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Abstract

We study the problem of selling K units of identical storable goods to buyers who arrive
stochastically over a finite time horizon. Buyers have single unit demand for the product;
they are risk neutral and patient, and keep their birthdays and valuations as private in-
formation. We characterize the expected surplus maximizing allocation and implement it
by a direct mechanism that is periodic ex-post incentive compatible and individually ratio-
nal. We also propose a sequential simultaneous ascending auction as an outcome equivalent
indirect mechanism and compare it with the standard uniform price auction to highlight
issues created by market dynamics.
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1 Introduction

In this paper, we study the problem of selling K identical units of storable goods over a finite
time horizon. Buyers arrive stochastically over time and have single unit demand for the
product. They are risk neutral and patient, and keep their birthdays and valuations (jointly
called the types) as private information. We characterize the allocation rule that maximizes
expected total surplus and implement it by a direct mechanism that is periodic ex-post incentive
compatible and individually rational. We also devise a sequential simultaneous ascending
auction as an outcome equivalent indirect mechanism and compare it with the standard uniform
price auction to highlight issues created by market dynamics.

Variation in buyers’ population arises naturally in many settings: computer stores in school
district reach to the freshmen every September to expand their customer pools; owner of a
vintage watch will never dump it in garage sale if he expects it to be the target of professional
collectors in ten years; more recently, sellers on online trading platforms become experienced
at dealing with buyers who come across the product websites at different times.

However, allowing buyers to arrive over time raises several challenges. First of all, note
that the seller’s allocation decision at any point in time starts to depend on the number of
units remain, because for any given inflow of future buyers the seller becomes less willing to
sell now as less units become available and raises the hurdle for existing buyers in response.
In other words, the seller faces an increasing virtual cost curve even if the products incur the
same physical production cost. Instead of charging a single price in the standard setup, she
has to design a of payment scheme that is contingent on the units of residual supplies.

Market dynamics also introduces interdependence to our private value environment. When
the seller decides whether or not to satisfy buyer A’s demand, he has the option to withhold the
product from A and reserve it for future sales. This option value depends on the valuations of
losing buyers 1 in the current sales, and must be integrated into A’s decision if the allocation and
transfer scheme is meant to achieve efficiency. In this way, we create interdependence between
A and her competitors. In spirit of Dasgupta and Maskin [4], the allocation and transfer
scheme required to achieve efficiency in this setting tend to incorporate rich dimensions of
buyers’ private information.2 In particular, if an indirect mechanism is used to achieve efficient
outcome, it must generate sufficient information disclosure in an endogenous and timely fashion.

Finally, when buyer’s birthday becomes private information as well, the seller faces the
challenge to illicit truthful reports on multi-dimensional private information. In general, this
problem could be exceedingly hard to solve.

Main results in this paper are three-folded. First, assuming that buyers’ types become
public information upon their arrivals, we characterize the allocation rule that maximizes ex-

1Including A and those whose valuations are below A’s.
2Dasgupta and Maskin [4] propose an efficient auction for buyers with interdependent but single dimensional

types. In their auction the bid submitted by individual agent is a function of other bidders’ types.
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pected total surplus and reduce the seller’s decision to a simple algorithm: each period, she
gives the first unit to current buyer with the highest valuation if this valuation is above the
first cutoff, the second unit to the buyer with the second highest valuation if it is above the
second cutoff, etc., and raises cutoff as more and more units are sold out.

To implement this outcome in a private information environment, we propose a direct
mechanism that is periodic ex-post incentive compatible and individually rational. In partic-
ular, we give each living agent one chance to report his type and charge the expected total
externality he incurs when he leaves the market. If all buyers are equally patient, then any
entrant who could get assigned now has no incentive to hide his presence, because tomorrow
he faces either a higher cutoff if the forgone opportunity is taken advantage by someone else,
or an increasing number of competitors if his position remains untaken. Thus, we essentially
reduce a multi-dimensional screening problem to a single-dimensional one.

At any time t, the expected total externality incurred by a pivotal buyer (call him A), i.e.,
buyer who gets assigned at t, has several interesting features. First, it differs systematically
according to the number of remaining units when A gets assigned. Since A’s position is always
uncertain due to the continuous influx of new customers, the seller has to prepare for him
a menu of transfer schemes at each interim stage before he exits the market. Second, due
to the interdependence created by market dynamics, the expected total externality function
incorporates rich dimensions of information announced by non-pivotal agents.

These two features manifest themselves in the sequential simultaneous ascending auction we
devise as an outcome equivalent indirect mechanism to implement the efficient outcome. Each
period, buyers are required to bid in a simultaneous ascending auction and submit separate
bids for different units of the remaining product. For each unit of remaining product, a robot
is used to bid against the buyers and to screen out those whose valuations are below the cutoff
for that particular unit. In the end, price is determined by the (k + 1)th bid for the kth unit,
where k is the last unit such that at least k buyers outbid the robot. Interestingly, we require
buyers to submit a bidding portfolio instead of a single bid even if the products convey the
same consumption value, and interpret bids for different units as the buyer’s willingness to pay
under different demand pressures. Meanwhile, we choose an open auction format to generate
full information disclosure and to keep the buyers from information arbitrage. In particular,
the price that screens out buyers below the cutoff depends on the valuations of losing bidders
and we interpret it as a “generalized reserve price” in the current setting with interdependent
values.

Though we focus on efficient outcome and assume fixed supply of homogenous product,
we can easily extend the framework to allow for goods with different but commonly ranked
qualities, introduce dynamic inflow of products, allow multiple sellers to compete and discuss
revenue management issues. Nevertheless, our results hinge on a major assumption that the
two parties cannot write rental contract on the product. Though this assumption becomes
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relatively innocuous when consumption is not time-separable (e.g. collectibles), or potential
damages are non-contractible (e.g. service animal, electronic devices), it is not always non-
biting. When rental contract is available, the seller could simply ask existing buyers to bid for
rental contracts first and auction off all the products in the last period.

Literature Review The idea of selling goods to a dynamic population of buyers is extensively
explored in the yield management literature. (See Gershkov and Moldovanu [6], and the book
by Talluri and Van Ryzin [11] for reference). Motivated by observations in travel and seasonal
goods industry, this literature focuses almost exclusively on transient demand and uses posted
price as the primary instrument for revenue management. Allowing buyers to wait, we introduce
another dimension of strategic concern and extend the analysis to new forms of businesses, e.g.,
online auction sites. Moreover, we no longer restrict ourselves to use posted prices. Indeed,
several other papers, including Lavi and Nisan [7] and Vulcano et al. [12], are motivated by
the same concern and experiment with mechanisms other than posted prices, but they focus
primarily on transient demand. For example, [7] derive their insights from bandwidth allocation
on communication links where decision about each bid should be made when it is received.

Two recent papers study similar topics as ours. Said [10] considers the problem of selling
an exogenous flow of non-storable goods to buyers who arrive over time and points out the
need for open auction format to account for the interdependence created by buyers’ population
dynamics. With storable goods, we endogenize the seller’s allocation decision and propose an
incentive menu to account for the distinct inter-temporal tradeoffs underlying the seemingly
homogenous products. Meanwhile, Board [3] assumes infinite supply of storable goods and
solves for the price path that precludes delay in participation, and it is interesting to see how
our results behave when both size of the market grow infinitely large.

