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Abstract

We study the problem of rationing a divisible good among a group of
people. Each person’s preferences are characterized by an ideal amount that
he would prefer to receive and a minimum quantity that he will accept: he
finds any amount less than this threshold to be just as good as receiving
nothing at all. Further, any amount beyond his ideal quantity has no effect
on his welfare.

The focus of our study is the existence of Pareto-efficient, strategy-proof,
and envy-free rules. While the definitions of these axioms carry through,
with minimal changes, from the more commonly studied problem without
disposability or acceptance thresholds, we show that these extensions are not
compatible in the model that we study. We also adapt the equal-division
lower bound axiom and propose another fairness axiom called awardee-envy-
freeness. While these are also incompatible with strategy-proofness, we
identify the set of all Pareto-efficient rules that satisfy these two properties.

We also characterize the class of conditional sequential priority rules as
the set of all Pareto-efficient, strategy-proof, and non-bossy rules.

JEL classification: C71, D63

Keywords: Pareto-efficiency, strategy-proofness, fairness, rationing, lower-bounds

∗Department of Economics, University of Rochester
†I would like to thank William Thomson for his guidance. I greatly appreciate the discussions

with Azar Abizada and Eun Jeong Heo which were helpful in formulating the concepts presented
in this paper. Finally, I would like to thank Stergios Athanassoglou, Lars Ehlers, Sidartha
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1 Introduction

Imagine a town facing an energy shortage. Suppose that it has access to a fixed
number of kilowatt hours of electricity. The town officials must divide these among
local business owners. However, these owners have threshold quantities of electric-
ity, below which business is not viable. That is, if the quantity allocated to a
particular business owner is lower than his threshold, it is as good as not allo-
cating anything to him at all. Also, an owner is made better off as the quantity
that he receives increase beyond his threshold, but only up to a certain level. We
propose a model for such situations and study rules for making rationing decisions.

In our model, there is a social endowment to divide among a group of people.
Each person in this group has preferences over the quantity that he receives. His
preferences are described by a minimum threshold that he finds acceptable and an
ideal amount that he would prefer to receive. He is indifferent between receiving
any quantity below his threshold and receiving nothing at all. He finds a quantity
above his threshold to be better and better as it increases, up to his ideal quantity.
He is indifferent between any two quantities that are at least as high as his ideal
amount. We do not require that the endowment be exhausted. That is, the
endowment is disposable. Though it is odd to consider disposing of a good that is
being rationed, it may be meaningful when some people have been satiated and the
amount left over is unacceptable to those who have not been satiated. Problems
where there is no shortage of the good are trivial rationing problems where every
person is satiated and the remainder is disposed of.

If we restrict ourselves to rules that never allocate to a person more than his
peak, an alternative interpretation of our model is that of a bankruptcy problem
(O’Neill 1982), where each claimant has some participation cost: if his award does
not exceed his cost, he prefers not to show up and collect it. His peak is interpreted
as his claim.

We propose a set of axioms and search for rules that satisfy them. As usual,
Pareto-efficiency says that no person can be made better off without this hurting
another person. Strategy-proofness, also defined in the usual way, says that no
person can beneficially misrepresent his preferences. Meaningful notions of fair-
ness, on the other hand, are more difficult to define. One familiar notion requires
that no person envies another. A weaker version is that people with identical pref-
erences be treated equally. We show that no Pareto-efficient rule satisfies even the
weaker of these. We propose an axiom that we call awardee-fairness, that says no
person who receives an amount that he finds acceptable envies any other person.
We describe the class of all Pareto-efficient rules that are awardee-fair. Another
notion of fairness, called the equal-division lower bound, is that each person finds
what he receives to be at least as desirable as an equal share of the social en-
dowment. This requirement is compatible with Pareto-efficiency and we provide
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a necessary and sufficient condition for it to be met.
Unfortunately, we also show that no rule that is Pareto-efficient and satisfies

either awardee-fairness or the equal-division lower bound is also strategy-proof.
We describe the class of all Pareto-efficient, strategy-proof, and non-bossy rules.
Each of these rules always selects a very inequitable division.

Finally, we consider strengthening the strategic requirement to group strategy-
proofness, which says that no group of people can misrepresent their preferences in
a way that makes at least one member better off without hurting another member.
We show that this axiom is incompatible even with very weak notions of efficiency.

In contrast with our model, for the closely related “classical” division problem
with single-peaked preferences, where the endowment is to be allocated in entirety,
a single rule satisfies all of the axioms that we have discussed (Sprumont 1991,
Ching 1992, Ching 1994). In fact, this rule uniquely satisfies several other sets of
axioms, some of which are discussed in the appendix (Thomson 1994, Sönmez 1994,
Thomson 1995, Schummer and Thomson 1997, Thomson 1997, Weymark 1999).
To re-iterate, the differences between this classical model and ours are free-disposal
of the social endowment and acceptance thresholds.

The incompatibility of Pareto-efficiency, strategy-proofness, and fairness in our
model is a consequence of the introduction of lower bounds on acceptable quanti-
ties. In a model without free-disposal, upper bounds on a person’s consumption
space are also meaningful. When both upper and lower bounds are introduced to
classical problems with single-peaked preferences, strategy-proofness is incompat-
ible with even a weak notion of efficiency (Bergantiños, Massó and Neme 2009).
This is different from our model, where strategy-proofness and efficiency are com-
patible.

A similarity between our model and one with both upper and lower bounds,
without free-disposal, is that for a particular definition of fairness, the class of
Pareto-efficient and fair rules (Bergantiños et al. 2009) resembles the class of
Pareto-efficient and awardee-fair rules that we characterize for our model.

The remainder of the paper is organized as follows. In Section 2 we formally
define the model and in Section 3 we define our axioms. In Section 4 we provide
several classes of rules and discuss the axioms that they satisfy. Section 5 is
divided into 5.1 where we discuss incompatibilities between some of the axioms
and 5.2 where we characterize two classes of rules from Section 4 by imposing two
different sets of axioms. We summarize our results in Section 6. In an appendix,
we propose a variable population generalization of the model and study some of
the implications of three common variable population axioms.
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2 The Model

Let N be a group of people and M∈ R+ be an amount of a perfectly divisible
good that is to be divided among them. Each person i ∈ N has preferences over
the quantity that is alloted to him. His preferences, Ri, defined over [0,∞), are
characterized by an acceptance threshold li and an ideal amount pi such that
li ≤ pi. He is indifferent between any two quantities x, y ∈ [0,∞) if, either

i) x, y ≤ li, or
ii) x, y ≥ pi.

In all other cases, whenever x > y, he prefers x to y. If i finds x to be at least as
desirable as y under preference relation Ri, we write x Ri y. If he finds x to be
more desirable than y, we write x Pi y. Finally, we write x Ii y if he is indifferent
between x and y.

x′′
0 M

Ri

li

piy x y′ x′ y′′

Figure 1: Preferences: Since x and y are both below the threshold level li, we
have x Ii y. Since x′′ and y′′ are both greater than pi, we have x′′ Ii y

′′. However,
since pi ≥ x′ > y′ ≥ li, we have x′ Pi y

′. In fact, we also have x′ Pi x and x′′ Pi x
′.

Notice that a preference relation is completely described by the lower and upper
bounds. Though Ri is represented linearly in Figure 1, the only relevant aspects
of Ri are li and pi.

Denote the set of all preference relations by R. A problem involving the
people in N consists of a profile of preferences, R ∈ RN , and an amount, M ∈
R+, to allocate (not necessarily entirely) among N in such a way that the sum of
what is awarded to each person does not exceed M . The presence of lower bounds
introduces a certain degree of discreteness to this model which involves only an
infinitely divisible good. A feasible allocation at M is any vector x ∈ RN

+ such

that
∑
i∈N

xi ≤M . Let F (M) denote the set of feasible allocations at M .1 2 Given

an allocation x ∈ F (M), for each i ∈ N , we denote i’s component of x by xi

1That is, F (M) is an (|N | − 1)-simplex.
2While our model is reminiscent of “bankruptcy problems with interval claims” (Branzei,

Dimitrov, Pickl and Tijs 2002, Dimitrov, Tijs and Branzei 2003, Alparslan Gök and Branzei
2008), the “interval” plays a very different role. In that model, it refers to the possible values
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and the list of others’ components by x−i. Similarly, let Ri denote i’s preference
relation and let R−i denote the list of others’ preferences. For each R′

i ∈ RN , let
(R′

i, R−i) be the profile where i has preference R′
i and the list of others’ preferences

is R−i.
A rule for problems involving people in N , ϕ : RN × R+ → RN

+ , associates
every problem involving the members of N with a feasible allocation.

3 Axioms

We list some desiderata of rules in this section. Let ϕ be a rule. The first require-
ment is the familiar concept of efficiency. It says that an allocation is chosen only
if there is no other allocation that makes at least one person better off without
making another worse off.
Pareto-efficiency: For each (R,M) ∈ RN×R+, there is no x ∈ F (M) such that,

i) for each i ∈ N, xi Ri ϕi(R,M), and
ii) there is i ∈ N such that xi Pi ϕi(R,M).

A weakening of the previous concept of efficiency is that an allocation is chosen
only if there is no other allocation that makes every person better off.

