The first inequality is satisfied because p'* is the ex-post efficient, budget-balanced mech-
anism with the full residual extraction property for each 6; € ©, and the second in-
equality is derived from (12). Then, there exists some 6; € ©;, j # i, such that
Ui(t,7, Blu,8;) < pv;j(8;). Moreover, it should be satisfied that 7;(u|6;) > 0. Player
Jj can get pv;(#;) > 0 by rejecting . This implies that it is not sequentially rational for
type 6; to accept p. Thus, 7;(p|f;) = 0. This is a contradiction. We can conclude that
Ui(7,7, Blp, 0;) < U;(ui*|6;) for all §; € O,.

Then, if U;(7,7,B|u,0:) > U;(u*16;), it implies that 7;(u|@;) = 0 for §; € ©; by
sequential rationality. Even if U;(7,7, 8|u,0;) = U;(u™*|6;), we can construct a new se-
quential equilibrium with 7;(u|6;) = 0. Therefore, we can say that 7;(u|f;) = 0 for any
6; € ©;. This means that every type 6; € ©; select the exit option and gets U;(u**|0;) with
probability one in game G'(x). We can construct the corresponding (7;(u|6;),7, 3) satis-
fying the consistency of beliefs and the sequential rationality as a sequential equilibrium
of G*(u) by considering completely mixed strategy about the proposal of ;.

Consider the following strategies and beliefs of game G(T',w,p). In every round of
the bargaining game, all types of player i offer the mechanism p* with probability one.
All types of player i accept p?*, j # i and report their types truthfully with probability
one. The beliefs in stage 3 and 4 of every round are given by p;(6_;|;) after p®™* is
proposed. If player i proposes mechanism p € 90 such that p # p™*, each player plays
(7,7, ) which was considered in G*(u) above. The finite game G(u) is “embedded” in
the original bargaining game G(T',w, p). It is not difficult to check this combination of
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strategies and beliefs is a sequential equilibrium of G(T', w, p). The key step of the proof is
that the expected payoff for type 8; of player j after rejecting any mechanism is regarded
as pv;j(6;) by the stationarity assumption of the sequential equilibrium.

By the stationarity and the rule of the game, the expected payoff vector in the above

equilibrium satisfies, for all i € N and for all §; € ©;,
vi(0i) = wi |Wi(0:) — > pi0=ilb) Y pvi(0;) | + (1 —w;)pvi(6:)- (13)
0_,€0_; JEN,j#i

If v;(6;), for all 6;, is nonnegative, it holds that

Wi0:)—p > pO-il6:) D wi6;) > pvi(6y).

0_;€0_; JEN,j#i
This implies that no player makes an unacceptable proposal. Thus, no delay of agreements

occurs in the stationary sequential equilibrium. Under Assumption 1, the equation (13)

possesses a nonnegative solution for sufficiently small p.
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