Our work is closely related to recent advancement in dynamic mechanism design, including
Bergemann and Valimaki [2], Athey and Segal [1] and Pavan et.al. [9]. Indeed, the transfer
scheme we design is equivalent to the “marginal flow contribution” proposed by Bergemann
and Valimaki in [2], as each agent in our model realizes his full contribution once and for all
at the time he leaves the market.

2 The Model

Preliminaries Time is discrete. The market opens at t = 0 and closes at t = T . A single
seller is endowed with K units of identical products and wants to sell them between t = 0 and
t = T . Assume that rental contract for the product is unavailable.

At the beginning of t ∈ {0, 1, ..., T}, nt risk neutral buyers with single unit demand arrive at
the market. Their values are i.i.d. drawn from a distribution Ft(.) : Θ→ [0, 1]. Let Θ = [0, 1],
Ft(θ) be atomless on (0, 1], and Ft(.), Ft′ (.) be independent for all t 6= t

′
. Buyers and the seller

4



share the discount factor δ ∈ (0, 1).

Information A buyer’s value θi and birthday τi, or his type, is private information, whereas
{nt, Ft(.)}Tt=0 ∪ {δ, T,K} are common knowledge.

Payoffs If a buyer of type (θi, τi) gets the product at time t, then his payoff is δt−τiθi plus
the present value of any monetary transfer. The seller is benevolent and wants to maximize
expected sum of the buyers’ payoffs.

Allocation At time t, let It and Et be the set of incumbent buyers and entrants, respectively,
and let At = It ∪ Et be the set of all active buyers. An time t allocation maps each active
buyer in At to either one unit of the product or nothing: xt : At → {0, 1}|At|, and the overall
allocation policy is a collection of state-contingent allocations {xt(.)}Tt=0. Finally, denote the
set of buyers who get assigned in period t as Bt = {i ∈ At : xit = 1}.

2.1 Efficient Allocation Policy

Assume for the time being that the seller observes each buyer’s type upon his arrival and wants
to design an allocation policy to maximize expected total surplus. First, observe that at any
point in time the seller could treat each active buyer as newly born and her allocation decision
should be based on the valuation of active buyers only.

Lemma 1. ∀t ∈ {0, 1, ..., T}, xt is independent of τi for all i ∈ At.

At the beginning of period t, rank incumbents and entrants by their values as v1
t > v2

t >

... > v
|It|
t and θ1

t > θ2
t > ... > θ

|Et|
t , respectively, and combine these two rankings to get the

ranking for all active buyers y1
t > y2

t > ... > y
|It|+|Et|
t . We occasionally drop the time subscript

as long as it causes no confusion. At the beginning of period t before entry occurs, denote the
number of unsold products as mt and let Wmt

t (It) be the maximum expected surplus to be
generated from period t onward. In the last period t = T ,

WmT
T (IT ) = max

xT :AT→{0,1}|AT |
ET [

∑
yi

T∈AT

yiTx
i
T ] s.t. |BT | ≤ mT

At t ≤ T − 1, the seller balances immediate gain with future surplus:

Wmt
t (It) = max

xt:At→{0,1}|At|
Et[

∑
yi

t∈At

yitx
i
t + δW

mt−|Bt|
t+1 (At −Bt)] s.t. |Bt| ≤ mt (2.1)

On top of Lemma 1, we show that at any point in time the allocation is monotone in buyers’
values, i.e., high value buyers always get assigned first.

Lemma 2. ∀t ∈ {0, 1, ..., T}, xit ≥ x
j
t for all yi, yj ∈ At and yi > yj.

Proof. All proofs in this Section are relegated to the Appendix.
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Unfortunately, Lemma 2 provides no clue how many units should be sold in each period.
The next Lemma addresses this issue and reduces the seller’s allocation decision to a series of
inter-temporal tradeoffs.

Lemma 3. In period t starting with m units of supply, the seller gives out j units iff:

[MCj ] : yj ≥ δ[Wm−j+1
t+1 (yj , yj+1, ..., ym)−Wm−j

t+1 (yj+1, ..., ym)], and

¬[MCj+1] : yj+1 < δ[Wm−j
t+1 (yj+1, yj+2..., ym)−Wm−j−1

t+1 (yj+2, ..., ym)]

Moreover, if [MCj ] is true, then [MCi] is true for all 1 ≤ i < j.

[MCj ] can be regarded as a cost-benefit analysis regarding the jth unit product: the left
hand side is the immediate gain from current sales while the right hand side captures the
opportunity cost from future sales. With finite supply, the allocation decision with respect to
each unit of product becomes distinct and is independent of products that alreay have been
sold.

In the next Lemma, we characterize the opportunity cost of withholding a particular
unit of product from the current sales. Define ∆Wm

t (v1, v2, ..., vm) = Wm
t (v1, v2, ..., vm) −

Wm−1
t (v2, ..., vm) as the maximum expected surplus that could be generated from the first

out of the m remaining units from period t onward, and we characterize ∆Wm
t (.) in the next

Lemma:

Lemma 4. In period t starting with m products:

(i) ∆Wm
t (0, 0, ..., 0) > 0, and ∆Wm

t (1, v2, ..., vm) = 1.

(ii) ∆Wm
t (v1, v2, ..., vm) is continuous in vj , ∀1 ≤ j ≤ m.

(iii) For any realization of v≥2, 0 < ∆Wm
t (v

′
1, v2, ..., vm)−∆Wm

t (v1, v2, ..., vm) < v
′
1 − v1

(iv) For any realization of v≥2, v single crosses δ∆W q1,...,qm
t (v, v2, ..., vm) from below for only

once at an interior point of [0, 1].

By Lemma 4 Part (iv), [MCj ] in Lemma 3 is true if and only if yj exceeds the unique
solution to the following equation:

v = δ∆Wm−j+1
t (v, yj+1, ..., ym)

Denote this solution as rjt,m(y≥j+1). It turns out that we can interpret it as the marginal cost
of the jth unit product at time t, as we verify in the next Lemma that the “marginal cost” is
indeed independent of buyers’ valuationes.

Lemma 5. The maximum expected surplus function and the associated cutoff satisfy the fol-
lowing independence property:
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(i) ∆Wm
t (v1, ..., vm) is independent of v≥2.

(ii) r1t,m(v≥2) is independent of v≥2.

As a Corollary, note that the time t cutoff for the jth last unit is independent of the
inventory size the seller starts with at the beginning of period t:

Corollary 1. ∀ m′ < m, rm−jt,m = rm
′−j

t,m′
for all 0 ≤ j ≤ m′.

Proof. By definition, rm−jt,m = δ∆W j+1
t+1 (rm−jt,m , y≥m−j+1) = δ∆W j+1

t+1 (rm−jt,m , y≥m′−j+1). Since

rm
′−j

t,m′
is the unique solution to v = δ∆W j+1

t+1 (rm−jt,m , y≥m′−j+1), we must have rm−jt,m = rm
′−j

t,m′
.

Lemma 1 to 4 reduce the seller’s problem to the following algorithm: in period t starting
with m products and active buyers At = {y1, ..., y|At|}, he first decides whether or not to give
the first unit to the buyer with the current highest value: if y1 < r1t,m, he reserves it for futures
sales and exits immediately; otherwise he gives it to y1 and proceeds to the decision respect
to the second unit, so on and so forth. Observe that at time t the cutoff for the first unit of
product should be weakly lower than that for the second unit, which is in turn weakly lower
than that for the third unit, etc., because otherwise Lemma 2 will be violated. Indeed, we show
that time t cutoffs should increase strictly as the inventory depletes.