Weak Pareto-efficiency: For each (R,M) ∈ RN × R+, there is no x ∈ F (M)
such that, for each i ∈ N, xi Pi ϕi(R,M).

A further weakening says that if the social endowment equals the sum of the
ideal amounts, then each person should receive his ideal amount.3

Unanimity: For each (R,M) ∈ RN×R+, if
∑
i∈N

pi = M , then ϕ(R,M) = (pi)i∈N .

An implication of unanimity is that the range of a the rule includes all possible
divisions of the endowment.

The next property is that no person can benefit by misreporting his preferences.
In the following definition, and later in the proofs of our results, given i ∈ N and

a pair Ri, R
′
i ∈ R, we place a T above i’s true preference relation (

T

Ri), and an F

above his false preference relation (
F

R′
i).

that an uncertain claim could take. It is, thus, the set of possible upper bounds on what a person
may be awarded. In our model, the interval is the set of acceptable awards. Further, we consider
strategic issues in an environment where these intervals are private information.

3A slightly stronger, but normatively more appealing, version of unanimity says that if the
social endowment is at least as large as the sum of each person’s ideal amount, then each person
should receive his ideal amount.
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Strategy-proofness: For each (R,M) ∈ RN × R+, and each i ∈ N , there is no
R′
i ∈ R,

ϕi(
F

R′
i, R−i,M)

T

Pi ϕi(
T

Ri, R−i,M).

A more demanding property is that no group of people can misreport in a
way that makes at least one of its members better off without making any of its
members worse off.

Group strategy-proofness: For each (R,M) ∈ RN×R+ and each S ⊆ N , there
is no R′

S ∈ RS such that

for each i ∈ S, ϕi(
F

R′
S, R−S,M)

T

Ri ϕi(
T

RS, R−S,M), and

there is i ∈ S such that ϕi(
F

R′
S, R−S,M)

T

Pi ϕi(
T

RS, R−S,M).

We show that group strategy-proofness is “too” demanding in the sense that it
is not compatible with even the weakest of our notions of efficiency: unanimity
(Proposition 4).

Next we present two common notions of fairness. First, no person “envies”
another.

Envy-freeness: For each (R,M) ∈ RN×R+, and each pair i, j ∈ N,ϕi(R,M) Ri

ϕj(R,M).
The second notion says that two people with identical preferences are treated

equally.

Equal treatment of equals: For each (R,M) ∈ RN×R+, and each pair i, j ∈ N
such that Ri = Rj = R0, we have ϕi(R,M) I0 ϕj(R,M).

Note that envy-freeness implies equal-treatment of equals. As we will see
(Proposition 1), even equal treatment of equals is incompatible with Pareto-
efficiency. We propose another weakening of envy-freeness that applies only to
those people who receive an acceptable share. This axiom can be interpreted as
follows: following a division of the social endowment, only those who find their
share acceptable show up to receive it. We require that no person who shows up
envies an any other person (whether that person shows up or not).

Awardee-envy-freeness: For each (R,M) ∈ RN × R+, and each pair i, j ∈ N ,
if ϕi(R,M) > li, then ϕi(R,M) Ri ϕj(R,M).

Our final notion of fairness is that each person finds his component of the
allocation to be at least as desirable as an equal share of the social endowment.

Equal-division lower bound: For each (R,M) ∈ RN × R+, and each i ∈ N,
ϕi(R,M) Ri

M
|N | .
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Remark 1. Among Pareto-efficient rules, envy-freeness implies the equal-division
lower bound. If, at (R,M) ∈ RN × R+, for each pair i, j ∈ N , ϕi(R,M) Ri

ϕj(R,M), yet there is i ∈ N such that M
n
Pi ϕi(R,M), then for each j ∈ N ,

pi >
M
n
> ϕi(R,M) ≥ ϕj(R,M). This violates Pareto-efficiency of ϕ. ◦

If, at an allocation x ∈ F (M), there is i ∈ N who receives an amount that is
unacceptable to him, then he is indifferent between receiving xi and receiving 0.
We interpret x as an allocation at which i is given an amount that he finds unac-
ceptable, so he either does not take it, or takes it and disposes of it. The planner
may as well dispose of xi units of the good himself and not give i anything. Sim-
ilarly, when xi > pi, the planner may as well dispose of xi − pi units of the good
and give i only pi. This is expressed by the next axiom.

For each (R,M) ∈ RN × R+, define the welfare-equivalence class of x at
(R, M), WE(x, R, M), by setting

WE(x,R,M) ≡ {y ∈ F (M) : for each i ∈ N, xi Ii yi}.

If WE(x,R,M) = {x}, then x is welfare-unique at (R, M). For each
x ∈ F (M) such that x is not welfare-unique at (R,M), there is x′ ∈ WE(x,R,M)
such that for each i ∈ N :

If
If
If

xi ≤ li,
xi ∈ (li, pi),
xi ≥ pi,

then
then
then

x′i = 0.
x′i = xi.
x′i = pi.

Such x′ is the canonical representation of WE(x, R, M) at (R, M). If x is
either welfare-unique or the canonical representation of WE(x,R,M) at (R,M),
then x is canonical at (R, M).

Canonicity: For each (R,M) ∈ RN × R+, ϕ(R,M) is canonical at (R,M).

The next requirement is an application of the “replacement principle” (Moulin
1987, Thomson 1997)4. It says that if the preferences of one person change, then
all others are affected in the same direction: either each person finds his new share
at least as desirable, or each person finds his new share to be no more desirable.

Welfare-domination under preference replacement: For each (R,M) ∈
RN × R, each i ∈ N and each R′

i ∈ R, either:

i) For each j ∈ N \ {i}, ϕj(R′
i, R−i,M) Rj ϕj(Ri, R−i,M), or

ii) For each j ∈ N \ {i}, ϕj(Ri, R−i,M) Rj ϕj(R
′
i, R−i,M).

The following requirement is that if a person’s preferences change in a way that
his own component of the allocation remains the same, then others’ components

4For a survey, see (Thomson 1999).
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should also remain the same (Satterthwaite and Sonnenschein 1981). While it
appears rather technical, one reason this axiom is normatively appealing, in our
model, is that it is implied by the combination of the previous requirement, Pareto-
efficiency and canonicity.

Another interpretation of this axiom is that it rules out a particular kind of
profitable misreporting by pairs of people. That is, if we impose it alongside
canonicity, we rule out pairs of people where one member can help the other
by misreporting his preferences. Of course, the combination of this axiom with
canonicity is weaker than group strategy-proofness.

Non-bossiness: For each (R,M) ∈ RN × R+, each i ∈ N and each R′
i ∈ R, if

ϕi(R
′
i, R−i,M) = ϕi(Ri, R−i,M) then ϕ−i(R

′
i, R−i,M) = ϕ−i(Ri, R−i,M).

Another solidarity requirement is that an increase in the social endowment
should not make any person worse off (Chun and Thomson 1988, Roemer 1986,
Moulin and Thomson 1988).

Resource monotonicity: For each (R,M) ∈ RN ×R+, each M ′ ∈ R+ such that
M ′ > M , and each i ∈ N , ϕi(R,M

′) Ri ϕ(R,M).

Our final requirement says that small changes in the data of the problem should
cause only small changes in the chosen allocation.

Continuity: If {(Rν ,M ν)}∞ν=1 is a sequence inRN×R+,5 such that lim
ν→∞

(Rν ,Mν) =

(R,M) ∈ RN × R+, then lim
ν→∞

ϕ(Rν ,M ν) = ϕ(R,M).

In Section 5.1, we show that no Pareto-efficient rule is continuous. Intuitively,
this is because small changes in lower bounds can sometimes lead to very large
changes in the selection of a Pareto-efficient rule. We propose a weaker version of
continuity that is compatible with Pareto-efficiency by ignoring sequences where
there is a person whose lower bound is below both his peak and the social endow-
ment at each point along the sequence, but is at least as large as one of them in
the limit.

Weak continuity: If {(Rν ,Mν)}∞ν=1 is a sequence in RN × R+ such that,

i) lim
ν→∞

(Rν ,Mν) = (R,M) ∈ RN × R+, and

ii) for each i ∈ N if li ≥ min{pi,M}, then there is ν∗ ∈ N such that
for each ν ≥ ν∗, lνi ≥ min{pνi ,M ν},

then lim
ν→∞

ϕ(Rν ,M ν) = ϕ(R,M).