Lemma 6. At time t let mt = m, then rjt,m < rkt,m, ∀1 ≤ j < k ≤ m.

With Lemma 1-6, we fully characterize the allocation policy that maximizes expected total
surplus.

Theorem 1. The expected surplus maximizing allocation policy takes the following form: in
period t ≤ T − 1 starting with m units of supply, the seller gives the jth unit to yjt if and only
if yjt ≥ rjt,m, where rjt,m ∈ (0, 1) is independent of buyers’ valuations and is strictly increasing
in j. In the last period t = T , the seller simple assigns the m products to buyers with top m

values.

2.2 Direct Mechanism

In this section we propose a direct mechanism Γ that is periodic ex-post incentive compatible
and individually rational to implement the expected surplus maximizing allocation.

Message Space Buyers already in the market have one chance to send a message to the seller,
whereas those haven’t been born are not able to participate. Let the message space at time t
be Mt = Θ × {0, 1, ..., t}, i.e. existing buyers who have not sent the message could report his
value and birthday to the seller.

Allocation and Transfer At time t, let mt be the new reports, xt be the allocation rule and ψt
be the transfer scheme, respectively. The seller ranks active buyers according to their reported
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values and assigns the remaining products according to the expected surplus maximizing policy.
Suppose j out of m units are sold out, then buyers who fail to get assigned are not charged,
whereas those who win the object pay max{bj,1t,m(yj+1)(y≥j+2), bj,2t,m(yj+1)(y≥j+2)}, where:

bj,1t,m(yj+1)(y≥j+2) = δ[Wm−j+1
t+1 (yj+1, y≥j+2)−Wm−j

t+1 (yj+1, y≥j+2)]

bj,2t,m(yj+1)(y≥j+2) = yj+1 + δ[Wm−j
t+1 (y≥j+2)−Wm−j

t+1 (yj+1, y≥j+2)]

Observe that max{b1t,j(yj+1)(y≥j+2), b2t,j(yj+1)(y≥j+2)} is the expected total externality in-
curred by each pivotal buyer yi,i<j : if yj+1 ≥ rjt,m, then he will get assigned instead if yi
is removed from the market. As a result, the expected total contribution by yi,i<j is:

yi + δWm−j
t+1 (yj+1, y≥j+2)− [yj+1 + δWm−j

t+1 (y≥j+2)]

= yi − [yj+1 + δ(Wm−j
t+1 (y≥j+2)−Wm−j

t+1 (yj+1, y≥j+2))]

= yi − bj,2t,m(yj+1)(y≥j+2)

and bj,2t,m(yj+1)(y≥j+2) = yj+1 + δ(Wm−j
t+1 (y≥j+2) −Wm−j

t+1 (y≥j+1)) is the expected total exter-
nality yi incurs. On the other hand, if yj+1 < rjt,m, then he remains excluded from the period
t sales even if yi is removed from the market. The total contribution by yi,i<j is:

yi + δWm−j
t+1 (yj+1, y≥j+2)− δWm−j+1

t+1 (yj+1, y≥j+2)

= yi − δ[Wm−j+1
t+1 (yj+1, y≥j+2)−Wm−j

t+1 (yj+1, y≥j+2)]

= yi − b1t,j(yj+1)(y≥j+2)

and bj,1t,m(yj+1)(y≥j+2) = δ[Wm−j+1
t+1 (yj+1, y≥j+2) − Wm−j

t+1 (yj+1, y≥j+2)] is the expected total
externality yi incurs. Note that bj,2t,m(yj+1)(y≥j+2) ≥ bj,1t,m(yj+1)(y≥j+2) iff yj+1 ≥ rjt,m.

History and Information Disclosure Let mt = {m0, ...,mt}, xt = {x0, ..., xt}. A history is
a collection of messages and allocations: H0 = {∅},...,Ht = (mt, xt). We are interested in
the performance of the mechanism under full information disclosure, so let each buyer in the
market observe the full history.

Reporting Strategy Buyer i who is born in period τ has the following reporting strategy:

{mi,t : Ht−1 ×Mt →Mt × ∅}Tt=τ

Definition 1. A mechanism is periodic ex-post incentive compatible if at any point in time,
regardeless of the reports of other agents who have arrived at the market, and given the expec-
tation of truthfully reporting by future entrants, truth-telling is a best response for all agents
upon their arrival.

Theorem 2. Γ is periodic ex-post incentive compatible and individually rational, as the fol-
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lowing strategy and belief profile constitutes a Perfect Bayesian Equilibrium of the game form
of Γ: on the equilibrium path, each entrant reports his type truthfully upon his arrival; off
the equilibrium path, each buyer in the market who has not yet reported should report his type
truthfully and immediately, i.e. ∀ t ≥ τi, ∀ Ht−1,

mi,t(θi, τi, Ht−1) = (θi, τi)

Furthermore, each buyer believes that all the other buyers use the strategy described above.

Proof. On the equilibrium path, a period t entrant has three types of deviations: he could
report immediately but non-truthfully (Type 1 Deviation), delay but report truthfully (Type
2 Deviation), or delay and report non-truthfully (Type 3 Deviation).

Type 1 Deviation First, consider a period t entrant’s incentive to under-report his value upon
arrival if he happens to be pivotal in period t sales, i.e. he could get assigned if he reports
truthfully and timely. Without losing generality, at time t let him be the highest value buyer
y1 and assume that j out of m units are sold out if he reports truthfully and timely. Then:

y1 > y2 > ... > yj ≥ rjt,m
yj+1 < rj+1

t,m

Furthermore, assume that yj+1 ≥ rjt,m so that he will win one unit of the product if any member
of {y1, ..., yj} is absent at time t. By Lemma 4,

yj+1 < δ[Wm−j
t+1 (y≥j+1)−Wm−j−1

t+1 (y≥j+2)]

yj+1 + δ[Wm−j
t+1 (y≥j+2)−Wm−j

t+1 (y≥j+1)] ≥ δ[Wm−j+1
t+1 (y≥j+1)−Wm−j

t+1 (y≥j+1)]

Therefore, y1’s payoff if he reports truthfully and timely is:

Π(y1) = y1 − [yj+1 − δ[Wm−j
t+1 (y≥j+1)−Wm−j

t+1 (y≥j+2)]]

> y1 − δ[Wm−j
t+1 (y≥j+1)−Wm−j−1

t+1 (y≥j+2)− [Wm−j
t+1 (y≥j+1)−Wm−j

t+1 (y≥j+2)]]

= y1 − δ[Wm−j
t+1 (y≥j+2)−Wm−j−1

t+1 (y≥j+2)]

Assume further that y1 ≥ rj+1
t,m and consider his incentive to under-report on his birthday

and lose the time t sales. Since y1 ≥ rj+1
t,m , by Lemma 5 we have:

Π(y1) > y1 − δ[Wm−j
t+1 (y≥j+2)−Wm−j−1

t+1 (y≥j+2)]

≥ δ[Wm−j
t+1 (y1, y≥j+2)−Wm−j−1

t+1 (y≥j+2)]− δ[Wm−j
t+1 (y≥j+2)−Wm−j−1

t+1 (y≥j+2)]

= δ[Wm−j
t+1 (y1, y≥j+2)︸ ︷︷ ︸

(1)

−Wm−j
t+1 (y≥j+2)︸ ︷︷ ︸

(2)