5Since each preference relation Ri ∈ R is uniquely identified by a pair (li, pi) ∈ R+, this is a
sequence in R2n+1.
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Remark 2. Allowing strict preferences over (0, li): If, for each i ∈ N , we interpret
li as the quantity that i requires to recoup a fixed cost, then we can construe any
xi ∈ (0, li) as forcing i to incur a loss. Thus, it makes sense to allow 0 Ii li, but
for each xi ∈ (0, li), li Pi xi. However, an implication of Pareto-efficiency is that
xi /∈ (0, li). Otherwise, we can find a Pareto-improvement by discarding xi units
of the endowment and giving i nothing. ◦

4 Rules

Each member of the first class of rules that we describe is associated with a “se-
quential priority list.” For each possible quantity of the social endowment, a
person with highest priority is chosen. He keeps for himself the lowest of his most
preferred portions of the endowment. Depending on the social endowment, the
identity of the first person, and the quantity that the he keeps for himself, a per-
son with the next highest priority is chosen. Of what is left after the first person is
given his ideal quantity, the second person keeps the lowest of his most preferred
quantities. Again, depending on the social endowment, the identities of the first
two people, and the quantities that they keep for themselves, a person with third
highest priority is chosen, and so on.6

Conditional sequential priority rules: Let I ≡ {ik}n−1
k=1 where

i1 : R+ → N,
i2 : R+ ×N × R+ → N,
...
in−1 : R+ ×Nn−2 × Rn−2

+ → N

be such that for each M ∈ R+ and each x ∈ Rn−2, we have a sequence {ik}n−1
k=1

such that

i1 = i1(M),
i2 = i2(M, i1, xi1) 6= i1,
...
in−1 = in−1(M, i1,...,n−2, xi1,...,n−2) /∈ {i1, . . . , in−2}.

The conditional sequential priority rule with respect to I, CSP I, is
defined as follows for each (R,M) ∈ RN × R+.

6Members of this family of rules are similar to those proposed by Pápai (2001) and also
studied by Ehlers and Klaus (2003) for the problem of assigning multiple objects.
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i1 ≡ i1(M),

CSP I
i1

(R,M) ≡
{

min{M,pi1} if min{M,pi1} > li1 , and
0 otherwise,

i2 ≡ i2(M, i1, CSP I
i1

(R,M))

CSP I
i2

(R,M) ≡
{

min{M − CSP I
i1

(R,M), pi2} if min{M − CSP I
i1

(R,M), pi2} > li2 , and
0 otherwise,

...
in−1 ≡ in1 (M, i1,...,n−2, CSP I

i1,...,n−2
(R,M))

CSP I
in−1

(R,M) ≡


min

{
M −

n−2∑
k=1

CSP I
ik

(R,M), pin−1

}
if min

{
M −

n−2∑
k=1

CSP I
ik

(R,M), pin−1

}
> lin−1 ,

and
0 otherwise,

in ∈ N \ {i1, . . . , in−1}

CSP I
in

(R,M) ≡


min

{
M −

n−1∑
k=1

CSP I
ik

(R,M), pin

}
if min

{
M −

n−1∑
k=1

CSP I
ik

(R,M), pin

}
> lin

and
0 otherwise.

Conditional sequential priority rules are Pareto-efficient, strategy-proof, welfare-
dominant under preference replacement, non-bossy, and canonical. However, they
are neither awardee-envy-free nor do they satisfy the equal-division lower bound.
They also violate group strategy-proofness. While none of these rules are contin-
uous, some members are weakly continuous.

We now describe a sub-class of conditional sequential priority rules for which
the priority order is fixed. These rules are “unconditional” sequential priority
rules.
Sequential priority rules: If I is such that for each k ∈ {1, . . . , n−1}, each pair

M,M ′ ∈ R+ and each pair x, x′ ∈ Rn−2
+ such that

n−2∑
i=1

xi ≤M and
n−2∑
i=1

x′i ≤ M ′,

i1(M) = i1 = i1(M ′),
i2(M, i1, xi1) = i2 = i2(M ′, i1, x

′
i1
),

...
in−1(M, i1,...,n−2, xi1,...,n−2) = in−1 = in−1(M ′, i1,...,n−2, x

′
i1,...,n−2

),

then CSP I is a sequential priority rule with respect to {ik}n−1
k=1 , SP I .

We show that this is exactly the class of weakly continuous conditional sequen-
tial priority rules.

At the end of the section, Example 1 demonstrates the application of a member
of this class and others that follow.
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The next rule is analogous to the well-known “uniform rule” for the classical
problems with single-peaked preferences (Bénassy 1982, Sprumont 1991).

Uniform rule: Define U by setting, for each (R,M) ∈ RN × R+, and i ∈ N ,

Ui(R,M) ≡
{
pi if

∑
i∈N pi ≤M, or

min{pi, λ} otherwise,

where λ is such that
∑

i∈N Ui(R,M) = M .
While the uniform rule is weakly Pareto-efficient, strategy-proof, envy-free,

welfare-dominant under preference replacement, non-bossy, and continuous, it is
not Pareto-efficient. In contrast with the classical setting, this rule is not group
strategy-proof.7

Members of the next class of rules are Pareto-efficienct. Unfortunately, they
are neither strategy-proof nor envy-free.

Efficient Uniform rules: Before we introduce this class of rules, define for each
(R,M) ∈ RN×R+, the efficient uniform coalitions at (R, M), EUC(R, M),
by setting,

EUC(R,M) ≡

{
N ′ ⊆ N :

there is
λ ∈ R+

such that

i) for each j /∈ N ′,M −
∑
i∈N ′

min{pi, λ} ≤ lj , and

ii) for each j ∈ N ′, λ ≥ lj .

}
.

Before we introduce the next concept, we show that for each problem, there is
always at least one efficient uniform coalition.

Claim 1. For each (R,M) ∈ RN × R+ such that there is i ∈ N for whom li <
min{pi,M}, EUC(R,M) 6= ∅.

Proof: Let {1, 2, . . . , k} ⊆ N be such that l1 ≤ l2 ≤ · · · ≤ lk < M . By assumption,
k > 1. Start with {1}. If M − min{p1,M} ≤ l2, then {1} ∈ EUC(R,M).
Otherwise, {1} /∈ EUC(R,M).

Suppose {1, 2, . . . , j} /∈ EUC(R,M). Then M −
∑j

i=1 min{pi,M} > lj+1.

If {1, . . . , k} /∈ EUC(R,M), then k 6= n and M −
∑k

i=1 pi > lk+1 ≥ M , which
is a contradiction. 4

A selector is a function, σ : RN × R+ → P(N),8 such that for each (R,M) ∈
RN × R+, σ(R,M) ∈ EUC(R,M).

7To see this, let R ∈ RN and i ∈ N be such that 0 < λ ≤ li and j ∈ N \ {i} such that

λ ∈ (lj , pj). Let R′
i ∈ R be such that p′i = 0. Then, 0 = ϕi(

F

R′
i, R−i)

T

Ii ϕi(
T

Ri, R−i) = λ and

since ϕj(
F

R′
i, R−i) > λ > lj , ϕj(

F

R′
i, R−i)

T

Pj ϕj(
T

Ri, R−i).
8Given a set A, let P(A) be the power set of A.
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The efficient uniform rule with selector σ, EUσ, is defined by setting,
for each (R,M) ∈ RN × R+ and each i ∈ N ,

EUσ
i (R,M) ≡

{
min{pi, λ} if i ∈ σ(R,M), or
0 otherwise.

where λ is such that:

i) for each j /∈ σ(R,M),M −
∑

i∈σ(R,M)

min{pi, λ} ≤ lj,

ii) for each j ∈ σ(R,M), λ ≥ lj, and

iii) if
∑

i∈σ(R,M)

min{pi, λ} < M then λ ≥ max
i∈σ(R,M)

{pi}.

Efficient uniform rules are Pareto-efficient, awardee-envy-free, and non-bossy.
They are not, however, strategy-proof, welfare-dominant under preference replace-
ment, or envy-free. In fact, as we will show, no Pareto-efficient rule is envy-free
(as a consequence of Proposition 1). Some members of this class are weakly con-
tinuous.

P WP Unan ETE Bed
Aw
E-F St-P

Grp
-StP

PR
WD

Non-
Boss

Weak
Cont

Res
Mon

Canon

Cond
Seq
Pri

+ + + − − − + − − + +/− − +

Seq
Pri

+ + + − − − + − − + + − +

Unif − + + + + + + − + + + + −
Eff
Unif

+ + + − +/− + − − − +/− +/− − +

Table 1: Rules and axioms: A + indicates that the rule(s) corresponding to
the row satisfies the axiom corresponding to the column. A − indicates that it
does not. We use +/− if some members of the family satisfy the axiom while
others do not.

Example 1. Application of U,EUσ, and SP I .

As shown in Figure 4, let N = {1, 2, 3} and (R,M) ∈ RN × R+ be such that
M = 10, l1 = l2 = 0, l3 = 5, p1 = 2, p2 = 10, and p3 = 7. Then:

1. U(R,M) = (2, 4, 4), showing that U is not Pareto-efficient.
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u2 = u3

p3

x1x3

u1

x1

p1

R1

R2

Figure 2: Each person’s preference relation is denoted by the segment over which
it is strictly increasing. The allocations shown are: u ≡ U(R,M), x ≡ EUσ(R,M),
and p ≡ SP I(R,M).

2. EUC(R,M) = {{1, 2}, {1, 3}, {2}}.

3. If σ(R,M) = {1, 2}, then EUσ(R,M) = (2, 8, 0).

4. If I ≡ {i1 = 3, i2 = 1}, then SP I(R,M) = (2, 1, 7). 3

5 Results

We begin, in 5.1, by showing the incompatibility of some of the axioms presented
in Section 3. In 5.2 we provide two characterizations.

5.1 Incompatibilities

The first result is that Pareto-efficiency is incompatible with equal treatment of
equals and therefore with envy-freeness.

Proposition 1. No rule is Pareto-efficient and satisfies equal treatment of equals.

Proof: Let ϕ be Pareto-efficient. Let (R,M) ∈ RN × R+ be such that for each
i ∈ N , li = M

n
and pi = M . By Pareto-efficiency, there is i ∈ N such that

ϕi(R,M) > li = M
n

. This means that there is j ∈ N \{i} such that ϕj(R,M) < M
n

.
Thus, ϕ violates equal treatment of equals. 2

13



Proposition 2. No rule is Pareto-efficient and continuous.9

Proof: Suppose ϕ is Pareto-efficient. Let R ∈ RN be such that for each i ∈
N, pi = M and 0 < li < M . By Pareto-efficiency, there is i ∈ N such that
ϕi(R,M) > li. Define ri : [0, 1] → R by setting, for each t ∈ [0, 1],

ri(t) = Rt
i ∈ R associated with pti = M and lti = li + t(M − li).

Then, ri(0) = Ri and ri(1) is associated with l1i = M .
Define γ : [0, 1] → [0,M ] by setting, for each t ∈ [0, 1], γ(t) ≡ ϕi(ri(t), R−i,M).

By definition of γ, γ(0) > li > 0, but by Pareto-efficiency, ri(1) is associated
with lti = M , and there is j ∈ N such that lj < M and pj = M , γ(1) =
ϕi(ri(1), R−i,M) = 0. Further, by Pareto-efficiency and since there is j ∈ N such
that lj < M and pj = M , there is no t ∈ [0, 1] such that f(t) ∈ (0, li + t(M − li)].
So γ, and thus ϕ, are discontinuous. 2

Proposition 3. No rule is Pareto-efficient, strategy-proof, and awardee-envy-
free.10

Proof: We show this when |N | = 2, but the argument easily generalizes to the
remaining cases.

Let ϕ be a rule that satisfies all of the axioms mentioned in the proposition.
Let N = {1, 2} and M = 6. Let R ∈ RN be such that l1 = l2 = 0 and p1 = p2 = 6.
By Pareto-efficiency and awardee-envy-freeness, ϕ(R,M) ∈ {(0, 6), (3, 3), (6, 0)}.

If ϕ(R,M) = (0, 6), then let R′
2 ∈ R be such that l′2 = 0, p′2 = 5. By strategy-

proofness, ϕ2(R1, R
′
2,M) ≥ 5. Otherwise, 6 = ϕ2(R1,

F

R2,M)
T

P ′
2 ϕ2(R1,

T

R′
2,M).

By Pareto-efficiency, ϕ(R1, R
′
2,M) = (1, 5). But this violates awardee-envy-

freeness at (R1, R
′
2). By an analogous argument, ϕ(R,M) 6= (6, 0). Thus, ϕ(R,M) =

(3, 3).
Now let R1 ∈ R be such that l1 = 2 and p1 = 5. By strategy-proofness,

ϕ1(R1, R2,M) = 3. Let R2 = R1. Again, by strategy-proofness, ϕ(R,M) = (3, 3).
Let R̃1 ∈ R such that l̃1 = 4 and p̃1 = 5. By strategy-proofness, ϕ1(R̃1, R2,M) ≤

3. By Pareto-efficiency, ϕ2(R̃1, R2,M) ≥ 5. By an analogous argument, letting
R̃2 = R̃1, ϕ1(R1, R̃2,M) ≥ 5.

Finally, by Pareto-efficiency, either ϕ1(R̃,M) ≥ 5 or ϕ2(R̃,M) ≥ 5. However,

if ϕ1(R̃,M) ≥ (5, 0), then ϕ2(R̃1,
F

R2,M)
T

P̃2 ϕ2(R̃1,
T

R̃2,M). Thus, ϕ2(R̃,M) ≥ 5.

Since ϕ1(
F

R1, R̃2,M)
T

P̃1 ϕ2(
T

R̃1, R̃2,M), this violates strategy-proofness. 2

9The proof of Proposition 2 amounts to showing that the set of Pareto-efficient allocations is
not lower hemicontinuous, and thus does not permit a continuous selection (Michael 1956).

10Note that Proposition 3 is not subsumed by the Theorem 2 since non-bossiness is imposed
in Theorem 2.
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Proposition 4. No rule is Pareto-efficient, strategy-proof, and satisfies the equal-
division lower bound.11

Proof: We show this when |N | = 2, but the argument easily generalizes to the
remaining cases. Let N = {1, 2} and let R ∈ RN be such that R1 = R2 = R0

such that (l0, p0) = (M
2
,M). Suppose ϕ is Pareto-efficient and satisfies the equal-

division lower bound. Then, by Pareto-efficiency, ϕ(R,M) ∈ {(M, 0), (0,M)}.
If ϕ(R,M) = (0,M), then let R′

1 ∈ R be such that (l′1, p
′
1) = (0,M). By the

equal-division lower bound, ϕ1(R
′
1, R2,M) ≥ M

2
and so ϕ2(R

′
1, R2,M) ≤ M

2
.

By Pareto-efficiency, ϕ(R′
1, R2,M) = (M, 0). Then, M = ϕ1(

F

R′
1, R2,M)

T

Pi

ϕ1(
T

R1, R2,M) = 0. Thus, ϕ violates strategy-proofness. 2

5.2 Characterizations

We begin with a necessary and sufficient condition for a rule to satisfy the equal-
division lower bound.

Proposition 5. A rule, ϕ, satisfies the equal-division lower bound, if and only
if, for each (R,M) ∈ RN × R+, and for each i ∈ N such that li <

M
|N | ,

ϕi(R,M) ≥ min

{
pi,

M

|N |

}
.

Proof: Let (R,M) ∈ RN × R+ and i ∈ N be such that li <
M
|N | . By the equal-

division lower bound, ϕi(R,M) Ri
M
|N | . Thus, if ϕi(R,M) < M

|N | , then ϕi(R,M) Ii
M
|N | Ii pi. Thus, ϕi(R,M) ≥ pi.

Conversely, if for each (R,M) and each i ∈ N such that li <
M
|N | , ϕi(R,M) ≥

min{pi, M|N |}, then ϕi(R,M) Ri
M
N

. For each i ∈ N such that li ≥ M
|N | ,

M
2
Ii 0, so

ϕi(R,M) Ri 0 Ii
M
|N | . Thus, ϕ satisfies the equal-division lower bound. 2

Each rule that is not canonical is equivalent in “welfare terms” to a canonical
rule. This is formalized in the following lemma.

Lemma 1. For each rule ϕ, there is a unique canonical rule ϕ′ such that for each
(R,M) ∈ RN × R+, for each i ∈ N ,

ϕi(R,M) Ii ϕ
′
i(R,M).

11Note that Proposition 4 is not subsumed by the Theorem 2 since non-bossiness is imposed
in Theorem 2.
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Proof: Let ϕ′ be such that for each (R,M) ∈ RN × R+, for each i ∈ N ,

ϕ′i(R,M) =


0 if ϕi(R,M) < li
pi if ϕi(R,M) ≥ pi
ϕi(R,M) otherwise.

That is, if ϕ(R,M) is welfare-unique at (R,M), ϕ′(R,M) coincides with ϕ(R,M).
Otherwise, ϕ′(R,M) is the canonical representation of WE(ϕ(R,M), R,M) at
(R,M). Thus, ϕ′ is canonical and for each i ∈ N , ϕi(R,M) Ii ϕ

′
i(R,M). 2

We call ϕ′ defined in proof of Lemma 1 the canonical equivalent of ϕ. Since
Pareto-efficiency, envy-freeness, awardee-envy-freness, and the equal-division lower
bound deal with a single preference profile and are stated in welfare terms, it is clear
that these properties of a rule are inherited by its canonical equivalent. However,
it is not as obvious that strategy-proofness is similarly inherited.

Lemma 2. The canonical equivalent of a strategy-proof rule is strategy-proof.12

Proof: Let ϕ′ be the canonical equivalent of ϕ. Then, for each (R,M) ∈ RN×R+

and each i ∈ N ,

ϕi(R,M) = ϕ′i(R,M) if li < ϕi(R,M) < pi.
ϕi(R,M) ≥ ϕ′i(R,M) otherwise.

Suppose ϕ′ is not strategy-proof. Then, there is i ∈ N , and (R,M) ∈ RN × R+

such that

ϕ′i(
F

R′
i, R−i,M)

T

Pi ϕ
′
i(

T

Ri, R−i,M).

Then, ϕ′i(R,M) < pi. If ϕ′i(R,M) > li, then ϕi(R,M) = ϕ′i(R,M) and if
ϕ′i(R,M) = 0, then ϕi(R,M) ≤ li. Thus,

max{ϕ′i(R,M), li} ≥ ϕi(R,M). (1)

Further,
ϕ′i(R

′
i, R−i,M) > max{ϕ′i(R,M), li}. (2)

12The converse is not true. Consider ϕ defined by setting, for each (R,M) ∈ RN × R+,

ϕ1(R,M) =
{

M if p1 and ≤ M
2

M
2 otherwise,

and for each i ∈ N \ {i}, ϕi(R,M) = 0. The canonical equivalent of ϕ is defined by setting, for
each (R,M) ∈ RN × R+,

ϕ1(R,M) =
{

max{p1,
M
2 } if l1 < M

2 , and
0 otherwise,

and for each i ∈ N \ {i}, ϕi(R,M) = 0. Clearly, ϕ′ is strategy-proof but ϕ is not.