] (2.2)
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We claim that (2.2) is y1’s expected payoff if he has the option to re-submit a truthful report
at t+ 1. Observe that (1) is the maximum expected surplus evaluated at the beginning of t+ 1
if y1 re-submits a truthful report to the seller, and let s be a future state in which he wins the
object. Furthermore, let ks be the number of remaining units at the beginning of state s, qs
out of which are sold to the top qs buyers, including y1. Then,

yqss > rqss,ks

yqs+1
s < rqs+1

s,ks

If yqs+1
s ≥ rqss,ks

, then qs units are sold in the absence of y1, and

(1)− (2)|s = δs−t−1[y1 + δW ks−qs
s+1 (y≥qs+1

s )− yqs+1
s − δW ks−qs

s+1 (y≥qs+2
s )]

= δs−t−1
[
y1 − bqs,2s,ks

(yqs+1
s )(y≥qs+2

s )
]

Similarly, if yqs+1
s < rqss,ks

, qs − 1 units are sold in the absence of y1, and

(1)− (2)|s = δs−t−1[y1 + δW ks−qs
s+1 (y≥qs+1

s )− δW ks−qs+1
s+1 (y≥qs+1

s )]

= δs−t−1
[
y1 − bqs,1s,ks

(yqs+1
s )(y≥qs+2

s )
]

Therefore, (2.2) = Et[
∑

s δ
s−t(y1 − bqss,ks

(yqs+1
s )(y≥qs+2

s ))], which is exactly the expected payoff
y1 would get if he could re-submit a truthful value report at t + 1. Unfortunately, (2.2) is an
upperbound on y1’s payoff if he deviates and under-reports now, because he cannot revise his
report and thus may not be able to win in all future states in which he could have won with a
corrected type report. Thus, he has no incentive to under-report on his birthday.

The argument above applies to any realization of y1 and yj+1 and any pivotal agent at time
t. Moreover, if an entrant happens to be non-pivotal in period t, he could only decrease his
expected payoff from future sales if he under-reports now. As a result, no entrant has incentive
to under-report on his birthday.

Now consider a non-pivotal entrant’s incentive to over-report on his birthday. Without
losing generality, at time t assume that j out of m units are sold out if he reports timely and
truthfully, and let him be the (j + 1)th highest value buyer. According to the analysis above,
if yj+1 sticks to the equilibrium strategy, his expected payoff from future sales is:

Π(yj+1) = δ[Wm−j
t+1 (yj+1, y≥j+2)−Wm−j

t+1 (y≥j+2)]

Furthermore, assume that yj < rj+1
t,m so that only {y1, ..., yj−1, yj+1} get assigned if yj+1 over-

10



reports. Since yj ≥ rjt,m, yj+1’s current payoff from over-reporting becomes:

yj+1 − bj,2t,m(yj)(y≥j+2) = yj+1 − [yj + δWm−j
t+1 (y≥j+2)− δWm−j

t+1 (yj , y≥j+2)]

= −(yj − yj+1) + δ[Wm−j
t+1 (yj , y≥j+2)−Wm−j

t+1 (yj+1, y≥j+2)] + Π(yj+1)

< Π(yj+1)

where the last inequality follows Lemma 4 (iii). Thus yj+1 has no incentive to over-report in
order to get assigned on his birthday. Moreover, this conclusion is robust to the realization of
yj and applies to any non-pivotal entrant in period t.

Type 2 Deviation If any entrant delays the message but reports truthfully, he could weakly
increase his payoff by reporting truthfully on his birthday.

Type 3 Deviation According to the argument above, it is clear that no buyer has incentive
to delay and misreport because it is dominated by a strategy that delays but report truthfully,
which is in turn dominated by the equilibrium strategy.

Off Equilibrium Path Repeat the argument above for any off-equilibrium path, assuming
that each buyer believes that all the other buyers report truthfully on their birthdays.

Remark 1. We allow each agent to receive his expected total contribution once and for all
at the time when he leaves the market. This transfer scheme turns out to be equivalent to the
“marginal flow contribution” (See Bergemann and Valimaki [2]) in our setup.

Remark 2. The key assumption we rely upon to get immediate participation from the en-
trants is that all buyers are equally patient. If this assumption is violated, then we no longer get
immediate participation for free. To see why, imagine that the market lasts for three periods
and there is one product for sale. At t = 0 a buyer with valuation y2 enters the market and falls
short of the cutoff; at t = 1, another buyer with y1 > y2 enters and y1 = r+ε > r > r−ε = y2,
where r is the cutoff at t = 1. Now if y2 always reports his private information truthfully and
it becomes common knowledge at t = 1 that y2 has to leave the market at the end of t = 1,
no matter he wins the object or not. Then y1 may benefit from waiting if entrants at t = 2
have weak demand. Assuming buyers to be equally patient may or may not be appropriate,
depending on the situation we try to approximate.

2.3 Multi-Round Simultaneous Ascending Auction

In this section we introduce a sequential simultaneous ascending auction as an outcome equiv-
alent indirect mechanism to achieve the efficient outcome. Observe that the seller basically
wants to allocate K homogenous products to buyers who want them the most. This raises the
question as to whether efficiency can be achieved by an indirect mechanism we are familiar
with. A natural candidate is uniform price auction with reserve prices, as intuition suggests
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that we can use reserve price to screen out ineligible bidders below the cutoffs and rely on
the competitive force in auctions to achieve efficient outcome. Nevertheless, analysis below
suggests that our intuition is flawed.

First of all, though products in our model convey the same consumption value to the
buyers, they are treated as distinct by the seller for reasons we discussed above: as the inventory
depletes, the seller become less willing to sell and raises the cutoff for in response. This suggests
the use of simultaneous ascending auction at each stage to provide a menu of incentive schemes
in order to align the buyers’ incentives with the seller’s.

Second, a standard reserve price may not suffice to screen out ineligible buyers. Due to
the interdependence created by buyers’ population dynamics, the transfer scheme in the direct
mechanism incorporates rich dimensions of non-pivotal agents’ information that can hardly be
summarized into a single reserve price. As an example, consider a market that lasts for two
periods. Two buyers y1 > y2 arrive at t = 0, and one more buyer θ arrives at t = 1. The seller
is endowed with one product, and let r > 0 be the cutoff in period 0. Now suppose she holds
a second price sealed bid auction with reserve price R at t = 0 followed by a standard second
price auction at t = 1. At t = 0, the reserve price should effectively separate buyers above and
below the cutoff so that only those above the cutoff participate, and all participants bid up to
their own valuations. In particular, the reserve price should make y1 = r indifferent between
participating or not:

R = δEỹ2,θ
[

max{ỹ2, θ}1θ<r | ỹ2 < r
]

(2.3)

Moreover, a buyer is willing to participate if and only if her valuation is above the cutoff r, i.e.,
the following condition holds iff y1 ≥ r:

P(y1 > ỹ2)(y1)− P(ỹ2 < r)R− Eỹ2
[
ỹ21y1>ỹ2≥r

]
≥ δE

[
(y1 −max{ỹ2, θ})1θ<y11ỹ2<r

]
(2.4)

From the previous section, we know that ∀ ỹ2 < r, the next condition hold iff y1 ≥ r:

y1 − δW (ỹ2) ≥ δE
[
(y1 −max{ỹ2, θ})1θ<y1

]
(2.5)

Integrate (2.5) over ỹ2 < r we have:

E
[
(y1 − δW (ỹ2))1ỹ2<r

]
≥ δE

[
(y1 −max{ỹ2, θ})1ỹ2<r1θ<y1

]
iff y1 ≥ r

Adding E
[
(y1− ỹ2)1y1>ỹ2>r

]
to the (LHS), we get the following condition which holds iff y1 ≥ r

and observe that it is different from (2.4):

P(ỹ2 < r)y1 − δEỹ2,θ
[

max{ỹ2, θ}1θ<ỹ21ỹ2<r
]︸ ︷︷ ︸

6= P(ỹ2 < r)R

> δE
[
(y1 −max{ỹ2, θ})1θ<y11ỹ2<r

]
(2.6)
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Hence (2.4) may not hold in general.
The argument above suggests us to use an open format auction that induces full information

disclosure with a “generalized reserve price” which depends non-pivotal agents’ values. In this
spirit, we propose a simultaneous simultaneous ascending auction as follows:

Setup In period t ≤ T −1 starting with an inventory of size m, the seller simultaneously runs
m separate ascending button auctions3 for each individual unit of product. In the auction for
the jth unit (or the jth auction), he sets the starting bid to zero and uses a robot of type rjt,m
to bid against the buyers. In the last period t = T , he simply auctions off the remaining m

units in a standard uniform price auction.

Buyers and Robots In period t, buyers observe full bidding history from the past, Ht−1,
as well as the drop out history in each on-going auction. They are required to bid in all m
auctions.

In the jth auction, the robot bids according to bj,1t,m(.)(.) under the assumption that ev-
ery other bidder in the jth auction does the same in the following sense: starting from an
empty bidding history in the current period, a bidder of value y sets his drop out price to
bj,1t,m(y)(0, 0, ..., 0) and continues bidding until this price is reached or someone else exits before
him. In the second case he assumes that the drop out bidder uses the same strategy as he
does and infers his value as y

′
. Then he sets the next drop out price to bj,1t,m(y)(y

′
, 0, ..., 0). If

someone else exits before him again, he infers the second drop out bidder’s value as y
′′

and sets
the next drop out price to bj,1t,m(y)(y

′′
, y
′
, 0, ..., 0), so on and so forth. Thus, we can regard the

robot as a buyer who values the product at rjt,m.

Outcome Let qj be the number of buyers who outbid the robot in the jth auction. Define
k = max{j : qj ≥ j, j = 1, 2, ...,m}, and let k = 0 if qj < j for all 1 ≤ j ≤ m. If k > 0, then the
top k bidders in the kth auction win and pay the (k + 1)th bid in the kth auction. Otherwise
the seller gives out nothing and proceeds to the next period.

Theorem 3. The following strategy and belief profile constitutes a Perfect Bayesian Equilib-
rium of the multi-round simultaneous ascending auction game. At time t starting with m units
of supply and regardless of the bidding history from the past Ht: In the jth auction starting
from zero bid, a bidder of value y sets his drop out price to b1t,m(v)(0, 0, ..., 0) and continues
bidding until this price is reached or someone else exits before him. In the second case he infers
the drop out bidder’s value as y

′
under the assumption that every other bidder uses the same

strategy as he does. Then he sets the next drop out price to b1t,m(y
′
, 0, ..., 0). If some other

bidder exits before him again, he infers the second drop out bidder’s value as y
′

and sets the
next drop out price to b1t,m(v)(y

′′
, y
′
, ..., 0), so on and so forth. This process continues as long

as the robot remains active.
3Button auction as described in Milgrom and Weber [8].
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When the robot drops out from the jth auction, a remaining bidder of value y sets the next
drop out price to bj,2t,m(y)(y

′
<y)

4 and continues bidding until this price is reached or someone
else exits before him. In the second case he infers the drop out bidder’s value as y

′′′
under the

assumption that all remaining bidders use the same strategy as he does when the robot becomes
inactive. He sets the next drop out price to bj,2t,m(y

′′′
, y
′
<y) and proceeds.

As the first step, we verify that bj,1t,m(.)(.), bj,2t,m(.)(.) are indeed valid bidding functions.

Lemma 7. ∀t,m, j:

(i) Both bj,1t,m(v)(v
′
<v) and bj,2t,m(v)(v

′
<v) are strictly increasing in v and each element of v

′
<v.

(ii) For any v
′
<v, b2t,m(v)(v

′
<v) ≥ b1t,m(v)(v

′
<v) iff v ≥ rjt,m, and the inequality is strict iff

v > rjt,m.

Proof. See Appendix.

Detailed proof for Theorem 3 is relegated to the Appendix. However, we want to highlight
key ingredients of the sequential simultaneous ascending auction and compare it with the
standard uniform price auction to pin point the challenge raised by population dynamics.

Simultaneous Ascending Auction To get a more intuitive interpretation of the simultaneous
ascending auction, consider a market that lasts for two periods. Three buyers y1 > y2 > y3

arrive at t = 0 and one more buyer arrives at t = 1. The seller is endowed with two identical
products, and let r1, r2 be the cutoff for the first and second unit at t = 0, respectively. In
period 0, if y1 > r2 > y2, then y1 wins the first auction and pays y2’s bid for the first unit;
but if we fix y1 and raises y2 to y

′
2 > r2, then both y1, y

′
2 win the second auction and pay y3’s

bid for the second unit. Though y1’s value for the product is fixed, he wins in the first case
because he expresses a sufficiently high willingness to pay when demand by other agents is low,
and wins in the second case as he reveals an even more intense interest when demand from his
competitors is high. Thus, bids for different units can be interpreted as one’s willingness to
pay under different demand pressures. Since the seller essentially faces an increasing “marginal
cost curve”, this is the exact instrument he needs to eliminate agents below the marginal cost
curve and induce truth-telling from those who remain pivotal.

In the absence of population dynamics or production cost, products that deliver the same
consumption value to the buyers are identical from the seller’s perspective. Thus, there is no
need for more than one price and the uniform price auction suffice for achieving efficiency.

Open Auction Format and Endogenous Information Revelation To account for the interde-
pendence created by population dynamics, we make use of an open auction format to generate
full information disclosure within each period and neutralize the information gap between in-
cumbents and entrants (See Said [10] for a detailed discussion). Unfortunately, we cannot

4y
′
<y are the valuations of drop out bidders. “<y” means that these bidders exits before y does.
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achieve this objective with closed form auctions unless we bring the mechanism designer back
(or use some coordination devise). On the contrary, auction format choice is irrelevant in
standard uniform price auction.

Generalized Reserve Price bj,1t,m(rjt,m)(.) eliminates buyers below the cutoff for the jth unit
product and can be regarded as a “generalized reserve price” in our setting with interdependent
values.

Corollary 2. The sequential simultaneous ascending auction is outcome equivalent to Γ, in
the sense that buyers receive the same allocations and monetary transfers in the two Perfect
Bayesian Equilibria discussed above.

Remark 3. The sequential simultaneous ascending auction is designed not to promote the
use of indirect mechanism but to highlight issues created by market dynamics.

3 Discussion and Conclusion

We study the problem of selling identical storable goods to patient buyers who arrive stochas-
tically to a marketplace. Instead of repeating what we have done, we want to discuss several
unaddressed questions and point out avenues for future research.

First, when evaluating the performance of certain trading platforms, e.g. vehicle auction,
we may want to allow buyers to have private, yet heterogeneous discounting factors, because in
reality they face different borrowing cost. Since the IC constraint for immediate participation
is genetically binding in this scenario, we are curious to see if efficiency/maximal revenue can
still be achieved by simple and intuitive mechanisms.