16



Since ϕi(R
′
i, R−i,M) ≥ ϕ′i(R

′
i, R−i,M), by (1) and (2),

ϕi(R
′
i, R−i,M) ≥ ϕ′i(R

′
i, R−i,M) > max{ϕ′i(R,M), li} ≥ ϕi(R,M).

Then, ϕi(
F

R′
i, R−i,M)

T

Pi ϕi(
T

Ri, R−i,M). So ϕ is not strategy-proof. 2

In light of Lemmas 1 and 2, it is without loss of generality to study only
canonical rules for the remainder of this section.

Theorem 1. Every Pareto-efficient and awardee-envy-free rule is an efficient uni-
form rule.

Proof: Let ϕ be a Pareto-efficient and awardee-envy-free rule. Let σϕ be a selec-
tion function defined by setting, for each (R,M) ∈ RN × R+,

σϕ(R,M) ≡ {i ∈ N : ϕi(R,M) 6= 0}.

Let (R,M) ∈ RN × R+, and set x ≡ ϕ(R,M). If x 6= EUσϕ(R,M), then we have
one of four cases:13

Case 1: There is a pair i, j ∈ N such that xi < xj and xi < pi. In this case,
xj Pi xi. This violates awardee-envy-freeness.
Case 2: There is j such that xj = 0 and M −

∑
i∈N xi > lj. Let y ∈ RN

+ be such
that yj = M −

∑
i∈N xi and y−j = x−j. For each i ∈ N, yi Ri xi and yj Pj xj. This

violates Pareto-efficiency.
Case 3: There is j ∈ N such that xj ∈ (0, lj]. This violates canonicity.
Case 4: There is j ∈ N such that lj < xj < pj and

∑
i∈N xi < M . Let y ∈ RN

+

be such that yj = xj +M −
∑

i∈N xi and y−j = x−j. For each i ∈ N, yi Ri xi and
yj Pj xj. This violates Pareto-efficiency.

Thus, ϕ(R,M) = EUσϕ(R,M). 2

To see that the axioms are independent, note that the canonical equivalent
of the uniform rule is awardee-envy-free but not Pareto-efficient and sequential
priority rules are Pareto-efficient but not awardee-envy-free.

Combining Proposition 5 and Theorem 1, we have the following corollary.

Corollary 1. A rule ϕ is Pareto-efficient, awardee-envy-free and satisfies the
equal-division lower bound if and only if there is a selector function σ such that
for each (R,M) ∈ RN × R+,{

i ∈ N : li <
M

|N |

}
⊆ σ(R,M),

and ϕ = EUσ.

13These cases correspond to the four parts in the definition of efficient uniform rules.
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To prove the next characterization, we first prove that each Pareto-efficient,
strategy-proof, and non-bossy rule chooses, for each M ∈ R+, a person with
highest priority who, regardless of others’ preferences, receives the least of his
most preferred quantities.

Lemma 3. Let ϕ be a Pareto-efficient, strategy-proof, and non-bossy rule. Then,
for each M ∈ R, there is i ∈ N such that for each R ∈ RN ,

ϕi(R,M) =

{
min{M, pi} if min{M, pi} > li, and,
0 otherwise.

Proof: We prove this lemma by induction on n = |N |.
We start with n = 2. Let R ∈ RN be such that R1 = R2 = R0 such that l0 = 0

and p0 = M . Let x = ϕ(R,M). By Pareto-efficiency x1 + x2 = M .

Claim: Either x1 = M or x2 = M .

Proof: If not, by Pareto-efficiency, x1, x2 ∈ (0,M). Let R′ ∈ RN be such that l′1 =
x1, l

′
2 = x2, and p′1 = p′2 = M .14 Let x1 ≡ ϕ(R′

1, R2,M). By strategy-proofness,

x1
1 ≤ x1. Otherwise x1

1 = ϕ1(
F

R′
1, R2,M)

T

P1 ϕ(
T

R1, R2,M). By canonicity and since
x1

1 ≤ x1 = l′1, we deduce x1
1 = 0 and x1

2 = M . That is, ϕ(R′
1, R2,M) = (0,M). By

an analogous argument, ϕ(R1, R
′
2,M) = (M, 0).

Let x′ ≡ ϕ(R′,M). Since x1 + x2 = M , we cannot have x′1 ≥ l′1 = x1 and x′2 ≥
l′2 = x2. By Pareto-efficiency, either x′ = (0,M) or x′ = (M, 0). If x′ = (0,M),

since M = ϕ1(
F

R1, R
′
2,M)

T

P ′
1 ϕ1(

T

R′
1, R

′
2,M) = 0, this violates strategy-proofness.

If x′ = (M, 0), we reach a similar contradiction. ◦
Let i ∈ N be such that xi = M . For each R′

i ∈ R such that minM, p′i > l′i, by

strategy-proofness, ϕ(R′
i, Rj,M) ≥ min{M, p′i}. Otherwise, M = ϕi(

F

Ri, Rj,M)
T

P ′
i

ϕi(
T

R′
i, Rj,M). By Pareto-efficiency, ϕi(R

′
i, Rj,M) ≤ min{M, p′i}. Thus, ϕi(R

′
1, Rj,M) =

min{M, p′i} and ϕj(R
′
i, Rj,M) = M − min{M, p′i}. By strategy-proofness, for

each R′
j ∈ R, ϕj(R′

i, R
′
j,M) ≤ M − min{M, p′i}. Otherwise, ϕj(R

′
i,

F

R′
j,M)

T

Pj

ϕj(Ri,
T

Pj,M) = M−min{M, p′i}. By Pareto-efficiency and canonicity, ϕi(R
′
i, R

′
j,M) =

min{M, p′i}. If min{M, p′i} ≤ l′i, by canonicity, ϕi(R
′,M) = 0.

Thus, we conclude that for each M ∈ R, there is i ∈ N such that for each
R ∈ RN ,

ϕi(R,M) =

{
min{M, pi} if min{M, pi} > li
0 otherwise.

As an induction hypothesis, suppose that if |N ′| = n − 1 and ψ is a Pareto-
efficient, strategy-proof, and non-bossy rule defined for the problems involving

14Since x1, x2 ∈ (0,M), such a preference profile exists.
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people in N ′, then for each M , there is an i ∈ N ′ such that for each R ∈ RN ′
,

ψi(R,M) =

{
min{M, pi} if minM, pi > li, and
0 otherwise.

We show that for each M ∈ R, there is i ∈ N such that for each R ∈ RN ,

ϕi(R,M) =

{
min{M, pi} if min{M, pi} > li, and
0 otherwise.

Let R ∈ RN be such that for each i ∈ N , li = 0 and pi = M . Let x ≡ ϕ(R,M).

Since ϕ is Pareto-efficient,
∑
j∈N

xj = M .

Claim: There is i ∈ N such that xi = M .

Proof: There are two cases to consider:

Case 1: There is j ∈ N such that xj = 0.
Let R̃j ∈ R be such that p̃j = 0. By canonicity, for each R−j ∈ RN\{j}, and

M ∈ R+, ϕj(R̃j, R−j,M) = 0. By non-bossiness,15 ϕ(R̃j, R−j,M) = x. Now,
define ψ as a rule for people in N \{j} by setting, for each (R−j,M) ∈ RN\{j}×R,

ψ(R−j,M) ≡ ϕ(R̃j, R−j,M).

Since ϕ is Pareto-efficient, strategy-proof, and non-bossy, ψ inherits these proper-
ties. By the induction hypothesis, there is i ∈ N \{j} such that ψi(R−j,M) = M .
However, by definition of ψ, we have ψ(R−i,M) = x−j. Thus, there is i ∈ N such
that xi = M .

Case 2: For each j ∈ N, xj ∈ (0,M).
Let R′ ∈ RN be such that for each j ∈ N, xj = l′j < p′j = M . For each j ∈ N ,

define xj ≡ ϕ(R′
j, R−j,M). By strategy-proofness, xjj ≤ xj = l′j. Otherwise

xjj = ϕj(
F

R′
j, R−j,M)

T

R′
j ϕj(

T

Rj, R−j,M) = xj. By canonicity, xjj = 0. By an
argument identical to the one used in Case 1, there is kj ∈ N \ {j} such that
xj
kj

= M .
Let x′ ≡ ϕ(R′,M). Since

∑
j∈N xj = M , there is j ∈ N such that x′j ≤ xj = l′j.

By canonicity, x′j = 0. By an argument identical to the one used in Case 1, there
is i ∈ N such that x′i = M . This implies that for each j ∈ N \ {i}, ϕj(R′,M) = 0.
In particular,

ϕki(R
′
i, R

′
ki , R

′
−{i,ki},M) = 0. (3)

As shown earlier, ϕ(R′
i, Rki , R−{i,ki},M) = xi and xiki = M . Thus, for each

j ∈ N \ {i, ki}, ϕj(R′
i, Rki , R−{i,ki},M) = 0. Let {j1, . . . , jn−2} ≡ N \ {i, ki}. By

15This is the first time we appeal to non-bossiness.
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strategy-proofness, ϕj1(R
′
i, Rki , R

′
j1
, R−{i,ki,j1},M) = 0. Otherwise,

ϕj1(R
′
i, Rki ,

F

R′
j1
, R−{i,ki,j1},M)

T

Pj1 ϕj1(R
′
i, Rki ,

T

Rj1 , R−{i,ki,j1},M) = 0. By non-

bossiness, ϕ(R′
i, Rki ,

F

R′
j1
, R−{i,ki,j1},M) = xi. Repeating this argument n− 3 more

times, ϕ(R′
i, Rki , R

′
−{i,ki},M) = xi. Thus, ϕki(R

′
i, Rki , R

′
−{i,ki},M) = M . By (3)

and the definition of R′
ki

, we know that

M = ϕki(R
′
i,

F

Rki , R
′
−{i,ki},M)

T

P ′
kj ϕki(R

′
i,

T

R′
ki , R

′
−{i,ki},M) = 0.

This violates strategy-proofness. Thus, there is i ∈ N such that xi = M . ◦
Let R′ ∈ RN . To complete the proof of this lemma, we show that

ϕi(R
′,M) =

{
min{p′i,M} if min{p′i,M} > l′i, and
0 otherwise.

By Pareto-efficiency, if min{p′i,M} ≤ l′i, then ϕi(R
′,M) = 0. If not, we index the

members ofN\{i} as {j1, . . . , jn−1}. By strategy-proofness, ϕj1(R
′
j1
, R−j1 ,M) = 0.

Otherwise, ϕj1(
F

R′
j1
, R−j1 ,M)

T

Pj1 ϕ(
T

Rj1 , R−j1 ,M) = 0. Then, by non-bossiness,
ϕ(R′

j1
, R−j1 ,M) = x. Repeating this argument n−2 more times, ϕ(R′

−i, Ri,M) =
x. That is, ϕi(R

′
−i, Ri,M) = M . By strategy-proofness, ϕi(R

′,M) ≥ min{M, p′i}.

Otherwise, M = ϕ(
F

Ri, R
′
−i,M)

T

Pi ϕi(
T

Ri, R
′
−i,M). Due to the feasibility con-

straint, ϕi(R
′,M) ≤ M and by Pareto-efficiency, ϕi(R

′,M) ≤ p′i and thus,
ϕi(R

′,M) = min{M, p′i}. 2

Lemma 3 gets us very close to a characterization of the conditional sequential
priority rules as the only Pareto-efficient, strategy-proof, and non-bossy rules.
Intuitively, it says that for each value of the endowment, there is a person with
highest priority who is given the least of his most preferred quantities. After this,
we are possibly left some of the good to divide among the remaining people and
Lemma 3 can be applied again.

Theorem 2. Every Pareto-efficient, strategy-proof, and non-bossy rule is a con-
ditional sequential priority rule.

Proof: We proceed by induction on n = |N |. If n = 2, the theorem follows
directly from Lemma 3. As an induction hypothesis, suppose that all Pareto-
efficient, strategy-proof, and non-bossy rules defined for the people in N ′ such
that |N ′| = n− 1 are conditional sequential priority rules.

Let ϕ be a Pareto-efficient, strategy-proof, and non-bossy rule defined for peo-
ple in N such that |N | = n. We will show that there is Iϕ such that ϕ = CSP Iϕ .
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Step 1: Construction of Iϕ.
By Lemma 3, for each M ∈ R, there is i1 ∈ N such that for each R ∈ RN ,

ϕi1(R,M) =

{
min{pi1 ,M} if min{pi1 ,M} > li1 , and
0 otherwise.

We begin construction of Iϕ by setting i1ϕ(M) ≡ i1. Let xi ≡ ϕi(R,M). For each

R̃−i ∈ RN\{i}, ϕi(R, R̃−i,M) = xi.
Let R0

i1
∈ R be such that p0

i1
= 0. By Pareto-efficiency, for each M̃ ∈ R and

each R̃−i1 ∈ RN\{i1}, ϕi(R
0
i1
, R̃−i1 , M̃) = 0.

Define the rule ψ(M,i1,xi1 ) for people in N \ {i1} by setting for each M ∈ R and
each R−i1 ∈ RN\{i1},

ψ(M,i1,xi1 )(R−i1 ,M) =

{
ϕ−i1(Ri1 , R−i1 ,M) if M = M − xi1
ϕ−i1(R

0
i1
, R−i1 ,M) otherwise.

Because ϕi(R
0
i , R−i,M) = 0 and ϕ is Pareto-efficient, strategy-proof, and non-

bossy, ψ(M,i1,xi1 ) inherits these properties. Thus, by the induction hypothesis,

there is I
ψ

(M,i1,xi1
) such that ψ(M,i1,xi1 ) = CSP

I
ψ

(M,i1,xi1
)
.

Let
i2ϕ(M, i1, xi1) ≡ i1

ψ
(M,i1,xi1

)(M − xi1) = i2.

For each xi2 ∈ [0,M − xi1 ], let

i3ϕ(M, i1, i2, xi1 , xi2) ≡ i2
ψ

(M,i1,xi1
)(M − xi1 , i2, xi2) = i3.

...

For each xin−2 ∈

[
0,M −

n−3∑
k=1

xik

]
, let

in−1
ϕ (M, i1, . . . , in−2, xi1 , . . . , xin−2) ≡ in−2

ψ
(M,i1,xi1

)(M−xi1 , i2, . . . , in−2, xi2 , . . . , xin−2).

Since we can do this for each M ∈ R and each Ri1ϕ(M) ∈ R, we have a complete
description of Iϕ.

Step 2: Verify that ϕ = CSP Iϕ .
Let (R,M) ∈ RN × R+. By definition of i1 ≡ i1(M),

xi1 ≡ ϕi1(R,M) =

{
min{M, pi1} if min{M, pi1} > li1
0 otherwise.

= CSP
Iϕ
i1

(R,M).
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Further, by definition of ψ(M,i1,xi1 ),

ϕ−i1(R,M) = ψ(M,i1,xi1 )(R−i1 ,M−xi1) = CSP
I
ψ

(M,i1,xi1
)
(R−i1 ,M−xi1) = CSP

Iϕ
−i1(R,M).

Thus, ϕ(R,M) = CSP Iϕ(R,M). Since this holds for each (R,M) ∈ RN ×R+, we
have verified that ϕ = CSP Iϕ . 2

To see that the axioms are independent, note that the canonical equivalent of
the uniform rule violates only Pareto-efficiency, some efficient uniform rules violate
only strategy-proofness, and we define the rule ϕ which violates only non-bossiness.
Let I ≡ {ik}n−1

k=1 and J ≡ {jk}n−1
k=1 be such that I 6= J and {i1, . . . , in−1} =

{j1, . . . , jn−1} = N \ {1}. Define ϕ by setting, for each (R,M) ∈ RN × R+,

ϕ(R,M) =

{
SP I(R,M) if l1 < M
SP J(R,M) otherwise.

Notice that ϕ is also weakly continuous.

Remark 3. Strategy-proofness and Pareto-efficient are incompatible with any no-
tion of equity. Every Pareto-efficient and canonical rule is non-bossy whenever
|N | = 2. Thus, Theorem 2 says that there is always one person who is fully sati-
ated by a strategy-proof rule, regardless of the preference profile. This rules out
any meaningful notion of equity. ◦

We characterize the weakly continuous subset of conditional sequential priority
below.

Proposition 6. A conditional sequential priority rule is weakly continuous if and
only if it is a sequential priority rule.

Proof: First we show that each sequential priority rule is weakly continuous. Let
I be associated with the ordering {i1, i2, . . . in−1}. Let {(Rν ,mν)}∞ν=1 be a sequence
in RN × R+ such that,

i) lim
ν→∞

(Rν ,mν) = (R,M) ∈ RN × R+, and

ii) for each i ∈ N if li ≥ min{pi,M}, then there is ν∗ ∈ N such that
for each ν ≥ ν∗, lνi ≥ min{pνi ,M ν}.

If li1 ≥ min{M, pi1}, then by ii), there is ν∗ ∈ N such that for each ν ≥ ν∗, lνi1 ≥
min{pνi1 ,M

ν} and so SP I
i1
(Rν ,M ν) = 0. Thus,

lim
ν→∞

SP I
i1
(Rν ,Mν) = 0 = SP I

i1
(R,M).
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If li1 < min{M, pi1}, then

lim
ν→∞

SP I
i1
(Rν ,M ν) = lim

ν→∞
min{pνi1 ,M

ν} = min{pi1 ,M} = SP I
i1
(R,M).