Second, we are interested to see what will happen if buyers could trade for speculative
purpose, as they often do in reality. To bridge this gap we have to introduce a secondary
market to our framework, and we do not have a neat solution to this problem yet.
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Appendix

Proof for Lemma 2

Proof by induction. Apparently this condition holds in the last period T . Now assume it is
true in period τ ∈ {t+1, ..., T} and consider the problem in period t. Let Bt = {yi1 , yi2 , ..., yik}
and suppose y1 > yi1 . Define S as the collection of future states in which y1 gets the product
S = {s : xs(y1) = 1}, and consider a new allocation rule x

′
that switches the roles between y1

and yi1 , i.e. in period t, x
′
t(y1) = 1, x

′
t(yi1) = 0; ∀ s ∈ S, x

′
s(yi1) = 1 and x

′
s(y1) = 0.

Denote the maximum expected total surplus evaluated at time t after entry occurs as
W̃mt
t (At), which is a function of the number of unsold products and the values of active buyers,

and let the expected total surplus generated by the new allocation rule as Ṽ mt
t (At):

Ṽ mt
t (At)− W̃mt

t (At) = (y1 − yi1) + Et[
∑
s∈S

1sδ
s−t(yi1 − y1)]

= (y1 − yi1)(1− Et[
∑
s∈S

1sδ
s−t]) > 0
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Thus the new allocation rule generates a strictly higher expected total surplus than the surplus
maximizing policy, contradiction, so we must have y1 = yi1 . Similarly, walk through this
argument for {yi2 , ..., yik} and conclude that Bt = {y1, ..., yk}.

Proof for Lemma 3

Since the seller prefers to give out j units than j − 1 units, it must be that:

j∑
k=1

yk + δWm−j
t+1 (yj+1, ..., ym) ≥

j−1∑
k=1

yk + δWm−j+1
t+1 (yj , yj+1, ..., ym)

In other words, the immediate gain from the jth unit must exceed the maximum expected
surplus it could genenerate from future sales, i.e.

yj ≥ δ[Wm−j+1
t+1 (yj , yj+1, ..., ym)−Wm−j

t+1 (yj+1, ..., ym)]

On the other hand, the seller withholds the (j + 1)th unit because he expects to extract a
strictly higher surplus from this particular unit in future sales:

yj+1 < δ[Wm−j
t+1 (yj+1, yj+2..., ym)−Wm−j−1

t+1 (yj+2, ..., ym)]

Finally, since the seller is willing to give out the first (j − 1) units before he proceeds to the
decision with respect to the jth unit, [MCi] must be true for all 1 ≤ i < j. Thus, [MCj ]
implies [MCi], ∀1 ≤ i < j.

Proof for Lemma 4

(i) is easy to show: observe that even if v1 = 0, the seller is still able to generate a strictly
positive surplus from the first unit because he can always give out the 2nd, ..., the mth unit
first and reserve the first unit for whomever left in the last period. On the other hand, if
v1 = 1, the seller should immediate awards the first unit to v1. Thus, ∆Wm

t (0, 0, ..., 0) >
0,∆Wm

t (1, v2, ..., vm) = 1.
(ii) can be easily verified. In order to show (iii), define S as the collection of states in

which the highest value incumbent v1 gets assigned. When v1 is replaced by v
′
1 > v1, we can

continue to use the old allocation rule and pretend that the replacement did not occur, and
achieves something weakly less than the maximum expected surplus, i.e.

∆Wm
t (v

′
1, v2, ..., vm)−∆Wm

t (v1, v2, ..., vm) = Wm
t (v

′
1, v2, ..., vm)−Wm

t (v1, v2, ..., vm)

≥ Et[
∑
s∈Sl

1sδ
s−t(v

′
1 − v1)] > 0
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Switch the roles between v1 and v
′
1 and apply the argument above symmetrically, we have:

Wm
t (v

′
1, v2, ..., vm)−Wm

t (v1, v2, ..., vm) ≤ Et[
∑
s∈S

1sδ
s−t(v

′
1 − v1)] < v

′
1 − v1

By (i) − (iii), v single crosses δ∆Wm
t (v, v≥2) from below for only once at some interior

point of [0, 1].

Proof for Lemma 5

Prove by induction. It’s easy to verify that (i) − (ii) hold in the last period t = T , and (ii)
is true at t = T − 1. Now suppose (i) holds in period t + 1, ..., T and (ii) holds in period
t, t + 1, ..., T . We want to show that (i) is true in period t. Denote the seller’s problem at
the beginning of period t with m products and incumbents It = {v1, v≥2} as Ψ1

t (m)(v1, ..., vm),
and the problem starting with m− 1 products and It = {v≥2} as Ψ2

t (m− 1)(v2, ..., vm). In Ψ1
t ,

define Sjt as the collection of period t states in which v1 wins the jth unit. At any s ∈ Sjt , it
must be that:

y1
s > y2

s ≥ r2t,m = r1t,m−1 (Corollary 1)

...

yj−1
s > v1 = yjs ≥ r

j
t,m = rj−1

t,m−1

...

Since y1
s > ... > yj−1

s are all entrants, in problem Ψ2
t the seller must give one unit to each

member of {y1
s , ..., y

j−1
s }, and after that the continuation problem becomes identical to the one

in Ψ1
t . Therefore, at any s ∈ Sjt , the difference in total surplus between the two problems is

independent of v≥2. Combining these states and we get:

Et[
m∑
j=1

∑
s∈Sj

t

1s[W̃m
s (y1

s , ..., y
j−1
s , v1, y

j+1
s , ..., v2, ...) − W̃m−1

s (y1
s , ...y

j−1
s , yj+1

s , ..., v2, ...)]]

= v1Et[
m∑
j=1

∑
s∈Sj

t

1s]

Observe that in period t the seller starts with one more unit of product and one more high
value incumbent v1 in problem Ψ1

t . Call this situation C1.
Now consider a period t state s in which v1 fails to get assigned in problem Ψ1

t . If the
seller gives out non-negative units at s, all of them must go to the entrants. Suppose in Ψ1

t ,
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xs(y1, y2, ..., yj , yj+1, ...) = (1, 1, ..., 1, 0, ...), then it must be that:

y1 > y2 ≥ r2t,m = r1t,m−1

...

yj−1 > yj ≥ rjt,m = rj−1
t,m−1

yj+1 < rj+1
t,m = rjt,m−1 ≤ r

j+1
t,m−1 (Lemma 6)

Therefore, in problem Ψ2
t , each member of {y1, ..., yj−1} should get one unit and {yi : i ≥ j+1}

nothing. yj may or may not get assigned, and depending on his status at the end of period t

there are two relevant situations:

1. If yj wins one unit at s in problem Ψ2
t , then the seller is left with m − j − 1 products

and buyers yj+1 > ... > v2 > ... at the end of period t. Define this continuation problem
as Ψ2

t+1(m− j− 1)(yj+1, ..., v2, ...) and compare it with Ψ1
t+1(m− j)(yj+1, ..., v1, ...v2, ...):

since the seller starts with one more unit of product and the same set of incumbents
except for v1 in Ψ1

t+1, we are back to C1 and can continue to solve the problem using the
procedure described above: if v1 gets assigned in period t+ 1 we are done; otherwise we
end up in C1 or C2 (to be defined immediately).