This argument can be repeated for i2, . . . , in−1, and in ∈ N \ {i1, . . . , in−1}.
Next, we prove that if I is such that CSP I is weakly continuous, then for each

pair M,M ′ ∈ R+, and each pair x, x′ ∈ R+ such that
n−2∑
i=1

xi ≤M and
n−2∑
i=1

x′i ≤M ,

i1(M) = i1 = i1(M ′),
i2(M, i1, xi1) = i2 = i2(M ′, i1, x

′
i1
),

...
in−1(M, i1,...,n−2, xi1,...,n−2) = in−1 = in−1(M ′, i1,...,n−2, x

′
i1,...,n−2

),

Let R ∈ RN be such that for each i ∈ N, li = 0 and pi = max{M,M ′}.
By definition of CSP I and R, for each M̃ ≤ max{M,M ′}, CSP I(R, M̃) ∈
{(M̃, 0, . . . , 0), . . . , (0, . . . , 0, M̃)}. Since for each i ∈ N , li = 0, weak continuity
implies that CSP I(R, M̃) varies continuously in M̃ . Thus, i1(M) = i1(M ′) = i1.

For each M̃ ∈ R+ and each x̃i1 ∈ R+ such that x̃i1 ≤ M̃ , let R
x̃i1
i1

∈ R
be such that l

x̃i1
i1

= 0 and p
x̃i1
i1

= x̃i1 . Then CSP I
i1
(Rx̃

i1
, R−i1 , M̃) = x̃i1 and

CSP I
−i1(R

x̃i1
i1
, R−i1 , M̃) ∈ {(M̃ − x̃i1 , 0, . . . , 0), . . . , (0, . . . , 0, M̃ − x̃i1)}. Since for

each i ∈ N \ {i1}, li = 0, weak continuity implies that CSP I
−i1(R

x̃i1
i1
, R−i1 , M̃)

varies continuously with M̃ and x̃i1 . Thus, i2(M, i1, xi1) = i2(M ′, i1, x
′
i1
) = i2.

Repeating this argument completes the proof. 2

The following is a corollary of Proposition 6 and Theorem 2.

Corollary 2. Every Pareto-efficient, strategy-proof, non-bossy and weakly con-
tinuous rule is a sequential priority rule.

The axioms are independent. The canonical equivalent of the uniform rule
violates only Pareto-efficiency. There are efficient uniform rules that violate only
strategy-proofness. The rule ϕ defined to show independence of the axioms in
Theorem 2 violates only non-bossiness. Finally, each conditional sequential priority
rule that is not an (unconditional) sequential priority rule violates only weak
continuity.

The next corollary shows that no Pareto-efficient and strategy-proof rule satis-
fies welfare domination under preference replacement. It follows from the following
propositions.
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Proposition 7. Pareto-efficiency and welfare domination under preference re-
placement together imply non-bossiness.

Proof: Let ϕ be Pareto-efficient and satisfy welfare domination under preference
replacement. Let i ∈ N and R′

i ∈ R be such that ϕi(Ri, R−i,M) = ϕi(R
′
i, R−i,M).

Let x ≡ ϕ(Ri, R−i,M) and x′ ≡ ϕ(R′
i, R−i,M). By canonicity for each j ∈

N \ {i}, lj < xj ≤ pj and lj < x′j ≤ pj. By welfare domination under preference
replacement, without loss of generality, for each j ∈ N \{i}, xi ≤ xi. Since x 6= x′,
there is j ∈ N \ {i} such that xj < x′j. Thus, for each j ∈ N , x′j Rj xj and there
is j ∈ N such that x′j Pj xj. So, ϕ(R,M) = x violates Pareto-efficiency. 2

Proposition 8. No conditional sequential priority rule satisfies welfare domina-
tion under preference replacement.

Proof: Let M ∈ R+ and i1 ≡ i1(M). We first show that for each xi1 , x
′
i1
∈ R+,

i2(M, i1, xi1) = i2(M, i1, xi1). Let Ri1 ∈ R be such that li1 = 0 and pi1 = xi1 , and
R′
i1
∈ R be such that l′i1 = 0 and p′i1 = x′i1 . LetR−i1 ∈ RN\{i1} be such that for each

j ∈ N \{i1}, lj = 0 and pj = M . Let i2 ≡ i2(M, i1, xi1) and i′2 ≡ i2(M, i1, x
′
i1
). Sup-

pose i2 6= i′2. Then, CSP I
i2
(Ri1 , R−i1 ,M) = M − xi1 Pi2 0 = CSP I

i2
(R′

i1
, R−i1 ,M).

Similarly, CSP I
i′2
(R′

i1
, R−i1 ,M) = M − x′i1 Pi′2 0 = CSP I

i′2
(Ri1 , R−i1 ,M). This

violates welfare domination under preference replacement. Thus, i2(M, i1, xi1) =
i2(M, i1, xi1) = i2.

Now, we show that CSP I violates welfare domination under preference re-
placement. Let R ∈ RN be such that li1 = 0, pi1 = M

2
, li2 = M

2
, pi2 = M , and

for each j /∈ {i1, i2}, lj = 0 and pj = M . Let i3 ≡ i3(M, i1, i2,
M
2
, 0). By definition

of CSP I , CSP I
i1
(R,M) = M

2
, CSP I

i2
(R,M) = 0, and CSP I

i3
(R,M) = M

2
. Let

α ∈ (0, M
2

), and R′
i1
∈ R be such that l′i1 = 0 and p′i1 = M

2
− α. By definition

of CSP I , CSP I
i1
(R,M) = M

2
− α,CSP I

i2
(R,M) = M

2
+ α, and CSP I

i3
(R,M) = 0.

This violates welfare domination under preference replacement. 2

Corollary 3. No rule is Pareto-efficient, strategy-proof and satisfies welfare dom-
ination under preference replacement.

The remainder of this section is devoted to showing that group strategy-
proofness is too demanding a property in that it rules out even the weakest notion
of efficiency: unanimity.

The following proposition follows from the fact that a unanimous rule includes
all possible divisions in its range and a group strategy-proof rule is Pareto-efficient
over its range.

Proposition 9. Every rule that is group strategy-proof and unanimous16 is Pareto-
efficient.

16Unanimity can be weakened to requiring that the range include all possible divisions. How-
ever, unanimity is normatively more meaningful.

24



Proposition 10. Every group strategy-proof rule is non-bossy.17

Proof: If ϕ is bossy, there are (R,M) ∈ RN × R+, i ∈ N , and R′
i ∈ R such that

ϕi(R
′
i, R−i,M) = ϕi(R,M) but ϕ(R′

i, R−i,M) 6= ϕ(R,M). Then, there is j ∈ N \
{i} such that ϕj(R

′
i, R−i,M) > ϕj(R,M). By canonicity, pj ≥ ϕj(R

′
i, R−i,M) >

ϕj(R,M) > lj. But then, setting S = {i, j} and R̃S = (R′
i, Rj), we have

ϕi(
F

R̃′
S, R−S,M)

T

Ii ϕi(
T

RS, R−S,M) and ϕj(
F

R̃′
S, R−S,M)

T

Pj ϕj(
T

RS, R−S,M). This
violates group strategy-proofness. 2

Proposition 11. No conditional sequential priority rule is group strategy-proof.

Proof: Let M ∈ R+. Let i1 ≡ i1(M) and let Ri1 ∈ R be such that (li1 , pi1) =
(0, M

2
). Let α ∈ (0, M

2
). Let i2 ≡ i2(M, i1,

M
2

) and let Ri2 ∈ R be such that
(li2 , pi2) = (M

2
− α, M

2
). For each j ∈ N \ {i1, i2}, let Rj ∈ R be such that

(lj, pj) = (0,M).
Then, CSP I

i1
(R,M) = M

2
, CSP I

i2
(R,M) = M

2
, and for each j ∈ N \ {i1, i2},

CSP I
j (R,M) = 0.

Let R′
i1
∈ R be such that (li1 , pi1) = (0, M

2
+ α).

Case 1: i2 6= i2
′ = i2(M, i1,

M
2

+ α).
Then, CSP I

i2′
(R′

i1
, R−i1 ,M) = (M

2
− α) Pi2′ 0 = CSP I

i2′
(R,M).

Case 2: i2 = i2(M, i1,
M
2

+ α).
Then, CSP I

i2
(R′

i1
, R−i1 ,M) = 0. Let i3 ≡ i3(M, i1, i2,

M
2

+ α, 0). By definition
of CSP I , CSP I

i3
(R′

i1
, R−i1 ,M) = (M

2
− α) Pi3 0 = CSP I

i3
(R,M).

In both cases we see a violation of group strategy-proofness. 2

As a corollary of Theorem 2, in conjunctions with Propositions 9,10, and 11,
we have the following.

Corollary 4. No rule is group strategy-proof and unanimous.

6 Conclusion

While we have shown that two familiar notions of fairness, envy-freeness and equal
treatment of equals, are incompatible with Pareto-efficiency, there are other inter-
esting axioms such as awardee envy-freeness and the equal-division lower bound
that are compatible. However, none of these can be imposed alongside the combi-
nation of Pareto-efficiency and strategy-proofness.

17This implication holds generally. It is easy to prove a version of Proposition 10 that applies
to a very general model.
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The implication of Theorem 2 is that if we insist on Pareto-efficiency and
strategy-proofness, then we are forced to give up on any notion of fairness. How-
ever, if we can forgo strategy-proofness, Corollary 1 is a characterization of all
Pareto-efficient and awardee-envy-free rules that satisfy the equal-division lower
bound.

The results presented here are reminiscent of problems with discrete goods.
Particularly the incompatibility, among Pareto-efficienct rules, between various
axioms of equity on one hand and strategy-proofness on the other. Theorem
2 is similar to results from the literature on allocation of objects (Pápai 2001,
Ehlers and Klaus 2003). In discrete environments, one way to recover equity is
by randomization (Hofstee 1990). We leave the study of randomized rules in our
environment for future work.

Appendices

A A variable population extension

We extend our model to variable populations. Let N be the infinite set of potential
agents and let N be all non-empty subsets of N. For each N ∈ N , a problem for
people in N consists of a profile R ∈ RN and a social endowment M ∈ R+. Let
EN be the set of all problems for people in N . Let E ≡ ∪N⊆NEN be the set of
all problems. For a problem involving people in N , let F (N,M) be the feasible
allocations. A rule maps each problem to a feasible allocation.

We first present a set of axioms and then extend the definitions of one of our
classes of rules: conditional sequential priority rules. We then ask which members
of this class satisfy our axioms.

A.1 Axioms

The first axiom says that, given a fixed social endowment, the arrival of new people
should affect all of those initially present negatively (Thomson 1983a, Thomson
1983b).

Population monotonicity: For each pair N,N ′ ∈ N such that N ′ ⊆ N and
each (RN ,M) ∈ EN , for each i ∈ N ′, ϕi(RN ′ ,M) Ri ϕi(RN ,M).

The next requirement says that the choice made for the replicated problem
should be a replication of original choice (Thomson 1997). Given N ⊆ N and
(R,M) ∈ EN , k ∈ N, and N ′ ∈ N such that |N ′| = k|N |, let k ∗ (R,M) ∈ EN be
such that for each i ∈ N , there are k members of N ′ with the preference relation
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Ri and the social endowment is kM . Given x ∈ F (N,M), let k ∗ x ∈ F (N ′, kM)
be a similar replication of x.

Replication invariance: For each N ∈ N , each (R,M) ∈ EN , and each k ∈ N,
we have ϕ(k ∗ (R,M)) = k ∗ ϕ(R,M).

The third axiom says that if the rule is re-applied to a smaller group of people
to divide only what was originally alloted among them, there should be no change
in what each person receives (Davis and Maschler 1965, Peleg 1985, Lensberg 1988,
Balinski and Young 1982, Thomson 1988). Let N ∈ N and (R,M) ∈ EN . For
each x ∈ F (N,M), and N ′ ⊆ N , the reduction of (R, M) with respect to N ′

and x, is rx
N ′(R, M)≡ (RN ′ ,M −

∑
i∈N\N ′ xi).

Consistency: For each N ∈ N and each (R,M) ∈ EN , if x ≡ ϕ(R,M), then for
each N ′ ⊆ N , ϕ(rxN ′(R,M)) = xN ′ .

A.2 Rules

Conditional sequential priority rules: Let I ≡ {ik}∞k=1 where

i1 : R+ ×N → N,
i2 : R+ ×N × N× R+ → N,
...

be such that for each N ∈ N , each M ∈ R+ and each x ∈ Rn−2, we have a
sequence {ik}n−1

k=1 such that

i1 = i1(M,N) ∈ N,
i2 = i2(M,N, i1, xi1) ∈ N \ {i1},
...

The conditional sequential priority rule with respect to I, CSP I, is
defined as follows, for each N ∈ N and (R,M) ∈ EN :
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i1 ≡ i1(M,N),

CSP I
i1

(R, M) ≡
{

min{M,pi1} if M > li1 , and
0 otherwise,

i2 ≡ i2(M,N, i1, CSP I
i1

(R,M))

CSP I
i2

(R,M) ≡
{

min{M − CSP I
i1

(R,M), pi2} if M − CSP I
i1

(R,M) > li2 , and
0 otherwise,

...
in−1 ≡ in1 (M,N, i1,...,n−2, CSP I

i1,...,n−2
(R, M))

CSP I
in−1

(R,M) ≡


min{M −

n−2∑
k=1

CSP I
ik

(R,M), pin−1} if M −
n−2∑
k=1

CSP I
ik

(R,M) > lin−1 ,

and
0 otherwise,

in ∈ N \ {i1, . . . , in−1}

CSP I
in

(R,M) ≡


min{M −

n−1∑
k=1

CSP I
ik

(R,M), pin} if M −
n−1∑
k=1

CSP I
ik

(R,M) > lin ,

and
0 otherwise,

Sequential priority rules: If I ≡ {ik}k = 1n−1 is such that there is a linear
ordering ≺ of N such that for each N ∈ N , each M ∈ R+, and each x ∈ Rn−2

+ ,

i1 = i1(M,N) = {i ∈ N : for each j ∈ N \ {i}, i ≺ j},
i2 = i2(M,N, i1, xi1) = {i ∈ N \ {i1} : for each j ∈ N \ {i1, i}, i ≺ j},
...
in−1 = in−1(M, i1,...,n−2, xi1,...,n−2)
= {i ∈ N \ {i1, . . . , in−2} : for each j ∈ N \ {i1, . . . in−2, i}, i ≺ j},

then CSP I is sequential priority rule with respect to ≺, SP ≺.

A.3 Results

We now study some implications of the above axioms.

Proposition 12. No conditional sequential priority rule is population monotonic.

Proof: Let M ∈ R+ and N ≡ {1, 2, 3} ∈ N . Without loss of generality, let
1 = i1(M,N) and 2 = i2(M,N, 1, M

2
). Let R ∈ RN be such that l1 = l3 = 0,

l2 = p1 = M
2
, and p2 = p3 = M . Then, CSP I

1 (R,M) = M
2
, CSP I

2 (R,M) = 0, and
CSP I

3 (R,M) = M
2

.
Let N ′ = {2, 3}.
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Case 1: i1(M,N ′) = 2. Then, CSP I
3 (R2, R3,M) = 0. Since CSP I

3 (R,M) = M
2

,
this violates population monotonicity.
Case 2: i1(M,N ′) = 3. Let R′ ∈ RN ′

be such that l2 = l3 = 0 and p2 = p3 = M .
Then, CSP I

2 (R′
2, R

′
3,M) = 0. Since CSP I

2 (R1, R
′
2, R

′
3,M) = M

2
, this violates

population monotonicity. 2

Proposition 13. No rule is Pareto-efficient and replication invariant.

Proof: Suppose ϕ is Pareto-efficient. Let N ≡ {1} ∈ N and (R,M) ∈ EN
be such that l1 = M and p1 = 2M . By Pareto-efficiency, ϕ(2 ∗ (R,M)) ∈
{(0, 2M), (2M, 0)}. In either case, for every value of ϕ(R,M) replication invariance
is violated. 2

Proposition 14. A conditional sequential priority rule is consistent if and only
if it is a sequential priority rule.

Proof: It is easy to verify that every sequential priority rule is consistent. We
prove that if a I ≡ {ik}∞k=1 is such that CSP I is consistent, then there is ≺ such
that CSP I = SP≺.

Let M ∈ R+. For each pair i, j ∈ N, let R ∈ R{i,j} be such that li = lj = 0
and pi = pj = M . If CSP I

i (R,M) = 0, set j ≺M i. Otherwise, set i ≺M j.
To verify that ≺M is a linear order, we note that it is, by definition, complete
and antisymmetric. It is only left to verify that it is transitive. Suppose there
are i, j, k ∈ N such that i ≺M j, j ≺M k and k ≺M i. Let R ∈ R{i,j,k} be
such that li = lj = lk = 0 and pi = pj = pk = M . Without loss of generality,
suppose CSP I

i (R,M) = M . Then, by consistency, CSP I
i (Ri, Rk,M) = M . But

this violates k ≺M i.
Next, we show that for each pair M,M ′ ∈ R+, ≺M=≺M ′

=≺. Suppose M ′ <
M < 2M ′. Suppose there is a pair i, j ∈ N such that i ≺M ′

j and j ≺M i. Let
k ∈ N be such that i ≺M k. Let R ∈ R{i,j,k} be such that li = lj = M −M ′,
pi = pj = M ′, lk = 0 and pk = 2M ′. Let x ≡ CSP I(R,M). By definition of
CSP I , x takes one of the following values:
Case 1: xi = 0, xj = M ′, and xk = M−M ′. By consistency, CSP I

i (Ri, Rj,M
′) =

0. This violates i ≺M ′
j.

Case 2: xi = M ′, xj = 0, and xk = M − M ′. Then i1(M, {i, j, k}) = i. Let
R′ ∈ R{i,j,k} be such that li = lj = lk = 0 and pi = pj = pk = M . By definition,
CSP I

i (R′,M) = M . By consistency, CSP I
i (R′

i, R
′
j,M) = M . This violates j ≺M

i.
Case 3: xi = 0, xj = 0, and xk = M ′. By consistency, CSP I

k (Ri, Rk,M) = M .
This violates i ≺M k.

Finally, we verify that CSP I = SP≺. If not, then there is N ∈ N and
(R,M) ∈ EN such that there is a pair i, j ∈ N for which i ≺ j, li = lj = 0,
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pi = pj = M and CSP I
i (R,M) = 0 < xj ≡ CSP I

j (R,M). By consistency,
CSP I

i (Ri, Rj, xj) = 0. But this violates i ≺ j. Thus, CSP I = SP≺. 2
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