2. If yj loses at s in Ψ2
t , then in period t + 1 the seller continues with m − j products and

incumbents yj > yj+1 > ... > v2 > .... Define this continuation problem as Ψ2
t+1(m −

j)(yj , yj+1, ..., v2, ...). Compared with Ψ1
t+1(m − j)(yj+1, ..., v1, ..., v2, ...), the seller start

with with the same number of products, one more high value incumbent yj but no v1 in
problem Ψ2

t+1. Define this situation as C2.

Since the seller starts with the same set of products in period t+ 1, he must use the same
cutoff rule in both problems. If v1 gets assigned in period t+1, Ψ1

t+1, then we can conclude
by the argument at the very beginning of this proof; if he doesn’t, without losing generality
rank the buyers who get assigned in problem Ψ2

t+1 as: θ1 > θ2 > ... > θk = yj > ... > θn.5

Then we must have:

θ1 > ... > θk−1 > θk = yj ≥ rkt,m−j
θk+1 ≥ rk+1

t,m−j ≥ r
k
t,m−j

...

θn ≥ rnt,m−j ≥ rn−1
t,m−j

θn+2 < θn+1 < rn+1
t,m−j

5If yj loses in period t+1, problem Ψ2
t+1, then the set of buyers who gets assigned in period t+1 are identical

in both problems, so we remain in C2.
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Furthermore, since the seller uses the same cutoff rules in both problems, in Ψ1
t+1, each

member of {θ1, ..., θk−1, θk+1, ..., θn} must get assigned, and θ≥n+2 get nothing. Depend-
ing on the value of θn+1, he may or may not get assigned. If he does, then the first
problem becomes Ψ1

t+2(m − j − n)(θn+2, ..., v1, ..., v2), whereas the second problem be-
comes Ψ2

t+2(m− j − n)(θn+1, ..., v2, ...), so we remain in C2; if he doesn’t, we are back to
C1.

This algorithm has to stop in finite times, and whenver it stops the difference between the two
surplus functions is independent of v≥2. Therefore, (i) is true in period t, and (ii) is true in
period t− 1.

Proof for Lemma 6

Compare rm−1
t,m and rmt,m. Observe that if the following inequality holds, then rm−1

t,m < rmt,m:

W 2
t+1(v, 0) < W 1

t+1(v) +W 1
t+1(0) (3.1)

The reason is straightforward: by Lemma 4 and 5, rm−1
t,m and rmt,m are the unique solutions to

the following two equations, respectively:

v = δ[W 2
t+1(v, 0)−W 1

t+1(0)]

v = δW 1
t+1(v)

If (3.1) holds, then rm−1
t,m = δ[W 2

t+1(rm−1
t,m , 0) − W 1

t+1(0)] < δW 1
t+1(rm−1

t,m ), so we must have
rm−1
t,m < rmt,m by Lemma 4.

As in the proof of Lemma 5, denote the dynamic assignment problem on LHS of (3.1) as
Ψ1
t+1(2)(v), the problems on RHS of (3.1) as Ψ2

t+1(1)(v) and Ψ3
t+1(1)(0). There are two relevant

situations:

1. Define S as the collection of states in which v gets the first unit in the first problem,
Ψ1
t+1(2)(v), and note that v must be the highest value buyer at any s ∈ S. Denote the

second highest buyer at s as y2
s , we have:

W̃ 2
s (v, y2

s) = v + W̃ 1
s (y2

s)

Observe that in the first problem Ψ1
t+1, v, together with other active buyers, are excluded

from the sales before state s occurs. Since rm−1
t,m ≤ rmt,m, in both Ψ2

t+1 and Ψ3
t+1 no sales

occurs before state s, and depending on the realization of v, he may or may not get
assigned at state s in problem Ψ2

t+1. Consequently,

Et+1[δs−t(W̃ 1
s (v) + W̃ 1

s (y2
s))|s, y2

s ] ≥ δs−t[v + W̃ 1
s (y2

s)] = Et+1[δs−tW̃ 2
s (v, y2

s)|s, y2
s ]
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2. Now suppose that in Ψ1
t+1, y1 > v wins the first unit at some s1 and y2 ≥ v wins the

second unit at some s2 (potentially after s1). Depending on the value of y1, he may or
may not get the first unit at s1 in Ψ2

t+1,Ψ
3
t+1, i.e.

Et+1[δs1−tW̃ 1
s1(y1)|s1, y1] ≥ δs1−ty1 > δs2−ty2

As a result, the maximum expected surplus from Ψ1
t+1 is strictly less than the sum of the

maximum expected surplus from Ψ2
t+1 and Ψ3

t+1:

Et+1[W̃ 2
t+1|s1, y1, s2, y2] = δs1−ty1 + δs2−ty2

< Et+1[δs1−t(W̃ 1
s1(y1) + W̃ 1

s1(y1))|s1, y1]

= Et+1[W̃ 1
t+1 + W̃ 1

t+1|s1, y1]

Since both situations discussed above occur with strictly positive probability, combine them
and we get (3.1).

Proof for Lemma 7

Part (ii) is implicitly stated in Lemma 4. For Part (i), we only verify that for any fixed vector
v
′
<v, b

j,1
t,m(v)(v

′
<v) is strictly increasing in v. Using exactly the same argument we can show that

b
j,1(2)
t,m (v)(v

′
<v) is strictly increasing in each element of v

′
<v.

At the beginning of t+1, define the dynamic programming problem starting with m−j+1
products and incumbents It = {v, v′<v} as Ψ1

t+1(m − j + 1)(v, v
′
<v), and the problem starting

with m− j products and incumbents It = {v, v′<v} as Ψ2
t+1(m− j)(v, v′<v). Note that the seller

starts with the same set of incumbents but one more unit in problem Ψ1
t+1. Call this situation

C1. First of all, consider a period t + 1 state s (if exists) in which v gets assigned in Ψ1
t+1.

According to Corollary 1 and Lemm 6, v may or may not get assigned at state s in problem
Ψ2
t+1. If he does, then the surplus difference between the two problems is independent of v; but

if he does not, he must be the last agent who gets assigned in Ψ1
t+1. Without losing generality,

let k units be sold out at state s and rank the winning agents in Ψ1
t+1 as y1 > ... > yk = v.

Then it must be that:

y1 > ... > yk−1 > yk = v ≥ rkt,m−j+1 = rk−1
t,m−j

yk+1 < v < rk+1
t,m−j+1 = ykt,m−j

Thus in Ψ2
t+1, {y1, ..., yk−1} get assigned whereas {v, yk+1, ...} do not, and the realized surplus

difference becomes:

Et+1[W̃m−j+1
t+1 − W̃m−j

t+1 |s] = Et+1[v − δWm−j−k+1
t+2 (v, yk+1, ...) + δWm−j−k+1

t+2 (yk+1, ...)|s]
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which is strictly increasing in v by Lemma 4 (iii).
Now consider a period t+1 state s in which v fails to get assigned in Ψ1

t+1. Without losing
generality, let k out of m − j + 1 units be assigned in Ψ1

t+1 to y1 > ... > yk, then it must be
that:

y1 > ... > yk−1 > yk ≥ rkt,m−j+1 = rk−1
t,m−j

yk+1 < rk+1
t,m−j+1 = rkt,m−j

Thus in Ψ2
t+1, {y1, ..., yk−1} get assigned whereas {yk+1, yk+2, ...} do not. yk may or may not

get assigned, and depending on his status at the end of t+ 1 there are two relevant situations:

1. If yk gets assigned in Ψ2
t+1, then the continuation problem becomes Ψ2

t+2(m − j −
k)(yk+1, ..., v, ...). Compared with Ψ1

t+2(m− j − k + 1)(yk+1, ..., y, ...), it starts with one
unit of product less but the same set of incumbent in period t + 2. In other words, we
are back to C1.

2. If yk is excluded from time t + 1 sales in Ψ2
t+1, then the continuation problem becomes

Ψ2
t+2(m−j−k+1)(yk, yk+1, ...., v, ...). Compared with Ψ1

t+2(m−j−k+1)(yk+1, ..., v, ...),
it starts with the same number of units but one more high value incumbent yk. Call this
situation C2.

Since the seller starts with the same inventory size in period t + 2, he should use the
same cutoff rule in both problems. If v gets assigned in period t+ 2, problem Ψ1

t+2, then
he may or may not get assigned in period t + 2 in Ψ2

t+2 because the second problem
involves one more high value agent yk+1, but in any event we can conclude using the
argument at the very beginning of this proof. On the other hand, if v fails to get assigned
in period t + 2, problem Ψ1

t+2, then he must be excluded from period t + 2 sales in
Ψ2
t+2 as well. Without losing generality rank the agents who get assigned in Ψ2

t+2 as
θ1 > ... > θq = yk > θq+1 > ... > θn.6 Then:

θ1 > ... > θq−1 > yk ≥ rqt,m−j−k+1

θq+1 ≥ rq+1
t,m−j−k+1 > rqt,m−j−k+1

...

θn ≥ rnt,m−j−k+1 > rn−1
t,m−j−k+1

θn+2 < θn+1 < rn+1
t,m−j−k+1

Thus, in Ψ1
t+2, {θ1, ..., θn} must get assigned whereas {θn+2, ...} do not. θn+1 may or may

not get assigned: if he does we are back to C2, and if he doesn’t we are back to C1.
6If yk loses at t + 2, then the set of buyers who get assigned at t + 2 are identical in both problems and we

remain in C2.

22



This algorithm has to stop in finite times, and whenever it stops the realized surplus difference
is weakly increasing in v. Furthermore, since the states in which the surplus difference is
strictly increasing in v is of a strictly positive measure, we conclude that bj,1t,m(v, v

′
<v) is strictly

increasing in v.

Proof for Theorem 3

In period t ≤ T − 1 let y1 > ... > yj > rjt,m and yj+1 < rj+1
t,m . First, consider a pivotal bidder’s

incentive to play one shot deviation and focus on the problem of y1 for illustrational purpose.
If everyone follows the prescribed strategy, the top j bidders will win the jth auction and pay
yj+1’s bid for the jth unit at the end of t. Suppose y1 ≥ rj+1

t,m and yj+1 ≥ rjt,m so that y1’s
equilibrium payoff can be written as:

Π(y1) = y1 − (yj+1 − δ[Wm−j
t+1 (y≥j+1)−Wm−j

t+1 (y≥j+2)])

> y1 − δ[Wm−j
t+1 (y≥j+1)−Wm−j−1

t+1 (y≥j+2)− (Wm−j
t+1 (y≥j+1)−Wm−j

t+1 (y≥j+2))]

= y1 − δ[Wm−j
t+1 (y≥j+2)−Wm−j−1

t+1 (y≥j+2)]

By losing in the current period, y1 could participate in future auctions instead and change his
payoffs accordingly. Since the off-equilibrium strategy from period t+ 1 onward is independent
of bidder’s behavior at time t, y1’s one shot deviation has no impact on other bidders’ strategies
and beliefs in all subsequent auctions. By assumption that y1 ≥ rj+1

t,m ,

Π(y1) > y1 − δ[Wm−j
t+1 (y≥j+2)−Wm−j−1

t+1 (y≥j+2)]

≥ δ[Wm−j
t+1 (y1, y≥j+2)−Wm−j−1

t+1 (y≥j+2)]− δ[Wm−j
t+1 (y≥j+2)−Wm−j−1

t+1 (y≥j+2)]

= δ[Wm−j
t+1 (y1, y≥j+2)︸ ︷︷ ︸

(1)

−Wm−j
t+1 (y≥j+2)︸ ︷︷ ︸

(2)

] (3.2)

We claim that (3.2) is y1’s expected payoff from future auctions. By assumption that yj+1 ≥
rjt,m, yj+1 will win the object instead and leaves the seller with m−j units for sales from period
t+ 1 onward. As a result, (1) is the maximum expected surplus evaluated at the beginning of
period t+ 1 if y1 bids according to the prescribed strategy in all subsequent auctions, and let
s be a future state in which he wins. Furthermore, let ks be the number of remaining units at
the beginning of state s, qs out of which are sold to the top qs buyers, including y1. Then,

yqss > rqss,ks

yqs+1
s < rqs+1

s,ks
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If yqs+1
s ≥ rqss,ks

, then qs units are sold in the absence of y1, and

(1)− (2)|s = δs−t+1[y1 + δW ks−qs
s+1 (y≥qs+1

s )− yqs+1
s − δW ks−qs

s+1 (y≥qs+2
s )]

= δs−t+1[y1 − bqs,2s,ks
(yqs+1
s )(y≥qs+2

s )]

Similarly, if yqs+1
s < rqss,ks

, qs − 1 units are sold in the absence of y1, and

(1)− (2)|s = δs−t+1[y1 + δW ks−qs
s+1 (y≥qs+1

s )− δW ks−qs+1
s+1 (y≥qs+1

s )]

= δs−t+1[y1 − bqs,1s,ks
(yqs+1
s )(y≥qs+2

s )]

Therefore, (3.2) = Et[
∑

s δ
s−t(y1 − bqss,ks

(yqs+1
s )(y≥qs+2

s ))], which is exactly the expected payoff
y1 could achieve he bids according to the prescribed strategy in all subsequent auctions. Thus,
y1 prefers to win the auction now than in future. Use this type of argument for any realization
of y1 and yj+1, we conclude that any pivotal bidder in period t has no incentive to play one
shot deviation and lose the current auction.

Now consider any non-pivotal bidder’s incentive to play one-shot deviation and overbid in
the current auction, and without losing generality focus on yj+1’s problem. According to the
analysis above, if yj+1 uses the equilibrium strategy, he loses in the current period and earns

Π(yj+1) = δ[Wm−j
t+1 (yj+1, y≥j+2)−Wm−j

t+1 (y≥j+2)]

from the subsequent auctions. Furthermore, assume that yj < rj+1
t,m so that only {y1, ..., yj−1, yj+1}

get assigned if yj+1 overbids and wins in period t. Since yj ≥ rjt,m, yj+1’s payoff from overbid-
ding becomes:

yj+1 − bj,2t,m(yj)(y≥j+2) = yj+1 − [yj + δWm−j
t+1 (y≥j+2)− δWm−j

t+1 (yj , y≥j+2)]

= −(yj − yj+1) + δ[Wm−j
t+1 (yj , y≥j+2)−Wm−j

t+1 (yj+1, y≥j+2)] + Π(yj+1)

< Π(yj+1)

where the last inequality follows Lemma 4 (iii). Thus yj+1 has no incentive to overbid in order
to win the current auction. Moreover, this conclusion is robust to the realization of yj and
applies to any non-pivotal entrant in period t.

Finally, for any off-equilibrium path, let each bidder believe that all the other bidders use
the equilibrium strategy and repeat the proof above.
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